
The Möbius State-level Abstract Functional
Interface?

Salem Derisavi1, Peter Kemper2, William H. Sanders1, and Tod Courtney1

1 Coordinated Science Laboratory,
Electrical and Computer Engineering Dept.,

and Computer Science Department
University of Illinois at Urbana-Champaign

1308 W. Main St., Urbana, IL, U.S.A.
{derisavi,whs,tod}@crhc.uiuc.edu

2 Informatik IV
Universität Dortmund

D-44221 Dortmund, Germany
kemper@ls4.cs.uni-dortmund.de

Abstract. A key advantage of the Möbius modeling environment is the
ease with which one can incorporate new modeling formalisms, model
composition and connection methods, and model solution methods. In
this paper, we describe a new state-level abstract functional interface
(AFI) for Möbius that allows numerical solution methods to commu-
nicate with Möbius state-level models via the abstraction of a labeled
transition system. This abstraction, and its corresponding implementa-
tion as a set of containers and iterators, yields an important separation
of concerns: It is possible to treat separately the problem of representing
large labeled transition systems, like generator matrices of continuous-
time Markov chains, and the problem of analyzing these systems. For ex-
ample, any numerical solver (e.g., Jacobi, SOR, or uniformization) that
accesses a model through the Möbius state-level AFI can operate on a
variety of state-space representations, including “on-the-fly,” disk-based,
sparse-matrix, Kronecker, and matrix-diagram representations, without
requiring that the implementation be changed to match the state-space
representation. This abstraction thus avoids redundant implementations
of solvers and state-generation techniques, eases research cooperation,
and simplifies comparison of approaches as well as benchmarking. In ad-
dition to providing a formal definition of the Möbius state-level AFI,
we illustrate its use on two state-space representations (a sparse matrix
and a Kronecker representation) and two numerical solvers (Jacobi and
SOR). With the help of this implementation and two example models,
we demonstrate that the AFI provides the benefits of transparency while
introducing only minor slowdowns in solution speed.

? This material is based upon work supported in part by the National Science Founda-
tion under Grant No. 9975019, by the Motorola Center for High-Availability System
Validation at the University of Illinois (under the umbrella of the Motorola Commu-
nications Center), and by the DFG, Collaborative Research Centre 559.

1 Introduction

Model-based evaluation tools have been developed for many different modeling
formalisms and use many different model solution techniques. Möbius [14–16,30]
is a recent attempt to build a general multi-formalism multi-solution hierarchical
modeling framework that permits the integration of a large number of modeling
formalisms and model solution techniques. A key step in achieving this multi-
paradigm approach is providing an appropriate separation of concerns between
models expressed in different modeling formalisms, model composition and con-
nection methods, and model solvers (e.g., simulators and state-space generators).
This is achieved by using the notion of a model-level abstract functional interface
(AFI) [14,19]. The Möbius AFI provides an abstract notion of actions (events),
state variables, and properties, and a common set of methods that permits het-
erogeneous models to interact with one another and solvers without requiring
them to understand details of the formalisms in which the constituent models
are expressed.

There has been a great deal of research in methods for dealing with the state-
space explosion problem in state-based models, by either avoiding or tolerating
large state spaces. These methods have dramatically increased the size of mod-
els that can be analyzed. For example, there have been many attempts to avoid
large state spaces by detecting symmetries in models, and exploiting lumping
theorems. Approaches with this aim include stochastic well-formed nets [11],
stochastic activity networks (SANs) and replicate/join model composition [31],
and stochastic process algebras [2,4,22,24], among others. Attempts to tolerate
large state spaces include variations of decision diagrams; they appear in the
context of stochastic models as multi-terminal binary decision diagrams (MTB-
DDs) [1,23,25], probabilistic decision diagrams [3,9], and matrix diagrams [12].
These methods are based on the idea of sharing isomorphic substructures to save
space and to gain efficiency. Kronecker representations also allow representation
of large state transition systems; different variants exist to reflect a modular [7]
or hierarchical structure [5,6], or to allow matrix entries to be functions [20,32].
In addition, on-the-fly generation [18] and disk-based methods [17, 27] make it
possible to avoid the storage of a large state-level model by generating required
matrix entries as needed, or by storing them on disk rather than in main memory,
respectively.

All of these approaches are interesting candidates for integration into Möbius,
even though most of them were developed separately from one another and in
the context of single modeling formalisms and/or model solution methods. In-
terestingly, although there is such a broad spectrum of avoidance and tolerance
techniques, the techniques all place very similar requirements on the subsequent
numerical model solution methods. In particular, these numerical model solution
methods typically involve executing a sequence of matrix-vector multiplications
on some variant of the generator matrix of the resulting continuous-time Markov
chain (CTMC). Methods that require this include the Power method, the Jacobi
method, and the Gauss-Seidel method (for stationary analysis) and uniformiza-
tion (for transient analysis). Clearly, numerical analysis is much richer in theory

(see [32], for example), but the abovementioned rather simple methods are the
ones that appear most frequently in combination with the techniques discussed
above.

This rich variety of techniques to deal with the state-space explosion prob-
lem, and the fact that many numerical solution methods share similar basic
operations, have motivated us to develop a state-level, as opposed to the ex-
isting model-level, AFI for Möbius. By doing so, we can separate state-space
generation and representation issues from issues related to the solution of the
resulting state-level models. Creating a state-level AFI also allows us to cre-
ate and implement numerical solution methods that do not require information
about the data structures used to represent a state-level model. The key idea
of this approach is to formulate a state-level AFI that allows numerical solu-
tion methods to see a model as a set of states and state transitions or, in other
words, as a labeled transition system (LTS). The state-level interface we have
created supports access to states and transitions in an efficient way via container
and iterator classes. Clearly, we are not the first ones to build an interface that
allows one to iterate on an LTS; e.g., in the field of protocol verification, the Cae-
sar/Aldebaran tool [21] provides different iterators for this purpose that seem
to rely on preprocessor expansion, and in his thesis [28], Knottenbelt gives an
abstract C++ representation of states in the form of a non-template class. In
contrast, we follow an object-oriented approach that uses templates similar to
those used in the C++ standard template library (STL) [29].

