
ACM SIGACT News Distributed Computing Column 8

Sergio Rajsbaum*

July 30, 2002

Abstract

The Distributed Computing Column covers the theory of systems that are composed of a
number of interacting computing elements. These include problems of communication and net-
working, databases, distributed shared memory, multiprocessor architectures, operating systems,
verification, internet, and the web.

This issue consists of the paper "Distributed Computing Research Issues in Grid Computing"
by Henri Casanova. Many thanks to Henri for contributing to this issue.

Request for Collaborations: Please send me any suggestions for material I should be including
in this column, including news and communications, open problems, and authors willing to write
a guest column or to review an event related to theory of distributed computing.

Distributed Computing Research Issues in Grid Computing

H e n r i Casanova
D e p a r t m e n t o f C o m p u t e r Science and E n g i n e e r i n g

U n i v e r s i t y o f C a l i f o r n i a a t S a n Diego
L a J o l l a , C A 9 2 0 9 3 - 0 1 1 4

casanova©cs , u c s d . edu

Abstract

Ensembles of distributed, heterogeneous resources, or Computational Grids, have emerged
as popular platforms for deploying large-scale and resource-intensive applications. Large
collaborative efforts are currently underway to provide the necessary software infrastruc-
ture. Grid computing raises challenging issues in many areas of computer science, and
especially in the area of distributed computing, as Computat ional Grids cover increas-
ingly large networks and span many organizations. In this paper we briefly motivate
Grid computing and introduce its basic concepts. We then highlight a number of dis-
t r ibuted computing research questions, and discuss both the relevance and the short-
comings of previous research results when applied to Grid computing. We choose to
focus on issues concerning the dissemination and retrieval of information and data on

*HP Cambridge Research Laboratory, One Cambridge Center, Cambridge, MA 02142-1612.
Sergio. Raj sbaum@hp, corn, ra j sbaum~math, unam.rax. On leave from Instituto de Matem£ticas, UNAM.

50

Computat ional Grid platforms. We feel that these issues are particularly critical at this
time, and as we can point to preliminary ideas, work, and results in the Grid commu-
nity and the distributed computing community. This paper is of interest to distributing
computing researchers because Grid computing provides new challenges that need to
be addressed, as well as actual platforms for experimentation and research.

1 Introduct ion

As computation, storage, and communication technologies steadily improve, increasingly large,
complex, and resource-intensive applications are being developed both in research institutions and
in industry. It is a common observation that computational resources are failing to meet the de-
mand of those applications. The power of network, storage, and computing resources is projected
to double every 9, 12, and 18 months, respectively. As noted in [28], those three constants have
important implications. Anticipating the trends in storage capacities (and price), application de-
velopers and users are planning increasingly large runs that will operate on and generate petabytes
of data. Although microprocessors are reaching impressive speeds, in the long run they are falling
behind storage. As a result, it is becoming increasingly difficult to gather enough computat ional
resources for running applications at a single location. Fortunately, improvements in wide-area
networking make it possible to aggregate distributed resources in various collaborating institutions
and to form what have come to be known as Computational Grids (or Grids). To date, most Grid
applications have been in the area of scientific computing as scientists world-wide are resorting to
numerical simulations and data analysis techniques to investigate increasingly large and complex
problems. Recently, Grid computing has been identified as a critical technology by industry for
enterprise computing and business-to-business computing [31].

The term Grid was coined in the late 90s [29] to describe a set of resources distributed over
wide-area networks that can support large-scale distributed applications. The analogy likens the
Grid to the electrical power grid: access to computation and data should be as easy, pervasive, and
standard as plugging in an appliance into an outlet. This analogy is appealing and was made as
early as 1965 [28]. The term Grid computing has been widely adopted (e.g. see articles in the New
York Times on August 9th and 12th, 2001). In fact, the term has been used in so many contexts
that it has become difficult to get a clear picture of what Grid computing really is.

In the foundational paper "The Anatomy of the Grid" [31], Foster, Kesselman, and Tuecke
a t tempt to address this problem by (re-)defining the Grid problem as coordinated resource sharing
and problem solving in dynamic, multi-institutional, virtual organizations. This concept of a vir-
tual organization (VO) is central to Grid computing. A simplified view is that a VO is a set of
participants with various relationships that wish to share resources to perform some task. In that
paper, Foster et al. argue that the Grid problem is thus central not only to "e-science", but also to
industry, where the coordination of distributed resources both within and across organizations is
increasingly important.

Grid computing has been the focus of a tremendous amount of research and development effort,
both in research institutions and in industry. Even though the technology is in its early development
stages and is still evolving rapidly, Grid systems are being deployed and used worldwide. This
situation creates a great opportunity for computer science researchers in several areas for two
reasons. First, many crucial computer science research questions need to be answered in order
to deploy and operate Grids effectively. Second, now that basic infrastructure elements are in
place [36], the Grid has become a viable platform for such research. Indeed, as communities of
users start running applications, large amounts of empirical trace data are becoming available for

51

determining relevant characteristics of Grid platforms; examples include usage patterns, resource
availability, and resource contention. These data make it possible to build increasingly realistic
models that are critical for conducting Grid computing research.

It is well-known that lack of communication between research communities is an impediment to
scientific and technological progress. For instance, lack of communication between the networking
and the distributed computing communities was noted during PODC'00 [53]. Grid computing is no
exception. The area really evolved from High Performance Computing (HPC), which explains the
large amount of Grid-related activities at traditionally HPC conferences (e.g. SC [64], HPDC [40]).
Connections with other research communities have become necessary because of the drastic changes
in platform scale and usage model when moving from traditional HPC to Grid computing. For
instance, current work in areas such as Internetworking are extremely relevant as, after all, Grid
computing takes place on wide-area networks. However, although connections and collaborations
exist, they are difficult to establish as communities tend to publish in their own conferences, employ
different vocabularies, and value different types of contributions.

An area that is clearly critical for Grid computing is distributed computing. Traditional as-
sumptions that are more or less valid in traditional HPC settings break down on the Grid. In HPC
settings, one often assumes a "well-behaved" system: no faults or failures, minimal security re-
quirements, consistency of state among application components, availability of global information,
and simple resource sharing policies. While those assumptions are arguably valid in tightly cou-
pled systems, they break down as systems become more distributed. Fortunately, the distributed
computing community has long investigated algorithmic solutions for distributed computing when
the aforementioned assumptions do not hold. Results obtained in that arena provide a number
of algorithmic solutions and system design principles that can be leveraged for managing large
VOs. Therefore, Grid computing provides an exciting and high-impact area in which distributed
computing results are extremely relevant. However, many new challenges need to be addressed for
those results to be applied and deployed successfully.

Many observers have noted that many activities in the field of Grid computing over the last
5 years have been closer to advanced development than to pure research. What has been termed
as "Grid computing research" is really combined research and engineering with the concrete goal
of producing a widely-used artifact: a software infrastructure. Originally, progress was made by
developing prototype software for concrete applications that could be deployed on early testbeds.
The software employed simple engineering solutions that were often sub-optimal (e.g. they do
not ensure good scalability for large VOs). Results in the distributed computing community have
shown that more sophisticated solutions in the form of evolved algorithms and protocols can provide
significant improvements. Such solutions have not yet been implemented by Grid developers. This
is due both to the sheer magnitude of the initial implementation effort, and also to challenges that
are inherent to Grid computing. Now that a basic infrastructure is in place, it is a critical time for
distributed computing researchers to understand the concepts and goals of Grid computing and to
make contributions in the form of algorithms, protocols, and theoretical models.

The main goal of this paper is to highlight distributed computing research issues that are (or
soon will be) critical for the success of Grid computing. Grid computing is broad and diverse in
its domain of application, and the associated research questions span many areas of distributed
computing and of computer science in general. Rather than providing a cursory discussion of many
areas, we choose to focus on two that we feel are particularly relevant and for which we can point
to ideas, work, and preliminary results in both the Grid community and the distributed computing
community: namely, d i s s e m i n a t i o n of a n d access to d a t a a n d i n fo rma t ion .

