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Abstract 

The Distributed Computing Column covers the theory of systems that are composed of a 
number of interacting computing elements. These include problems of communication and net- 
working, databases, distributed shared memory, multiprocessor architectures, operating systems, 
verification, internet, and the web. 

This issue consists of the paper "Distributed Computing Research Issues in Grid Computing" 
by Henri Casanova. Many thanks to Henri for contributing to this issue. 
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Abstract 

Ensembles of distributed, heterogeneous resources, or Computational Grids, have emerged 
as popular platforms for deploying large-scale and resource-intensive applications. Large 
collaborative efforts are currently underway to provide the necessary software infrastruc- 
ture. Grid computing raises challenging issues in many areas of computer  science, and 
especially in the area of distributed computing, as Computat ional  Grids cover increas- 
ingly large networks and span many organizations. In this paper we briefly motivate 
Grid computing and introduce its basic concepts. We then highlight a number of dis- 
t r ibuted computing research questions, and discuss both  the relevance and the short- 
comings of previous research results when applied to Grid computing. We choose to 
focus on issues concerning the dissemination and retrieval of information and data  on 
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Computat ional  Grid platforms. We feel that  these issues are particularly critical at this 
time, and as we can point to preliminary ideas, work, and results in the Grid commu- 
nity and the distributed computing community. This paper is of interest to distributing 
computing researchers because Grid computing provides new challenges that  need to 
be addressed, as well as actual platforms for experimentation and research. 

1 Introduct ion  

As computation, storage, and communication technologies steadily improve, increasingly large, 
complex, and resource-intensive applications are being developed both in research institutions and 
in industry. It is a common observation that  computational resources are failing to meet the de- 
mand of those applications. The power of network, storage, and computing resources is projected 
to double every 9, 12, and 18 months, respectively. As noted in [28], those three constants have 
important  implications. Anticipating the trends in storage capacities (and price), application de- 
velopers and users are planning increasingly large runs that  will operate on and generate petabytes 
of data. Although microprocessors are reaching impressive speeds, in the long run they are falling 
behind storage. As a result, it is becoming increasingly difficult to gather enough computat ional  
resources for running applications at a single location. Fortunately, improvements in wide-area 
networking make it possible to aggregate distributed resources in various collaborating institutions 
and to form what have come to be known as Computational Grids (or Grids). To date, most Grid 
applications have been in the area of scientific computing as scientists world-wide are resorting to 
numerical simulations and data analysis techniques to investigate increasingly large and complex 
problems. Recently, Grid computing has been identified as a critical technology by industry for 
enterprise computing and business-to-business computing [31]. 

The term Grid was coined in the late 90s [29] to describe a set of resources distributed over 
wide-area networks that  can support  large-scale distributed applications. The analogy likens the 
Grid to the electrical power grid: access to computation and data should be as easy, pervasive, and 
standard as plugging in an appliance into an outlet. This analogy is appealing and was made as 
early as 1965 [28]. The term Grid computing has been widely adopted (e.g. see articles in the New 
York Times on August 9th and 12th, 2001). In fact, the term has been used in so many contexts 
that  it has become difficult to get a clear picture of what Grid computing really is. 

In the foundational paper "The Anatomy of the Grid" [31], Foster, Kesselman, and Tuecke 
a t tempt  to address this problem by (re-)defining the Grid problem as coordinated resource sharing 
and problem solving in dynamic, multi-institutional, virtual organizations. This concept of a vir- 
tual organization (VO) is central to Grid computing. A simplified view is that  a VO is a set of 
participants with various relationships that wish to share resources to perform some task. In that  
paper, Foster et al. argue that  the Grid problem is thus central not only to "e-science", but  also to 
industry, where the coordination of distributed resources both within and across organizations is 
increasingly important.  

Grid computing has been the focus of a tremendous amount of research and development effort, 
both in research institutions and in industry. Even though the technology is in its early development 
stages and is still evolving rapidly, Grid systems are being deployed and used worldwide. This 
situation creates a great opportunity for computer science researchers in several areas for two 
reasons. First, many crucial computer science research questions need to be answered in order 
to deploy and operate Grids effectively. Second, now that  basic infrastructure elements are in 
place [36], the Grid has become a viable platform for such research. Indeed, as communities of 
users start running applications, large amounts of empirical trace data are becoming available for 

51 



determining relevant characteristics of Grid platforms; examples include usage patterns, resource 
availability, and resource contention. These data make it possible to build increasingly realistic 
models that are critical for conducting Grid computing research. 

It is well-known that lack of communication between research communities is an impediment to 
scientific and technological progress. For instance, lack of communication between the networking 
and the distributed computing communities was noted during PODC'00 [53]. Grid computing is no 
exception. The area really evolved from High Performance Computing (HPC), which explains the 
large amount of Grid-related activities at traditionally HPC conferences (e.g. SC [64], HPDC [40]). 
Connections with other research communities have become necessary because of the drastic changes 
in platform scale and usage model when moving from traditional HPC to Grid computing. For 
instance, current work in areas such as Internetworking are extremely relevant as, after all, Grid 
computing takes place on wide-area networks. However, although connections and collaborations 
exist, they are difficult to establish as communities tend to publish in their own conferences, employ 
different vocabularies, and value different types of contributions. 

An area that is clearly critical for Grid computing is distributed computing. Traditional as- 
sumptions that are more or less valid in traditional HPC settings break down on the Grid. In HPC 
settings, one often assumes a "well-behaved" system: no faults or failures, minimal security re- 
quirements, consistency of state among application components, availability of global information, 
and simple resource sharing policies. While those assumptions are arguably valid in tightly cou- 
pled systems, they break down as systems become more distributed. Fortunately, the distributed 
computing community has long investigated algorithmic solutions for distributed computing when 
the aforementioned assumptions do not hold. Results obtained in that arena provide a number 
of algorithmic solutions and system design principles that can be leveraged for managing large 
VOs. Therefore, Grid computing provides an exciting and high-impact area in which distributed 
computing results are extremely relevant. However, many new challenges need to be addressed for 
those results to be applied and deployed successfully. 