By creating a state-level AFI, we achieve a further independence than is
possible using the model-level Möbius AFI alone; this has advantages for both
tool developers and tool users. In particular, our approach, when used together
with the Möbius model-level AFI, avoids redundant reimplementations of the
three steps (model specification, state-space generation, and numerical analysis)
taken when solving models numerically using state-based methods. That signif-
icantly reduces the effort that is necessary to implement, validate, and evalu-
ate new approaches. Furthermore, it allows users to perform direct comparison
and benchmarking of alternative approaches, without having to reimplement
the work of other researchers; thus, they avoid the risk of being unfair when
doing a comparison. Finally, it facilitates cooperation among researchers in de-
veloping new solution methods and combining existing ones; e.g., within Möbius,
largeness-avoidance techniques based on lumpability can be combined with any
state-based analysis method. In short, we achieve a situation in which research
results that focus on model reduction, state-space exploration, state-space rep-
resentation, or analysis can be developed independently but can be used with
one another. Obviously, tool users profit from this integrated approach, since
more state generation and model solution methods become available to them.
Likewise, we make the Möbius framework more useful to researchers who are
creating techniques to avoid or tolerate large state spaces.

The remainder of this paper is structured as follows: Section 2 specifies the
requirements a state-level AFI must meet in order to be effective. In Section 3
we present the state-level AFI in detail, explaining the motivation behind the

choices we made in developing it. In Section 4, we describe the implementation
of two new state-level objects that use the AFI: an unstructured sparse-matrix
representation as it is used in Möbius and a Kronecker representation that is
employed in the APNN toolbox. Section 5 then analyzes two examples that are
frequently considered in the literature for the performance of numerical analysis
approaches. In describing the examples, we show that the overhead induced
by the Möbius state-level AFI is small and is outweighed by the advantages it
achieves.

2 Requirements

The transformation of a model from a high-level, user-oriented representation
into a state-level model by a state-space exploration is a transformation that may
be technically complex, but it does not create additional information in the pro-
cess. Instead, the goal of the transformation process is to create a representation
that is as compact as possible, but can efficiently perform the operations needed
during numerical solution. To do that, we must study the type and amount of
state-space information that algorithms access and the pattern of the accesses. In
the following, we describe the characteristics that a state-level AFI should have
and summarize how we have considered each one when designing the Möbius
state-level AFI.

Functionality. A state-level AFI must have functionality sufficient to serve
a large set of analysis techniques. More specifically, it must be easy to use and
must include a sufficiently complete set of functions such that all of the analysis
algorithms we are interested in can be written using this common interface. After
studying a number of transient and steady-state solvers, we decided to include
(among other things) function calls in the interface, so that we could access
the elements of the rate matrix in a row-oriented, column-oriented, or arbitrary
order. More details are given in Section 3.

Economy. The effort to support and implement the AFI for a particular state-
space representation must be minimal, so as not to put an unnecessary burden
on an AFI implementor. For state-space representations, it should be possible
to support the required functionality in a natural, straightforward manner.

Clearly, economy and functionality are in conflict with one another, and
a compromise must be reached. In our case, this means that we refrain from
defining operations from linear algebra, such as matrix-vector multiplication, in
the interface, since that could lead to an endless demand for further operations.
We rather follow an approach in which a state-based analysis method reads
information via the AFI, but does not transform it using the interface.

Generality. A state-level AFI should be “solution-method neutral,” in the
sense that it is not tailored toward any particular state-space representation
or solution method. For example, many sophisticated algorithms rely on addi-
tional structural information. Decompositional methods such as iterative aggre-
gation/disaggregation require a partition of the state space; Kronecker methods
are based on a compositional model description; and most variants of decision

diagrams require an order on the variables, and heuristics on the order make use
of information present in a model.

Flexibility. A state-level AFI must give implementors the opportunity to find
creative optimizations in their implementations. For example, it should allow a
developer who implements the interface for a particular state-space representa-
tion to exploit the special structure that may be present in the underlying state
space, in order to optimize the interface implementation. Ideally, all the opti-
mizations that are possible in a traditional “monolithic” implementation should
also be applicable to an implementation that uses the developed AFI. In Sec-
tion 4, we will give an example of such possible state-space-specific optimizations
when we describe the implementation of the interface for the Kronecker-based
state spaces.

Performance. The performance of implementations using the interface must
be competitive with the monolithic implementation. To achieve this we follow
two design goals. First, we provide an AFI that is able to exploit the state-space-
specific optimizations in the interface implementation. Second, we attempt to
minimize the amount of overhead due to separation of the analysis algorithm
and the state-space representation. The overhead is mostly caused by non-fully-
optimized C++ compilation, extra function calls and assignments, and construc-
tion and deconstruction of temporary objects in the stack.

To summarize, we seek an interface that is straightforward to use and imple-
ment, is sufficient in functionality to support a wide variety of state-space repre-
sentations and numerical solution methods, and provides good performance. A
compromise among these goals is obviously necessary in any particular practical
implementation of such an interface. We believe we have achieved an appropriate
balance in our state-level AFI definition, which is described in the next section.

3 State-level AFI Definition

In this section, we will first formalize the notion of a labeled transition sys-
tem by giving a definition that contains the key elements that specify a state-
level, discrete-event system. Then, we briefly review several solution methods
for continuous-time Markov processes, which are a special case of discrete-event
systems, to derive the basic operations that a state-level AFI needs to provide
so that a wide range of solution methods can be implemented using the AFI.
Finally, we show how containers and iterators help us achieve the separation of
concerns discussed earlier, and show how our C++ realization of a state-level
AFI satisfies the requirements described in Section 2. In particular, with respect
to the requirements described in the previous section, we address flexibility of
the Möbius state-level AFI in Section 3.2, and its functionality and economy in
Sections 3.3 and 5. We illustrate the generality of the AFI by implementing two
conceptually different state-space representations in Section 4.

