
Complexity of Memory-Efficient Kronecker Operations with
Applications to the Solution of Markov Models

PETER BUCHHOLZ � Department of Computer Science, Dresden University of Technology, D-01062 Dresden, Germany,
Email: p.buchholz@inf.tu-dresden.de, Web: http://iis141.inf.tu-dresden.de/ms/pb/pb-engl.html

GIANFRANCO CIARDO � Department of Computer Science, College of William and Mary, Williamsburg, VA 23187-8795,
Email: ciardo@cs.wm.edu, Web: http://ww.cs.wm.eduA/�ciardo/

SUSANNA DONATELLI � Dipartimento di Informatica, Università di Torino, Corso Svizzera 185, 10149 Torino, Italy,
Email: susi@di.unito.it

PETER KEMPER � Informatik IV, Universität Dortmund, D-44221 Dortmund, Germany,
Email: kemper@ls4.informatik.uni-dortmund.de, Web: http://ls4-www.informatik.uni-dortmund.de/QM/MA/pk/pie.html

(Received: August 1997; revised: May 1999; accepted: February 2000)

We present new algorithms for the solution of large structured
Markov models whose infinitesimal generator can be expressed
as a Kronecker expression of sparse matrices. We then com-
pare them with the shuffle-based method commonly used in
this context and show how our new algorithms can be advan-
tageous in dealing with very sparse matrices and in supporting
both Jacobi-style and Gauss-Seidel-style methods with appro-
priate multiplication algorithms. Our main contribution is to
show how solution algorithms based on Kronecker expression
can be modified to consider probability vectors of size equal to
the “actual” state space instead of the “potential” state space,
thus providing space and time savings. The complexity of our
algorithms is compared under different sparsity assumptions.
A nontrivial example is studied to illustrate the complexity of
the implemented algorithms.

C ontinuous time Markov chains (CTMCs) are an estab-
lished technique to analyze the performance, reliability, or
performability of dynamic systems from a wide range of
application areas. CTMCs are usually specified in a high-
level modeling formalism, then a software tool is employed
to generate the state space and generator matrix of the
underlying CTMC and compute the stationary probability
vector, from which most quantities of interest can be ob-
tained as a weighted sum by using “reward rates” as
weights (Howard 1971). Although the mapping of a high-
level model onto the CTMC and the computation of the
stationary distribution are conceptually simple, practical
problems arise due to the enormous size of CTMCs model-
ing realistic systems. Sophisticated generation and analysis
algorithms are required in practice.

In this paper, we consider the stationary solution of large
ergodic CTMCs, that is, the computation of the vector � �
����, where �i is the stationary probability of state i and � is
the set of states of the CTMC, or (actual) state space. � is the
solution of the system of linear equations

� � Q � 0 subject to � � 1T � 1, (1)

where Q is the generator matrix of the CTMC. However, our
contributions can also be used for other analyses such as the
computation of the expected time spent in transient states
up to absorption in absorbing CTMCs and the transient
analysis of arbitrary CTMCs (Ciardo et al. 1993).

Direct solution methods such as the well-known Gaussian
elimination are not applicable for the solution of (1), since
their fill-in results in excessive memory requirements. Iter-
ative techniques based on sparse storage schemes for Q are
more appropriate, but even they are memory-bound when
applied to realistic examples. Virtual memory is of little
help, since access times to virtual memory are too long to
allow an efficient implementation of iterative solution tech-
niques, although Deavours and Sanders (1997a) report some
encouraging results.

Recently, solution techniques for CTMCs have been de-
veloped that compute � without generating and storing Q
explicitly. The idea is to represent Q as a submatrix of a
matrix Q̂ given as a sum of Kronecker products of smaller
matrices resulting from a high-level model structured into
submodels. The method has been applied to several high-
level formalisms where models are described in a composi-
tional way (Donatelli 1993, 1994; Kemper 1996a; Plateau
1985). Solution methods exploiting a Kronecker structure are
iterative, but they differ from conventional iterative tech-
niques in how they perform the required vector-matrix mul-
tiplications. A first approach (Plateau 1985) employed the
slowly-converging Power method, used dense storage
schemes for the submodel matrices, and computed the so-
lution using the “potential” state space, a (possibly much
larger) superset of the actually reachable states. Event rates
could be either constant or, for enhanced modeling power,
they could depend on the state (functional rates). Several

Subject classifications: Analysis of algorithms, computational complexity, probability: Markov processes.
Other key words: Kronecker algebra, sparse matrices.

203
INFORMS Journal on Computing 0899-1499� 100 �1203-0203 $05.00
Vol. 12, No. 3, Summer 2000 © 2000 INFORMS

extensions and generalizations have been introduced since
then. Fernandes, Plateau, and Stewart (1998) describe how to
treat functional rates without adding excessive overhead.
Buchholz (1999, 1997a), Stewart (1994), Stewart et al. (1995),
and Uysal and Dayar (1998) present Kronecker adaptations
of iterative solution methods more advanced than just the
Power method. Matrices involved in the Kronecker ap-
proach are typically sparse; the effect of sparsity for the
shuffle-based algorithm has been discussed by Fernandes,
Plateau, and Stewart (1998), who indicate that for extremely
sparse matrices other multiplication algorithms can be more
efficient than the shuffle-based one. We will give a compar-
ison of different sparse matrix algorithms but consider also
the impact of unreachable states. The overhead of unreach-
able states was studied by Ciardo and Tilgner (1996) and
Kemper (1996a), who concluded that it can outweigh the
advantages of a Kronecker structure by far, so that appro-
priate treatment of unreachable states is essential to achieve
algorithms that perform well even for the non-ideal case
where the potential state space contains many unreachable
states.

We follow this line here and present a family of solution
techniques that use sparse storage for the submodel matrices
and iteration vectors of the size of the actual state space, and
we consider both the Jacobi and the Gauss-Seidel methods.
Additionally, we compare the complexity of different Kro-
necker-based vector-matrix multiplication algorithms, both
theoretically and by means of a realistic example. Modifica-
tions of the algorithms to manage functional rates are also
discussed.

The next section defines our notation and the Kronecker
expression considered for the generator matrix, and intro-
duces a running example. Section 2 presents and analyzes
different algorithms to multiply a vector by a matrix repre-
sented as a Kronecker product, using our running example.
Section 3 discusses modifications of the algorithms of Sec-
tion 2 that consider only the set of reachable states. Section
4 compares the various multiplication algorithms and briefly

discusses the treatment of functional rates, while Section 5
describes iterative solution approaches that use these mul-
tiplication algorithms to compute the stationary solution of
a CTMC.

1. Notation
Table I summarizes the symbols we use. Except for the set of
real numbers, �, all sets are denoted by upper-case calli-
graphic letters (e.g., �); row vectors and matrices are de-
noted by lower- and upper-case bold letters, respectively
(e.g., x, A); their entries are indexed starting from 0 and are
denoted by subscripts (e.g., xi, Ai,j); a set of indices can be
used instead of a single index, for example, A�,� denotes the
submatrix of A corresponding to set of rows � and the set of
columns �. We also denote families of like quantities with
subscripts if scalars, or superscripts if sets, vectors, or ma-
trices (e.g., xi or xi), and use a shorthand “range” notation to
indicate sequences of them (e.g., x[1,n] � x1, . . . , xn).

�[A] denotes the number of nonzero entries (nonzeros) in
the matrix A, and 0x�y and 1x�y denote matrices with x rows
and y columns, having all entries equal to 0 or 1, respec-
tively, while Ix denotes the identity matrix of size x � x. The
dimensions of these matrices are omitted if clear from the
context. Given a vector x, diag(x) is a square matrix having
vector x on the diagonal and zero elsewhere. Given an n �
n matrix A, rowsum(A) � diag(A � 1n�1) is a matrix having the
diagonal equal to the sums of the entries on each row of A,
and zero elsewhere.

1.1 Kronecker Operators and Markov Chains
We recall the definition of the Kronecker product A � Rk�1

K

Ak of K square matrices Ak � �nk�nk. Let nl
u � �k�l

u nk, n � n1
K,

and n� k � n/nk. We use a mixed-base numbering scheme
where the tuple l[1,K] corresponds to the number (. . .((l1)n2 �
l2)n3

. . .)nK � lK � �k�1
K lknk�1

K (letting nK�1
K � 1), and vice

versa. If i[1,K] and j[1,K] are the mixed-based representation of
i and j, respectively, the generic element of A � �n�n is

Ai, j � Ai�1, K� , j�1, K�
� Ai1 , j1

1 � Ai2 , j2
2 · · · AiK , jK

K . (2)

Table I. Symbols Used in the Paper

Symbol Definition or properties Meaning

Mk k-th submodel
nk nk 	 2 Number of local states for Mk

nl
u �k�l

u nk Number of potential states for M[l,u]

n n1
K Number of overall potential states

n� k n/nk � n1
k
1 � nk�1

K Number of potential states when Mk is ignored
�̂k, �k {0, . . . , nk
 1} Potential, actual local state space (s.s.) for Mk

�̂1
k �1 � �2 � . . . � �k Potential s.s. for M[1,k]

�̂, � �̂ � �̂1
K, � � �̂ Potential and actual overall s.s.

�1
k {i[1,k]�?i[k�1,K], i[1,K] � �} Projection of the actual s.s. � on M[1,k]

�k(i[1,k
1]) {ik�i[1,k] � �1
k} Actual s.s. for Mk when Ml is in state il, @1 � l � k

 ��̂ 3 {0, . . . , ���
 1, null} Position of a state in lexicographic order
�̂, � @i �� � �̂i � �(i) Steady state probability vector
Q̂, Q, R̂, R Q � Q̂�,�, R � R̂�,� Infinitesimal generator, transition rate matrix
ĥ, h @i � � ĥi � h(i) � Q̂i,i

1 Expected holding time vector

204
Buchholz, Ciardo, Donatelli, and Kemper

The Kronecker sum Qk�1
K Ak is defined in terms of Kronecker

products, as

�

k�1

K

Ak � �
k�1

K

In1 � · · · � Ink
1 � Ak �

Ink�1 � · · · � InK � �
k�1

K

In1
k
1 � Ak � Ink�1

K .