Many observers have noted that many activities in the field of Grid computing over the last 
5 years have been closer to advanced development than to pure research. What has been termed 
as "Grid computing research" is really combined research and engineering with the concrete goal 
of producing a widely-used artifact: a software infrastructure. Originally, progress was made by 
developing prototype software for concrete applications that could be deployed on early testbeds. 
The software employed simple engineering solutions that were often sub-optimal (e.g. they do 
not ensure good scalability for large VOs). Results in the distributed computing community have 
shown that more sophisticated solutions in the form of evolved algorithms and protocols can provide 
significant improvements. Such solutions have not yet been implemented by Grid developers. This 
is due both to the sheer magnitude of the initial implementation effort, and also to challenges that 
are inherent to Grid computing. Now that a basic infrastructure is in place, it is a critical time for 
distributed computing researchers to understand the concepts and goals of Grid computing and to 
make contributions in the form of algorithms, protocols, and theoretical models. 

The main goal of this paper is to highlight distributed computing research issues that are (or 
soon will be) critical for the success of Grid computing. Grid computing is broad and diverse in 
its domain of application, and the associated research questions span many areas of distributed 
computing and of computer science in general. Rather than providing a cursory discussion of many 
areas, we choose to focus on two that we feel are particularly relevant and for which we can point 
to ideas, work, and preliminary results in both the Grid community and the distributed computing 
community: namely, d i s s e m i n a t i o n  of  a n d  access to  d a t a  a n d  i n fo rma t ion .  

We describe the state of Grid computing in Section 2 and discuss the concept of a Virtual 
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Organization in Section 3. We discuss relevant distributed computing research issues pertaining to 
data and information in Sections 4 and Section 5. In Section 6, we take a broader focus by surveying 
other research questions and areas that are associated with Grid computing, and by discussing next 
steps. 

2 Grid Computing 

In the previous section we have motivated the need for Grid computing. We give here a brief 
introduction to basic concepts, to set the stage for the later sections of this paper. This material 
borrows heavily from the two foundational papers The Anatomy of the Grid [31] and The Physiology 
of the Grid [30] which make fundamental contributions by defining the field and providing a common 
vocabulary. 

Let us state again the Grid problem as presented in [31]: coordinated resource sharing and 
problem solving in dynamic, multi-institutional virtual organizations. This definition expresses 
several distinct dimensions of the Grid problem: 

• The word "resource" is to be taken in a broad sense, to include data, computers, scientific 
instruments, software, etc. 

Sharing must be "coordinated" in that resources together with their providers/consumers are 
clearly defined, and in that multiple resources may need to be organized in an integrated 
fashion to achieve various qualities of service. Achieving this coordination involves the estab- 
lishment and enforcement of sharing agreements [22]. 

The ability to negotiate resource sharing agreements in a dynamic and flexible fashion enables 
a wide variety of problem solving methodologies, ranging from collaborative engineering to 
distributed data mining. 

Membership in a VO is "dynamic" as participants may join or leave at any time. A Virtual 
Organization (VO) is then the set of individuals and institutions defined by this sharing. 
Many examples of existing or envisioned VOs show that the concept spans a broad spectrum 
of purpose, size, structure, and duration. 

"The Anatomy of the Grid" [31] identifies and defines a set of common requirements. One 
critical observation is that a simple client-server model is not sufficiently flexible for enabling most 
VOs. Instead, a spectrum of architectures ranging from client-server to general peer-to-peer are 
necessary as participants are alternately resource providers or consumers. Another observation 
is that currently available distributed computing technologies are not appropriate to enable VOs. 
Either those technologies do not support the wide variety of required services and resources, or they 
suffer from lack of flexibility and control needed for enabling the type of resource sharing necessary. 
As a result, there is a need for defining a new technology for supporting VOs: a Grid software 
infrastructure. 

The software infrastructure presented in [31] places a large emphasis on interoperability as it is 
fundamental to ensure that VO participants can share resources dynamically and across different 
platforms, programming environments, and languages. To achieve interoperability, it is necessary 
to specify Grid protocols. These protocols can then be implemented as part of Application Program- 
ming Interfaces (APIs) and Software Development Kits (SDKs) to provide layered programming 
abstractions. We review Grid architecture layers in the following section. 
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2.1 G r i d  A r c h i t e c t u r e  L a y e r s  

Grid Protocol 
Architecture 

Internet Protocol 
Architecture 

Application ] 

Resources [ 

Connectivity ] 

Fabric ] 

Figure 1: The layered Grid architecture and its relationship to the Internet protocol architecture - 
reproduced from [31]. 

The Grid .fabric provides the lowest level of access to actual resources (e.g. computer, disk, 
file system, cluster of computers) and implements the mechanisms that allow those resources to 
be utilized. More specifically, those mechanisms must at least include state enquiry and resource 
management mechanisms, each of which must be implemented for a large number of native systems. 
The Grid connectivity layer defines communication, security, and authentication protocols required 
for network transactions between resources. The Grid resource layer builds on the connectivity layer 
to implement protocols that enable the use and sharing of individual resources. More specifically, 
two fundamental components are (i) information protocols for querying the state of a resource; 
and (ii) management protocols to negotiate access to a resource. The Grid collective layer focuses 
on the coordination of multiple resources. Example of functionalities include resource discovery, 
co-allocation, scheduling. This is the layer which is of greatest interest for the purpose of this paper 
as it is where many challenging distributed computing questions must be answered. Finally, the 
application layer is where VO applications are implemented and may use several of the previous 
layers. The resulting architecture is depicted in Figure 1. 

The description of this architecture in [31] uses components of the Globus toolkit [36] as a 
concrete example of Grid layer implementations. Globus is a large, open-source, community-based 
effort at the Argonne National Laboratory and the Information Science Institute; Globus provides 
a software infrastructure that is currently leveraged by most Grid efforts. As of late 2001, over 
12 companies had announced endorsement for the Globus Toolkit. Beyond the Globus toolkit, the 
Global Grid Forum [33] is a consortium of over 1000 academic researchers and industrial partners 
whose goal is to make recommendations for Grid infrastructure development. 
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2.2 C u r r e n t  D e v e l o p m e n t s  a n d  L i m i t a t i o n s  

In this section, we describe components of the Grid infrastructure that address the management 
of application data and resource information, as they are the focus of our discussion in the rest of 
this paper. 