3.1 Labeled Transition System Definition

To define an appropriate state-level abstract functional interface for Möbius,
we start by defining a labeled transition system (LTS). We define an LTS =
(S, s0, δ, L,R, C), where:

– S is a set of states and s0 ∈ S is the initial state
– δ ⊆ S × IR× L× S is the state transition relation, which describes possible

transitions from a state s ∈ S to a state s′ ∈ S with a label l ∈ L and a real
value λ ∈ R

– R : S × IN→ R is the value of the nth rate reward for each state in S
– C : δ× IN→ R is the the value of the nth impulse reward for each transition

in δ

The label l gives additional information concerning each transition, typically
related to the event (in the higher-level model) that performs it. The real value λ
can have several different meanings. In the following, it is taken to be the expo-
nential rate of the associated transition, because we are primarily interested in
the numerical solution of the CTMC derived from a stochastic model. However,
one can also consider probabilistic models, where λ ∈ [0, 1] gives the probability
of a transition, or weighted automata, where λ > 0 denotes a distance, a reward,
or costs of a transition. By integrating both rates and labels in the definition of
the LTS , we can use the interface based on it for both numerical solution and
non-stochastic model checking. In the latter case, transition time is unimportant
and one may wish to consider the language that is generated by the transitions
that may occur in the LTS. R and C are functions that define a set of rate and
impulse rewards, respectively, for the LTS. They define what a modeler would
like to know about the system being studied.

Since we focus on Markov reward models in this paper, an LTS defines 1) a
real-valued (S × S) rate matrix R(i, j) =

∑
e∈E λe, where E ⊂ δ is the set of

transitions with (i, λe, ∗, j), and 2) a set of n reward structures. The generator
matrix Q of the associated CTMC is then defined as Q = R−diag(rowsum(R)),
where the latter term describes a diagonal matrix with row sums of R as diagonal
entries. The reward structures associated with the Markov model are determined
by R and C.

3.2 Use of Containers and Iterators

The philosophy we took when designing the state-level AFI and its implemen-
tation was inspired by the concept of “generic programming” [29] and the asso-
ciated “containers” and “iterators” constructs in the STL (Standard Template
Library) and generic class libraries. The idea was to decouple the implementa-
tions of a data structure and an algorithm operating on it, since the two are
conceptually different. In other words, these concepts facilitate the creation of
implementations of algorithms that operate on data structures that are different
and have different implementations, but support the same functionality. This
decoupling is achieved through identification of a set of general requirements

(called concepts in generic programming terminology and realized as member
functions) met by a large family of abstract data structures. In our case, the
“set of requirements” is a state-level AFI that provides the functionality neces-
sary to efficiently implement a large class of solution methods. The requirements
allow us to separate the numerical solution method that operates on a state-level
model from the particular data structure that implements the model. This sep-
aration makes it easy to develop numerical solution methods and makes them
applicable to any state-level model that complies with the state-level AFI. Since
the implementation of the AFI is separate from, and therefore does not inter-
fere with, the analysis algorithm, we have the flexibility to optimize the internal
implementation of the AFI for any particular state-level model (one of the char-
acteristics mentioned in Section 2).

The two notions that help achieve this separation are those of “containers”
and “iterators.” Containers are classes (usually template classes) whose purpose
is to contain other objects; objects are instantiations of classes. Template con-
tainer classes are parameterized classes that can be instantiated so that they can
contain objects of any type. A container is a programming abstraction of the
notion of a mathematical set. By hiding the implementation of the algorithm
for accessing the set elements inside the container class, we give developers both
the ability to use a unified interface to access objects inside a container, and
the flexibility to optimize the implementation of the container. In the Möbius
state-level AFI, a container is used to represent a subset of transitions of an
LTS . For example, the elements of a row or a column of a rate matrix constitute
a row or column container object.

Iterators are the means by which the objects in a container are accessed. They
can be considered “generalized” pointers, which allow a programmer to select
particular objects to reference. The following operations are usually defined on
iterator objects and implemented in the iterators that we define as part of the
Möbius state-level AFI:

– Dereferencing, which enables us to access the object.
– Navigation operators, such as ++ and −−, which return iterators for (re-

spectively) the next element and the previous element relative to the element
pointed to by the iterator.

– Comparison operators, which define an order on the objects of the container.

3.3 State-Level AFI Classes

We use containers to represent sets of transitions. Before explaining how we do
this, we review several common numerical solution methods to illustrate the ac-
cess patterns they require from a state-space representation. These patterns will
suggest how the transitions of a state-level model should be placed in container
objects. We then give a precise programming representation for the transitions
contained in containers. This implementation, together with a set of functions
returning information about the whole model (e.g., the number of states) along
with a number of functions to facilitate computation of reward structures defined
on the models, provides a complete state-level AFI.

Required Operations We now briefly recall iteration schemes of some simple
but frequently employed iterative solution methods, namely the Power, Jacobi,
and Gauss-Seidel methods for stationary analysis, and uniformization for tran-
sient analysis. This review will help us determine both the type of container
objects that a state-level object should provide to a solver and also the gen-
eral information the solver needs concerning a model. Table 1 summarizes the
iteration schemes. More details can be found, for example, in [32].

Method Iteration scheme

Power π(k+1) = π(k)P where P = (1
α
Q+ I) and α ≥ 1/(maxni=1|Qi,i|)

Jacobi π(k+1) = (1 − ω)π(k) + ωπ(k)(L + U)D−1 where 0 < ω < 2 is the
relaxation factor.

Gauss-Seidel π(k+1) = (1 − ω)π(k) + ω[(π(k)L + π(k+1)U)D−1] where 0 < ω < 2
is the relaxation factor.

uniformization π(t) =
∑∞

k=0
e−αt (αt)k

k!
π(k) where π(t) is the transient solution and

π(k) is obtained as in the Power method.
Notes: 1. Q is the generator matrix of the underlying Markov process.

2. π(0) is an arbitrary initial distribution.
3. Q = D− (L+ U), where D is a diagonal matrix and L and U are,

respectively, strictly lower and strictly upper triangular matrices.

Table 1. Iterative solution methods

Notably, all four iteration schemes are based on successive vector-matrix
multiplications, where matrices P or Q are only minor transformations of the
rate matrix R given by an LTS as mentioned above. Typical access patterns for
matrix-vector multiplications are accesses by rows or by columns. However, a
closer look reveals that only Gauss-Seidel requires a sequential computation of
entries π(k+1)(i); Gauss-Seidel completes computation of π(k+1)(i) before con-
tinuing with π(k+1)(j) for a j > i. This means that Gauss-Seidel implies a
multiplication that accesses a matrix by columns. All other iteration schemes
can also be formulated with an access by columns or by rows; in fact, the order
in which matrix elements are accessed need not be fixed at all, as long as all
nonzero matrix elements are considered. This has been frequently exploited for
iterative methods on Kronecker representations, e.g., in [7]. Since access by rows
is the same as access by columns on a transposed matrix, we consider it to be
part of the interface as well.