We describe the state of Grid computing in Section 2 and discuss the concept of a Virtual

52

Organization in Section 3. We discuss relevant distributed computing research issues pertaining to
data and information in Sections 4 and Section 5. In Section 6, we take a broader focus by surveying
other research questions and areas that are associated with Grid computing, and by discussing next
steps.

2 Grid Computing

In the previous section we have motivated the need for Grid computing. We give here a brief
introduction to basic concepts, to set the stage for the later sections of this paper. This material
borrows heavily from the two foundational papers The Anatomy of the Grid [31] and The Physiology
of the Grid [30] which make fundamental contributions by defining the field and providing a common
vocabulary.

Let us state again the Grid problem as presented in [31]: coordinated resource sharing and
problem solving in dynamic, multi-institutional virtual organizations. This definition expresses
several distinct dimensions of the Grid problem:

• The word "resource" is to be taken in a broad sense, to include data, computers, scientific
instruments, software, etc.

Sharing must be "coordinated" in that resources together with their providers/consumers are
clearly defined, and in that multiple resources may need to be organized in an integrated
fashion to achieve various qualities of service. Achieving this coordination involves the estab-
lishment and enforcement of sharing agreements [22].

The ability to negotiate resource sharing agreements in a dynamic and flexible fashion enables
a wide variety of problem solving methodologies, ranging from collaborative engineering to
distributed data mining.

Membership in a VO is "dynamic" as participants may join or leave at any time. A Virtual
Organization (VO) is then the set of individuals and institutions defined by this sharing.
Many examples of existing or envisioned VOs show that the concept spans a broad spectrum
of purpose, size, structure, and duration.

"The Anatomy of the Grid" [31] identifies and defines a set of common requirements. One
critical observation is that a simple client-server model is not sufficiently flexible for enabling most
VOs. Instead, a spectrum of architectures ranging from client-server to general peer-to-peer are
necessary as participants are alternately resource providers or consumers. Another observation
is that currently available distributed computing technologies are not appropriate to enable VOs.
Either those technologies do not support the wide variety of required services and resources, or they
suffer from lack of flexibility and control needed for enabling the type of resource sharing necessary.
As a result, there is a need for defining a new technology for supporting VOs: a Grid software
infrastructure.

The software infrastructure presented in [31] places a large emphasis on interoperability as it is
fundamental to ensure that VO participants can share resources dynamically and across different
platforms, programming environments, and languages. To achieve interoperability, it is necessary
to specify Grid protocols. These protocols can then be implemented as part of Application Program-
ming Interfaces (APIs) and Software Development Kits (SDKs) to provide layered programming
abstractions. We review Grid architecture layers in the following section.

53

2.1 G r i d A r c h i t e c t u r e L a y e r s

Grid Protocol
Architecture

Internet Protocol
Architecture

Application]

Resources [

Connectivity]

Fabric]

Figure 1: The layered Grid architecture and its relationship to the Internet protocol architecture -
reproduced from [31].

The Grid .fabric provides the lowest level of access to actual resources (e.g. computer, disk,
file system, cluster of computers) and implements the mechanisms that allow those resources to
be utilized. More specifically, those mechanisms must at least include state enquiry and resource
management mechanisms, each of which must be implemented for a large number of native systems.
The Grid connectivity layer defines communication, security, and authentication protocols required
for network transactions between resources. The Grid resource layer builds on the connectivity layer
to implement protocols that enable the use and sharing of individual resources. More specifically,
two fundamental components are (i) information protocols for querying the state of a resource;
and (ii) management protocols to negotiate access to a resource. The Grid collective layer focuses
on the coordination of multiple resources. Example of functionalities include resource discovery,
co-allocation, scheduling. This is the layer which is of greatest interest for the purpose of this paper
as it is where many challenging distributed computing questions must be answered. Finally, the
application layer is where VO applications are implemented and may use several of the previous
layers. The resulting architecture is depicted in Figure 1.

The description of this architecture in [31] uses components of the Globus toolkit [36] as a
concrete example of Grid layer implementations. Globus is a large, open-source, community-based
effort at the Argonne National Laboratory and the Information Science Institute; Globus provides
a software infrastructure that is currently leveraged by most Grid efforts. As of late 2001, over
12 companies had announced endorsement for the Globus Toolkit. Beyond the Globus toolkit, the
Global Grid Forum [33] is a consortium of over 1000 academic researchers and industrial partners
whose goal is to make recommendations for Grid infrastructure development.

54

2.2 C u r r e n t D e v e l o p m e n t s a n d L i m i t a t i o n s

In this section, we describe components of the Grid infrastructure that address the management
of application data and resource information, as they are the focus of our discussion in the rest of
this paper.

The infrastructure that focuses on management of distributed application data is commonly
labeled a Data Grid [18]. An increasing number of scientific disciplines manage large data collections
generated by measurements and derivation of measurement data. As a result, many Data Grids are
currently being deployed [25, 4, 52, 50, 5]. Infrastructure targeting resource information is often
referred to as a Grid Information Service [21]. A number of research groups have designed and
prototyped components for collecting, indexing, and publishing Grid information. The problems
of indexing, discovering, and accessing such "Grid information services" is in some respects quite
similar to those encountered when indexing, discovery, and accessing other data sources. However,
we will see in the rest of this paper that both infrastructures raise a number of distinct research
questions from a distributed computing perspective.

For both infrastructures, appropriate data schemas must be defined so that information can be
encoded, stored, and searched in an efficient manner. A number of recent developments have made
contributions in that area. In the Data Grid context, the Chimera system [32] targets a data schema
that can be used to establish a virtual data catalog that describes all ways in which data in the
catalog has been derived. This is a generic solution that should be applicable to many different VOs
and has been demonstrated for high-energy physics and astronomy applications. In the context of
Grid Information Services, schemas are being developed for various Grid resource types as part of
the GGF [33] activities in the Grid Information Services working group [34]. Commonalities with
Common Information Model (CIM) [19] are also being explored.

The definition of schemas is an important, but in some sense mundane, issue. More challenging
is the design and implementation of a distributed system that implements mechanisms to publish
information, disseminate information, notify participant of information changes, locate information,
and retrieve information. Initial Grid infrastructure efforts have engineered software solutions for
those mechanisms (e.g. [27]). Those mechanisms have made it possible to take the first steps in
Grid computing and have been key to making the Grid a plausible platform. However, a large
part of those efforts were focused on "getting it to work," without directly addressing issues of
scalability, reliability, and information quality.

Now that we are facing VOs that contain thousands of individuals in hundreds of institutions
world-wide, issues such as scalability and usability are becoming a near-term concern. These is-
sues are being increasingly recognized by the Grid computing community and recent work explores
avenues of research that are strongly connected to distributed systems and distributed comput-
ing research questions. In that sense, Grid computing presents a key opportunity for distributed
systems and distributed computing researchers. Grid developers are implementing large scale in-
frastructures such as GriPhyn as this paper is being written, and those infrastructures provide a
great "playground" to explore research issues in a concrete setting that will have a major impact
on disciplinary science. Furthermore, information dissemination techniques developed in the dis-
tributed systems community (e.g. wide-area group communications) have shortcomings that must
be addressed for Grid computing.

In the next section we detail the concepts defining VOs and, inspired by current work, give an
example VO scenario for a hypothetical scientific community. That scenario will be used later in
the paper to motivate and illustrate research challenges in the area of distributed computing.

55

3 Virtual Organizations

An important factor that has driven the evolution from HPC systems and applications to Grid
computing is the widespread deployment of high-speed wide-area networks. The dramatic increase
in network connectivity makes it feasible to consider deploying applications that tightly couple
geographically distributed resources, data, and users.

This distribution has major implications when designing a software infrastructure to support
problem solving activities. In a tightly coupled systems, such as a Massively Parallel Proces-
sor (MPP), it is possible to obtain an accurate picture of the global state of the system and to
control its components in a centralized fashion. In a VO, distributed ownership and high-latency
networks render the HPC approach to system design infeasible. In order to illustrate the challenges
the Grid community is facing, we present a hypothetical VO and the activities it supports.