The infrastructure that focuses on management of distributed application data is commonly 
labeled a Data Grid [18]. An increasing number of scientific disciplines manage large data collections 
generated by measurements and derivation of measurement data. As a result, many Data Grids are 
currently being deployed [25, 4, 52, 50, 5]. Infrastructure targeting resource information is often 
referred to as a Grid Information Service [21]. A number of research groups have designed and 
prototyped components for collecting, indexing, and publishing Grid information. The problems 
of indexing, discovering, and accessing such "Grid information services" is in some respects quite 
similar to those encountered when indexing, discovery, and accessing other data sources. However, 
we will see in the rest of this paper that both infrastructures raise a number of distinct research 
questions from a distributed computing perspective. 

For both infrastructures, appropriate data schemas must be defined so that information can be 
encoded, stored, and searched in an efficient manner. A number of recent developments have made 
contributions in that area. In the Data Grid context, the Chimera system [32] targets a data schema 
that can be used to establish a virtual data catalog that describes all ways in which data in the 
catalog has been derived. This is a generic solution that should be applicable to many different VOs 
and has been demonstrated for high-energy physics and astronomy applications. In the context of 
Grid Information Services, schemas are being developed for various Grid resource types as part of 
the GGF [33] activities in the Grid Information Services working group [34]. Commonalities with 
Common Information Model (CIM) [19] are also being explored. 

The definition of schemas is an important, but in some sense mundane, issue. More challenging 
is the design and implementation of a distributed system that implements mechanisms to publish 
information, disseminate information, notify participant of information changes, locate information, 
and retrieve information. Initial Grid infrastructure efforts have engineered software solutions for 
those mechanisms (e.g. [27]). Those mechanisms have made it possible to take the first steps in 
Grid computing and have been key to making the Grid a plausible platform. However, a large 
part of those efforts were focused on "getting it to work," without directly addressing issues of 
scalability, reliability, and information quality. 

Now that we are facing VOs that contain thousands of individuals in hundreds of institutions 
world-wide, issues such as scalability and usability are becoming a near-term concern. These is- 
sues are being increasingly recognized by the Grid computing community and recent work explores 
avenues of research that are strongly connected to distributed systems and distributed comput- 
ing research questions. In that sense, Grid computing presents a key opportunity for distributed 
systems and distributed computing researchers. Grid developers are implementing large scale in- 
frastructures such as GriPhyn as this paper is being written, and those infrastructures provide a 
great "playground" to explore research issues in a concrete setting that will have a major impact 
on disciplinary science. Furthermore, information dissemination techniques developed in the dis- 
tributed systems community (e.g. wide-area group communications) have shortcomings that must 
be addressed for Grid computing. 

In the next section we detail the concepts defining VOs and, inspired by current work, give an 
example VO scenario for a hypothetical scientific community. That scenario will be used later in 
the paper to motivate and illustrate research challenges in the area of distributed computing. 
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3 Virtual Organizations 

An important factor that has driven the evolution from HPC systems and applications to Grid 
computing is the widespread deployment of high-speed wide-area networks. The dramatic increase 
in network connectivity makes it feasible to consider deploying applications that tightly couple 
geographically distributed resources, data, and users. 

This distribution has major implications when designing a software infrastructure to support 
problem solving activities. In a tightly coupled systems, such as a Massively Parallel Proces- 
sor (MPP), it is possible to obtain an accurate picture of the global state of the system and to 
control its components in a centralized fashion. In a VO, distributed ownership and high-latency 
networks render the HPC approach to system design infeasible. In order to illustrate the challenges 
the Grid community is facing, we present a hypothetical VO and the activities it supports. 

Consider a community of thousands of users that span hundreds of research institutions world- 
wide and who all focus on overlapping portions of a common scientific problem. Those users and 
institutions form a VO. Even though the software infrastructure to support a VO of that magni- 
tude is not fully deployed at the time of writing, a number of large multi-institution projects are 
underway and are making rapid progress in that direction. A notable such project is GriPhyn [4], 
and our discussion is inspired by GriPhyn accomplishments and current developments. 

The Grid available to members of our example VO consist of several types of resources: (i) a 
number of scientific instruments that generate raw experimental measurement data (e.g. particle 
collider, radio telescope); (ii) compute resources ranging from desktop workstations to clusters 
and MPPs, that are used to perform derivations and analysis of the measurement data as well 
as simulations; and (iii) storage resources on which measurement and derived data can be stored. 
All resources are interconnected via wide-area networks and are prone to downtime, either due to 
failures or to maintenance tasks. 

Members of the VO, or software agents acting on their behalf, wish to perform a variety of 
tasks. For example: 

- Publish new measurement data, 

- Locate data items matching some criteria, 

- Retrieve particular data items efficiently, 

- Locate appropriate compute resources to run a simulation or data analysis task, 

- Be constantly informed when new "relevant" data is produced, 

- Publish new derived data of potential interest to other members of the VO, 

- Be constantly informed of the load on a selected number of resources during the next 2 hours. 

In the GriPhyn project, the overall goals of those activities is to allow VO members to construct 
a large collection of data and derived data. These goals must be achieved in a collaborative fashion 
so that little or no redundant work is performed. In other words, if some user has already performed 
a derivation on some portion of the measurement data and has stored it on a VO storage resources, 
other users should be able to discover and retrieve that data easily, rather than wasting (perhaps 
large amounts of) time performing redundant computation. 

Information about application data is only one part of the picture. In order to achieve perfor- 
mance, it is critical to gain information about Grid hardware resources. For instance, when a user 
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wishes to launch a computation, a software agent could decide which compute resource is most 
appropriate. An example of an agent is an application-level scheduler [10], which a t tempts  to select 
resources that  optimize a particular user's achieved performance. More specifically, an agent is a 
software component that  understands the user's application requirements (e.g. "must use data  from 
database X") and the user's objective (e.g. "reduce execution time"). An agent can then select 
appropriate resources, enact data movements and job launches, and potentially modify the way the 
application is running in order to adapt to changing resource conditions. Those decisions must take 
into account the location of the input data for that  computation, as well as the basic capabilities of 
candidate resources (e.g. CPU speed). In addition, dynamic resource information such as compute 
resource loads (e.g. CPU load, batch queue length) or network speed (e.g. bandwidth between 
a storage resource and a compute resource) must also be taken into account. Timely access to 
this information is critical to achieve good performance as Grid resources are shared and exhibit 
dynamic performance characteristics. 