AFI Classes Motivated by these numerical solution methods, we now define
the data structure that represents a transition and the set of functions that
comprise the state-level AFI. Different access patterns are made possible through
a number of functions that return container objects that, for example, contain
elements in a row or column. We also define functions that return information

template <class StateType, class RateType, class LabelType>
class Transition {
public:
typedef StateType StateType;
typedef RateType RateType;
typedef LabelType LabelType;
StateType& row();
StateType& col();
RateType& rate();
LabelType& label();
RateType& reward(int RewardNumber);
};

Fig. 1. Transition class interface

on the number of states of the model (for dimensioning vectors) and on the
initial state (for defining an initial distribution, as in uniformization). Accessing
elements of the rate matrix through containers hides the enumeration of the
states (mapping of the state representation to the row/column index of the
state) in the state-level class. The freedom to choose this mapping creates an
opportunity to optimize the implementation of the state-level class. Kronecker-
based models take particularly great advantage of this property, as described in
Section 4.2.

Figure 1 shows the interface of the template class used to represent a tran-
sition. The template parameters are StateType, RateType, and LabelType,
which represent the data types used for states (S), transition rates (R), and tran-
sition labels (L), respectively. There are a number of methods that return the
characteristics of a transition. They are row(), column(), rate(), and label(),
which are used to access (i.e., read and write), respectively, the starting state
and ending state of a transition and a transition rate and label.

Each pattern of access to transitions of an LTS corresponds to one container
class. Therefore, in order for us to provide the numerical solution methods dis-
cussed in Section 3.3 with the different patterns of access they need, the number
of functions that return container objects in the AFI must be the same as the
number of patterns.

Three container classes are provided by the state-level AFI. They are acces-
sible by the following methods:

– LTSClass::getRow(Transition::StateType s, row& r) assigns to r the
container consisting of transitions originating from a given state s.

– LTSClass::getColumn(Transition::StateType s, column& c) assigns to
c the container consisting of transitions leading to a given state s.

– LTSClass::getAllEdges(allEdges& e) assigns to e the container consist-
ing of all transitions.

Each of the methods mentioned above returns a container object that pro-
vides iterator classes that are used to scan through the elements of the container.

In Section 3.3 we give more details on column, an example container class that
LTSClass::getColumn() returns. The same ideas apply to the definitions of the
container classes that the other methods return.

To facilitate the analysis of the LTS , we also need the following functions:

– Transition::StateType LTSClass::getNumberOfStates() returns |S|.
– Transition::StateType LTSClass::getInitialState() returns s0.

In order to have a state-level interface that enables us to compute reward
structures for stochastic models, we should also incorporate rate rewards and
impulse rewards into the interface. The following are defined to allow access to
the reward structure:

– int LTSClass::getNumberOfRewards() returns the number of reward struc-
tures defined on the LTS .

– Transition::RateType Transition::reward(int n) returns the value of
the nth impulse reward for a transition.

– Transition::RateType LTSClass::getRateReward(int n) returns the set
of values of the nth rate reward for all the states. The set is provided through
a container class that can itself be accessed using its corresponding iterator
class. The values are given in the order of the indices of the states, i.e., the
first value corresponds to state 0, the second value to state 1, and so on.

All of the container classes, their associated iterator classes, the functions
returning container objects, and the additional functions mentioned above are
encapsulated into an LTSClass class that provides the complete state-level AFI.
Note that all of the implementation details of LTSClass are hidden from the
solution methods operating on it, and that the only way they can see LTSClass
is through its interface, i.e., the state-level AFI.

Example Container Class: column Figure 2 illustrates a container and a
particular iterator class interface (get column). A container class definition must
implement all the functionality described earlier (dereferencing, navigation op-
erators, and comparison operators) as well as provide a prototype of a particular
access method (in this case, access by columns). In order to avoid most of the ex-
tra function calls, we have inlined all the member function definitions by defining
them inside their own classes.

The column object is a container that contains the elements of a column of
the rate matrix corresponding to the LTS . In particular,

– column::begin() initializes an iterator such that it corresponds to the first
element of the column.

– column::iterator::end() returns true if the iterator is past the last element
of the column and false otherwise.

– column::iterator::operator++ (column::iterator::operator−−) ad-
vances the iterator to point to the next (previous) element in the column
and returns an iterator for the next (previous) element in the column. This
operator, along with column::begin(), column::iterator::end(), makes
it possible to iterate through all elements of a column of the matrix.

class LTSClass {
. . .
class column {
public:

class iterator {
public:
iterator();
~iterator();
typedef iterator self;
Transition& operator*();
Transition* operator−>();
self& operator++();
self& operator−−();
bool end();
bool operator==(self &it);
bool operator!=(self &it);
const self& operator=(self const &it);
};
void begin(iterator& it);
};
void getColumn(Transition::StateType col index, column& c);
. . .
};

Fig. 2. Container class column and its associated iterator

– LTSClass::getColumn() initializes the c object of class column to the spec-
ified column of the matrix.

– column::iterator::operator=, the assignment operator, is used to assign
one iterator to another. Notice that the interface should be implemented
in such a way that just after it1=it2 is executed, it1 and it2 are two
independent iterators to the same element in the column, i.e., each of them
can advance regardless of the others. This will enable the analysis algorithm
to have multiple iterators on different parts of the matrix simultaneously.

– Equality and inequality operators (operator== and operator!= functions
of column::iterator class) should be implemented such that two iterators
are equal if and only if they point to the same element of the matrix.

Similar to the way column class has been defined to provide column-oriented
access to the matrix, row and allEdges, along with their corresponding iterators,
can be defined to provide row-oriented access and access to all transitions (with
no specific order).