We are interested in algorithms that exploit sparsity. For the
Kronecker product, the number of nonzeros is �[Rk�1

K Ak] �
�k�1

K �[Ak]. For the Kronecker sum, diagonal entries in the
matrices Ak might result in merged entries on the diagonal
of A, thus we can only bound the number of nonzeros,
�[Qk�1

K Ak] � �k�1
K (�[Ak] � n� k). This bound is achieved if and

only if at most one matrix Ak contains nonzeros on the
diagonal. On the other hand, if all diagonal elements of the
matrices Ak are positive (or all are negative), �[Qk�1

K Ak] �
�k�1

K (�[Ak] � n� k)
 (K
 1) � n. As a consequence, the
Kronecker sum of K 	 2 matrices (with nk � 1) can never be
a full matrix. We consider a structured model M described
as the parallel composition of a set of K submodels M[1,K]:
each submodel Mk is described as a stochastic automaton in
the stochastic automata network (SANs) framework (Pla-
teau and Atif 1991), or as a generalized stochastic Petri net
(GSPN) in the superposed GSPNs (SGSPNs) framework
(Donatelli 1994; Kemper 1996a). The interactions among
submodels can be either “simultaneous jumps,” when
changes of state in two or more submodels must happen in
a synchronous manner, e.g., “synchronizing events” in
SANs or “synchronizing transitions” in SGSPNs, or rate
dependencies, e.g., “functional rates” in SANs or a simpler
type of product-form dependency in SGSPNs (Ciardo and
Tilgner 1996). Rate dependencies are discussed in Section
4.3. We define

• �̂k, the set of states of submodel Mk when considered in
isolation. ��̂k� � nk.

• �̂ � �̂1 � . . . � �̂K, the potential state space. ��̂� � n1
K � n.

A state of the composed model is the tuple describing the
local state of the K submodels: i � i[1,K].

• �S, the set of synchronizing events.
• �, the set of reachable, or actual, states in the composed

model.

In the presence of synchronizations among submodels, �̂ is
often a strict superset of �, which can be efficiently gener-
ated from the compositional description of the model. Kem-
per (1996a) introduced a basic algorithm for state space
generation of compositional models and Buchholz (1997b)
further improved it by using an equivalence reduction of the
submodel state spaces. The generation of � containing a few
million states can be performed in a matter of minutes, a
negligible effort compared to stationary analysis. Ciardo and
Miner (1997) describe an alternative approach using an ef-
ficient K-level data-structure. From now on, we can then
safely assume that � is available in memory, if needed.

Note that, if � � �̂ and � has been explored, one might

recognize that some local states in �̂k are unreachable. We
can then define the “actual local” state spaces as the projec-
tion of � on the k-th component:

�k � �ik : ?j �1,K� � � , jk � ik� � �̂k,

redefine �̂k as �k, and assume from now on that the two are
identical. This improves both memory requirements and
execution time, at the cost of requiring the exploration of �.
The compositional definition of M allows a structured de-
scription of the transition rate matrix based on the following
“local” matrices:

• Wk(e), a nk � nk matrix describing the effect of synchro-
nizing event e on submodel Mk.

• Rk, a nk � nk matrix describing the effect on submodel Mk

of the events local to it.

Using related frameworks, Buchholz (1991), Ciardo and Til-
gner (1996), Donatelli (1994), Plateau (1985), and Plateau and
Atif (1991) have shown that both the transition rate matrix R
and the infinitesimal generator Q underlying M can be
expressed as the restrictions to the reachable states of ap-
propriate matrices, R � R̂�,� and Q � Q̂�,�, defined as
Kronecker expressions on the Wk(e) and Rk matrices. The
expression for R̂ is:

R̂ � �
e��S

rate�e� � �
k�1

K
Wk�e�

Ç
� �

k�1

K
Rk

Ç
, (3)

synchronizing events local events

where rate(e) is a constant for a given synchronizing event e,
and the Wk(e) and Rk matrices are either real constants or
real functions of the global state. For now we restrict our-
selves to constant values for the matrix entries; the case of
functional rates is discussed in Section 4.3. We observe that
the matrices involved in the Kronecker expression (3) can be
extremely sparse in practice. For example, if the synchroniz-
ing event e can occur only in a single local state for submodel
Mk and has a deterministic effect on it, Wk(e) contains exactly
one nonzero. The expression for Q̂ is analogous to that for R̂,
but we omit it because we choose to store R̂ in Kronecker
form and the expected holding times h, or the “potential”
version ĥ, explicitly as a full vector (of course, then, Q � R

diag(h)
1). Alternatively, we could save memory by using a
Kronecker description for the diagonal of Q, at the cost of
additional execution time.

1.2 A Running Example
We now describe the running example used to obtain timing
results. It models a flexible manufacturing system (FMS)
with three machine centers (c1, c2, and c3) and four types of
parts A, B, C, and D being processed. Figure 1 depicts it as a
fork-join queuing network, with machines as queues and
parts as customer classes (chains). We assume exponentially
distributed service times. Machine c3 can process up to three
parts in parallel, machine c2 up to two, and machine c1 only
one. Parts A and B are processed with higher priority than C
and D. A part of type A accesses c3 and, after service com-
pletion, it is either rescheduled for processing at c3 or joined
with a part of type B for processing at c2. A part of type B

205
Complexity of Memory-Efficient Kronecker Operations with Applications to the Solution of Markov Models

accesses c1 and, after service completion, it is either resched-
uled for processing at c1 or joined with a part of type A for
processing at c2. The joint processing of parts of type A and
B occurs on c2 and, after service completion, it yields a
product that is delivered and replaced by its original raw
parts, to keep a constant stock of material in the system.

The FMS also produces a second product with low prior-
ity, to reduce idle time on machines. The low-priority prod-
uct is processed in the same manner as the high-priority
product, but from parts of type C (instead of A) and D
(instead of B). The only difference is that processing of the
corresponding parts can only take place on a machine that
has no high-priority work to be performed (we assume a
preemptive priority policy). The parameters nA, nB, nC, and
nD give the number of parts of each type present in the
system.

We start with decomposing the model into two submod-
els according to the priority of parts. Submodel H describes
machines c1, c2, and c3 and their processing of the high-
priority parts A and B, including their joint processing.
Submodel L considers only low-priority parts C and D and
their joint processing. Since H already models the machines,
L must “borrow” the available machine capacities from H.
This is done via the synchronizing events �S � {low1, low2,
low3} which are enabled if the state of H shows free capaci-
ties at the corresponding machine c1, c2, or c3. As soon as a
local event in H leads to a state where high-priority parts
require the entire capacity of machine ci currently serving
low-priority parts, the synchronizing event lowi becomes
disabled by model H.

For nA � nB � 4, and nC � nD � 3 we obtain ��H� � 2,394,
��L� � 652, and ��̂� � ��� � 1,560,888. Table II gives the
number of nonzeros for the matrices involved in the Kro-
necker description of R. These matrices are rather sparse,
with an average number of nonzeros per row between 0.2
and 0.95. The Kronecker representation uses a total of 20,216
nonzeros, compared to the 13,439,073 nonzeros of an explicit
representation.

If matrix entries are stored in double precision, the Kro-
necker description of R requires 388,800 bytes. The explicit
sparse-storage representation for R would instead require
about 126 MB in single precision or 180 MB in double
precision. Obviously, the Kronecker representation of R is
extremely space-efficient in this case.

2. Multiplication Using the Potential State Space
If A is an n � n matrix stored explicitly using sparse storage,
the complexity of computing the product x � A is O(�[A]).
Storing A in a full two-dimensional data structure is ineffi-
cient for the type of problems we consider; in any case, it is
equivalent to assuming that �[A] � n2 from a complexity
point of view, so we restrict ourselves to sparse storage from
now on. If A is instead stored implicitly as the Kronecker
product of K matrices Ak � �nk�nk, k � {1, . . . , K}, also stored
in sparse row-wise or column-wise format, as appropriate, a
direct application of (2) requires K
 1 multiplications to
obtain each matrix entry. If each Ai,j is computed only once
for each pair (i, j) and only nonzero Ai,j entries are com-
puted, the complexity of computing x � A becomes O(K �
�[A]). One of our goals is to improve on this complexity.
Section 2.1 recalls the shuffle algorithm, which achieves a
better complexity by exploiting the inherent structure of a
Kronecker product. Section 2.2 and 2.3 present instead new
algorithms that reduce the complexity by recognizing the
presence of common factors in the products making up the
entries of A. A prefix “Pot”-indicates that an algorithm
works with the potential state space. In our particular ap-
plication, the matrices Ak involved in a Kronecker product
are the K matrices Wk(e) for a given e � �. Hence, we
consider three levels of sparsity, according to the average
number � � �[Ak]/nk of nonzeros per row or column in the
matrices Ak (in the following we assume the same � for all
matrices Ak, hence �[A] � �[RAk] � n � �K):

hypersparse: � �� 1f �[A] �� n (only a few nonzeros; most
rows and columns are empty).

ultrasparse: � � 1f �[A] � n (each row or column has one
nonzero, on average).

sparse: � �� 1 f �[A] �� n (any other sparse matrix).

We focus on the case of sparse or ultrasparse, that is, we
assume that �[Ak] 	 nk, for all k � 1, . . . , K, but truly
hypersparse matrices can occur in the Kronecker approach.
Extremely sparse cases might be best managed by explicitly
storing a list of triplets (i, j, Ai,j), one for each nonzero in A.

2.1 The Shuffle Algorithm
Plateau (1985) presented the first algorithm for the analysis
of structured Markov chains. Fig. 2 shows algorithms Pot-Sh,
to compute ŷ4 x̂ � Rk�1

K Ak, and Pot-Sh�, to compute ŷ4 x̂ �
In1

k
1 R Ak R Ink�1

K (from now on, the suffix “�” denotes the
version for the simpler case of a product where all matrices
are the identity except one).

Figure 1. Multiclass queueing network for our running
example.

Table II. Number of Nonzeros Using the First
Decomposition

Type of matrix e k � H k � L

Wk(e) low1 1,158 584
Wk(e) low2 2,259 135
Wk(e) low3 2,214 584
Rk local 11,844 1,438

206
Buchholz, Ciardo, Donatelli, and Kemper

Pot-Sh considers the matrices Ak sequentially, exploiting
the equality (Davio 1981):

�

k�1

K

Ak � �
k�1

K

S�n1
k , nk�1

K �

T
� �In� k � Ak� � S�n1

k , nk�1
K � , (4)

where S(a,b) � {0, 1}a � b�a � b is the matrix describing an (a, b)
perfect shuffle permutation:

�S�a, b�� i, j � � 1 if j � �i mod a� � b � �i div a�
0 otherwise .

Therefore, a vector-matrix multiplication can be performed
using K vector permutations and K multiplications of the
type x � (In� k

R Ak). Matrix In� k
R Ak has a peculiar structure: it

is simply the matrix Ak repeated n� k times over the diagonal,
hence, the cost of the k-th multiplication is O(n� k � �[Ak]),
while the permutation costs can be neglected, since they can
be incorporated into the algorithm.