In our VO example, it is clear that  VO participants need to access both  static and dynamic 
information and data. This access needs to be real-time, either via notifications or on a per-query 
basis. In the rest of the paper we highlight areas of distributed computing and distr ibuted systems 
research that  could be leveraged (and extended) to enable those two modes of operation. 

4 Grid Informat ion Di s seminat ion  

In this section we discuss issues of scalable delivery of dynamic information about the state of a 
Virtual Organization. 

4.1 P u b l i s h e r / S u b s c r i b e r  S y s t e m s  

The example scenario in the previous section shows that  an important  question in Grid computing 
is the scalable and timely propagation of dynamic information concerning both application data 
and Grid resources. This information is critical for enabling large-scale VOs, and as a result new 
ways of achieving collaborative science. Because of its HPC heritage, Grid computing started 
from the perspective of tightly coupled and centrally controlled resources. As Grids grow in scale, 
the trend is to assemble loosely-coupled autonomous components interconnected over wide-area 
networks. It is known that  event-based distributed systems are scalable ways of managing such 
ensembles. The asynchronous, heterogeneous, and collaborative aspects of the scenario described 
in the previous section suggest that  event-based interaction is a natural abstraction for enabling 
VOs. Implementing a scalable event-based system is difficult, not only due to the sheer number 
of clients in the system, but also due to networking limitations. Assumptions of low latency, 
abundant  bandwidth,  reliable connectivity, and centralized control, which are valid within a local- 
area network, do not hold on the wide-area. 

A class of event-based systems that  are ideally suited for the dissemination of Grid information is 
that  of publisher/subscriber systems (or pub/sub for short): systems that  interconnect information 
providers to information consumers in distributed environments. A broad pub / sub  paradigm is that  
of subject-based routing (and its subtle variations: "group-based", "channel-based", and "topic- 
based"). Publishers label each event with a subject name, and subscribers receive all events with 
desired subjects. A number of subject-based systems have been successfully implemented [38, 69, 
48, 20, 63]. A more recent type of pub/sub  systems are "content-based" ones. In those systems, 
each event follows a schema that  defines the event's content as a set of at tr ibutes with different 
types. Subscriptions are then defined as predicates over event attributes. A taxonomy of several 
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existing systems is presented in [12] and it shows the following trend: Moving away from centralized 
design, pub/sub systems are increasingly designed with an overlay network of i n format ion  brokers 

that route events between publishers and subscribers. 
For instance, imagine a Grid resource sensor (e.g. as provided by [75] or [70]) generating events 

about the load of compute resources. An application-level scheduler, acting as an agent for a user, 
could then register for events that match the following predicate (hostname == bh. sdsc. edu) and 
( load  < 2.50) (assuming that the load of a compute resource is represented as a floating point 
number). By registering for several such events for several resources, the scheduler can then make 
real-time decisions and select appropriate resources for the application. 

Similarly, in a system such as the GriPhyn VO, users wish to be notified of new measurement 
data available from scientific instruments as is produced, or from new derived data as it is computed 
by a member of the VO. In these cases, publishers would be components of the Grid storage infras- 
tructure: the Data Grid. They could send events about new data items becoming available. This 
could be very usefnl for critical data that is periodically produced, rather than VO members doing 
periodic queries which can be too frequent or too infrequent, leading either to prohibitive network 
load or to users not becoming aware of new data items in a timely fashion. Such considerations 
are the usual motivations for using event-based systems. Events need to be appropriately routed 
to users and to user agents so that new computations, data analyses, and data derivations can be 
triggered. 

In the early days of Grid computing, these scenarios were implemented with lookups of central- 
ized (or sometimes replicated) databases. The scalability limitations of this approach were known 
and became a major impediment as Grid computing gained in popularity. Recent advances in 
MDS-2 [21] and developments of the Open Grid Software Architecture (OGSA) [30] allow for more 
scalable and powerful architectures that allow for extensive caching and replication of information 
to support high query rates. Also, interesting first steps have been taken to implement Grid event 
distribution [46] and there is a "Grid Notification Framework" research group as part of the Global 
Grid Forum [35]. Therefore, it is clear that the Grid community has acknowledge the importance 
of notification and event distribution and the required software architecture is being developed. We 
argue that (i) several results from pub/sub research should be leveraged by that architecture; (ii) 
Grid computing poses new challenging questions in the area of pub/sub systems. We discuss those 
points in the next section. 

4.2 Publ i sher /Subscr iber  and the Grid 

Subject-based pub/sub systems present two major advantages. The matching of events to subscrip- 
tions is a simple lookup in a table, and scalability is achieve by straightforward multicasting, where 
a multicast group is created for each subject. The power of the content-based paradigm comes with 
the loss of those two convenient characteristics. Event matching is more involved as it requires eval- 
uations of predicates over event content. A simple multicast technique where a multicast group is 
created for each matching set of events produces a prohibitive number of groups [51]. This is the 
main challenge that motivates most of the recent research work on content-based systems. Our 
goal is to see what results can be leveraged for Grid computing, and what additional questions are 
raised. 

A number of content-based pub/sub systems have been implemented and evaluated [65, 76, 66, 
39]. One of the main design issues is the choice of the topology of the overlay network formed by the 
event brokers. For instance, the work on the SIENA [66] system studied three possible topologies: 
client/server, acyclic peer-to-peer, and general peer-to-peer. Each topology has its advantages and 
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drawbacks [13, 14]. The authors make the observation that different topologies can be combined 
to form hybrid topologies where the overlay network is partitioned in possibly hierarchical subnets 
with different internal topologies. The question is then: W h a t  overlay topology of event 
broke r s  is a p p r o p r i a t e  for VOs? The choice depends on the size of the VO and the usage 
patterns of VO members. In addition, VOs will undoubtedly exhibit characteristics that are not 
present in the domains previously targeted by pub/sub systems. In fact, it is most likely that 
no single topology is best in all cases. However, it is worthwhile to examine particular important 
domains, i.e. scientific communities, and discover which overlay network topologies are the most 
appropriate. For instance, this could be done for the scientific communities that are targeted by 
GriPhyn [4] and, in spite of not providing a general solution for Grid computing, would have a 
tremendous impact on disciplinary science. 