3.4 Evaluation

The state-level AFI defined in this section clearly supports iterative solution
methods that are based on the enumeration of matrix elements quite well. Nev-

ertheless, if we consider the wide range of specific state-level representations and
solution methods, we find certain cases that remain unsupported so far, e.g.,

– methods that represent probability distributions by some type of decision
diagrams, like MTBDDs [1,23,25] or PDGs [3,9]. These so-called “symbolic”
approaches perform an iteration step by multiplying numerical values of
subsets of states with subsets of matrix entries instead of single elements.
The selection of the considered subsets would make it necessary to reveal
the underlying compositional structure of the LTS. However, the “hybrid”
approach mentioned in [25] not only has the potential to perform better, but
also uses a vector representation. This approach could therefore work with
the state-level AFI as it is.

– methods, like the shuffle algorithm by Plateau et al. [20, 32], that are based
on a compositional state-space representation and that divide transitions
into conjunctions of partial transitions. Unlike the Kronecker approaches
employed in Section 4.2, the shuffle algorithm iterates through submodels,
so either 1) it needs to reside behind the state-level AFI, while the state-level
AFI supports a matrix-vector multiplication, or 2) it is implemented by a
solver, in which case the state-level AFI needs to reveal the compositional
structure of the LTS.

– methods that use decompositions of a matrix. Decompositional methods,
e.g., the one described in Chapter 6 of [32], consider block-structured ma-
trices and require iterators for block-access of matrices. This is a minor
extension to the set of iterators defined so far. An issue that is even more
delicate in theory is that of providing additional information on a useful,
effective partition into blocks, e.g., to achieve decomposition that is nearly-
completely-decomposable (NCD), a property that is important for the effi-
ciency of decompositional methods.

In summary, the basic functionality provided by the state-level AFI is sufficient
to allow us to proceed with several solution methods. For specific algorithms,
additional functionality may be needed, especially to reveal more information on
the structure of the LTS. However, before such extensions can be considered, it
is important to ensure that the fundamental approach is applicable in practice
and performs sufficiently well. Once that has been established, more elaborate
functionality can be built on top of the state-level AFI we defined.

4 Example State-Space Implementations

To demonstrate the generality of the AFI developed in Section 3, we describe
how two conceptually different state-space representations can provide the same
state-level AFI. In particular, we have implemented two AFI-compliant state-
level objects: “flat” unstructured state spaces based on sparse-matrix representa-
tion, and structured state spaces amenable to Kronecker representation. To test
these representations, we also implemented two solvers (using the Jacobi and
Gauss-Seidel methods) that use the state-level AFI to solve models. Since both

solvers comply with the AFI, we can use either of them with either of the state-
level objects to solve the models. In this section, we describe the implementation
details of two complete state-level classes.

To make all AFI-compliant numerical solution methods applicable to an AFI-
compliant state-level object, we need to implement the complete set of functions
described in Section 3.3 for the object. However, for some state-space representa-
tions, there may be some access patterns that cannot be implemented efficiently.
For example, if we have a sparse-matrix representation for the state space stored
in a row-oriented order, it may be considered inefficient (in terms of space or
time) to provide both row- and column-oriented access functions. In such cases, a
mechanism must notify the analysis algorithm that a specific access pattern has
not been implemented efficiently for that state-level object. We use the C++
exception-handling mechanism to do this. In particular, if a state-space class
does not provide efficient implementation for a particular access pattern X, call-
ing the corresponding getX function raises an exception that is caught by the
analysis algorithm. Conceptually, this is a signal to the analysis algorithm that
it cannot perform efficiently on this state-space representation.

4.1 Flat State-Space Object

In the Möbius modeling tool, the modeler can generate a CTMC from a high-
level stochastic model whose transitions’ time distributions are all exponential.
The CTMC and the associated reward structures are stored in two files that
will be, in a later phase, fed into an appropriate numerical solver that solves
the Markov chain and computes the measures of the model we are interested in.
In an attempt to show the generality of the state-level AFI, we wrapped this
interface around the two files.

In Möbius, the state space is stored in a row-oriented format in the file.
When read into memory, it is stored in a compressed sparse row format. In order
to support both row- and column-oriented access patterns, we had to sacrifice
either speed (by converting back and forth between compressed row and column
formats) or space (by storing both formats). In order to achieve separation of
concerns, it is essential that we be able to dynamically modify the internal data
structure of the state space without changing the interface. In the case of flat
state-space representation, we chose to sacrifice speed (and save space) because
typical solution methods use only one of the formats during their run-times.
Considering this, the conversion from one format to another is not done if the
solver requires row-oriented access, and is done only once if the solver requires
column-oriented access. Notice that this conversion needs only one scan through
all the elements of the matrix; that is roughly the same amount of work needed
for a single iteration of a fixed-point numerical solution method.

4.2 Kronecker-based State-Space Object

Kronecker representations of CTMCs can result from several modeling formalisms,
including generalized stochastic Petri nets (GSPNs). GSPNs are supported by

the APNN toolbox [10], which implements many state-based analysis methods
using Kronecker representations. In order to achieve an implementation of an
LTS interface, we modified SupGSPN, a numerical solver of the APNN toolbox
that uses a modular Kronecker representation and improved algorithms of [7];
the improvement is its avoidance of binary search, as described in [12]. In the
following, we focus on iterators to support Jacobi and Gauss-Seidel iteration
schemes for fixed-point iteration. One observation in [7] is that a Jacobi solver
need not impose any kind of order on a matrix-vector multiplication in an iter-
ation step, and that that degree of freedom can be extensively used to optimize
enumeration of matrix elements stored in a Kronecker representation. Jacobi
solvers match the behavior of the allEdges iterator in the LTS interface. The
SupGSPN implementation of the originally recursive algorithm of [7] performs
iteratively with an internal data structure to store local variables used in the
corresponding recursive approach. Therefore, iteration through a Kronecker rep-
resentation is far from trivial if performance is of importance. For instance,
directed acyclic graphs (or multi-value decision diagrams) are used to restrict
the matrix vector multiplication on the reachable set of states. In addition to
making obvious functional changes, we moved all local variables and local data
structures into an iterator object, such that an increment operation can continue
iterating through the Kronecker representation at the very position the last in-
crement operation left the function and with the same local variable space. We
modified algorithms Act-RwCl and Act-RwCl+ of [7] to support an allEdges
iterator by replacing the multiplication of matrix and vector elements in the last
lines, namely 19 and 13, by statements that 1) return the matrix element to the
iterator object and 2) ensure that the algorithms proceed to serve a subsequent
increment operation right after that line. Algorithms Act-ClEl2 and Act-ClEl+2
of [7] are modified accordingly for a column iterator.