Consider a community of thousands of users that span hundreds of research institutions world-
wide and who all focus on overlapping portions of a common scientific problem. Those users and
institutions form a VO. Even though the software infrastructure to support a VO of that magni-
tude is not fully deployed at the time of writing, a number of large multi-institution projects are
underway and are making rapid progress in that direction. A notable such project is GriPhyn [4],
and our discussion is inspired by GriPhyn accomplishments and current developments.

The Grid available to members of our example VO consist of several types of resources: (i) a
number of scientific instruments that generate raw experimental measurement data (e.g. particle
collider, radio telescope); (ii) compute resources ranging from desktop workstations to clusters
and MPPs, that are used to perform derivations and analysis of the measurement data as well
as simulations; and (iii) storage resources on which measurement and derived data can be stored.
All resources are interconnected via wide-area networks and are prone to downtime, either due to
failures or to maintenance tasks.

Members of the VO, or software agents acting on their behalf, wish to perform a variety of
tasks. For example:

- Publish new measurement data,

- Locate data items matching some criteria,

- Retrieve particular data items efficiently,

- Locate appropriate compute resources to run a simulation or data analysis task,

- Be constantly informed when new "relevant" data is produced,

- Publish new derived data of potential interest to other members of the VO,

- Be constantly informed of the load on a selected number of resources during the next 2 hours.

In the GriPhyn project, the overall goals of those activities is to allow VO members to construct
a large collection of data and derived data. These goals must be achieved in a collaborative fashion
so that little or no redundant work is performed. In other words, if some user has already performed
a derivation on some portion of the measurement data and has stored it on a VO storage resources,
other users should be able to discover and retrieve that data easily, rather than wasting (perhaps
large amounts of) time performing redundant computation.

Information about application data is only one part of the picture. In order to achieve perfor-
mance, it is critical to gain information about Grid hardware resources. For instance, when a user

56

wishes to launch a computation, a software agent could decide which compute resource is most
appropriate. An example of an agent is an application-level scheduler [10], which a t tempts to select
resources that optimize a particular user's achieved performance. More specifically, an agent is a
software component that understands the user's application requirements (e.g. "must use data from
database X") and the user's objective (e.g. "reduce execution time"). An agent can then select
appropriate resources, enact data movements and job launches, and potentially modify the way the
application is running in order to adapt to changing resource conditions. Those decisions must take
into account the location of the input data for that computation, as well as the basic capabilities of
candidate resources (e.g. CPU speed). In addition, dynamic resource information such as compute
resource loads (e.g. CPU load, batch queue length) or network speed (e.g. bandwidth between
a storage resource and a compute resource) must also be taken into account. Timely access to
this information is critical to achieve good performance as Grid resources are shared and exhibit
dynamic performance characteristics.

In our VO example, it is clear that VO participants need to access both static and dynamic
information and data. This access needs to be real-time, either via notifications or on a per-query
basis. In the rest of the paper we highlight areas of distributed computing and distr ibuted systems
research that could be leveraged (and extended) to enable those two modes of operation.

4 Grid Informat ion Di s seminat ion

In this section we discuss issues of scalable delivery of dynamic information about the state of a
Virtual Organization.

4.1 P u b l i s h e r / S u b s c r i b e r S y s t e m s

The example scenario in the previous section shows that an important question in Grid computing
is the scalable and timely propagation of dynamic information concerning both application data
and Grid resources. This information is critical for enabling large-scale VOs, and as a result new
ways of achieving collaborative science. Because of its HPC heritage, Grid computing started
from the perspective of tightly coupled and centrally controlled resources. As Grids grow in scale,
the trend is to assemble loosely-coupled autonomous components interconnected over wide-area
networks. It is known that event-based distributed systems are scalable ways of managing such
ensembles. The asynchronous, heterogeneous, and collaborative aspects of the scenario described
in the previous section suggest that event-based interaction is a natural abstraction for enabling
VOs. Implementing a scalable event-based system is difficult, not only due to the sheer number
of clients in the system, but also due to networking limitations. Assumptions of low latency,
abundant bandwidth, reliable connectivity, and centralized control, which are valid within a local-
area network, do not hold on the wide-area.

A class of event-based systems that are ideally suited for the dissemination of Grid information is
that of publisher/subscriber systems (or pub/sub for short): systems that interconnect information
providers to information consumers in distributed environments. A broad pub / sub paradigm is that
of subject-based routing (and its subtle variations: "group-based", "channel-based", and "topic-
based"). Publishers label each event with a subject name, and subscribers receive all events with
desired subjects. A number of subject-based systems have been successfully implemented [38, 69,
48, 20, 63]. A more recent type of pub/sub systems are "content-based" ones. In those systems,
each event follows a schema that defines the event's content as a set of at tr ibutes with different
types. Subscriptions are then defined as predicates over event attributes. A taxonomy of several

57

existing systems is presented in [12] and it shows the following trend: Moving away from centralized
design, pub/sub systems are increasingly designed with an overlay network of i n format ion brokers

that route events between publishers and subscribers.
For instance, imagine a Grid resource sensor (e.g. as provided by [75] or [70]) generating events

about the load of compute resources. An application-level scheduler, acting as an agent for a user,
could then register for events that match the following predicate (hostname == bh. sdsc. edu) and
(load < 2.50) (assuming that the load of a compute resource is represented as a floating point
number). By registering for several such events for several resources, the scheduler can then make
real-time decisions and select appropriate resources for the application.

Similarly, in a system such as the GriPhyn VO, users wish to be notified of new measurement
data available from scientific instruments as is produced, or from new derived data as it is computed
by a member of the VO. In these cases, publishers would be components of the Grid storage infras-
tructure: the Data Grid. They could send events about new data items becoming available. This
could be very usefnl for critical data that is periodically produced, rather than VO members doing
periodic queries which can be too frequent or too infrequent, leading either to prohibitive network
load or to users not becoming aware of new data items in a timely fashion. Such considerations
are the usual motivations for using event-based systems. Events need to be appropriately routed
to users and to user agents so that new computations, data analyses, and data derivations can be
triggered.

In the early days of Grid computing, these scenarios were implemented with lookups of central-
ized (or sometimes replicated) databases. The scalability limitations of this approach were known
and became a major impediment as Grid computing gained in popularity. Recent advances in
MDS-2 [21] and developments of the Open Grid Software Architecture (OGSA) [30] allow for more
scalable and powerful architectures that allow for extensive caching and replication of information
to support high query rates. Also, interesting first steps have been taken to implement Grid event
distribution [46] and there is a "Grid Notification Framework" research group as part of the Global
Grid Forum [35]. Therefore, it is clear that the Grid community has acknowledge the importance
of notification and event distribution and the required software architecture is being developed. We
argue that (i) several results from pub/sub research should be leveraged by that architecture; (ii)
Grid computing poses new challenging questions in the area of pub/sub systems. We discuss those
points in the next section.

4.2 Publ i sher /Subscr iber and the Grid

Subject-based pub/sub systems present two major advantages. The matching of events to subscrip-
tions is a simple lookup in a table, and scalability is achieve by straightforward multicasting, where
a multicast group is created for each subject. The power of the content-based paradigm comes with
the loss of those two convenient characteristics. Event matching is more involved as it requires eval-
uations of predicates over event content. A simple multicast technique where a multicast group is
created for each matching set of events produces a prohibitive number of groups [51]. This is the
main challenge that motivates most of the recent research work on content-based systems. Our
goal is to see what results can be leveraged for Grid computing, and what additional questions are
raised.

A number of content-based pub/sub systems have been implemented and evaluated [65, 76, 66,
39]. One of the main design issues is the choice of the topology of the overlay network formed by the
event brokers. For instance, the work on the SIENA [66] system studied three possible topologies:
client/server, acyclic peer-to-peer, and general peer-to-peer. Each topology has its advantages and

58

drawbacks [13, 14]. The authors make the observation that different topologies can be combined
to form hybrid topologies where the overlay network is partitioned in possibly hierarchical subnets
with different internal topologies. The question is then: W h a t overlay topology of event
broke r s is a p p r o p r i a t e for VOs? The choice depends on the size of the VO and the usage
patterns of VO members. In addition, VOs will undoubtedly exhibit characteristics that are not
present in the domains previously targeted by pub/sub systems. In fact, it is most likely that
no single topology is best in all cases. However, it is worthwhile to examine particular important
domains, i.e. scientific communities, and discover which overlay network topologies are the most
appropriate. For instance, this could be done for the scientific communities that are targeted by
GriPhyn [4] and, in spite of not providing a general solution for Grid computing, would have a
tremendous impact on disciplinary science.