Another critical issue for providing a pub/sub system is the specification of the subscription 
predicates, that is the ways in which subscribers can define the events in which they are interested. 
The trade-off is that richer predicates (expressiveness) are more difficult to deploy (scalability). 
One extreme is the purely subject-based approach, and another is a content-based approach that 
allows any boolean expressions over event content, including past events (i.e. taking into account 
event history). A common model for predicates has been that of a conjunction of simple tests over 
event attributes [1]. Researchers have focused on defining rich languages to describe subscription 
predicates [49]. It is then the choice of the pub/sub system designers to choose which subset of 
those languages to use. For instance, the work in [14] restricts predicates to filters and patterns, 
which enables several optimizations of notification selection within the event service. Another 
notable example is the work in [7] where the authors define an Information Flow Graph model 
that extends the simple conjunction of simple tests over event attributes. The question is: How to 
determine the appropriate trade-offs for enabling VOs on the Grid? The first step is to analyze the 
data schemas being developed within the Grid computing community, e.g. for Grid information 
services. One must understand the ways in which this data is to be used. This can be achieved by 
collecting logs from current VO efforts and analyzing them for trends and patterns. Building on the 
aforementioned pub/sub results, one can then make an informed decision for proposing predicate 
languages for Grid information that make appropriate expressiveness/scalability trade-offs. It is 
likely that different components of Grid information will require different levels of expressiveness 
(e.g. resource information vs. application data information). It would then be interesting to 
answer the question: W h a t  are the benefits and challenges of s imultaneously s u p p o r t i n g  
different classes of  p r e d i c a t e  specif icat ions  w i th in  a Gr id  p u b / s u b  i n f r a s t r u c t u r e ?  

Previous work on pub/sub systems and routing algorithms makes several assumptions about 
the underlying network of subscribers and about patterns of subscription matches. In what fol- 
lows we review common assumptions and give insight regarding how appropriate they are to Grid 
computing. 

4.2.1 Selectivity and Regionalism 

Two related assumptions that make it possible to devise efficient event routing algorithms are 
selectivity and regionalism, using the terminology in [51]. High selectivity means that subscriptions 
are selective enough that the probability of a match is low. High regionalism means that matches 
for an event are non-uniformly distributed over the entire subscriber network. In other words, sets 
of subscribers that are geographically close tend to be interested in similar events. For instance, the 
results presented in [6] simulate "locality of interest" by mapping different subnets of a wide-area 
network to distinct distributions of interest values. The authors in [51] make the observation that 

59 



if selectivity is low a n d  regionalism is low, then most events are of interest to most subscribers, 
and an event broker in the overlay network should route most events. In this case, one should use a 
simple flooding algorithm, although this solution does not scale if subscribers are to receive events 
reliably. The question is: W h a t  levels  o f  selectivity and regionalism are to be  e x p e c t e d  
for  V O s  on  t h e  Gr id?  Let us consider the two types of events that  we identified in Section 3: 
Grid resource information events and Data Grid events. 

It is rather difficult to foresee the levels of selectivity and regionalism for events related to 
Grid resource information. For instance, suppose most software packages used for data  derivations 
are portable and installed on most resources. Then, all VO members who wish to perform data  
derivations may be interested in most information concerning all available compute resources within 
the VO. This leads to a low selectivity / low regionalism scenario which does not scale. A great 
research opportuni ty is then to understand the specific needs for Grid resource information within 
VOs and make recommendation both for event routing protocols and for resource usage policies. 

Data Grid events, i.e. events about new data becoming available, will exhibit a variety of 
regionalism levels in most VOs. For instance, it is reasonable to assume that  scientists working 
on the same components of a specific problem are likely to be clustered. For instance, different 
research teams in different participating sites in the GriPhyn project are probably interested in 
the same type of data being produced. Events related to that  type of data  then exhibit high 
regionalism and high selectivity. However, as collaboration among universities increase thanks to 
the establishment of VOs, the regionalism could potentially become lower as "virtual" research 
teams are established. Another reasonable assumption is that  certain data  is probably relevant 
to most members of the VOs, e.g. measurement data coming from a unique scientific instrument.  
Events regarding such data will therefore exhibit low regionalism and selectivity. Once again, the 
diversity of Grid applications leads to a mixed population of events. The way to proceed is then 
to: (i) examine a large VO; (ii) gather information about the behavior and requirements of VO 
members; (iii) instantiate a realistic model for the mix of events; (iv) quantify values for regionalism 
and selectivity. 

4.2.2 Dynamic Subscriptions 

Another assumption commonly made in previous work is that  the set of subscriptions is relatively 
static. This means that  events are published at a rate orders of magnitudes higher than  the rate at 
which subscriptions enter and leave the system. For instance, the work presented in [6] describes an 
efficient event matching and routing scheme that  uses a Parallel Search Tree (PST) data  structure. 
The PST encodes all subscriptions in the system and is replicated on all event brokers in the overlay 
network. Each time a new subscription is added (or removed) from the system, there is potentially 
a need for a global update  of the replicated PST structure. In [51] it is noted that  "many systems 
are likely to experience a flux of subscriptions". This is true for classes of subscriptions in Grid 
VOs. For instance, when a user wishes to perform a data  derivation, he will probably start an 
agent that  will subscribe to Grid resource events in order to select appropriate resources. Once the 
derivation is complete, the user agent will un-subscribe and shut down. Other subscriptions will 
have longer range, e.g. subscriptions that  track new data being produced by an on-line scientific 
instrument.  Dynamic subscriptions often require that  multicast groups used for event routing be 
reconstructed periodically. [51] contains a discussion of which routing algorithms are more resilient 
or sensitive to dynamic subscriptions. The (expected) conclusion is that  a "hybrid" solution will be 
the best solution. This is a rather general statement, and the question is: W h a t  h y b r i d  routing 
algorithm and t o p o l o g y  will  be  resilient to the dynamics of  V O  subscriptions? 
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This discussion has revealed several concerns relating to the practical applicability of existing 
pub / sub  results to the Grid. We conclude that  none of the assumptions discussed above hold for 
all Grid events, but that  some hold for classes of events. In addition, it is difficult at this t ime to 
precisely quantify requirements for a Grid event system in a "typical" VO. However, it is possible 
to gather information today on cutting-edge efforts such as GriPhyn [4]. In the next section, we 
provide perspectives on what we believe is a crucial point to investigate in order to build on existing 
pub / sub  results: quality of service for Grid event delivery. 