As an example, Fig. 3 illustrates the computation of
y 4 x � (A R B), following in particular the operations
performed to obtain the entry y2 (follow the entries marked
with a diamond). As S6,1 and S6,1

T are identity matrices, they
are omitted from the figure.

The shuffle permutation is encoded in steps 9–12 and
14–17 of Pot-Sh. Due to the Kronecker structure, we can
perform Pot-Sh and Pot-Sh� using a single vector that holds
x̂ at the beginning and ŷ at the end (provided x̂ is not used

elsewhere), since the algorithms overwrite only those values
of x̂ which are not used any further or are currently stored in z.

The complexity of Pot-Sh (see Buchholz, 1994; Fernandes
et al., 1998) can be rewritten as:

O� �
k�1

K

n� k � ��Ak�� � O� n � �
k�1

K
��Ak�

nk
� � O�n � K � �� .

Hence, Pot-Sh is faster than a multiplication using explicit
storage if and only if

n � K � � � n � �K N � � K1/�K
1�.

Fig. 4 illustrates the regions where Pot-Sh or ordinary
multiplication perform better, according to the values of K
(which is small in practical modeling applications) and �.
Note that ordinary multiplication is always advantageous in
the ultrasparse case.

Pot-Sh� in Fig. 2 is the specialization of Pot-Sh when Ak �
I is true for exactly one k, and it is called with its parameters
nleft and nright set to n1

k
1 and nk�1
K , respectively. Its complex-

ity is

O�n� k � ��Ak�� � O�n � ��

and the resulting complexity of computing ŷ4 ŷ � x̂ � Qk�1
K

Ak using Pot-Sh� is then

O� �
k�1

K

n� k � ��Ak�� � O� n �
k�1

K
��Ak�

nk
� � O�n � K � �� .

Figure 2. Vector-matrix multiplication using perfect shuffles.

207
Complexity of Memory-Efficient Kronecker Operations with Applications to the Solution of Markov Models

Since the term �k�1
K n� k � �[Ak] is an upper bound on the

number of nonzeros in A � Qk�1
K Ak, using Pot-Sh� saves

space, but not time, with respect to the ordinary multiplica-
tion algorithm where A is stored explicitly in sparse form.

2.2 A Straightforward Algorithm Using Sparse Storage
Another approach, close to the definition of Kronecker prod-
uct (2), is given by algorithm Pot-Rw in Fig. 5 on the left,
which performs the computation ŷ4 ŷ � x̂ � A and requires
sparse row-wise format for the matrices Ak.

Procedure Pot-RwEl computes the contribution of a single
entry x̂i to all the entries of ŷ, as ŷ 4 ŷ � x̂i � Ai,�̂. The K
nested for loops in procedure Pot-RwEl are required to com-
pute element Ai,j. Some of the computation needed to obtain
Ai,j is reused for other elements of matrix A on the same
row. On a given call to Pot-RwEl, statement ak4 ak
1 � Aik

, jk
k

is reached �h�1
k �[Aih, �h

h] � O(�k) times. Pot-Rw calls Pot-
RwEl n times, hence its complexity is

O� n � �
k�1

K

�k� � � O�n � K� � O�K � ��A�� ultrasparse

O�n � �K� � O���A�� sparse
(5)

In other words, the multiplications needed to compute a2

through aK
1 are effectively amortized only if � �� 1.
The analogous algorithm Pot-Cl and procedure Pot-ClEl,

for multiplication by columns, are omitted. Each call to
Pot-ClEl computes a single entry ŷj of ŷ as the inner product
x̂ � A�̂,j, where j � j[1,K] in our mixed-base notation. Pot-Cl
has the same complexity as Pot-Rw but requires sparse col-
umn-wise storage for the matrices Ak. However, Pot-Rw and

Figure 3. Illustration of the shuffle algorithm.

Figure 4. Comparing Pot-Sh with ordinary multiplication in the (K, �) plane.

208
Buchholz, Ciardo, Donatelli, and Kemper

Pot-Cl differ in one important aspect: the multiplication per-
formed by Pot-ClEl requires only one scalar accumulator,
while Pot-RwEl uses the vector ŷ itself as an accumulator. If
we follow the good numerical practice of using higher pre-
cision for accumulators, Pot-Rw has larger memory require-
ments than Pot-Cl.

The simplified multiplication algorithm Pot-Rw�, used to
compute Kronecker sums, is also shown in Fig. 5 on the left.
Its complexity is

O� n �
��Ak�

nk
� � O�n � �� .

The resulting complexity of computing ŷ4 ŷ � x̂ � Qk�1
K Ak

using Pot-Rw� is then

O� n � �
k�1

K
��Ak�

nk
� � O�n � K � �� .

Again, as for shuffle, there is no gain in time over the
ordinary vector-matrix multiplication algorithm.

2.3 Interleaving Rows and Columns
Fig. 6 on the left illustrates graphically the number of oper-
ations and the order in which elements are accessed by
algorithm Pot-Rw (Pot-Cl is analogous), when computing the

product

x̂ � A � x̂ � � � a0 a1

a2 a3
	 � � b0 b1

b2 b3
	 � � c0 c1

c2 c3
	 � .

The resulting matrix A contains 8 � 8 � 64 entries, each of
which is the product of three real numbers aibjcl, 0 � i, j, l �
3. Since the product of three numbers requires two multi-
plications, we could trivially compute all the entries of A by
performing 64 � 2 � 128 multiplications. Algorithm Pot-Rw
reduces this complexity by exploiting some level of factor-
ing. In Fig. 6 on the left, for example, the product a0 � b0

appears in both a0 � b0 � c0 and a0 � b0 � c1, and is computed
only once. Hence, the overall number of multiplications
performed by Pot-Rw to compute all the entries of A equals
the number of “b” and “c” boxes in the figure, 64 � 32 � 96.
The boldface numbers indicate the order in which the entries
of A are generated.

However, neither Pot-Rw nor Pot-Cl fully exploit the ex-
isting common factors in the entries of A. To do so, we must
use algorithm Pot-RwCl instead, shown in Fig. 5 on the right.
The idea is to examine the entries of A not in row or column
order, but by interleaving the indices (i1, j1, i2, j2, etc.), that is,
“by squares.” Note that the case Ak � I can be recognized
and optimized to avoid unnecessary multiplications and
complex index transformations.

Figure 5. Vector-matrix multiplication by rows (left) or by squares (right).

209
Complexity of Memory-Efficient Kronecker Operations with Applications to the Solution of Markov Models

Fig. 6 on the right shows how this works on our small 8 �
8 example. The number of operations (of “b” and “c” boxes)
is now 64 � 16 � 80, and it is apparent how Pot-RwCl can
substantially outperform Pot-Rw and Pot-Cl as the number K
and the size of the matrices involved increases. However,
considering again the boldface numbers that indicate the
order in which the entries of A are generated, one can see
how Pot-RwCl does not accommodate an algorithm requir-
ing access strictly by-rows or by-columns. Indeed, the name
Pot-RwCl stresses that the first for loop is on i1, a row index,
the second one is one j1, a column index, and so on. An
analogous Pot-ClRw algorithm could be defined, with for
loops over the indices j1, i1, j2, i2, etc., but it would still have
a complex access pattern, neither strictly by rows nor strictly
by columns. To obtain the complexity of Pot-RwCl, we can
observe that statement ak4 ak
1 � Aik

, jk
k is reached �l�1

k �[Al]
times, hence the overall complexity is

O� �
k�1

K �
l�1

k

��Al�� � O� �
l�1

K

��Al�� � O�n � �K� ,

that is, the same as that of ordinary multiplication, regard-
less of whether the matrices involved are sparse or just
ultrasparse.

Just as for Pot-Rw and Pot-Cl, a specialized version of
Pot-RwCl can be defined, to be used when dealing with
Kronecker sums (see algorithm Pot-RwCl� in Fig. 5). Its
complexity is the same as that of Pot-Sh, Pot-Rw, or Pot-Cl.
Our running example is used for a comparison of these
algorithms in Section 4.

3. Multiplication Using the Actual State Space
The decomposition considered so far for our running exam-
ple satisfies �̂ � �. However, a non-trivial decomposition

with �̂ � � might not exist for a given model or might be
unknown to a modeler. Due to the space limitations we do
not consider a different model where ��̂� �� ���; instead, we
simply use a second decomposition that further refines the
submodels H and L of our running example. For the high-
priority parts, we define submodel 1, describing the process-
ing of parts of type A and their joint processing with parts of
type B, and submodel 2, describing the processing of parts of
type B on machine c1. For the low-priority parts, we define
analogous submodels 3 and 4.

The synchronizing events are then

�S � �low1 , low2 , low3 , joinAB , forkAB , joinCD , forkCD�

where the “join” and “fork” events correspond to the start
and end of assembly for parts A and B, or C and D, respec-
tively.

For nA � nB � 4, and nC � nD � 3, the cardinalities of the
local state spaces are ��1� � 126, ��2� � 70, ��3� � 56, and
��4� � 35. The potential state space is now much larger, ��̂� �
17,287,200, while ��� � 1,560,888, as before, since we are
modeling the same system. Table III gives the number of
nonzeros for the matrices involved in the Kronecker descrip-
tion of R (missing entries indicate identity matrices, which
do not need to be stored explicitly).

The matrices for the Kronecker description of R now use
a truly negligible amount of memory, 29,148 bytes, but
Pot-Sh, Pot-Rw, and Pot-Cl need a large amount of space to
allocate vectors of length �̂, even if we are really interested
only in the elements corresponding to �

When the difference between �̂ and � is large, the algo-
rithms of the previous section pay additional costs in terms
of space, but also in terms of time, since unnecessary mul-
tiplications are performed for unreachable states (Fernandes
et al. 1998). Thus, we now consider methods that compute

Figure 6. Multiplication by rows (left) and by squares (right).

210
Buchholz, Ciardo, Donatelli, and Kemper

ŷ� � ŷ� � x̂� � A�,�, where � � �̂ is the actual state space
and ŷ� and x̂� are stored using arrays y and x, of size ���.
Specifically, for i � �, x̂i is stored in position I � (i) of x
(i.e., x̂i � xI), where (i) counts the number of reachable
states that precede i in lexicographic order ((i) � null if i ��
�). To focus on the reachable states alone, we need to:

• Generate �. Efficient algorithms for the generation of �
can be found in Ciardo and Miner (1997) and Kemper
(1996b).

