;“ Discrete Event Dynamic Systems: Theory and Applications, 12, 265-286, 2002
'\ © 2002 Kluwer Academic Publishers. Manufactured in The Netherlands.

Efficient Computation and Representation of Large
Reachability Sets for Composed Automata

PETER BUCHHOLZ p-buchholz@inf.tu-dresden.de
Fakultdt fiir Informatik, TU Dresden, D-01062 Dresden, Germany

PETER KEMPER kemper@]Is4.cs.uni-dortmund.de
Informatik 1V, Universitdt Dortmund, D-44221 Dortmund, Germany

Abstract. We propose an approach that integrates and extends known techniques from different areas to handle
and analyze a complex and large system described as a network of synchronized components. State spaces and
transition graphs are first generated for single components. Then, we reduce the component state spaces by using a
reachability-preserving equivalence relation. The reduced descriptions are used afterwards for reachability
analysis. Reachability analysis is performed in an incremental way that exploits the component structure which
defines the adjacency matrix of the transition graph of the complete system as a Kronecker product of small
component adjacency matrices. This representation often achieves a significant reduction of the number of
transition interleavings to be considered during reachability analysis. An acyclic graph is used to encode the set of
reachable states. This representation is an extension of ordered binary decision diagrams and allows for a compact
representation of huge sets of states. Furthermore, the full state space is easily obtained from the reduced set. The
reduced or the full state space can be used in model-checking algorithms to derive detailed results about the
behavior of the modeled system. The combination of the proposed techniques yields an approach suitable for
extremely large state spaces, which are represented in a space-efficient way and generated and analyzed with low
effort.

Keywords: automata networks, reachability analysis, Kronecker representation, equivalence, ordered natural
decision diagrams

1. Introduction

Functional analysis of hardware and software systems is often based on finite transition
systems and requires the generation of the set of all reachable states. Unfortunately, the
size of the state space is often extremely large, so that a complete enumeration of all states
for a complex system of unknown structure is impossible even with today’s computer
equipment. Consequently, the development of methods to handle complex state spaces is
the main challenge in areas like automatic system verification, supervisor synthesis, or
state-based quantitative analysis. A large number of different approaches have been
proposed and often successfully used in practice (Clarke et al., 1996). Without being
exhaustive, we mention a few approaches. Ordered binary decision diagrams (OBDDs)
(Bryant, 1986) are very popular for hardware verification, and allow the representation of
extremely large transition systems. However, OBDDs are mainly suitable for systems that
can be efficiently described by Boolean functions, which is often the case for hardware,
but usually not for software systems. Other approaches analyze models in a compositional
way by interleaving composition of components with reduction of component state spaces

M10373 Kluwer Academic Publishers Discrete Event Dynamic Systems: Theory and Applications (DISC) Tradespools Ltd., Frome, Somerset

266 BUCHHOLZ AND KEMPER

due to some form of state aggregation, which is usually based on behavior-preserving
equivalence (Cleaveland et al., 1993 and Graf et al., 1996). Interleaving aggregation and
composition requires a compositional description of a system. A corresponding notion of
structure in complex systems typically results from a modular or hierarchical way of
modeling such systems. However, although compositional or hierarchical specification
approaches have been established, analysis is often done at the level of the flat system that
describes all possible interleavings that can occur. There are very few examples exploiting
the compositional or hierachical structure of a model for analysis purposes; notable
exceptions are Graf et al. (1996) and Behrmann et al. (1999). If a distributed system is
described as a set of interacting (stochastic) automata, a further analysis approach to
handle complexity comes from performance analysis. In Plateau (1985), it is shown that
the generator matrix of the Markov chain described by a stochastic automata network can
be represented in a very compact form as the Kronecker product of much smaller
component matrices. This approach can also be used to represent adjacency matrices of
transition graphs for untimed models in a compact form (Buchholz and Kemper, 1999).
In this paper, we present an approach that combines and extends the above-mentioned
techniques in order to manage the state-space explosion of realistic models. The proposed
approach allows a space- and time-efficient generation and presentation of huge transition
systems. Starting from a description of a complex system as a set of interacting automata,
we first generate matrix representations for the isolated automata. The component matrices
can be combined via Kronecker products to describe the adjacency matrix of the complete
system in a compact form. Based on this representation, reachability analysis is performed
to determine the subset of reachable states in the potential state space that results from the
cross product of component state spaces. We present a new and efficient algorithm to
perform reachability analysis of compositionally described systems. Components can be
reduced locally before composition to reduce the size of the potential state space.
However, to perform an a priori aggregation, it is necessary that the reduced components
still allow us to compute the reachability set of the original system. We present a suitable
equivalence relation that can be efficiently computed, preserves reachability of states, and
allows the aggregation of equivalent states to reduce the size of components. Even after
reduction of component state spaces and representation of the transition system in a
compact form, it is often the case that the resulting aggregated state space is still too large
to be completely enumerated. Thus, there is a need for a compact representation of the set
of states. For the compact representation, we propose acyclic graphs as an extension of
ordered binary decision diagrams. In contrast to binary decision diagrams, in which a node
has at most two successors, we allow that a node at level i has one successor for each state
in the aggregated state space of the i-th component. This representation corresponds to the
structure of the state space and is usually very compact, even for huge state spaces. The
presented data structure for state representation is a slight extension of other BDD-like
structures that have been proposed recently (Ciardo and Miner, 1997). The combination of
the outlined steps allows us to generate extremely large state spaces and represent state
spaces and transition systems in a very compact form. The representation is afterwards
usable in a wide variety of analysis algorithms, including model checking (Clarke et al.,
1986). If the description is enhanced by stochastic timing, then quantitative analysis that
exploits the compact representation can be realized and allows the efficient analysis of