To avoid permanent creation and destruction of iterator objects and other
data structures, the implementation has a memory management of its own that
recycles memory space. Reusing memory reduces the effort needed to initialize
an iterator object. For example, in SOR, a column iterator is needed for each col-
umn, but columns are typically accessed in sequential, increasing order, so that
only a partial update of the internals of the (i+ 1)th iterator object is necessary
upon creation if we reuse memory space of the ith iterator. For the allEdges
iterator, we implemented one variant that determines single elements and a sec-
ond, buffered one that pulls a set of elements from the Kronecker representation
in order to reduce the number of function calls. Example results suggest that
it would be helpful to employ buffers of around 128 elements to exploit the
tradeoff between handling additional data structures and saving function calls.
Since CMTCs typically have extremely few elements per row or column, other
iterators that give an ordered access by columns or rows write all entries into a
buffer, so that access to the Kronecker representation takes place only in the it-
erator begin() function. The current implementation mixes C code for accessing
Kronecker data structures and C++ code for the LTS and iterator classes.

5 Performance

In order to be useful, the Möbius state-level AFI must not unacceptably degrade
the performance of numerical solvers. Clearly, using the AFI does not increase
the time complexity of numerical solution methods that are based on the explicit
enumeration of all transitions in a state-level representation, since in principle
one can always implement the AFI using the original numerical solution algo-
rithm and interrupt its enumeration of matrix elements whenever a single entry
is considered. The enumeration then continues with a call for the next increment
or decrement operation. This mechanism implies a constant overhead, which is
irrelevant in the computation of the order of a numerical solution algorithm.
Nevertheless, in practice, constant factors must be sufficiently small.

In this section, we evaluate the performance implications of the use of the
Möbius state-level AFI for two examples taken from the literature. We consider
the two AFI implementations discussed in the previous section. The first im-
plementation is based on a flat sparse-matrix state-space representation, and
originates from the numerical solver of Möbius and UltraSAN. The second AFI
implementation uses a Kronecker state-space representation and is derived from
the SupGSPN numerical solver in the APNN toolbox. Both implementations
are evaluated with respect to the existing non-AFI versions of the solvers from
which they originate.

We did experiments on different architectures and operating systems, and
observed that with the same compiler (gcc version 2.95.2) and optimization pa-
rameter settings (-O4), the relative performance of two programs varied signifi-
cantly across platforms. We considered a Sun Enterprise 400MHz, a Sun Ultra60
450MHz, and a PIII 1GHz PC running Linux. All the machines had enough RAM
to hold all the data needed by the programs. The given numbers in the following
tables present the running times on the Ultra60 machine. For a Sun Enterprise
we observed that APNN was faster than KronLTS by 30 to 60% , and for the
PC we observed an inverse relation: the KronLTS was faster by about 20%. We
are currently investigating the reasons for the behavior in further detail. Our
initial hypothesis is that the variations are due to hardware and/or compiler dif-
ferences across platforms, such as cache size, register bank size, and instruction
re-ordering. So far, we conclude that the overhead is sufficiently limited to retain
the same time complexity, and that the constant factors are almost always less
than 2.

5.1 Flexible Manufacturing System Example

Ciardo et al. [13] describe a flexible manufacturing system to illustrate the
benefits of an approximate analysis technique based on decomposition. This
model has been used in many papers as a benchmark model for CTMC analy-
sis (e.g., [8, 34]). For simplicity, we consider a variant in which transitions have
marking-independent incidence functions and rates. The model is parameterized
by the number of parts that circulate in the FMS. The model distinguishes three
types of parts, and we assume that there are the same number of pieces (N) of

each type. For the Kronecker methods we partition the model into three compo-
nents as in [8]. The dimensions of the associated CTMC are shown in Table 2(a);
column |S| shows the number of states, and column NZ (Q) gives the number
of off-diagonal nonzero matrix entries in Q. For those model configurations, the
implementations of a Jacobi and a Gauss-Seidel solver perform as shown in Table
3(a). The first column gives the parameter setting of N . The other columns refer
to results obtained with the original Möbius implementation, the sparse-matrix
AFI state-space implementation, the APNN toolbox implementation, and the
Kronecker AFI state-space implementation. For each tool we present the times
using the Jacobi and the Gauss-Seidel solution methods. Each computation time
is the average time for a single iteration step, as described in Section 3.3; that
is the CPU time in seconds taken to perform one iteration.

N |S| NZ (Q)

4 35910 237120
5 152712 1111482
6 537768 4205670
7 1639440 13552968
8 4459455 38533968
9 11058190 99075405

(a) FMS

TWS |S| NZ (Q)

1 11700 48330
2 84600 410160
3 419400 2281620
4 1632600 9732330
5 5358600 34424280
6 15410250 105345900

(b) Courier protocol

Table 2. State spaces of the studied models

In the original Möbius and the sparse-matrix AFI implementations, a Gauss-
Seidel iteration is about 15% faster than a Jacobi iteration. This happens because
1) computation of π(k+1) in each iteration involves only a few accesses to the ele-
ments of π and Q, and a few floating-point operations, 2) accessing the memory
is much more expensive than a floating-point operation, and 3) in our implemen-
tation, the number of accesses to memory (specifically, an element of π) in the
Jacobi method is one more than in the Gauss-Seidel method. This is different
for Kronecker implementations, which allow the use of more efficient algorithms
for enumerating matrix entries in an arbitrary order (the allEdges iterator in
the interface) than for an order by columns as required for Gauss-Seidel [7].
The “slowdown” columns in Table 3(a) give the percentage of decrease in speed
caused by the overhead of the state-level AFI. For the Möbius and sparse-matrix
AFI implementations, the slowdown for the Jacobi (SOR) solver is computed by
subtracting column two (three) from column four (five) and dividing the result
by column two (three). The same formula is used to compute the slowdown col-
umn for comparison between the APNN toolbox and Kronecker AFI state-space
implementations. As can be seen, the slowdown for the sparse-matrix AFI im-
plementation is almost always less than 10%. In solving the larger models using

Möbius Flat LTS slowdown APNN Kron LTS slowdown
N % %

JAC SOR JAC SOR JAC SOR JAC SOR JAC SOR JAC SOR

4 0.036 0.030 0.037 0.031 3 3 0.033 0.11 0.065 0.17 97 55
5 0.206 0.181 0.220 0.19 7 5 0.14 0.52 0.30 0.82 114 58
6 0.785 0.693 0.844 0.737 8 6 0.77 1.90 1.24 2.81 61 48
7 2.54 2.23 2.72 2.38 7 7 2.45 6.03 3.88 9.24 58 53
8 –a – – – – – 6.98 17.5 11.0 25.0 58 43
9 – – – – – – 17.9 42.1 28.0 65.9 56 57

a The state space is too large to be explicitly constructed.