• Ensure that only A�,� contributes to the value of y. If A is
one of the matrices whose sum constitutes R̂, then Ai,j �
0 whenever i � � and j �� �, that is, starting from a
reachable state, only other reachable states can be
reached. In matrix form, this implies that R̂�,�̂�� � 0
(Ciardo and Tilgner 1996; Kemper 1996a). The reverse is
unfortunately not true: if i �� � and j � �, Ai,j can be
positive, that is, reachable states can be reached from
unreachable states.

• Find an efficient way to compute ��̂3 {0, . . . , ���
 1,
null}. We use a logarithmic search in �, and show how
the overhead is reduced by using an appropriate data
structure to store �. This is one of our main contributions
in this paper.

Algorithm Pot-Sh is not amenable to this approach since it
sequentializes the effect of a synchronizing event according
to (4), which results in possibly unreachable intermediate
states. During the k-th step of the for loop in line 3 of Pot-Sh,

the multiplication of Ak temporarily assigns values to posi-
tions of ŷ where no state change has taken place yet, accord-
ing to Al, k � l � K. Hence, the price for a fast shuffle
permutation is the need for x̂ and ŷ to be of dimension ��̂�.
In an implementation, a single vector suffices to represent x̂
and ŷ.

For a complete iterative solution, other vectors can be
reduced to size ��� using , and zero entries in x̂ can be
skipped to save multiplications (the latter requires a simple
test for zero in the inner multiplication z�4 z � Ak, line 13 in
Pot-Sh and line 9 in Pot-Sh�). This results in the Act-Sh-JCB
solution algorithm in Section 5.2.

Algorithm Act-Rw1 (Kemper 1996a) in Fig. 7 modifies
Pot-Rw, by accessing only elements corresponding to reach-
able states. A prefix “Act-” indicates that the algorithms
works with the actual state space. We omit the algorithm
Act-Rw1

� to compute Kronecker sums, since an analogous
discussion as for Pot-Rw� applies. Line 1 in Act-Rw1 selects
only elements of � among those in �̂. This requires no
additional overhead as long as the elements of � can be
accessed sequentially according to the order . The assign-
ment in line 7 of Act-RwEl1, however, requires finding the
index J � (j[1,K]) of the element j[1,K] in the array y. If the
computation of uses a binary search on a vector represen-
tation of , a multiplicative overhead factor O(log���) is
encountered in the innermost for loop. The overall complex-
ity of Act-Rw1 is then derived analogously to that of Pot-Rw.
On a given call to Act-RwEl1, statement ak 4 ak
1 � Ai,k,jk

k is

Table III. Number of Nonzeros Using the Second Decomposition

Type of matrix e k � 1 k � 2 k � 3 k � 4

Wk(e) low3 120 — 42 —
Wk(e) low2 105 — 21 —
Wk(e) low1 — 35 — 30
Wk(e) joinAB 56 35 — —
Wk(e) forkAB 56 35 — —
Wk(e) joinCD — — 21 15
Wk(e) forkCD — — 21 15
Rk local 280 140 42 30

Figure 7. Vector-matrix multiplication by rows for a subset � of the states.

211
Complexity of Memory-Efficient Kronecker Operations with Applications to the Solution of Markov Models

reached �h�1
k �[Aih

,�hh] � O(�k) times, and statement J 4
(j[1,K]) is reached �[Ai[1,K], �] � O(�K) times. Act-Rw1 calls
Act-RwEl1 once for each i[1,K] � �, hence its complexity is

O�
�
 � � �
k�1

K

�k � �K � log
�
 � �
� � O� �� � � �K � log�� ��� ultrasparse

O� �� � � �K � log�� �� sparse
(6)

Since K � log ��� in practical modeling situations, we can
conclude that Act-Rw1 has a log ��� overhead with respect to
ordinary multiplication, regardless of the matrix sparsity.

In a multiplication by columns, the situation is potentially
worse. Act-Cl1, the version analogous to Act-Rw1, must
avoid the “spurious” entries in A�̂��,�. In Act-ClEl1, the
index I 4 (i[1,K]) computed by the binary search returns
null if the “from” state i[1,K] is not reachable. Hence, Act-
ClEl1 must test whether I � null and, if so, ignore entry
Ai[1,K], j[1,K]

. The average cost of these binary searches is
slightly higher than for Act-RwEl1, since searching a state not
in � represents a worst-case scenario, but, more impor-
tantly, the complexity of Act-Cl1 must account for all
searches performed, regardless of whether they are success-
ful or not. The number of such searches is equal to the
number of nonzeros in the columns of A corresponding to �,
�[A�̂,�], while only �[A�,�] searches are performed by Act-
Rw1. The sparser A�̂��,� is, the closer the performance of
Act-Cl1 is to that of Act-Rw1, and the two complexities coin-
cide when A�̂��,� � 0 (this can happen even when �̂ is a
strict superset of �).

3.1 Reducing the log ��� Overhead
The multiplicative overhead log ��� in Act-Rw1 and Act-Cl1
results from a worst-case assumption that we must search in
a set of size ��� to compute each value of .

Kemper (1996c) discusses approaches to reduce this over-
head, but a more effective solution is obtained by using the
multilevel data structure shown in Fig. 8 to store � (Ciardo
and Miner 1997).

Before explaining this data structure, we introduce the
following sets:

• �̂1
k � �1 � . . . � �k � {0, . . . , n1
 1} � . . . � {0, . . . , nk

1}, the result of the projection of the potential state space
over the first k components.

• �1
k � {i[1,k]�?i[k�1,K], i[1,K] � �}, the projection of the

actual state space over the first k components.
• �k(i[1,k
1]) � {ik�i[1,k] � �1

k}, the local states for Mk that can
occur when the local states for M1 through Mk
1 are i1
through ik
1, respectively.

In particular, �̂1
K � �̂, �1

K � �, and we can define �1(i[1,0])
simply as �1.

In Fig. 8, the elements of the array at level k contain local
states for submodel Mk. When searching for a given state
i[1,K], we search first for i1 in the array at level 1, containing
�1. After finding i1, we follow its pointer to the array at level
2. The greyed-out portion of this array contains �2(i1). We
then search for i2 in this portion, and so on, until we find the
local state iK in the greyed-out portion of the last array,
corresponding to �K(i[1,K
1]). The displacement of this local
state in the entire array at level K is (i[1,K]). If, at any level,
we are unable to find ik, we can conclude that the state we
are searching is not in �, that is, (i[1,K]) � null.

The arrays at levels 1 through K
 1 are usually small
compared to the last level, and the array at level K, of size
���, can be compressed into log2 nK � ��� bits. Hence � can
be stored in O(��� � log2 nK) bits (Ciardo and Miner 1997).

For our purposes, however, the real advantage of this
data structure is the amortization of the logarithmic
searches. For a given i[1,K], we compute (i[1,K]) in K steps:

�i �1,K�� � K� · · · 2�1�i1� , i2� · · · , iK� .

When searching for a second state i�[1,K] such that i[1,k] � i�[1,k],
we can reuse the work in the first k of these steps. In other
words, if we saved the pointers identifying the greyed array
for �k�1(i[1,k]) at level k � 1 where we found ik�1, we can
now start our search for i�k�1 in that portion, instead of
starting all over at level 1.

This results in algorithms Act-Rw2 and Act-Cl2. Fig. 9
shows Act-Cl2, since it is used in the Gauss-Seidel type
solution algorithm Act-Cl2-GSD of Section 5. The tests for
Ik � null for k � K are necessary because an event might be
inactive due to a submodel Mh with h � k, but there might
not be a matching state for k(Jk
1, jk) at level k already. This
is possible not only for Act-Cl2, but also for Act-Rw2 (we
thank A. S. Miner for providing an example where this
occurs). In addition, Act-Cl2 is still affected by nonzeros in
A�̂,�, as discussed above in this section, requiring the test
IK � null in the innermost for loop. The analogous test is
instead not needed in Act-Rw2.

The complexity of Act-ClEl2 is now dominated by the
searches at each level, since for each multiplication at level k,
a O(log nk) search is performed as well. On a given call to
Act-ClEl2, statement Ik 4 k(Ik
1, ik) is reached �[(Rh�1

k

Ah)�1

k
1��k
,j[1,k]

] � O(�k) times. Act-Cl2 calls Act-ClEl2 for

Figure 8. Storage scheme for the computation of .

212
Buchholz, Ciardo, Donatelli, and Kemper

each j[1,K] � �, hence its complexity is

O�
�
 � �
k�1

K

�k � log nk�
� � O� �� � � �

k�1

K log nk� � O� �� � � log n� ultrasparse

O� �� � � �K � log nK� sparse

(7)

(the simplification for the sparse case is correct provided
that nK is at least comparable to nk, for any k � K).

The complexity of Act-Rw2 is analogous, except that the
amount of computation performed in Act-Cl2 is still worse
than for Act-Rw2 because searches for unreachable states are
still possible. The problem is less serious than for Act-Cl1,
though, because entries in A�̂��,� may now be discovered
before reaching the innermost for loop, if i[1,k] �� �1

k for some
k � K.

Comparing (7) with (6), we conclude that Act-Rw2 and
Act-Cl2 have better complexity in the sparse case, since they
can effectively amortize the logarithmic searches at each
level only when the matrices Ak have multiple elements per
row. However, in the ultrasparse case, they have an over-

Figure 9. Better vector-matrix multiplication algorithms for a subset of the states.

213
Complexity of Memory-Efficient Kronecker Operations with Applications to the Solution of Markov Models

head of log n � log��̂� instead of just log ���. This is due to
the pessimistic assumption that a logarithmic search at level
k requires O(log nk) comparisons. If, for each k, all sets
�k(i[1,k
1]) were of approximately the same size, then their
complexity in the ultrasparse case would be reduced to
O(��� � log���), but this might not be the case in practice. One
factor not evidenced by the complexity expressions, though,
is that, unlike Act-Rw1 and Act-Cl1, Act-Rw2 and Act-Cl2
avoid reaching the innermost for loop whenever a partial
state is not reachable, so they might actually perform better
than Act-Rw1 and Act-Cl1 even in the ultrasparse case.

Act-Rw2
� and Act-Cl2

� are the simplified algorithms for
matrices arising from a Kronecker sum. Fig. 9 shows Act-
Cl2

�. On a given call, Act-ClEl2
� reaches statements Ik 4

k(Ik
1, ik) and Ih 4 h(Ih
1, jh) for k � h � K, with an
overall cost of O(�h�k

K log nh), at most �[A�k,jk
] � O(�) times.