Another critical issue for providing a pub/sub system is the specification of the subscription
predicates, that is the ways in which subscribers can define the events in which they are interested.
The trade-off is that richer predicates (expressiveness) are more difficult to deploy (scalability).
One extreme is the purely subject-based approach, and another is a content-based approach that
allows any boolean expressions over event content, including past events (i.e. taking into account
event history). A common model for predicates has been that of a conjunction of simple tests over
event attributes [1]. Researchers have focused on defining rich languages to describe subscription
predicates [49]. It is then the choice of the pub/sub system designers to choose which subset of
those languages to use. For instance, the work in [14] restricts predicates to filters and patterns,
which enables several optimizations of notification selection within the event service. Another
notable example is the work in [7] where the authors define an Information Flow Graph model
that extends the simple conjunction of simple tests over event attributes. The question is: How to
determine the appropriate trade-offs for enabling VOs on the Grid? The first step is to analyze the
data schemas being developed within the Grid computing community, e.g. for Grid information
services. One must understand the ways in which this data is to be used. This can be achieved by
collecting logs from current VO efforts and analyzing them for trends and patterns. Building on the
aforementioned pub/sub results, one can then make an informed decision for proposing predicate
languages for Grid information that make appropriate expressiveness/scalability trade-offs. It is
likely that different components of Grid information will require different levels of expressiveness
(e.g. resource information vs. application data information). It would then be interesting to
answer the question: W h a t are the benefits and challenges of s imultaneously s u p p o r t i n g
different classes of p r e d i c a t e specif icat ions w i th in a Gr id p u b / s u b i n f r a s t r u c t u r e ?

Previous work on pub/sub systems and routing algorithms makes several assumptions about
the underlying network of subscribers and about patterns of subscription matches. In what fol-
lows we review common assumptions and give insight regarding how appropriate they are to Grid
computing.

4.2.1 Selectivity and Regionalism

Two related assumptions that make it possible to devise efficient event routing algorithms are
selectivity and regionalism, using the terminology in [51]. High selectivity means that subscriptions
are selective enough that the probability of a match is low. High regionalism means that matches
for an event are non-uniformly distributed over the entire subscriber network. In other words, sets
of subscribers that are geographically close tend to be interested in similar events. For instance, the
results presented in [6] simulate "locality of interest" by mapping different subnets of a wide-area
network to distinct distributions of interest values. The authors in [51] make the observation that

59

if selectivity is low a n d regionalism is low, then most events are of interest to most subscribers,
and an event broker in the overlay network should route most events. In this case, one should use a
simple flooding algorithm, although this solution does not scale if subscribers are to receive events
reliably. The question is: W h a t levels o f selectivity and regionalism are to be e x p e c t e d
for V O s on t h e Gr id? Let us consider the two types of events that we identified in Section 3:
Grid resource information events and Data Grid events.

It is rather difficult to foresee the levels of selectivity and regionalism for events related to
Grid resource information. For instance, suppose most software packages used for data derivations
are portable and installed on most resources. Then, all VO members who wish to perform data
derivations may be interested in most information concerning all available compute resources within
the VO. This leads to a low selectivity / low regionalism scenario which does not scale. A great
research opportuni ty is then to understand the specific needs for Grid resource information within
VOs and make recommendation both for event routing protocols and for resource usage policies.

Data Grid events, i.e. events about new data becoming available, will exhibit a variety of
regionalism levels in most VOs. For instance, it is reasonable to assume that scientists working
on the same components of a specific problem are likely to be clustered. For instance, different
research teams in different participating sites in the GriPhyn project are probably interested in
the same type of data being produced. Events related to that type of data then exhibit high
regionalism and high selectivity. However, as collaboration among universities increase thanks to
the establishment of VOs, the regionalism could potentially become lower as "virtual" research
teams are established. Another reasonable assumption is that certain data is probably relevant
to most members of the VOs, e.g. measurement data coming from a unique scientific instrument.
Events regarding such data will therefore exhibit low regionalism and selectivity. Once again, the
diversity of Grid applications leads to a mixed population of events. The way to proceed is then
to: (i) examine a large VO; (ii) gather information about the behavior and requirements of VO
members; (iii) instantiate a realistic model for the mix of events; (iv) quantify values for regionalism
and selectivity.

4.2.2 Dynamic Subscriptions

Another assumption commonly made in previous work is that the set of subscriptions is relatively
static. This means that events are published at a rate orders of magnitudes higher than the rate at
which subscriptions enter and leave the system. For instance, the work presented in [6] describes an
efficient event matching and routing scheme that uses a Parallel Search Tree (PST) data structure.
The PST encodes all subscriptions in the system and is replicated on all event brokers in the overlay
network. Each time a new subscription is added (or removed) from the system, there is potentially
a need for a global update of the replicated PST structure. In [51] it is noted that "many systems
are likely to experience a flux of subscriptions". This is true for classes of subscriptions in Grid
VOs. For instance, when a user wishes to perform a data derivation, he will probably start an
agent that will subscribe to Grid resource events in order to select appropriate resources. Once the
derivation is complete, the user agent will un-subscribe and shut down. Other subscriptions will
have longer range, e.g. subscriptions that track new data being produced by an on-line scientific
instrument. Dynamic subscriptions often require that multicast groups used for event routing be
reconstructed periodically. [51] contains a discussion of which routing algorithms are more resilient
or sensitive to dynamic subscriptions. The (expected) conclusion is that a "hybrid" solution will be
the best solution. This is a rather general statement, and the question is: W h a t h y b r i d routing
algorithm and t o p o l o g y will be resilient to the dynamics of V O subscriptions?

60

This discussion has revealed several concerns relating to the practical applicability of existing
pub / sub results to the Grid. We conclude that none of the assumptions discussed above hold for
all Grid events, but that some hold for classes of events. In addition, it is difficult at this t ime to
precisely quantify requirements for a Grid event system in a "typical" VO. However, it is possible
to gather information today on cutting-edge efforts such as GriPhyn [4]. In the next section, we
provide perspectives on what we believe is a crucial point to investigate in order to build on existing
pub / sub results: quality of service for Grid event delivery.

4.3 QoS for E v e n t D e l i v e r y

Similar to the trade-off between expressiveness and scalability described at the beginning of the
previous section, there is a clear trade-off between Quality of Service (QoS) for event delivery and
scalability. QoS for event delivery can come in various forms and be specified by several strong
or weak guarantees. Examples include statements such as: "every event is eventually delivered
to all interested subscribers" or "every event is delivered to most interested subscribers in under
1 second". Existing event-based pub/sub systems specify such QoS requirements. For instance,
SIENA [66] provides a best effort service, meaning that race conditions induced by network latencies
and out-of-order messages are not prevented. The two most common QoS specifications in existing
systems are whether events are delivered reliably or unreliably, and whether events axe delivered
in order or if they may be out of order. We claim that the diversity of activities in a Grid VO will
require more flexible QoS semantics.

We believe that supporting different degrees of QoS requirements for different classes of events
makes it possible to overcome the difficult issues that we have identified in Section 4.2. For instance,
consider Data Grid events. Those events should be reliably delivered so that users, or user agents,
do not "miss" interesting new pieces of data. However, those messages may not have tight timeliness
requirements: a piece of data that has just been generated will probably not go away. Therefore,
those messages can tolerate delayed and out-of-order delivery. On the other hand, events related
to Grid resource information can implement a simple "best-effort" paradigm with various levels
of lossiness. Consider a user agent (e.g. an application-level scheduler) that makes decisions for
resource selection. Arguably, better decisions can be made with up-to-date information about
resources. However, if information is missing or out-of-date, there are several strategies that can
be used for making decisions. For instance, one could decide to not use any resource on which one
does not have sufficiently up-to-date information. Alternatively, depending on the Grid information
values and their staleness, one can decide to select resources for running a computat ion according
to ad-hoc heuristics. In fact, current Grid implementation efforts typically make provisions for such
deficiencies in Grid information. The event system could then afford to "drop" a fraction of certain
events without a devastating impact on the VO. Therefore, an interesting question is: What are
event routing schemes that can exploit a variety of QoS requirements for different
classes of events to ensure scalability in VOs?