(a) FMS

Möbius Flat LTS slowdown APNN Kron LTS slowdown
TWS % %

JAC SOR JAC SOR JAC SOR JAC SOR JAC SOR JAC SOR

1 0.0075 0.0059 0.0073 0.0070 -3 19 0.0126 0.0418 0.019 0.060 51 43
2 0.088 0.079 0.088 0.079 0 0 0.0858 0.327 0.143 0.46 67 41
3 0.487 0.423 0.496 0.442 2 4 0.634 1.65 0.831 2.42 31 47
4 2.01 1.76 2.05 1.85 2 5 2.71 7.41 3.56 9.98 31 35
5 –a – – – – – 9.32 24.5 12.3 34.6 32 41
6 – – – – – – 28.6 83.3 36.8 117.0 29 40

a The state space is too large to be explicitly constructed.

(b) Courier protocol

Table 3. Time per iteration (in seconds) for the studied models

the Kronecker approach, we use on average 74% more time for the allEdges
iterator (in the Jacobi AFI implementation) and on average 52% more for the
column iterator. Nevertheless, the allEdges iterator remains significantly faster
than the column iterator (in the SOR implementation). The results use an im-
plementation of an allEdges iterator that uses an internal buffer of 128 matrix
entries in order to reduce the number of function calls needed to proceed on the
Kronecker data structures. For N ∈ {3, 4, . . . , 7}, we run an experiment series
with buffer sizes in the range of 20, 21, . . . , 214. The observed computation times
describe a curve that initially decreases sharply, reaches a minimum in an inter-
val that contains 128 matrix entries for all values, and only gradually increases
for increasing buffer sizes. Hence, we fixed the buffer size to 128 for the Jacobi
allEdges iterator reflected in Table 3(a).

5.2 Courier Protocol Software Example

In this subsection, we consider a GSPN model of a parallel communication soft-
ware system that was originally designed by Woodside and Li [33], and has been

considered for benchmarking CTMC analysis techniques (for example, see [26]).
The model is parameterized by the transport window size TWS, which lim-
its the number of packets that are simultaneously communicated between the
sender and receiver. To obtain a Kronecker representation, we use the same par-
tition into four components that was used in [26]. Table 2(b) shows the number
of states in the CTMC and the off-diagonal nonzero entries, much like Table
2(a). Table 3(b) gives the computation times we observed on average for a single
iteration step for this model. The selection of columns is the same as in Table
3(a). The results are slightly different from the values we observed for the FMS
example. The overhead imposed by the interface is still low in the case of sparse
matrices. For the Kronecker approach, the overhead is on average 40% for Jacobi
and 41% for SOR. We also exercised different buffer sizes and observed that 128
is always in the range that contains the minimum overhead.

6 Conclusions

In this paper, we have presented a state-level abstract functional interface for
models expressed as labeled transition systems, and experimentally evaluated
the performance of that interface compared to standard implementations. This
interface uses containers and iterators to separate issues related to representing
labeled transition systems from issues related to solving such systems. The use
of this interface thus yields an important separation of concerns with significant
advantages for research related to state-based analysis methods, as well as for
applications that use these methods.

More specifically, we discussed the requirements that a state-level AFI must
fulfill to be useful in practice. The presented AFI was designed accordingly,
and we described our experiences and the important design issues involved in
implementing this AFI efficiently. In particular, with the help of two examples,
we illustrated the usability of our approach and its impact on the performance
of different numerical solvers in CTMC analysis. The presented results show
that for simple LTS representations, the overhead is negligible, and for complex
data structures such as are used for Kronecker representations, computation
times increase by a constant factor that is almost always less than 2. We thus
conclude that we gain much more from the use of the interface than we lose from
the minor performance overhead incurred.

Our ongoing work is on a full integration of different state-space representa-
tions in Möbius, based on the AFI and the new state-level AFI. In addition to
implementing known state-space representation techniques, we envision the cre-
ation of adaptive state-level AFI implementations that internally modify them-
selves or switch over to other implementations depending on the usage patterns
that are dynamically observed. That way, we could dynamically make use of
the space-time trade-off that characterizes different labeled transition system
representations.

Acknowledgments We thank Graham Clark for his comments and ideas in
our discussions on the design of Möbius interfaces.

References

1. C. Baier, J. P. Katoen, and H. Hermanns. Approximate symbolic model checking
of continuous-time Markov chains. In Proc. Concurrency Theory (CONCUR’99),
pages 146–162. Springer LNCS 1664, 1999.

2. M. Bernardo and R. Gorrieri. A tutorial on EMPA: A theory of concurrent pro-
cesses with nondeterminism, priorities, probabilities and time. Theoretical Com-
puter Science, 202(1-2):1–54, Jul 1998.

3. M. Bozga and O. Maler. On the representation of probabilities over structured
domains. In Proc. CAV‘99, Springer, LNCS 1633, pages 261–273, 1999.

4. P. Buchholz. Markovian process algebra: Composition and equivalence. In U. Her-
zog and M. Rettelbach, editors, Proc. of the 2nd Work. on Process Algebras and
Performance Modelling, pages 11–30. Arbeitsberichte des IMMD, University of
Erlangen, no. 27, 1994.

5. P. Buchholz. Hierarchical Markovian models: Symmetries and aggregation. Per-
formance Evaluation, 22:93–110, 1995.

6. P. Buchholz. Structured analysis approaches for large Markov chains. Applied
Numerical Mathematics, 31(4):375–404, 1999.