Act-Cl2
� calls Act-ClEl2

� once for each j[1,K] � �, hence its
complexity is

O�
�
 � � � �
h�k

K

log nh� .

The resulting complexity of computing y 4 y � x � (Qk�1
K

Ak)�,� using Act-Cl2
� is then

O� �
k�1

K
�
 � � � �
h�k

K

log nh� � O�
�
 � � � �
k�1

K

k � log nk�
� O� �� � � � � K � log n� .

Thus, the logarithmic search overhead decreases from sub-
model M1, where no amortization occurs, to MK, where only
an overhead log nK is encountered, but the overall overhead
remains log n, since the number of nonzeros in Qk�1

K Ak is
approximately ��� � � � K.

3.2 Interleaving Rows and Columns for a Subset of the
States
Act-Rw2 and Act-Cl2 fail to amortize the logarithmic searches
in the case of ultrasparse matrices because the K nested for
loops in Act-RwEl2 and Act-ClEl2 consider only the entries on
a given row or column of A, respectively. If A is ultrasparse,
only one entry is found, and no amortization occurs.

To improve the complexity further, we apply the inter-
leaving idea of Section 2.3 to the case where �̂ � �, resulting
in algorithm Act-RwCl, shown in Fig. 9 on the right. The
statements Ik4 k(Ik
1, ik) do not require a search, since all
states ik � �k(i[1,k
1]) are enumerated sequentially in the for
loop. A search is performed only to obtain Jk4 k(Jk
1, jk),
and the tests Jk � null are necessary, as already discussed for
Act-Rw2 and Act-Cl2.

Statement Jk 4 k(Jk
1, jk) is performed �[(Rh�1
k

Ah)�1
k, �1

k
1��k] � O(��1
k� � �k) times, hence the complexity of

Act-RwCl is:

O� �
k�1

K
�1
k
 � �k � log nk� � O� �� � � �K � log nK� (8)

(assuming that ��1
K
1� �� ���). Thus, finally, we achieve a

smaller overhead with respect to ordinary multiplication,
log nK, regardless of the type of sparsity.

Act-RwCl� in Fig. 9 is the simplified vector-matrix multi-
plication algorithm for matrices arising from a Kronecker
sum. Also in this case the complexity is dominated by the
innermost for loop, where the O(log nK) search to compute
JK 4 K(JK
1, iK) is performed �[A�,�] � O(��� � �) times.
The complexity of Act-RwCl� is then

O� �� � � � � log nK�

regardless of k, and the resulting complexity of computing
y 4 y � x � (Qk�1

K Ak)�,� using Act-RwCl� is

O�K � �� � � � � log nK� ,

only a log nK overhead with respect to ordinary multiplica-
tion.

We can define analogous algorithms Act-ClRw and Act-
ClRw�, with the same complexity of Act-RwCl and Act-
RwCl�, although spurious entries are still a disadvantage.
Unfortunately, though, Act-ClRw, unlike Act-Cl1 and Act-
Cl2, does not compute the entries of y in order. This prevents
its use in a Gauss-Seidel type iteration.

4. Comparing the Multiplication Algorithms
We now compare the algorithms we presented in the previ-
ous section using our running example.

4.1 Potential State Space Methods
Let’s consider first methods based on the potential state
space. Fig. 10 compares the theoretical complexities of Pot-
Sh, Pot-Rw, Pot-Cl, Pot-RwCl, and ordinary multiplication,
assuming �̂ � � and K � 4. While it is clear that Pot-Sh is
much superior for large values of �, Pot-Sh, Pot-Rw, and
Pot-Cl have the same performance, K times worse than or-
dinary multiplication, in the region around � � 1. Indeed,
Pot-Rw and Pot-Cl do better than Pot-Sh when � � 1, since
they may recognize that an entire row or column of A is zero
before reaching the innermost for loop. On the other hand,
Pot-Sh has the advantage to skip identity matrices com-
pletely.

Pot-Sh�, Pot-Rw�, Pot-Cl�, and Pot-RwCl� have exactly
the same complexity as ordinary multiplication. In other
words, when computing x � A where A is the Kronecker
product of K matrices, all of them equal to an identity matrix
except one, exploiting the Kronecker structure of A does not
result in additional overhead (since the generic entry Ai,j of
A is obtained without performing any multiplication) or in
better efficiency (since no partial result can be reused the
way Pot-Sh does). The same holds for the complexity of
computing ŷ 4 ŷ � x̂ � Qk�1

K Ak, except that ordinary
multiplication is faster if there are many merged diagonal
entries in Qk�1

K Ak. This does not happen in our application,
since the matrices Rk have zero diagonals. Thus, we can
conclude that using a Kronecker-based approach for the
portion Qk�1

K Rk of the transition rate matrix is always a
good idea, as it does not imply additional overhead and it
results in large memory savings (remember that the matrices

214
Buchholz, Ciardo, Donatelli, and Kemper

Rk are usually sparse but not ultrasparse, hence �[Qk�1
K Rk]

�� �k�1
K �[Rk]).

These observations are confirmed by our running exam-
ple. Table IV gives the number of floating point multiplica-
tions performed by the algorithms we introduced and their
execution times to compute x̂ � R̂, or x̂� � R̂�,�, where R̂ is
given by (3). Columns labeled (a) consider the decomposi-
tion into two components, where �̂ � � and R̂ consists of
three Kronecker products and one Kronecker sum, while
columns labeled (b) refer to the second decomposition into
four components, where ��̂� �� ��� and R̂ consists of seven
Kronecker products and one Kronecker sum. The Kronecker
sum in (a) contains more local events and more nonzero
entries than the one in (b). We list both CPU and elapsed
(wall) time in seconds, for a Sun Ultra Sparc IIi under Solaris
5.6 with a 300 MHz CPU, 192 MB main memory, 4 GB disc,
and 4 GB swap space. A “—” in the table means that the
memory requirements of the algorithm cause a thrashing
effect on the machine.

In the first decomposition, the matrices Wk(e) are ultra-
sparse or hypersparse and, as predicted by our theoretical
observations for � � 1, Pot-RwCl is faster than Pot-Sh. Pot-
RwCl and Act-RwCl perform the same number of multipli-

cations; the increased computation time of Act-RwCl is
caused by the binary search to evaluate k(Jk
1, jk), which is
necessary not only for matrices Ak � I but also for identity
matrices for which a matrix Al � I with index l � k exists. All
Kronecker-based algorithms are less computationally effi-
cient than ordinary multiplication where R is stored in
sparse format, which only requires �[R] � 13,439,073 mul-
tiplications. However, ordinary multiplication requires
about 120 MB for the sparse matrix in single precision or 180
MB in double precision, plus space for at least one iteration
vector in case of a Gauss-Seidel iteration, so only single
precision can be used given our hardware. This suggests
that, in practice, the real advantage of Kronecker-based
methods lies exclusively in their large memory savings. Of
course, memory saving do become (wall) time savings when
they reduce or avoid the need to rely on virtual memory.

4.2 Actual State Space Methods
In the second decomposition, matrices are such that
�[A�̂,�] � �[A�,�], hence one should expect no significant
difference between row and column algorithms while we
measure 18.1 for Act-Rw2 and 28.2 for Act-Cl2. In a multipli-
cation by columns, we consider one state at a time, and all

Figure 10. Comparing the complexity of the multiplication algorithms (K � 4).

Table IV. Computational Effort for Vector-Matrix Multiplication (in Seconds)

Procedure

�[R] � 13,439,073

(a) �[R̂] � 13,439,073 (b) �[R̂] � 139,172,250

mult CPU wall mult CPU wall

Pot-Sh 17,955,654 13.0 13.1 — — —
Act-Sh 17,955,654 14.1 14.2 234,989,300 295.5 615.7
Pot-Rw 18,832,668 11.1 11.1 — — —
Pot-RwCl 15,714,589 3.7 3.7 — — —
Pot-Cl 18,832,668 11.6 11.8 243,941,600 195.9 831.0
Act-Rw1 18,832,668 32.8 32.8 23,199,652 48.9 49.2
Act-Cl1 18,832,668 33.6 33.7 23,199,652 52.6 53.2
Act-Rw2 17,987,499 16.3 16.4 20,980,675 18.1 18.2
Act-Cl2 17,987,499 20.6 20.6 20,980,675 28.2 28.4
Act-RwCl 15,714,589 8.7 8.7 15,960,012 7.0 7.1
Ordinary (single prec) 13,439,073 1.6 1.7 13,439,073 1.6 1.7

215
Complexity of Memory-Efficient Kronecker Operations with Applications to the Solution of Markov Models

the events that lead to it, while, in a multiplication by row,
we consider one event at a time, and all the states it can
affect. The latter way avoids having to switch between
events, which makes the row algorithms perform better. The
choice for the column implementation is driven by the fact
that it is needed when implementing Gauss-Seidel, where
entries of the new iterate of the stationary probability vector
must be computed sequentially. Nevertheless, since Gauss-
Seidel allows to directly overwrite the operand vector by the
results, the column variant uses less memory. This is the
reason why, for the second decomposition, Pot-Cl can still
execute while Pot-Sh and Pot-Rw fail due to excessive mem-
ory requirements. However, Pot-Cl heavily relies on virtual
memory, as the difference between CPU and wall times
indicates. Pot-Cl considers 139,172,250 matrix entries in R̂,
although only �[R] � 13,439,073 are relevant. Since only a
single vector of ��̂� is needed for Act-Sh, it behaves similarly
to Pot-Cl. Pot-Sh, Act-Sh, Pot-Rw, and Pot-Cl are obviously
inadequate when ��̂� �� ���.

Only algorithms based on � run acceptably fast for the
second decomposition since they do not rely on virtual
memory. The results indicate that their overhead is effec-
tively reduced from Act-Rw1 to Act-Rw2 to Act-RwCl, and
from Act-Cl1 to Act-Cl2. Clearly, there is no reason ever to
use Act-Rw1, Act-Rw2, or Act-Cl1; we introduced them only
as a stepping stone to the better algorithms.

In summary, Act-RwCl is a fast and robust algorithm,
faster than Pot-Rw even when ��� � ��̂�; it uses only O(���)
memory, and makes full use of the multilevel data structure
for the storage of �. The difference between Act-RwCl and
Pot-RwCl for the first decomposition indicates the overhead
for the binary search introduced by . For multiplication by
columns, instead, Pot-Cl is considerably faster than Act-Cl2
when ��� � ��̂�, but Act-Cl2 is far superior when ��̂� �� ���,
and it uses the least amount of memory in all cases.