M10373 Kluwer Academic Publishers Discrete Event Dynamic Systems: Theory and Applications (DISC) Tradespools Ltd., Frome, Somerset

COMPUTATION AND REPRESENTATION OF LARGE REACHABILITY SETS 267

fairly large models, much larger than it is possible with conventional means (Plateau,
1985; Buchholz, 1999b; Kemper, 1996).

The outline of the paper is as follows. In the next section, we introduce synchronized
components, and show how the potential state space and the transition system of composed
models can be represented by means of component state spaces and adjacency matrices.
Section 3 presents the equivalence relation that preserves reachability, and shows how to
compute reduced and equivalent representations for components. In Section 4,
reachability analysis of composed models is introduced. Section 5 introduces the graph-
based compact representation of the set of reachable states. Section 6 presents an
algorithm for incremental reachability analysis that integrates all concepts presented in
Sections 2-5. In Section 7, we briefly outline how model-checking algorithms can be
integrated with the compact representation. Section 8 describes an example of a
concurrent pusher taken from the literature to illustrate the approach. The paper ends with
conclusions and an overview of our ongoing work.

2. Networks of Synchronized Components

We consider networks of finite state components that communicate via synchronized
transitions. This scenario can be specified in various manners, e.g., by process algebras
like CCS (Milner, 1989) or CSP (Hoare, 1985), by Petri nets with superposed transitions
(Best et al., 1998), or by networks of finite automata with synchronization (Plateau, 1985).
Here we consider automata networks, because we focus on analysis aspects rather than
specification issues.

DEFINITION 2.1 An automaton is a 4 tuple A= (S,d,s0,L) in which §=
{0,1,...,n— 1}1 is the set of states with cardinality n and initial state sy€S.
0SS xS XL is the state transition relation for a finite set of labels L = L. Uz, © ¢L.2,
such that a transition from a state s, to a state s, carries a label [€L and (s,,s,,1) €.

7 denotes a special label for internal transitions, as it does in CCS. We consider non-
deterministic automata, so ¢ is a relation and not necessarily a function. An automaton can
be characterized by a set of Boolean adjacency matrices, one for each label. Define Q, as
an n x n matrix with Q,(x, y) = 1if (s, s, /) € 0 and 0 otherwise. In the following, we use
addition and multiplication of Boolean matrices, where addition is defined as Boolean or
and multiplication as the Boolean and. Q = > Q, describes the 1-step reachability relation
of A. Note that matrices Q; distinguish labels of events, but O does not. Furthermore, we
define an automaton A/H for H = L, that results from A by hiding all transitions with labels
from set H using 1, i.e., A/H substitutes all transitions (s,, s,, k) € d with he H by (s,,s,, 7).
At the matrix level the new automaton is described by matrices Q) for /€L \ H with
0., =0.+>,cpQyand Q) =0, forall leL.\ H.

For synchronization among a set of N automata A,,A,,...,Ay we use the index to
characterize the different automata and define the synchronized automaton

M10373 Kluwer Academic Publishers Discrete Event Dynamic Systems: Theory and Applications (DISC) Tradespools Ltd., Frome, Somerset

268 BUCHHOLZ AND KEMPER

A :A1|A2||AN = (Xi'v:ISi757 (S(l)as(z)v'”v*sj(;])vué\]:lLi)

with L. = \U/_,L" and the set of synchronization labels LS = L,. The number of states in S’
is denoted as r’, which implies that x ¥_, S’ includes [\, n’ states. Synchronization is of
the rendezvous type and refers to equal labels in A; and A, i.e., A; and A; cannot perform
/e LS independently of each other after synchronization. Transitions labeled with / ¢ LS
can be performed independently in different automata. This kind of synchronization is
similar to synchronized transitions in CSP (Hoare, 1985) or in the finite state processes
presented in Magee and Kramer (1999). Thus, we do not distinguish input and output
events as is done, for example, in I/O-automata (Lynch, 1996), in which input events are
always enabled. In our model, any automaton that participates in a synchronization can
disable the synchronized transition. The dynamics of the composed automaton are
described by an interleaving semantics of transitions. However, a great deal of parallelism
exists due to transitions occurring independently in different automata.