7. P. Buchholz, G. Ciardo, S. Donatelli, and P. Kemper. Complexity of memory-
efficient Kronecker operations with applications to the solution of Markov models.
INFORMS J. on Computing, 12(3), 2000.

8. P. Buchholz, M. Fischer, and P. Kemper. Distributed steady state analysis us-
ing Kronecker algebra. In Proc. 3rd Int. Workshop on the Numerical Solution of
Markov Chains (NSMC’99), pages 76–95, Zaragoza, Spain, Sept. 1999.

9. P. Buchholz and P. Kemper. Compact representations of probability distributions
in the analysis of superposed GSPNs. In Proc. of the 9th Int. Workshop on Petri
Nets and Perf. Models, pages 81–90, Aachen, Germany, 2001.

10. P. Buchholz, P. Kemper, and C. Tepper. New features in the APNN toolbox. In
P. Kemper, editor, Tools of Aachen 2001, Int. Multiconference on Measurement,
Modelling and Evaluation of Computer-communication Systems, Tech. report No.
760/2001. Universität Dortmund, FB Informatik, 2001.

11. G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad. Stochastic well-formed
coloured nets for symmetric modelling applications. IEEE Transactions on Com-
puters, 42(11):1343–1360, Nov 1993.

12. G. Ciardo and A. Miner. A data structure for the efficient Kronecker solution of
GSPNs. In Proc. of PNPM’99: 8th Int. Workshop on Petri Nets and Performance
Models, pages 22–31, 1999.

13. G. Ciardo and K. S. Trivedi. A decomposition approach for stochastic reward net
models. Performance Evaluation, 18(1):37–59, 1993.

14. G. Clark, T. Courtney, D. Daly, D. Deavours, S. Derisavi, J. M. Doyle, W. H.
Sanders, and P. Webster. The Möbius modeling tool. In Proc. of the 9th Int.
Workshop on Petri Nets and Performance Models, pages 241–250, Aachen, Ger-
many, September 2001.

15. D. Deavours and W. H. Sanders. The Möbius execution policy. In Proc. of
PNPM’01: 9th Int. Workshop on Petri Nets and Performance Models, pages 135–
144, Aachen, Germany, 2001.

16. D. Deavours and W. H. Sanders. Möbius: Framework and atomic models. In Proc.
of PNPM’01: 9th Int. Workshop on Petri Nets and Performance Models, pages
251–260, Aachen, Germany, 2001.

17. D. D. Deavours and W. H. Sanders. An efficient disk-based tool for solving very
large Markov models. In Proceedings of the 9th Int. Conference on Modelling
Techniques and Tools for Computer Performance Evaluation (TOOLS ’97), pages
58–71, June 1997.

18. D. D. Deavours and W. H. Sanders. ‘On-the-fly’ solution techniques for stochastic
Petri nets and extensions. IEEE Trans. on Software Eng., 24(10):889–902, 1998.

19. J. M. Doyle. Abstract model specification using the Möbius modeling tool. Master’s
thesis, University of Illinois at Urbana-Champaign, January 2000.

20. P. Fernandes, B. Plateau, and W. J. Stewart. Efficient descriptor-vector multipli-
cation in stochastic automata networks. JACM, 45(3):381–414, 1998.

21. J. C. Fernandez, H. Garavel, A. Kerbrat, R. Mateescu, L. Mounier, and M. Sighire-
anu. CADP: A protocol validation and verification toolbox. In Proc. of the 8th
Conference on Computer-Aided Verification, volume 1102 of LNCS, pages 437–440,
New Brunswick, USA, August 1996.

22. S. Gilmore, J. Hillston, and M. Ribaudo. An efficient algorithm for aggregating
PEPA models. Software Engineering, 27(5):449–464, 2001.

23. H. Hermanns, J. Meyer-Kayser, and M. Siegle. Multi terminal binary decision
diagrams to represent and analyse continuous time Markov chains. In Proc. 3rd Int.
Workshop on the Numerical Solution of Markov Chains, pages 188–207, Zaragoza,
Spain, 1999.

24. H. Hermanns and M. Ribaudo. Exploiting symmetries in stochastic process alge-
bras. In Proc. of ESM’98: 12th European Simulation Multiconference, 1998.

25. J. P. Katoen, M. Kwiatkowska, G. Norman, and D. Parker. Faster and symbolic
CTMC model checking. In Proc. PAPM-PROBMIV’01, pages 23–38. Springer
LNCS 2165, 2001.

26. P. Kemper. Numerical analysis of superposed GSPNs. IEEE Trans. on Software
Eng., 22(9):615–628, Sep 1996.

27. W. Knottenbelt and P. G. Harrison. Distributed disk-based solution techniques
for large Markov models. In Proc. of NSMC’99: 3rd International Meeting on the
Numerical Solution of Markov Chains, Zaragoza, Spain, pages 58–75, 1999.

28. W.J. Knottenbelt. Generalised Markovian analysis of timed transition systems.
Master’s thesis, University of Cape Town, Cape Town, South Africa, July 1996.

29. D. R. Musser, G. J. Derge, and A. Saini. STL Tutorial and Reference Guide, Second
Edition: C++ Programming with the Standard Template Library. Addison-Wesley,
Reading, MA, 2001.

30. W. H. Sanders. Integrated frameworks for multi-level and multi-formalism model-
ing. In Proceedings of PNPM’99: 8th Int. Workshop on Petri Nets and Performance
Models, Zaragoza, Spain, pages 2–9, September 1999.

31. W. H. Sanders and J. F. Meyer. Reduced base model construction methods for
stochastic activity networks. IEEE Journal on Selected Areas in Communications,
9(1):25–36, January 1991.

32. W. J. Stewart. Introduction to the Numerical Solution of Markov Chains. Princeton
University Press, 1994.

33. C. M. Woodside and Y. Li. Performance Petri net analysis of communications pro-
tocol software by delay-equivalent aggregation. In Proc. of the 4th Int. Workshop
on Petri Nets and Performance Models, pages 64–73, 1991.

34. P. Ziegler and H. Szczerbicka. A structure based decomposition approach for
GSPN. In Proc. of PNPM’95: 6th Int. Workshop on Petri Nets and Performance
Models, pages 261–270, 1995.