It should also be noted that Act-RwCl is faster with the
second decomposition than with the first one, even if it
performs slightly more operations. This is due to its log nK

overhead: nK is 2394 in the first decomposition and 126 in the
second. Clearly, the model decomposition can greatly affect
the overall solution time; how to reach an optimal choice is
a topic for future research.

We conclude this section by observing that we described
our algorithms using K nested for loops for illustration pur-
poses only. Since K is model-dependent, a recursive imple-
mentation is required. To improve performance, we imple-
mented this recursion iteratively with dynamically allocated
arrays of size K (Bause et al. 1998).

4.3 Functional Rates
In the SANs proposed by Fernandes, Plateau, and Stewart
(1998), rates of a submodel can be a function of the state of
other submodels. These are called functional rates and can
be used in the definition of both local and synchronized
events. Ways to handle functional rates include:

Local dependency. Functional rates that can be expressed
as a product of local functions, f(e, i[1,K]) � �k�1

K fk(e, ik), are
naturally managed by the Kronecker representation con-
sidered so far. We can always achieve this “product form”

by merging submodels into larger submodels (Fernandes
et al. 1996), although, in the worst case, we might end up
with a single submodel. Alternatively, we could simply
store the entries corresponding to f(e, i[1,K]), for each
reachable state i[1,K] and for any event e that does not fit
into the Kronecker framework, but this clearly has a neg-
ative impact on the memory requirements.

Representation by sum of Kronecker products. As shown
by Plateau and Fourneau (1991), any SAN with functional
rates can be transformed into an equivalent SAN without
functional rates by introducing additional synchronizing
events. However, the number of new synchronizing
events might easily become excessive.

Generalized Kronecker products. In this case, matrix en-
tries can be functions, not only constants. During the
evaluation of this “generalized Kronecker product,” the
function arguments must be fixed before obtaining actual
values. For any complexity result, this adds a function
evaluation to the unit of measure. Fernandes, Plateau, and
Stewart (1998) have recently shown how functional rates
can be integrated in the shuffle algorithm if the depen-
dencies among submodels are acyclic, that is, if submod-
els can be reordered so that the functions used in sub-
model Mk depend only on the local states of submodels
Ml, l � k. Then, functions in matrix Ak can be evaluated
before performing the vector-matrix multiplication in step
13 of Fig. 2. The asymptotic complexity of Pot-Sh is un-
changed, although overhead is introduced for submodel
reordering and function evaluations. Cyclic dependencies
can be treated as described in (Fernandes et al. 1998) at the
price of additional complexity.

Functional rates can be easily integrated in the new mul-
tiplication algorithms we introduced. Each algorithm for
Kronecker product contains K nested for loop over Aik, jk

k � 0,
for k � 1, . . . , K. When Aik

, jk

k is a function f of the global state,
the condition Aik, jk

k � 0 must be considered satisfied as long
as there are local states ik�1, . . . , iK such that f(i1, . . . , iK) �
0, where the local states i1, . . . , ik are fixed by the outer for
loops.

Furthermore, the statement ak 4 ak
1 � Aik, jk

k can only be
performed if ak
1 and Aik, jk

k are constants. If Aik, jk

k is a func-
tion depending on the state of a submodel Ml, l � k, its
evaluation must be postponed until the for loop on index il
is reached. In other words, the function evaluation sinks
deeper into the nested for loops. In the extreme case, arbi-
trary functional dependencies (including cyclic ones) can be
managed, but all the functions must be evaluated in the
innermost for loop, where the assignment to aK becomes
aK 4 �k�1

K Aik, jk

k . At this point, of course, the complexity
becomes

O�K � ��A�� ,

provided functional rates cannot evaluate to zero. If they
can, the innermost assignment will be reached many times
only to find out that ak should be assigned zero, and the only
bound we can obtain is O(K � n2). This points out how
functional rates have the potential of greatly increasing the
execution times, if not used sparingly and carefully.

216
Buchholz, Ciardo, Donatelli, and Kemper

To summarize, all algorithms presented can deal with
acyclic functional rates without incurring additional com-
plexity (except that of function evaluation, of course), just as
Pot-Sh, provided the submodels order matches the one used
in the search structure.

5. Model Solution Algorithms
We now return to the problem of solving a Markov model,
that is, (1). In practice, Q is very large, and indirect iterative
numerical methods are employed for the solution. In all
cases, starting from a guess �(0), successive approximations
�(m) are computed, until convergence is reached. In terms of
the actual state space, the iterations we consider are:

• Power method: �(m�1)4 �(m) � (I � Q � h*), where h* is a
value slightly larger than the maximum expected sojourn
time in any state, max0�I����{hI}. Element-wise, the Power
method corresponds to:

@J � �0, 1, . . . �� � 	 1� ,

�J
�m�1� 4 �J

�m� � � �
0�I����

�I
�m� � QI, J� � h*.

The Power method is guaranteed to converge in theory,
but it is often extremely slow.

• Jacobi method: �(m�1) 4 �(m) � R � diag(h). Element-wise,
the Jacobi method corresponds to:

@J � �0, 1, . . . �� � 	 1� ,

�J
�m�1� 4 � �

0�I����, I�J

�I
�m� � RI, J� � hJ .

The Jacobi method does not have guaranteed convergence,
but it is usually faster than the Power method in practice.

• Gauss-Seidel method: �(m�1) 4 �(m) � L � (diag(h)
1

U)
1 for forward Gauss-Seidel, or �(m�1) 4 �(m) � U �
(diag(h)
1
 L)
1 for backward Gauss-Seidel, where L
and U are strictly lower and upper triangular matrices
satisfying L � U � R. Element-wise, (forward) Gauss-
Seidel corresponds to:

@J � �0, 1, . . . �� � 	 1� ,

�J
�m�1� 4 � �

0�I�J

�I
�m�1� � RI, J � �

J�I����

�I
�m� � RI, J� � hJ .

Gauss-Seidel does not have guaranteed convergence ei-
ther, but it is guaranteed to be faster than the Jacobi
method (if they converge), so it is considered the best
among these three methods. Its convergence rate, how-
ever, is affected by the order in which the states are con-
sidered.
In the sequel we consider only the basic iterative tech-

niques Jacobi and Gauss-Seidel to compare the different
algorithms for vector matrix multiplication. This is because
they allow us to focus on what is, algorithmically, our main
concern: whether we can update the entries of the iteration
vector in arbitrary fashion (as allowed by Jacobi), or whether

we must update its entries sequentially (as required by
Gauss-Seidel). More advanced numerical methods are dis-
cussed in Section 5.8.

5.1 Using the Multiplication Algorithms to Solve a
CTMC
The first choice in a Kronecker-based solution is whether to
use data structures of size ��̂� or ���. Initial efforts have
adopted the former approach (Donatelli 1993, 1994; Plateau
and Atif 1991), using a probability vector �̂ � ���̂� initialized
so that only states in � have nonzero probability (e.g., the
initial state has probability one). This is required because,
even if we assume that the CTMC is ergodic, that is, � is a
single recurrent class, �̂ might instead contain multiple
recurrent classes. By ensuring that all the probability mass is
in the class corresponding to � at the beginning of the
iterations, we guarantee that this is true upon convergence
as well. Entries �̂i � 0 correspond to unreachable states and
have no effect on the solution.

Power or Jacobi methods allow accessing the matrix R in
an arbitrary fashion. Since they compute the entries of a new
iterate �(m�1) incrementally, using the values of the previous
iterate �(m) as pointed out in Section 2, double-precision
vectors should be used.

The use of Gauss-Seidel requires instead computing
�{1,. . .I
1}

(m�1) before �I
(m�1), with the advantage that single-

precision vectors can be used. This can be accomplished if
we have access to R by columns, so only Pot-Cl, Act-Cl1, and
Act-Cl2 can be used with Gauss-Seidel.

We now examine the timing requirements of the various
solution algorithms, according to:

• Whether they are based on the potential, Pot-, or actual,
Act-, state space.

• The type of multiplication algorithm they use.
• The type of iteration method, Jacobi (JCB) or Gauss-Seidel

(GSD) they implement.

We indicate the resulting algorithms as Pot-Sh-JCB (Buch-
holz 1994; Fernandes et al. 1998), Act-Sh-JCB, Pot-RwCl-JCB,
Act-RwCl-JCB, Pot-Cl-GSD, and Act-Cl2-GSD. In the original
SAN paper (Plateau 1985) introducing the Kronecker-based
solution approach, the Power method is used instead of
Jacobi. Thus, we present first the Jacobi method using func-
tion Pot-Sh to realize the iteration. Figs. 11 and 12 list only
the statements within the main iteration of the numerical
method, that is, the computation of a new iterate given the
current one.

We also compare the space used by the various algo-
rithms, ignoring the memory needed to store the matrices Rk

and Wk(e), which are necessary in all the algorithms we
consider, and are in any case negligible compared to the
storage for the required vectors. For simplicity, we assume
that rate(e) for a synchronizing event e is equal to one, and
ignore it from now on; if its value were not one, we could
simply incorporate it into exactly one of the matrices Wk(e),
different from I, for some k.

An alternative to avoid storing R explicitly is simply to
generate it “on-the-fly” at every iteration, directly from the
high-model specification. While a Jacobi-style iteration is

217
Complexity of Memory-Efficient Kronecker Operations with Applications to the Solution of Markov Models

most natural, Deavours and Sanders (1997b) have shown
how to use a variant of Gauss-Seidel in conjunction with an
on-the-fly approach for a set of modeling formalisms includ-
ing GSPNs, stochastic activity networks, and stochastic re-
ward nets. A similar idea is also in Lubachevsky and Mitra
(1986). However, we do not consider this approach further
since its time complexity is at least as high as that of the
algorithms we present and events requiring no time, e.g.,
immediate transitions in GSPNs (Ajmone Marsan et al. 1984,
1995), cause additional overhead by requiring the explora-
tion of a path, not a single event, to generate a single entry.

5.2 Algorithms Pot-Sh-JCB and Act-Sh-JCB
The shuffle-based algorithms in Fig. 11 implement the Jacobi
method using Pot-Sh and Pot-Sh� for the vector-matrix mul-
tiplications. The difference is that for Act-Sh-JCB only the
auxiliary vector has dimension �̂, hence the function map
maps entries from the vectors �old and �new, of dimension
���, to those of �̂aux, of dimension ��̂�, according to .
Pot-Sh-JCB can be considered as a special case where � � �̂
and map is the identity. The time complexity of one Pot-Sh-
JCB iteration is independent of the submodel ordering, and
it has been obtained from the equations in Section 2 by
substituting � with the specific number of nonzeros for each
matrix involved in the computation:

O� �
k�1

K

n� k � � ��Rk� � �
e�Wk�e��I

��Wk�e��� � . (9)

For Act-Sh-JCB, we need to account for the overhead due to
the mapping, which is required only in vector assignment
operations, where the entire set � is accessed sequentially. If
the mapping is represented by a data structure that can
enumerate the indices of the reachable states in �̂ in constant
time, the overhead caused by the mapping is only a constant
factor.