4.3  QoS for E v e n t  D e l i v e r y  

Similar to the trade-off between expressiveness and scalability described at the beginning of the 
previous section, there is a clear trade-off between Quality of Service (QoS) for event delivery and 
scalability. QoS for event delivery can come in various forms and be specified by several strong 
or weak guarantees. Examples include statements such as: "every event is eventually delivered 
to all interested subscribers" or "every event is delivered to most interested subscribers in under 
1 second". Existing event-based pub/sub  systems specify such QoS requirements. For instance, 
SIENA [66] provides a best effort service, meaning that  race conditions induced by network latencies 
and out-of-order messages are not prevented. The two most common QoS specifications in existing 
systems are whether events are delivered reliably or unreliably, and whether events axe delivered 
in order or if they may be out of order. We claim that  the diversity of activities in a Grid VO will 
require more flexible QoS semantics. 

We believe that  supporting different degrees of QoS requirements for different classes of events 
makes it possible to overcome the difficult issues that  we have identified in Section 4.2. For instance, 
consider Data Grid events. Those events should be reliably delivered so that  users, or user agents, 
do not "miss" interesting new pieces of data. However, those messages may not have tight timeliness 
requirements: a piece of data that  has just been generated will probably not go away. Therefore, 
those messages can tolerate delayed and out-of-order delivery. On the other hand, events related 
to Grid resource information can implement a simple "best-effort" paradigm with various levels 
of lossiness. Consider a user agent (e.g. an application-level scheduler) that  makes decisions for 
resource selection. Arguably, better decisions can be made with up-to-date information about 
resources. However, if information is missing or out-of-date, there are several strategies that  can 
be used for making decisions. For instance, one could decide to not use any resource on which one 
does not have sufficiently up-to-date information. Alternatively, depending on the Grid information 
values and their staleness, one can decide to select resources for running a computat ion according 
to ad-hoc heuristics. In fact, current Grid implementation efforts typically make provisions for such 
deficiencies in Grid information. The event system could then afford to "drop" a fraction of certain 
events without a devastating impact on the VO. Therefore, an interesting question is: What  are 
event routing schemes that can exploit a variety of QoS requirements for different 
classes of events to ensure scalability in VOs? 

This question has already been identified and partially addressed by previous work on pub / sub  
systems. Indeed, in [78] it is noted that  pub/sub  systems typically offer "limited and low-level 
options for quality of service". The authors propose an event stream interpretation model so 
that  every subscriber can specify a spectrum of delivery QoS semantics. The rationale is that  
the pub /sub  system can then implement efficient and scalable protocols that  exploit weaker QoS 
requirements on some event streams to do message routing. We view this avenue of research as 
very promising for Grid event systems. 
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5 Retr ieving Data  and Information 

In the previous section we have discussed systems that  deliver events to subscribers. This is a 
flexible way to allow components to interact in large-scale, wide-area environments such as the 
ones that  will be spanned by VOs. However, this does not imply that  all interoperation in the 
Grid can (or should) be done via such systems. In fact, there is a clear need for enabling queries. 
First, some Grid resource information is static. Second, users or user agents may want to perform 
queries to identify all (or most) resources that  fit some criteria. For instance, one may want to 
find all compute resources on which some specific software is currently installed and that  provide 
at least 1GB of RAM. Also, a user needs to issue queries to discover relevant application data  that  
is available in Grid storage devices. As we have seen in Section 4.2, events can be generated for 
periodic data  creations. However, in a realistic VO, we also expect users and user agents to generate 
queries to the Data Grid to discover and retrieve archived data. The goals for Grid comput ing are 
no different from other areas: to make discovery and retrieval efficient and scalable. 

A number of relevant protocols and mechanisms have been explored in many related contexts 
such as distributed databases, Web caching, content distribution networks, and distr ibuted file sys- 
tems. Key concepts are shared among those efforts. However, it is difficult to compare protocols 
from different domains and understand all the trade-offs that  are relevant to a particular problem, 
such as Grid computing. Consider for instance the concept of data replication, which is commonly 
used to increase data availability and reduce data retrieval latency. As seen in [73], truly under- 
standing the connection with replication protocols used in distributed databases and those used in 
distr ibuted systems is a non-trivial task. If one can unify protocols from different communities,  
the potential pay-off is better and more robust protocols. For instance, many researchers have 
successfully explored database replication protocols that  utilize concepts from distr ibuted systems 
(e.g. using group communication [67]). 

A number of research works in the Grid community have recently recognized and explored 
fundamental  connections between Grid computing and work in the distributed computing and the 
distributed systems areas. Further work will be needed to develop adequate distr ibuted algorithms 
and protocols for enabling discovery and retrieval of data and information within VOs. In the next 
section we review key areas for such developments. 

5 .1 D i s c o v e r y  

One of the challenges for VOs is that  they must implement robust and fast da ta / informat ion 
discovery. The problem is the following. A number of participants store information (e.g. the 
clock frequency of a host, or the location of a particular data  item). Other VO participants submit  
possibly complex queries over that  information, and should experience low response t ime for those 
queries. In the early years of Grid computing, this was achieved via centralized services that  
contained all stored information. An example is the Condor matchmaker [58]. While efficient for a 
local-area network, this system breaks down for large VOs as it is both a performance bottleneck 
and a single point of failure. Similarly, the Globus Toolkit's Monitoring and Discovery Service 
(MDS) [27] was initially designed as a centralized way to obtain Grid information (via an LDAP 
server). Later designs in MDS-2 have moved to a decentralized approach where Grid information 
is stored and indexed by index servers that  communicate via a registration protocol [21]. Users can 
then query directory servers. At the moment,  the assignment of content to servers and the overlay 
topology of those servers is done in an ad-hoc fashion. Nevertheless, these recent developments 
make it possible to address distributed computing questions in a practical and concrete context. 

Based on recent advances in the area of distributed systems, Grid researchers are investigating 
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how scalable discovery mechanisms can be implemented using a peer-to-peer architecture [41]. 
Every participant (organization or individual) in a VO must have full control of which information 
is published about its local resources. We therefore assume that  every participant in a VO maintains 
one or more servers, or peers, that  provide access to local resource information. Those peers may 
join or leave the system at any time. One may expect certain VOs to be more or less dynamic, but  
it is currently too early to make any statement about what could be "typical". In this discussion 
we ignore issues about the construction and maintenance of the overlay network as we surmise they 
are probably no different for Grid computing than for other peer-to-peer systems. 