This question has already been identified and partially addressed by previous work on pub / sub
systems. Indeed, in [78] it is noted that pub/sub systems typically offer "limited and low-level
options for quality of service". The authors propose an event stream interpretation model so
that every subscriber can specify a spectrum of delivery QoS semantics. The rationale is that
the pub /sub system can then implement efficient and scalable protocols that exploit weaker QoS
requirements on some event streams to do message routing. We view this avenue of research as
very promising for Grid event systems.

61

5 Retr ieving Data and Information

In the previous section we have discussed systems that deliver events to subscribers. This is a
flexible way to allow components to interact in large-scale, wide-area environments such as the
ones that will be spanned by VOs. However, this does not imply that all interoperation in the
Grid can (or should) be done via such systems. In fact, there is a clear need for enabling queries.
First, some Grid resource information is static. Second, users or user agents may want to perform
queries to identify all (or most) resources that fit some criteria. For instance, one may want to
find all compute resources on which some specific software is currently installed and that provide
at least 1GB of RAM. Also, a user needs to issue queries to discover relevant application data that
is available in Grid storage devices. As we have seen in Section 4.2, events can be generated for
periodic data creations. However, in a realistic VO, we also expect users and user agents to generate
queries to the Data Grid to discover and retrieve archived data. The goals for Grid comput ing are
no different from other areas: to make discovery and retrieval efficient and scalable.

A number of relevant protocols and mechanisms have been explored in many related contexts
such as distributed databases, Web caching, content distribution networks, and distr ibuted file sys-
tems. Key concepts are shared among those efforts. However, it is difficult to compare protocols
from different domains and understand all the trade-offs that are relevant to a particular problem,
such as Grid computing. Consider for instance the concept of data replication, which is commonly
used to increase data availability and reduce data retrieval latency. As seen in [73], truly under-
standing the connection with replication protocols used in distributed databases and those used in
distr ibuted systems is a non-trivial task. If one can unify protocols from different communities,
the potential pay-off is better and more robust protocols. For instance, many researchers have
successfully explored database replication protocols that utilize concepts from distr ibuted systems
(e.g. using group communication [67]).

A number of research works in the Grid community have recently recognized and explored
fundamental connections between Grid computing and work in the distributed computing and the
distributed systems areas. Further work will be needed to develop adequate distr ibuted algorithms
and protocols for enabling discovery and retrieval of data and information within VOs. In the next
section we review key areas for such developments.

5 .1 D i s c o v e r y

One of the challenges for VOs is that they must implement robust and fast da ta / informat ion
discovery. The problem is the following. A number of participants store information (e.g. the
clock frequency of a host, or the location of a particular data item). Other VO participants submit
possibly complex queries over that information, and should experience low response t ime for those
queries. In the early years of Grid computing, this was achieved via centralized services that
contained all stored information. An example is the Condor matchmaker [58]. While efficient for a
local-area network, this system breaks down for large VOs as it is both a performance bottleneck
and a single point of failure. Similarly, the Globus Toolkit's Monitoring and Discovery Service
(MDS) [27] was initially designed as a centralized way to obtain Grid information (via an LDAP
server). Later designs in MDS-2 have moved to a decentralized approach where Grid information
is stored and indexed by index servers that communicate via a registration protocol [21]. Users can
then query directory servers. At the moment, the assignment of content to servers and the overlay
topology of those servers is done in an ad-hoc fashion. Nevertheless, these recent developments
make it possible to address distributed computing questions in a practical and concrete context.

Based on recent advances in the area of distributed systems, Grid researchers are investigating

62

how scalable discovery mechanisms can be implemented using a peer-to-peer architecture [41].
Every participant (organization or individual) in a VO must have full control of which information
is published about its local resources. We therefore assume that every participant in a VO maintains
one or more servers, or peers, that provide access to local resource information. Those peers may
join or leave the system at any time. One may expect certain VOs to be more or less dynamic, but
it is currently too early to make any statement about what could be "typical". In this discussion
we ignore issues about the construction and maintenance of the overlay network as we surmise they
are probably no different for Grid computing than for other peer-to-peer systems.

A question is then whether previous work and results on discovery in dynamic, self-organizing
peer-to-peer networks can be utilized and extended. As in our discussion of pub / sub systems, we
make the distinction between the discovery of data locations (e.g. find the file 'foo') and of Grid
resources (e.g. find a CPU with some desired clock-rate).

5.1.1 Discovering data

A number of recent efforts such as CAN [60], Chord [68], Pastry [62], and Tapestry [77] provide
powerful mechanisms for locating data in peer-to-peer networks. The goal is to locate a particular
data item given a key, or name, which is used for indexing. In the context of the Data Grid, this is
often stated as finding a physical data file given a logical file name. The aforementioned systems use
clever routing and indexing schemes to reduce the latency of the search process (e.g. [56]). Those
systems can conceivably be utilized to discover data (and data replicas) efficiently in a Data Grid.
In fact, it may be that a system like Oceanstore, which uses Tapestry, could provide a good solution.
Our goal here is not to argue which one of those systems is the most appropriate, but rather to point
to interesting research questions. Such a question is: are there any characteristics of Grid
VOs that can be exploited for optimizing data discovery? In the scenario we presented
in Section 3, the data is not produced and consumed by largely unrelated individuals (e.g. such
as the Web). Rather, the data access patterns result from specific scientific activities. One may
then wonder if there exists data sharing patterns that could be exploited for reducing the latency
of data discovery. If so, then there is a great opportunity for extending currently available data
discovery systems and specializing them for scientific data on the Grid.

Even though there are only a few VOs currently in existence, work in [43] makes a very interest-
ing hypothesis: scientific communities sharing data tend to behave like small-world networks [72].
Small-world networks have arisen in contexts as diverse as social networks, the World Wide Web,
and neuro-networks. They exhibit two fundamental characteristics: (i) a small average path length;
(ii) a large clustering coefficient that is independent of the network size. The clustering coefficient
quantifies how many of a node's neighbors are connected to each other. Intuitively, a small-world
network consists of a loosely connected network of almost fully connected sub-networks. This
hypothesis is substantiated by examining an actual VO that involves physicists in over 18 coun-
tries [23]. Using logs from the data access system over different time-periods, it was possible to
construct the following graph. Each VO participant is a node in the graph. There is an edge in
between two nodes if the two participants shared at least one file during the given time period. It
was found that the resulting graphs indeed exhibit many characteristics of small-world networks.
Note that the clusters in the graph do not reflect any geographical clustering of the participants,
but rather commonalities of interest.

A key idea is then that having some sort of structure on the network should make it easier
to develop algorithms and protocols for efficient data management. In this context, [43] asks
one of many relevant questions: What data discovery scheme can take advantage of t h e

63

small-world characteristics? Assuming that the small-world topology is known, they propose a
data discovery strategy that uses the following principle: "Data location information is propagated
aggressively within clusters, while inter-cluster search uses request-forwarding techniques". The
intra-cluster propagation is done via a standard gossiping mechanism that is used to maintain
Bloom Filters. Eventually, all peers within a cluster know the location of "most" data items
relevant to other peers in the cluster.

A crucial question raised by the work in [43] (but not answered) is: W h a t p ro toco l s wil l l ead
to a self-organizing overlay network that reflects the small-world properties of a VO? In
other words, how does the overlay network automatically discover the topology of the small-world
network and self-organize to lower the number of necessary hops per requests? [43] presents an
interesting discussion of this issue, which opens up an exciting avenue for future research.

Early data replica location services used a centralized approach [2, 8] which of course causes
scalability problems. The new generation of data replica location services for Data Grids is currently
being developed, implemented and deployed [17, 6111. The new system provides a flexible way to
arrange index brokers in various overlay topologies. This is a critical time for developing appropriate
distributed algorithms and protocols that will scale and be efficient in VOs.