Even for map
1 one need not scan �̂aux, as it is sufficient
to enumerate positions in �new sequentially and collect the

corresponding values from �̂aux, so that no search is re-
quired. Consequently the time complexity of one Act-Sh-JCB
equals the complexity of Pot-Sh-JCB. Memory-wise, Pot-Sh-
JCB requires four vectors of length n: one for the expected
holding times, ĥ, one each for the previous and the new
iteration vectors, �̂old and �̂new, plus one auxiliary vector
used when calling procedure Pot-Sh, �̂aux. As already noted
in Section 2.1, the shuffle permutation ensures that Pot-Sh
can be called using a single vector for both input and output.
Additionally, two vector z and z� are needed in the proce-
dures Pot-Sh and Pot-Sh�, but they are only of size
max1�k�K(nk), much smaller than n. Of these, �̂new, �̂aux, and
z� should be stored in double-precision, because they are
used as accumulators. For Act-Sh-JCB, space for vectors h,
�old, and �new is reduced to ���. Additionally, an appropriate
representation of � is required to ensure fast sequential
access, e.g., an integer vector of length �.

5.3 Algorithm Pot-RwCl-JCB
Pot-RwCl-JCB is the simplest iteration, it uses the Pot-RwCl
and Pot-RwCl� vector-matrix multiplications by squares
presented in Fig. 5 and, just as algorithm Pot-Sh-JCB, it uses
vectors of length n. Its complexity depends on the order of
the components:

O� �
k�1

K

n� k � ��Rk� � �
e��S

�
k�1

K �
h�1

k

��Wh�e��� .

Pot-RwCl-JCB requires three vectors of size n: �̂old, �̂new, and
ĥ; only �̂new is used to accumulate sums.

5.4 Algorithm Act-RwCl-JCB
Act-RwCl-JCB has the same convergence behavior of Pot-Sh-
JCB, Act-Sh-JCB, and Pot-RwCl-JCB, but uses data structures
of size ��� by employing the Act-RwCl and Act-RwCl� vec-
tor-matrix multiplications presented in Fig. 9. The complex-

Figure 11. Algorithms Pot-Sh-JCB and Act-Sh-JCB.

218
Buchholz, Ciardo, Donatelli, and Kemper

ity of one Act-RwCl-JCB iteration is

O� � �� � �

k�1

K

Rk�
�,�

	
� �

e��S

�� � �

k�1

K

Wk�e��
�,�

	 � � log nK� .

If the number of merged entries in the above expression is
negligible, this simplifies to

O���R� � log nK� ,

that is, just a log nK factor over the complexity of a tradi-
tional Jacobi iteration where R is stored explicitly. The mem-
ory requirements of Act-RwCl-JCB are the same as for Pot-
RwCl-JCB, except that vectors are now of size ���, not n.

5.5 Algorithm Pot-Cl-GSD
With the Gauss-Seidel method, the old and the new iterate
can be stored into the same vector. If R were described by a
single Kronecker product Rk�1

K Ak, Pot-Cl-GSD would be
achieved by the simple call Pot-Cl(�̂, n[1,K], A[1,K],l, �̂), fol-
lowed by the same elementwise multiplication of �̂ by the
expected holding times, as performed by Pot-RwCl-JCB.
However, R consists of the sum of several Kronecker prod-

Figure 12. Algorithms Pot-RwCl-JCB, Act-RwCl-JCB, Pot-Cl-GSD, and Act-Cl2-GSD.

219
Complexity of Memory-Efficient Kronecker Operations with Applications to the Solution of Markov Models

ucts, which can be processed sequentially in a Jacobi itera-
tion, but not in a Gauss-Seidel iteration, since we must now
complete the computation of �̂i before starting that of �̂i�1.
Hence, Pot-Cl-GSD must call the functions Pot-ClEl and Pot-
ClEl� directly, not through Pot-Cl or Pot-Cl�.

The complexity of Pot-Cl-GSD exceeds that of Pot-RwCl-
JCB since it forces us to use Pot-Cl and not the more efficient
interleaving of rows and columns Pot-RwCl.

O� �
k�1

K

n� k � ��Rk� � �
e��S

�
j�1

n �
k�1

K �
h�1

k

��W�̂h, j
h �e���

This indicates a tradeoff between a faster multiplication
algorithm for Jacobi and a possibly reduced number itera-
tion steps due to better convergence for Gauss-Seidel.
Gauss-Seidel also requires less space, since only one vector,
�̂, is required in addition to the expected holding times ĥ.
Furthermore, we can store �̂ in single-precision.

5.6 Algorithm Act-Cl2-GSD
The comments made for Pot-Cl-GSD apply to Act-Cl2-GSD as
well. As observed before, the interleaving or rows and col-
umns cannot be used, so we are forced to use Act-Cl2 and
Act-Cl2

�, whose amortization of the logarithmic search is less
effective. This points out a surprising tradeoff between Act-
RwCl-JCB, which has slower convergence but a smaller over-
head, log nK, and Act-Cl2-GSD, which has better numerical
convergence but higher overhead, possibly as high as log n.

The complexity of Act-Cl2-GSD is

O
�

�� � � �
k�1

K � ���In1
k
1 � Rk��1

k
1��k,�1
k� � �

h�k

K

log nh

� �
e��S

��� �

h�1

k

Wh�e���1
k
1��k,�1

k� � log nk

��1
k�

.

5.7 Comparing the Model Solution Algorithms
Table V summarizes the memory requirements for the solu-
tion algorithms we considered, expressed in the units S and
D, for a single- or double-precision floating point number
(usually 4 and 8 bytes, respectively), and L, for a local state
of MK (usually 1 or 2 bytes). The actual memory usage for
our running example is instead in Table VI, for decomposi-
tions (a) and (b). Column “vectors” list the memory (in
bytes) for the iteration vectors and h; column “extra” for
auxiliary vectors or search data structures.

The timing results are in Table VII. We performed itera-
tions using the absolute convergence criterion ��old

�new�� � 10
8.

As already anticipated in Table IV, algorithms Pot-Sh-JCB
and Pot-RwCl-JCB fail due to insufficient memory with the
second decomposition, while Pot-Cl-GSD could be run, but
with an unacceptable amount of overhead; the same holds
for Act-Sh-JCB, where the space requirements are clearly
dominated by the auxiliary vector �̂aux of size n.

We observe that the two decompositions result in differ-

Table V. Memory Requirements for Model Solution Algorithms

Procedure
Iteration
vectors

Holding
time

vector
Auxiliary

vectors
Search data

structure

Pot-Sh-JCB n � (S�D) n � S n � (D) —
Act-Sh-JCB ��� � (S�D) ��� � S n � (D) ���� � L
Pot-RwCl-JCB n � (S�D) n � S — —
Act-RwCl-JCB ��� � (S�D) ��� � S — ���� � L
Pot-Cl-GSD n � S n � S — —
Act-Cl2-GSD ��� � S ��� � S — ���� � L

Table VI. Memory Requirements (in Bytes) for our Example

Procedure (a) Vectors (a) Extra (b) Vectors (b) Extra

Pot-Sh-JCB 24,974,208 12,487,104 276,595,200 138,297,600
Act-Sh-JCB 24,974,208 18,730,656 24,974,208 144,541,100
Pot-RwCl-JCB 24,974,208 — 276,595,200 —
Act-RwCl-JCB 24,974,208 3,127,000 24,974,208 3,804,700
Pot-Cl-GSD 12,487,104 — 138,297,600 —
Act-Cl2-GSD 12,487,104 3,127,000 12,487,104 3,804,700
Ordinary-GSD 12,487,104 126,243,240 12,487,104 126,243,240

220
Buchholz, Ciardo, Donatelli, and Kemper

ent state orderings, which in turn affect the convergence of
Act-Cl2-GSD. Hence, 189 iterations are required for the first
decomposition, but only 144 for the second one.

5.8 Advanced Numerical Methods
Relaxation can be applied to the Jacobi and Gauss-Seidel
methods to improve convergence, yielding the JOR and SOR
methods. The new iteration vector in step m � 1 is then
computed as (1

)�(m) �
�(m�1), where �(m�1) results
from a Jacobi or Gauss-Seidel iteration step and 0 �
 � 2.
Apart from the above classical stationary techniques, “pro-
jection techniques” have recently become very popular for
the analysis of CTMCs (Stewart 1994). These approximate
the exact solution using a sequence of vectors on a subspace
with a smaller dimension (often the so-called Krylov sub-
space � � span{� � Q, . . . , � � Qm} is used). Different
projection methods have been proposed in the literature for
the solution of CTMCs, among them are the generalized
minimal residual method (GMRES), the conjugate gradient
squared method (CGS), the biconjugate gradient stabilized
method (BiCGSTAB), and the quasi minimal residual
method (QMR) (see Stewart 1994). Since their main compu-
tational effort remains the vector-matrix multiplications, our
algorithms can still be applied if the matrix is represented as
a sum of tensor products of submodel matrices.

However, although projection methods often exhibit
faster convergence, they do have drawbacks, especially
when applied in the context of Kronecker-based CTMC anal-
ysis. First, they require storing additional vectors. GMRES’s
memory requirements are so massive that it cannot be used
for really large CTMCs, but even the other methods require
at least five additional vectors. This essentially doubles the
memory requirements (see Tables V and VI). A second prob-
lem when using projection methods is the requirement for
preconditioners. Usually, projection methods are applied to
the matrix M
1 � Q or Q � M
1, where M
1 is some easy-
to-compute approximation of the generalized inverse of Q
(Stewart 1994). Standard preconditioners based on an in-
complete LU factorization of Q cannot be used in our case,
as they would destroy the Kronecker representation of Q.
Preliminary results on preconditioners that can be repre-
sented as sum of Kronecker products exist (Buchholz 1999;
Stewart 1994) but, as stated on p. 490 of Stewart (1994):
“Much more research needs to be conducted into finding
preconditioning techniques that can be applied to SAN de-
scriptors without the need to expand the global generator.”

Our own experience with the projection techniques men-
tioned indicates that, without preconditioning, they do not
outperform JOR or SOR (Buchholz 1999).