A question is then whether previous work and results on discovery in dynamic, self-organizing 
peer-to-peer networks can be utilized and extended. As in our discussion of pub / sub  systems, we 
make the distinction between the discovery of data locations (e.g. find the file 'foo') and of Grid 
resources (e.g. find a CPU with some desired clock-rate). 

5.1.1 Discovering data 

A number of recent efforts such as CAN [60], Chord [68], Pastry [62], and Tapestry [77] provide 
powerful mechanisms for locating data in peer-to-peer networks. The goal is to locate a particular 
data item given a key, or name, which is used for indexing. In the context of the Data Grid, this is 
often stated as finding a physical data file given a logical file name. The aforementioned systems use 
clever routing and indexing schemes to reduce the latency of the search process (e.g. [56]). Those 
systems can conceivably be utilized to discover data (and data replicas) efficiently in a Data Grid. 
In fact, it may be that  a system like Oceanstore, which uses Tapestry, could provide a good solution. 
Our goal here is not to argue which one of those systems is the most appropriate, but  rather to point 
to interesting research questions. Such a question is: are there any characteristics of Grid 
VOs that can be exploited for optimizing data discovery? In the scenario we presented 
in Section 3, the data is not produced and consumed by largely unrelated individuals (e.g. such 
as the Web). Rather, the data access patterns result from specific scientific activities. One may 
then wonder if there exists data sharing patterns that could be exploited for reducing the latency 
of data  discovery. If so, then there is a great opportunity for extending currently available data  
discovery systems and specializing them for scientific data on the Grid. 

Even though there are only a few VOs currently in existence, work in [43] makes a very interest- 
ing hypothesis: scientific communities sharing data tend to behave like small-world networks [72]. 
Small-world networks have arisen in contexts as diverse as social networks, the World Wide Web, 
and neuro-networks. They exhibit two fundamental characteristics: (i) a small average path  length; 
(ii) a large clustering coefficient that  is independent of the network size. The clustering coefficient 
quantifies how many of a node's neighbors are connected to each other. Intuitively, a small-world 
network consists of a loosely connected network of almost fully connected sub-networks. This 
hypothesis is substantiated by examining an actual VO that  involves physicists in over 18 coun- 
tries [23]. Using logs from the data access system over different time-periods, it was possible to 
construct the following graph. Each VO participant is a node in the graph. There is an edge in 
between two nodes if the two participants shared at least one file during the given time period. It 
was found that  the resulting graphs indeed exhibit many characteristics of small-world networks. 
Note that  the clusters in the graph do not reflect any geographical clustering of the participants, 
but rather commonalities of interest. 

A key idea is then that  having some sort of structure on the network should make it easier 
to develop algorithms and protocols for efficient data management.  In this context, [43] asks 
one of many relevant questions: What  data discovery scheme can take advantage of  t h e  
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small-world characteristics? Assuming that the small-world topology is known, they propose a 
data discovery strategy that uses the following principle: "Data location information is propagated 
aggressively within clusters, while inter-cluster search uses request-forwarding techniques". The 
intra-cluster propagation is done via a standard gossiping mechanism that is used to maintain 
Bloom Filters. Eventually, all peers within a cluster know the location of "most" data items 
relevant to other peers in the cluster. 

A crucial question raised by the work in [43] (but not answered) is: W h a t  p ro toco l s  wil l  l ead  
to a self-organizing overlay network that reflects the small-world properties of  a VO? In 
other words, how does the overlay network automatically discover the topology of the small-world 
network and self-organize to lower the number of necessary hops per requests? [43] presents an 
interesting discussion of this issue, which opens up an exciting avenue for future research. 

Early data replica location services used a centralized approach [2, 8] which of course causes 
scalability problems. The new generation of data replica location services for Data Grids is currently 
being developed, implemented and deployed [17, 6111. The new system provides a flexible way to 
arrange index brokers in various overlay topologies. This is a critical time for developing appropriate 
distributed algorithms and protocols that will scale and be efficient in VOs. 

5.1.2 Discovering Grid resources 

The data location systems mentioned in the previous section use names as their sole search criteria. 
It is assumed that every data item is assigned a unique identifier that is used for indexing and 
routing. This is not amenable to Grid resource discovery. Indeed, Grid resource discovery services 
need to answer requests that specify desired sets of attribute values. One could envision a system 
by which attributes and attribute values are mapped to logical names that can be used for clever 
routing by the aforementioned systems. This is of course possible for locating data that is entirely 
described by a single attribute, e.g. a logical file name (see previous section). However, the mapping 
would be highly sensitive to dynamic attributes such as those describing compute resources. Besides, 
this would still limit the type of queries that could be performed. Therefore, in general a request- 
routing scheme for Grid resource discovery cannot utilize the same strategies as in [60, 68, 62, 77]. 

Among the first works in the Grid computing community to address these questions is [41]. In 
that paper, Iamnitchi and Foster evaluate 4 simple request-forwarding strategies. Among these, 
3 allow peers to forward requests based on past experience. Their evaluation makes a number 
of assumptions concerning the distribution of resources among peers (how many resources are 
managed by a peer), the resource frequency (how common is a resource), and the distribution 
of queries. Nevertheless, that paper sets the stage for answering the following question: W h a t  
request-forwarding scheme is appropriate for resource discovery on the  Grid? 

Another strongly related question is: W h a t  is the appropriate data model ,  and asso- 
ciated query language, for enabling Grid resource discovery? Grid Information Services 
really implement a distributed database. One approach for describing the data is to use a hierar- 
chical model. This is the approach which is currently in place as Grid Information Services have 
been built on top of directory services. An active debate in the Grid community is whether those 
systems and the hierarchical model will provide sufficient performance and expressiveness. An al- 
ternate solution is to use a relational data model, which arguably is more difficult to implement 
and scale, but allows for more expressiveness with a relational query language. In that respect, the 
design of Grid Information Services could face certain of the challenges encountered in the area of 
distributed databases. The question of consistency is probably not critical as most Grid resource 
information follows a one-writer many-readers model. 
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Lastly, let us note that this last issue overlaps with our discussion of pub/sub systems in 
Section 4. For instance, the subscription predicate language for Grid events should probably be 
a subset of the Grid resource discovery query language. This leads to the notion of an integrated 
Grid Information Service that supports both queries and subscriptions. Many Grid researchers are 
working on designs for such an integrated system. All the research questions that we have identified 
so far will be of relevance in that context. 