5.1.2 Discovering Grid resources

The data location systems mentioned in the previous section use names as their sole search criteria.
It is assumed that every data item is assigned a unique identifier that is used for indexing and
routing. This is not amenable to Grid resource discovery. Indeed, Grid resource discovery services
need to answer requests that specify desired sets of attribute values. One could envision a system
by which attributes and attribute values are mapped to logical names that can be used for clever
routing by the aforementioned systems. This is of course possible for locating data that is entirely
described by a single attribute, e.g. a logical file name (see previous section). However, the mapping
would be highly sensitive to dynamic attributes such as those describing compute resources. Besides,
this would still limit the type of queries that could be performed. Therefore, in general a request-
routing scheme for Grid resource discovery cannot utilize the same strategies as in [60, 68, 62, 77].

Among the first works in the Grid computing community to address these questions is [41]. In
that paper, Iamnitchi and Foster evaluate 4 simple request-forwarding strategies. Among these,
3 allow peers to forward requests based on past experience. Their evaluation makes a number
of assumptions concerning the distribution of resources among peers (how many resources are
managed by a peer), the resource frequency (how common is a resource), and the distribution
of queries. Nevertheless, that paper sets the stage for answering the following question: W h a t
request-forwarding scheme is appropriate for resource discovery on the Grid?

Another strongly related question is: W h a t is the appropriate data model , and asso-
ciated query language, for enabling Grid resource discovery? Grid Information Services
really implement a distributed database. One approach for describing the data is to use a hierar-
chical model. This is the approach which is currently in place as Grid Information Services have
been built on top of directory services. An active debate in the Grid community is whether those
systems and the hierarchical model will provide sufficient performance and expressiveness. An al-
ternate solution is to use a relational data model, which arguably is more difficult to implement
and scale, but allows for more expressiveness with a relational query language. In that respect, the
design of Grid Information Services could face certain of the challenges encountered in the area of
distributed databases. The question of consistency is probably not critical as most Grid resource
information follows a one-writer many-readers model.

64

Lastly, let us note that this last issue overlaps with our discussion of pub/sub systems in
Section 4. For instance, the subscription predicate language for Grid events should probably be
a subset of the Grid resource discovery query language. This leads to the notion of an integrated
Grid Information Service that supports both queries and subscriptions. Many Grid researchers are
working on designs for such an integrated system. All the research questions that we have identified
so far will be of relevance in that context.

5.2 Replication

Data replication is a well-known technique used in various distributed storage systems for improving
performance and availability. In this section we focus on the problem of storing and replicating
application data in a Data Grid that is used by participants in a VO. Once again, an important
focus in Grid computing today is on distributed scientific communities who wish to perform large
amount of data analyses on increasingly large datasets. Current efforts [4, 52, 25] are already
building Data Grids that are expected to process and store petabytes of data each year. The Data
Grid that is being deployed as part of GriPhyn is hierarchical and organized in tiers [59]. This
hierarchical structure is reminiscent of Web caches. Grid researchers are also looking at peer-to-
peer architectures for data storage, as a number of such experimental systems have been proposed
and are being developed (e.g. Oceanstore [47]).

Data replication has been the focus of an impressive number of research works in many areas [73,
54, 44, 55, 57, 71, 16]. A typical research question, which is addressed in most of those works, is "how
does one ensure consistency among diverging replicas in a scalable way?" [37, 45, 26]. However,
current work on Data Grids does not place a large emphasis on that problem. This is due to the
specific nature of many scientific communities. In many scientific collaborations, data is either
generated from instruments or derived from measured data. It is then annotated with domain-
specific metadata and published to the community. From that point on, the file is almost never
modified (even though it can be replaced by a new version). Therefore a model that assumes that
files are read-only and that they can be uniquely identified by their version numbers is currently
considered to be realistic for data in Grid VOs [17]. This is certainly not true for all foreseeable
applications, and is probably not true of metadata associated with application data. Therefore, it
is expected that data consistency issues will require increasing attention, as envisioned for instance
in [24].

The simplifying "read-only assumption" makes it possible to initially address the following
question: W h a t a re efficient a lgo r i t hms for c r e a t i n g a n d d i s s e m i n a t i n g rep l icas in a
D a t a Gr id? That question has been asked and partially answered in [59]. In that paper, 5
caching/replication strategies, some of them inspired by the Web caching literature, have been
proposed and evaluated. The advantage of dynamic caching and replication is that it automatically
creates (and deletes) replicas according to changes in data access patterns. A wide spectrum of
results from distributed computing could be potentially utilized and evaluated for automatic replica
creation. Another related issue, which we have mentioned in Section 5.1.1, is to better understand
the relationship of files in scientific collaborations so that data access patterns can be exploited by
distributed protocols and algorithms. This is becoming increasingly feasible as VOs are deployed
and real trace data is collected.

65

6 Conc lus ion

Grid computing is broad in its domain of application and raises research questions that span many
areas of distributed computing, and of computer science in general. In this paper we have opted
for providing detailed descriptions of a few issues that we feel are particularly interesting, can
largely benefit from cross-fertilization with the distributed computing research community, and
have already been the object of preliminary work in Grid computing. Namely, we discussed issues
pertaining to the discovery and dissemination of information and data, both static or dynamic,
within Virtual Organizations. We focused on two different models: subscription-based and query-
based.

Other authors would likely have chosen to discuss other issues. We provide here a brief and
non-exhaustive glimpse of what those issues might be.

A fundamental concern for Grid computing is security. The current Grid Security Infrastruc-
ture (GSI) [11] supports single sign-on, delegation, and user-based trust relationships, each of which
raises a number of challenging questions. Issues relating to policy have only being touched upon
briefly to date. Another issue is that of scheduling for distributed applications. Application schedul-
ing has been an active field of research for decades and the Grid poses a number of new challenges
that have been identified and partially addressed [9]. A critical issue is to schedule applications
that combine intensive computation with the use of data stored (and replicated) in emerging Data
Grids. For instance, one question is to determine in which scenarios coupled [15] and decoupled [42]
scheduling approaches are appropriate. Another issues is to ensure that scheduling agents acting
of behalf of their users cooperate in order to avoid "herd behavior". Although this problem has
been identified in the context of the Grid early on, it has not been addressed. This ties into the
notion of a Grid economy. Several authors argue that policies for Grid usage should be derived
from economical models that are based on a commodity market. Early work in the Grid community
has already evaluated a few hypotheses for defining viable Grid economy models [74].

The question of co-scheduling is that of ensuring that an application can reserve and utilize
several resources simultaneously at a given time. This is a difficult problem which is important for
many Grid users and applications. More generally, ways for VO participants to achieve agreement
are needed. Indeed, fault-tolerance becomes a critical issue with increases in scale: large VOs
mean that the probability of failure of individual components becomes significant. Agreement
protocols have not been adopted by the Grid community so far. They have not yet been important
for application writers, because few applications require much in the way of fault-tolerance; simply
restarting a failed computation is sufficient. Also, even with an increase in VO scale, there are more
scalable methods of fault-tolerance (such as rollback recovery) that would make more engineering
sense to use than agreement for most applications. However, the services comprising the Grid
software infrastructure itself are long-running and are key for sustaining VO activities. Although
inexpensive approaches like eventual update combined with randomized scheduling have proven
sufficient so far (e.g. see [3]), we believe that a number of Grid services are likely candidates for
agreement protocols.

The Grid is currently being build as a concerted effort among many institutions and is al-
ready supporting leading scientific applications. In this paper we have identified several differences
between the Grid and other distributed computing models and systems. We argued that those
differences motivate new research questions. As more and more VOs are deployed, it will be pos-
sible to gather very large amounts of trace data concerning the social and technical interactions
among VO participants. Mining that data will undoubtedly reveal crucial features of the nature
of scientific collaborations that can be exploited to design appropriate distributed protocols and

66

algorithms. Furthermore, it will be possible to construct increasingly realistic models that can be
used for the evaluation of those protocols and algorithms. Finally, the Grid will provide several
concrete platforms for the validation of research results in real-world scenarios. We hope that this
paper provides evidence that Grid computing is an exciting area, and that it provides many oppor-
tunities for researchers in distributed computing and distributed systems to tackle new problems
and to evaluate their solutions.