Apart from projection techniques, aggregation/disaggre-
gation is a promising way of speeding up the convergence of
iterative techniques. An approach in the context of Kro-
necker-based analysis is proposed in (Buchholz 1997a). As
the most time-consuming step is still the computation of
vector-matrix products, the algorithms presented in this pa-
per can be applied. An alternative approach to realize
Gauss-Seidel and block Gauss-Seidel for SANs has been
recently proposed by Uysal and Dayar (1998), who represent
the matrices L and U as sums of Kronecker products. Our
algorithms can be applied also to this approach, since the
problem of unreachable states in �̂ is still present and, due
to the LU splitting, the matrices in the Kronecker products
are even more sparse than usual.

6. Conclusion
We presented a comprehensive set of Kronecker-based vec-
tor-matrix multiplication and solution algorithms for struc-
tured Markov models in a unified framework that ignores
the peculiarities of specific modeling formalisms. Time and
space complexities are given, with special attention to the
sparsity of the involved matrices.

We have shown how the Kronecker-based solution of
structured Markov models can be carried out with smaller
memory and execution complexity than previously pro-
posed. This is achieved by exploiting the sparsity of the
matrices involved in the Kronecker operations by consider-
ing the actual state space instead of the potential state space
(which can contain many unreachable states), by adopting a
sophisticated data structure to determine whether a state is
reachable or not, and by performing vector-matrix multipli-
cations by rows or by columns, thus enabling the use of both
Jacobi- and Gauss-Seidel-style methods.

Our results are not limited to stationary solution of er-
godic models. Indeed, the computation of the cumulative
sojourn time in the transient states up to absorption in an
absorbing CTMC also requires the solution of (nonhomoge-
neous) linear system, while the iteration performed by the
Uniformization method for the transient solution of a CTMC
is essentially the same as that of the Power method.

The proposed algorithms have been implemented in
SupGSPN, a numerical solution package contained in the

Table VII. Execution Times (in Seconds) and Number of Iterations for our Example

Procedure (a) CPU (a) Wall (a) Iter (b) CPU (b) Wall (b) Iter

Pot-Sh-JCB 5,102 5,124 387 — — —
Act-Sh-JCB 5,481 5,490 387 114,358 238,275 387
Pot-RwCl-JCB 1,431 1,434 387 — — —
Act-RwCl-JCB 3,360 3,366 387 2,741 2,757 387
Pot-Cl-GSD 2,200 2,232 189 28,407 120,483 144
Act-Cl2-GSD 3,900 3,907 189 4,132 4,157 144
Ordinary-GSD 310 325 189 237 247 144

221
Complexity of Memory-Efficient Kronecker Operations with Applications to the Solution of Markov Models

APNN-toolbox (Bause et al. 1998), for the Petri net formal-
ism, and in SMART (Ciardo and Miner 1996), for arbitrary
discrete-state formalisms. The reduced memory require-
ments allows us to solve very large Markov models (over 107

states) on a modern workstation in a matter of hours.

Acknowledgments

We would like to extend our thanks to the anonymous referees
and to Steve Guattery of ICASE (Hampton, Virginia) for the very
helpful suggestions offered on earlier versions of this paper. We also
would like to acknowledge the financial support that made our
international collaborative work possible. G. Ciardo’s research was
partially supported by the National Aeronautics and Space Admin-
istration under NASA Contracts No. NAS1-19480 and NAG-1-2168.
P. Kemper’s research was partially supported by Deutsche For-
schungsgemeinschaft, SFB 559. In addition, P. Buchholz, S. Do-
natelli, and P. Kemper received travel support from DAAD Ger-
many and CRUI Italy under the bilateral program Vigoni.

References

Ajmone Marsan, M., G. Balbo, G. Conte. 1984. A class of generalized
stochastic Petri nets for the performance evaluation of multipro-
cessor systems. ACM Trans. Comp. Syst. 2, 93–122.

Ajmone Marsan, M., G. Balbo, G. Conte, S. Donatelli, G. Franceschi-
nis. 1995. Modelling with Generalized Stochastic Petri Nets. Wiley,
New York.

Bause, F., P. Buchholz, P. Kemper. 1998. A toolbox for functional
and quantitative analysis of DEDS. R. Puigjaner, N. Savino, B.
Serra, eds. Proc. 10th Int. Conf. on Modelling Techniques and Tools for
Computer Performance Evaluation, lecture notes in Computer Sci-
ence 1469. Springer-Verlag, Berlin. 356–359.

Buchholz, P. 1991. Numerical solution methods based on structured
descriptions of Markovian models. G. Balbo and G. Serazzi, eds.
Computer Performance Evaluation. Elsevier Science Publishers
(North-Holland), Amsterdam. 251–267.

Buchholz, P. 1994. A class of hierarchical queueing networks and
their analysis. Queueing Systems 15, 59–80.

Buchholz, P. 1997a. An aggregation/disaggregation algorithm for
stochastic automata networks. Probability in the Engineering and
Informational Sciences 11, 229–253.

Buchholz, P. 1997b. Hierarchical structuring of superposed GSPNs.
Proc. 7th Int. Workshop on Petri Nets and Performance Models
(PNPM’97), St. Malo, France, IEEE Comp. Soc. Press, New York,
81–90.

Buchholz, P. 1999. Structured analysis approaches for large Markov
chains. Applied Numerical Mathematics 31, 375–404.

Ciardo, G., A. Blakemore, P.F.J. Chimento, J.K. Muppala, K.S.
Trivedi. 1993. Automated generation and analysis of Markov
reward models using stochastic reward nets. C. Meyer and R.J.
Plemmons, eds. Linear Algebra, Markov Chains, and Queueing Mod-
els, IMA Volumes in Mathematics and its Applications 48. Spring-
er-Verlag, Berlin. 145–191.

Ciardo, G. A.S. Miner. 1996. SMART: simulation and Markovian
analyzer for reliability and timing. Proc. IEEE International Com-
puter Performance and Dependability Symposium (IPDS’96), Urbana-
Champaign, IL, IEEE Comp. Soc. Press, New York. 60.

Ciardo, G., A.S. Miner. 1997. Storage alternatives for large struc-
tured state spaces. R. Marie, B. Plateau, M. Calzarossa, and G.
Rubino, eds. Proc. 9th Int. Conf. on Modelling Techniques and Tools
for Computer Performance Evaluation, Lecture Notes in Computer
Science 1245, St. Malo, France. Springer-Verlag, Berlin. 44–57.

Ciardo, G., M. Tilgner. 1996. On the use of Kronecker operators for
the solution of generalized stochastic Petri nets. ICASE Report
96-35, Institute for Computer Applications in Science and Engi-
neering, Hampton, VA.

Davio, M. 1981. Kronecker products and shuffle algebra. IEEE Trans.
Comp. C-30, 116–125.

Deavours, D.D., W.H. Sanders. 1997a. An efficient disk-based tool
for solving very large Markov models. R. Marie, B. Plateau, M.
Calzarossa, and G. Rubino, eds. Proc. 9th Int. Conf. on Modelling
Techniques and Tools for Computer Performance Evaluation, Lecture
Notes in Computer Science 1245, St. Malo, France. Springer-Verlag,
Berlin. 58–71.

Deavours, D.D., W.H. Sanders. 1997b. “On-the-fly” solution tech-
niques for stochastic Petri nets and extensions. Proc. 7th Int.
Workshop on Petri Nets and Performance Models (PNPM’97), St.
Malo, France. IEEE Comp. Soc. Press, New York. 132–141.

Donatelli, S. 1993. Superposed stochastic automata: A class of sto-
chastic Petri nets with parallel solution and distributed state
space. Perf. Eval. 18, 21–26.

Donatelli, S. 1994. Superposed generalized stochastic Petri nets:
Definition and efficient solution. R. Valette, ed. Application and
Theory of Petri Nets 1994 (Proc. 15th Int. Conf. on Applications and
Theory of Petri Nets), Lecture Notes in Computer Science 815, Zara-
goza, Spain. Springer-Verlag, Berlin. 258–277.

Fernandes, P., B. Plateau, W.J. Stewart. 1996. Numerical issue for
stochastic automata networks. Proc. of the 4th Workshop on Process
Algebra and Performance Modelling (PAPM). Technical Report, Uni-
versity of Torino, Torino, Italy.

Fernandes, P., B. Plateau, W.J. Stewart. 1998. Efficient descriptor-
vector multiplication in stochastic automata networks. Journal of
the ACM 45, 381–414.

Howard, R.A. 1971. Dynamic Probabilistic Systems, Volume II: Semi-
Markov and Decision Processes. Wiley, New York.

Kemper, P. 1996a. Numerical analysis of superposed GSPNs. IEEE
Trans. Softw. Eng. 22, 615–628.

Kemper, P. 1996b. Reachability analysis based on structured repre-
sentations. J. Billington, W. Reisig, eds. Application and Theory of
Petri Nets 1996 (Proc. 17th Int. Conf. on Applications and Theory of
Petri Nets, Osaka, Japan), lecture notes in Computer Science 1091,
Springer-Verlag, Berlin. 269–288.

Kemper, P. 1996c. Superposition of generalized stochastic Petri nets
and its impact on performance analysis. Ph.D. thesis, Universität
Dortmund, Dortmund, Germany.

Lubachevsky, B., D. Mitra. 1986. A chaotic asynchronous algorithm
for computing the fixed point of nonnegative matrices with unit
spectral radius. J. ACM 33, 130–150.

Plateau, B. 1985. On the stochastic structure of parallelism and
synchronisation models for distributed algorithms. Proc. 1985
ACM SIGMETRICS Conf. on Measurement and Modeling of Computer
Systems, Austin, TX, ACM Sigmetrics, New York, 147–153.

Plateau, B., K. Atif. 1991. Stochastic automata network for modeling
parallel systems. IEEE Trans. Softw. Eng. 17, 1093–1108.

Plateau, B., J.-M. Fourneau. 1991. A methodology for solving
Markov models of parallel systems. J. Par. and Distr. Comp. 12,
370–387.

Stewart, W.J. 1994. Introduction to the Numerical Solution of Markov
Chains. Princeton University Press, Princeton, NJ.

Stewart, W.J., K. Atif, B. Plateau. 1995. The numerical solution of
stochastic automata networks. Eur. J. of Oper. Res. 86, 503–525.

Uysal, E., T. Dayar. 1998. Iterative methods based on splittings for
stochastic automata networks. Eur. J. Op. Res. 110, 166–186.

222
Buchholz, Ciardo, Donatelli, and Kemper