5.2 Replication 

Data replication is a well-known technique used in various distributed storage systems for improving 
performance and availability. In this section we focus on the problem of storing and replicating 
application data in a Data Grid that is used by participants in a VO. Once again, an important 
focus in Grid computing today is on distributed scientific communities who wish to perform large 
amount of data analyses on increasingly large datasets. Current efforts [4, 52, 25] are already 
building Data Grids that are expected to process and store petabytes of data each year. The Data 
Grid that is being deployed as part of GriPhyn is hierarchical and organized in tiers [59]. This 
hierarchical structure is reminiscent of Web caches. Grid researchers are also looking at peer-to- 
peer architectures for data storage, as a number of such experimental systems have been proposed 
and are being developed (e.g. Oceanstore [47]). 

Data replication has been the focus of an impressive number of research works in many areas [73, 
54, 44, 55, 57, 71, 16]. A typical research question, which is addressed in most of those works, is "how 
does one ensure consistency among diverging replicas in a scalable way?" [37, 45, 26]. However, 
current work on Data Grids does not place a large emphasis on that problem. This is due to the 
specific nature of many scientific communities. In many scientific collaborations, data is either 
generated from instruments or derived from measured data. It is then annotated with domain- 
specific metadata and published to the community. From that point on, the file is almost never 
modified (even though it can be replaced by a new version). Therefore a model that assumes that 
files are read-only and that they can be uniquely identified by their version numbers is currently 
considered to be realistic for data in Grid VOs [17]. This is certainly not true for all foreseeable 
applications, and is probably not true of metadata associated with application data. Therefore, it 
is expected that data consistency issues will require increasing attention, as envisioned for instance 
in [24]. 

The simplifying "read-only assumption" makes it possible to initially address the following 
question: W h a t  a re  efficient a lgo r i t hms  for c r e a t i n g  a n d  d i s s e m i n a t i n g  rep l icas  in a 
D a t a  Gr id?  That question has been asked and partially answered in [59]. In that paper, 5 
caching/replication strategies, some of them inspired by the Web caching literature, have been 
proposed and evaluated. The advantage of dynamic caching and replication is that it automatically 
creates (and deletes) replicas according to changes in data access patterns. A wide spectrum of 
results from distributed computing could be potentially utilized and evaluated for automatic replica 
creation. Another related issue, which we have mentioned in Section 5.1.1, is to better understand 
the relationship of files in scientific collaborations so that data access patterns can be exploited by 
distributed protocols and algorithms. This is becoming increasingly feasible as VOs are deployed 
and real trace data is collected. 
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6 Conc lus ion  

Grid computing is broad in its domain of application and raises research questions that span many 
areas of distributed computing, and of computer science in general. In this paper we have opted 
for providing detailed descriptions of a few issues that we feel are particularly interesting, can 
largely benefit from cross-fertilization with the distributed computing research community, and 
have already been the object of preliminary work in Grid computing. Namely, we discussed issues 
pertaining to the discovery and dissemination of information and data, both static or dynamic, 
within Virtual Organizations. We focused on two different models: subscription-based and query- 
based. 

Other authors would likely have chosen to discuss other issues. We provide here a brief and 
non-exhaustive glimpse of what those issues might be. 

A fundamental concern for Grid computing is security. The current Grid Security Infrastruc- 
ture (GSI) [11] supports single sign-on, delegation, and user-based trust relationships, each of which 
raises a number of challenging questions. Issues relating to policy have only being touched upon 
briefly to date. Another issue is that of scheduling for distributed applications. Application schedul- 
ing has been an active field of research for decades and the Grid poses a number of new challenges 
that have been identified and partially addressed [9]. A critical issue is to schedule applications 
that combine intensive computation with the use of data stored (and replicated) in emerging Data 
Grids. For instance, one question is to determine in which scenarios coupled [15] and decoupled [42] 
scheduling approaches are appropriate. Another issues is to ensure that scheduling agents acting 
of behalf of their users cooperate in order to avoid "herd behavior". Although this problem has 
been identified in the context of the Grid early on, it has not been addressed. This ties into the 
notion of a Grid economy. Several authors argue that policies for Grid usage should be derived 
from economical models that are based on a commodity market. Early work in the Grid community 
has already evaluated a few hypotheses for defining viable Grid economy models [74]. 

The question of co-scheduling is that of ensuring that an application can reserve and utilize 
several resources simultaneously at a given time. This is a difficult problem which is important for 
many Grid users and applications. More generally, ways for VO participants to achieve agreement 
are needed. Indeed, fault-tolerance becomes a critical issue with increases in scale: large VOs 
mean that the probability of failure of individual components becomes significant. Agreement 
protocols have not been adopted by the Grid community so far. They have not yet been important 
for application writers, because few applications require much in the way of fault-tolerance; simply 
restarting a failed computation is sufficient. Also, even with an increase in VO scale, there are more 
scalable methods of fault-tolerance (such as rollback recovery) that would make more engineering 
sense to use than agreement for most applications. However, the services comprising the Grid 
software infrastructure itself are long-running and are key for sustaining VO activities. Although 
inexpensive approaches like eventual update combined with randomized scheduling have proven 
sufficient so far (e.g. see [3]), we believe that a number of Grid services are likely candidates for 
agreement protocols. 

The Grid is currently being build as a concerted effort among many institutions and is al- 
ready supporting leading scientific applications. In this paper we have identified several differences 
between the Grid and other distributed computing models and systems. We argued that those 
differences motivate new research questions. As more and more VOs are deployed, it will be pos- 
sible to gather very large amounts of trace data concerning the social and technical interactions 
among VO participants. Mining that data will undoubtedly reveal crucial features of the nature 
of scientific collaborations that can be exploited to design appropriate distributed protocols and 
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algorithms. Furthermore, it will be possible to construct increasingly realistic models that  can be 
used for the evaluation of those protocols and algorithms. Finally, the Grid will provide several 
concrete platforms for the validation of research results in real-world scenarios. We hope that  this 
paper provides evidence that  Grid computing is an exciting area, and that  it provides many oppor- 
tunities for researchers in distributed computing and distributed systems to tackle new problems 
and to evaluate their solutions. 
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