Acknowledgements

The author is extremely grateful to Ian Foster and Keith Marzullo for their insightful comments
and suggestions for improvements.

References

[1] M. Aguilera, R. Strom, D. Sturman, M. Astley, and T. Chandra. Matching Events in a Content-based
Subscription System. In Proceedings of the 18th Annual ACM Symposium on Principles of Distributed
Computing (PODC 1999), pages 53-61, Atlanta, Georgia, May 1999.

[2] B. Allcock, J. Bester, J. Bresnahn, A. Chervenak, I. Foster, C. Kesselman, S. Meder, V. Nefedova,
D. Quesnel, and S. Tuecke. Data Management and Transfer in High-Performance Computational Grid
Environments. Parallel Computing, 2002. to appear.

[3] A. Amoroso, K. Marzullo, and A. Ricciardi. Wide-Area Nile: A Case Study of a Wide-Area Data-
Parallel Application. In Proceedings o] the 18th International Conference on Distributed Computing
Systems (ICDCS), Amsterdam, Netherlands, pages 506-515, May 1998.

[4] P. Avery and I. Foster. The GriPhyN Project: Towards Petascale Virtual Data Grids. http://www.
griphyn, org, 2001.

[5] P. Avery, I. Foster, R. Gardner, H. Newman, and A. Szalay. An International Virtual-Data Grid
Laboratory for Data Intensive Science. http://www.griphyn, org, 2001.

[6] G. Banavar, T. Chandra, B. Mukherjee, J. Nagarajarao, R. Strom, and D. Sturman. An Efficient
Multicast Protocol for Content-Based Publish-Subscribe Systems. In Proceedings o.f the 19th IEEE
International Con]erence on Distributed Computing Systems (ICDCS), 1998.

[7] G. Banavar, M. Kaplan, K. Shaw, R. Strom, D. Sturman, and W. Tao. Information Flow Based Event
Distribution Middleware. In Proceedings o.f the 19th IEEE International Conference on Distributed
Computing Systems, Workshops on Electronic Commerce and Web-based Applications, 1999.

[8] C. Baru, R. Moore, and M. Rajasekar, A. Wan. The SDSC Storage Resource Broker. In Proceedings
o.f CASCON'98, Toronto, Canada, Nov. 1998.

[9] F. Berman. The Grid, Blueprint .for a New computing Infrastructure, chapter 12. Morgan Kaufmann
Publishers, Inc., 1998. Edited by Ian Foster and Carl Kesselman.

[10] F. Berman, R. Wolski, S. Figueira, J. Schopf, and G. Shao. Application Level Scheduling on Distributed
Heterogeneous Networks. In Proceedings of Supercomputing'96, November 1996.

[11] R. Butler, D. Engert, I. Foster, C. Kesselman, and S. Tuecke. Design and Deployment of a National-
Scale Authentication Infrastructure. IEEE Computers, 33(12):60-66, 2000.

[12] A. Carzaniga, D. Rosenblum, and A. Wolf. Challenges for Distributed Event Services: Scalability vs.
Expressiveness. In Proceedings o] the ICSE'99 Workshop on Engineering Distributed Objects (EDO'99),
1999.

[13] A. Carzaniga, D. Rosenblum, and A. Wolf. Interfaces and Algorithms for a Wide-Area Event No-
tification Service. Technical Report CU-CS-888-99, Department of Computer Science, University of
Colorado, Oct. 1999.

[14] A. Carzaniga, D. Rosenblum, and A. Wolf. Achieving Scalability and Expressiveness in an Internet-Scale
Event Notification Service. In Proceedings of the 19th Annual Symposium on Principles of Distributed
Computing (PODC 2000), pages 219-227, Portland, Oregon, Jul. 2000.

67

[15] H. Casanova, A. Legrand, D. Zagorodnov, and F. Berman. Heuristics for Scheduling Parameter Sweep
Applications in Grid Environments. In Proceedings of the 9th Heterogeneous Computing Workshop
(HCW'O0), pages 349-363, May 2000.

[16] Y. Chen, R. Katz, and J. Kubiatowicz. Dynamic Replica Placement for Scalable Content Delivery. In
Proceedings of the First International Workshop on Peer-to-Peer Systems (IPTPS 2002), March 2002.

[17] A. Chervenak, E. Deelman, I. Foster, A. Iamnitchi, C. Kesselman, W. Hoschek, P. Kunszt, M. Ripeanu,
B. Schwartzkopf, H. Stockinger, K. Stockinger, and B. Tierney. Giggle: A Framework for Constructing
Scalable Replica Location Service. In Proceedings of Supercomputing'02, Nov 2002.

[18] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and S. Tuecke. The Data Grid: Towards and
Architecture for the Distributed Management and Analysis of Large Scientific Data Sets. Journal of
Network and Computer Applications, 23(3):187-200, 2000.

[19] Common Information Model, Distributed Management Task Force, Inc. http://www.dmtf.org/
standards/standard_cim.php.

[20] G. Cugola, E. Di Nitto, and A. Fuggetta. Exploiting an Event-Based Infrastructure to Develop Complex
Distributed Systems. In Proceedings of the 20th International Conference on So~ware Engineering
(ICSE'98), Apr. 1998.

[21] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman. Grid Information Services for Distributed
Resource Sharing. In Proceedings of the lOth IEEE International Symposium on High Performance
Distributed Computing (HPDC- I O), August 2001.

[22] K. Czajkowski, I. Foster, C. Kesselman, V. Sanger, and S. Tuecke. SNAP: A Protocol for Negoci-
ating Service Level Agreements and Coordinating Resource Management in Distributed Systems. In
Proceedings of the 8th Workshop on Job scheduling Strategies for Parallel Processing, July 2002.

[23] The DO Experiment. http://www-d0, fnal .gov.
[24] D. Dfillman, W. Hoschek, J. Jean-Martinez, A. Samar, B. Segal, H. Stockinger, and K. Stockinger.

Models for Replica Synchronisation and Consistency in a Data Grid. In Proceedings of the lOth IEEE
International Symposium on High Performance Distributed Computing (HPDC-IO), August 2001.

[25] European Datagrid Webpage. h t t p : / / eu -da t ag r id .web , cern. ch.
[26] Z. Fei. A Novel Approach to Managing Consistency in Content Distribution Networks. In Proceedings

of Web Caching and Content Distribution Workshop (WCW'01), Boston, MA, June 2001.
[27] S. Fitzgerald, I. Foster, C. Kesselman, G. von Laszewski, W. Smith, and S. Tuecke. A Directory

Service for Configuring High-Performance Distributed Computations. In Proceedings of the 6th IEEE
International Symposium on High Performance Distributed Computing (HPDC-6), August 1997.

[28] I. Foster. The Grid: A New Infrastructure for 21st Century Science. Physics Today, 55(2):42, February
2002.

[29] I. Foster and C. Kesselman, editors. The Grid: Blueprint for a New Computing Infrastructure. Morgan
Kaufmann Publishers, Inc., San Francisco, USA, 1999.

[30] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The Physiology of the Grid: An Open Grid Services
Architecture for Distributed Systems Integration. Available at http://www, globus, org, 2002.

[31] I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid: Enabling Scalable Virtual Organi-
zations. International Journal of High Performance Computing Applications, 15(3), 2001.

[32] I. Foster, J. VSckler, M. Wilde, and Y. Zhao. Chimera: A Virtual Data system for Representing,
Querying, and Automating Data Derivation. In Proceedings of the 14th International Conference on
Scientific and Statistical Database Management, Edinburgh, July 2002.

[33] Global Grid Forum. ht tp: / /www.gridforum.org/ .
[34] Working Group on Grid Information Services at the Global Grid Forum. http://www, gridforum, org/

I_GIS/GIS.htm.
[35] Research Group on Grid Notification at the Global Grid Forum. ht tp: / /www.gridforum, org/l_GIS/

GNF. htm.
[36] Globus Project. ht tp: / /www.globus.org.
[37] J. Gray, P. Helland, O. O'Neil, and D. Shasha. The Dangers of Replication and a Solution. In Proceedings

of ACM SIGMOD, pages 173-182, 1996.
[38] O. M. Group. CORBA Services: Common Object Service Specification. Technical report, Object

Management Group, July 1998.
[39] The Gryphon Project. ht tp: / /www.research, ibm. com/gryphon.

68

[40] International Symposium on High Performance Distributed Computing (HPDC). http:/ /www.hpdc.
org.

[41] A. Iamnitchi and I. Foster. On Fully decentralized Resource Discovery in Grid Environments. In
Proceedings of the International Workshop on Grid Computing, Denver, Colorado, November 2001.

[42] A. Iamnitchi and I. Foster. Decoupling Computation and Data Scheduling in Distributed Data-Intensive
Applications. In Proceedings of the 11th IEEE International Symposium on High Performance Dis-
tributed Computing (HPDC-11), July 2002.

[43] A. Iamnitchi, M. Ripeanu, and I. Foster. Locating Data in (Small-World?) Peer-to-Peer Scientific Col-
laborations. In Proceedings of the First International Workshop on Peer-to-Peer Systems, Cambridge,
Massachusetts, March 2002.

[44] J. Kangasharju, J. Roberts, and K. Ross. Object Replication Strategies in Content Distribution Net-
works. In Proceedings of Web Caching and Content Distribution Workshop (WCW'01), Boston, MA,
June 2001.

[45] A.-M. Kermarrec, A. Rowston, M. Shapiro, and P. Druschel. The IceCube approach to the reconciliation
of divergent replicas. In Proceedings of the 20th Annual ACM Symposium on Principles of Distributed
Computing (PODC 2001), August 2001.

[46] C. Krintz and R. Wolski. NWSAlarm: A Tool for Accurately Detecting Degradation in Expected
Performance of Grid Resources. In Proceedings of CCGrid'01, May 2001.

[47] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels, R. Gummadi, S. Rhea, H. Weath-
erspoon, W. Weimer, C. Wells, and B. Zhao. OceanStore: An Architecture for Global-Scale Persistent
Storage. In Proceedings of the Ninth international Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS 2000), 2000.

[48] S. Maffeis. iBus: The Java Intranet Software Bus. Technical report, SoftWired AG, Zuric, Switzerland,
Feb. 1997.

[49] M. Mansouri-Samani and M. Sloman. GEM: A Generalized Event Monitoring Language for Distributed
Systems. IEE/IOP/BCS Distributed Systems Engineering Journal, 4(2):96-108, June 1997.

[50] Network for Earthquake Engineering Simulations. h t tp ://www. eng. nsf . gov/nees.
[51] L. Opyrchal, M. Astley, J. Auerbach, G. Banavar, R. Strom, and D. Sturman. Exploiting IP Multicast

in Content-Based Publish-Subscribe Systems. In Proceedings of the ACM Symposium on Principles of
Distributed Computing (PODC 2001), pages 219-228, 2001.

[52] Particle Physics Data Grid. http://www.ppdg.net.
[53] C. Partridge. Data Communications vs. Distributed Computing, 2000. Invited talk at PODC 2000.
[54] K. Petersen, J. Spreitzer, D. Terry, M. Theimer, and A. Demers. Flexible Update Propagation for

Weakly Consistent Replication. In Proceedings on the 16th ACM Symposium on Operating Systems
Principles (SOSP-16), Saint Malo, France, 1997.

[55] G. Pierre, I. Kuz, M. van Steen, and A. Tanenbanm. Differentiated Strategies for Replicating Web
Documents. Computer Communications, 24(2):232-240, 2000.

[56] C. Plaxton, R. Rajaraman, and A. Richa. Accessing Nearby Copies of Replicated Objects in a Dis-
tributed System. In Proceedings of the Symposium of Parallel Algorithms and Architectures (SPAA '97),
pages 311-320, June 1997.

[57] P. Radoslavov, R. Govindan, and D. Estrin. Topology-Informed Internet Replica Placement. In Pro-
ceedings of the Web Caching and Content Distribution Workshop (WCW'01), Boston, MA, June 2001.

[58] R. Raman, M. Livny, and M. Solomon. Matchmaking: Distributed Resource Management for High
Throughput Computing. In 7th IEEE International Symposium on High Performance Distributed Com-
puting (HPDC-7), July 1998.

[59] K. Ranganathan and I. Foster. Identifying Dynamic Replication Strategies for a High Performance Data
Grid. In Proceedings of the International Workshop on Grid Computing, Denver, Colorado, November
2001.

[60] S. Ratsanamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A Scalable Content Addressable
Network. In Proceedings of SIGCOMM 2001, 2001.

[61] M. Ripeanu and I. Foster. A Decentralized, Adaptive Replica Location Mechanism. In Proceedings
of the 11th IEEE International Symposium on High Performance Distributed Computing (HPDC-11),
July 2002.

69

[62] A. Rowstron and P. Druschel. Pastry: Scalable, Distributed Object Location and Routing for Large-
Scale Peer-to-Peer Systems. In Proceedings of the IFIP/A CM International Conference on Distributed
Systems Platforms (Middleware), Heidelberg, Germany, pages 329-350, Nov. 2001.

[63] A. Rowstron, A.-M. Kermarrec, M. Castro, and P. Druschel. SCRIBE: The Design of a Large-Scale
Event Notification Infrastructure. In Proceedings of the Third International Workshop on Networked
Group Communication, pages 30-43, 2001.

[64] The International Conference for High Performance Computing and Communications (SC). h t t p :
//www. supercomp, org.

[65] B. Segall and D. Arnold. Elvin has left the building: A publish/subscribe notification service with
quenching. In Proceedings of A UUG'97, Brisbane, Australia, Sept. 1997.

[66] The SIENA Project. hZtp ://www. cs. colorado, edu /users /ca rzan ig / s iena / .
[67] I. Stanoi, D. Agrawal, and A. Abbadi. Using Broadcast Primitives in Replicated Databases. In Proceed-

ings of the International Conference on Distributed Computing Systems (ICSDS'98), pages 148-155,
Amsterdam, The Netherlands, May 1998.

[68] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishnan. Chord: A Scalable Peer-to-Peer
Lookup Service for Internet Applications. In Proceedings of SIGCOMM 2001, 2001.

[69] I. Sun Microsystems. Java Distributed Event Specification. Technical report, Sun Microsystems, Inc.,
Mountain View, CA, U.S.A., Nov. 1998.

[70] B. Tierney, W. Johnston, B. Crowley, H. Hoo, C. Brooks, and D. Gunter. The NetLogger Method-
ology for High Performance Distributed Systems Performance Analysis. In Proceedings of 7th IEEE
International Symposium on High Performance Distributed Computing (HPDC-7), July 1998.

[71] A. Venkataramani, P. Weidmann, and M. Dahlin. Bandwidth Constrained Placement in a WAN. In
Proceedings of the 19th Annual A CM Symposium on Principles of Distributed Computing (PODC 2000),
pages 53-61, 2000.

[72] D. Watts. Small Worlds. The Dynamics of Networks between Order and Randomness. Princeton
University Press, Princeton, New Jersey, U.S.A., 1999.

[73] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and G. Alonso. Understanding Replication in
Databases and Distributed Systems. In Proceedings of the 20th International Conference on Distributed
Computing Systems (ICDCS 2000), 2000.

[74] R. Wolski, J. Plank, J. Bervik, and T. Bryan. Analyzing Market-based Resource Allocation Strategies
for the Computational Grid. International Journal of High-performance Computing Applications, 15(3),
2001.

[75] R. Wolski, N. Spring, and J. Hayes. The Network Weather Service: A Distributed Resource Performance
Forecasting Service for Metacomputing. Journal of Future Generation Computing Systems, 15(5-6):757-
768, 1999.

[76] M. Wray and R. Hawkes. Distributed virtual environments and VRML: an event-based architecture.
In Proceedings of the Seventh International WWW Conference (WWWT), Brisbane, Australia, 1998.

[77] B. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An Infrastructure for Fault-tolerant Wide-area
Location and Routing. Technical Report UCB/CSD-01-1141, University of California, Berkeley, 2001.

[78] Y. Zhao and R. Strom. Exploiting Event Stream Interpretation in Publish-Subscribe Systems. In
Proceedings of the ACM Symposium on Principles of Distributed Computing (PODC 2001), 2001.

70