Define PS = {0,..., vaz ,n' — 1} as the set of potentially reachable states. A state
from PS can be characterized by an N-dimensional vector (x',...,x") for 0 < x' < n' or
by a single integer x = >0, ¥’ Hj';} n' if we define 1 = Hj('):1 n'. The latter is a mixed
radix number representation. Both representations can be used interchangeably. In a
similar way, the transition matrices of the composed automaton on state space PS can be
generated from the matrices of the automata A; through Ay using Kronecker algebra
(Davio, 1981 and Plateau, 1985).

DEFINITION 2.2 Let Q',...,Q" be square matrices of dimension (n'xn'); their
Kronecker product Q = ®?’:1 Q' is then defined by Q(x,y) = H?J:l Qi(x',y") with
x= Z?]:]X"g", y= Zi.v:ly"g', and weights g' = 1,¢' =n' "¢/~ (for i > 1).

The Kronecker sum B = @)_, O' is then given by @, 0' =" [, Q O' R 1,: in
which I, 1,; are identity matrices of dimension I' x I', respectively r' x 1" and r' = [[;_, 1,
I'= | J n'. Furthermore, I(a,b) = 1 iff a = b and 0 otherwise.

Let Q, be the matrix of the composed automaton for label /, and define Q) = 1, for [¢ L'
Matrix Q, can be represented as

QY0 forleLs

0= - .
: @Y, 0 otherwise

Synchronization is described by Kronecker products and parallelism by Kronecker sums.
Observe that 0, is an n X n matrix that is completely described by at most N matrices of
size n' x n'. The composed automaton is defined by a set of matrices, each represented as
the Kronecker product or sum of smaller matrices. Since Kronecker sums and products are
associative, these matrices can be used in further compositions; hence, the approach is
completely compositional.

With the proposed approach, the characterization of PS and O, of composed systems is
straightforward. The advantages are a space-efficient representation by a set of matrices
and a well-defined mathematical composition operation that establishes the ¢ relation such

M10373 Kluwer Academic Publishers Discrete Event Dynamic Systems: Theory and Applications (DISC) Tradespools Ltd., Frome, Somerset

COMPUTATION AND REPRESENTATION OF LARGE REACHABILITY SETS 269

Phil 2 Composed Automaton

Figure 1. Automata description of two dining philosophers.

that state-based algorithms can perform. Such algorithms include state-space exploration
using bitstate hashing (Holzmann, 1998), model checking (Clarke et al., 1986), or Markov
chain analysis (Stewart, 1994) (the latter presupposes a stochastic interpretation of labels);
for an adaptation to Kronecker representations see (Kemper, 1996b; Kemper and Liibeck,
1998; Kemper, 1996a; Buchholz, 1999c). A disadvantage is that only PS2RS is known.
RS is the set of reachable states of the composed automaton (i.e., the reflexive and
transitive closure of ¢ starting from s,) and RS is often significantly smaller than PS.

A small example showing RS C PS can be seen in Figure 1, which describes the well-
known dining philosophers problem in a configuration of two philosophers and two forks.
Each philosopher thinks and eats repeatedly. We let any of the two philosophers pick up
simultaneously both forks before eating. In the compositional description, each
philosopher is specified by a single automaton with two states, one for thinking and the
other for eating. Label g; indicates that philosopher i gets both forks, whereas label p;
means that philosopher i puts both forks back on the table. The third automaton specifies
the two forks that may be available or occupied by one of the philosophers. Initial states
are characterized by double circles, and identically named transitions are synchronized. PS
contains eight states, but only three of them are reachable, as shown by the composed
automaton in Figure 1. Of course, for this small example, a compositional description has
no benefits. However, if the number of philosophers is increased and single automata are
used to describe some philosophers and the forks lying between these philosophers, then
PS is still much larger than RS, but the compositional description is much more compact
than the global automaton (see Buchholz, 1999b; Buchholz and Kemper, 1999).

Usually RS is more relevant than PS to analyze properties of a model. Consequently,
generation of RS from PS and Q, will be considered (in Section 4). It is well-known that for
realistic systems, RS tends to become extremely large, so that it is very difficult to generate
and represent the set in a straightforward way even with contemporary computer
equipment. This problem is known as the state-space explosion problem, which implies
that sophisticated algorithms are required for generating and representing RS. In the rest of
this paper, we present several steps to alleviate state-space explosion for the networks of
automata introduced in this section. In the first step, introduced in the next section, we
minimize the size of components in a preprocessing step, to reduce the size of PS and
therefore also the effort for the exploration of RS.

M10373 Kluwer Academic Publishers Discrete Event Dynamic Systems: Theory and Applications (DISC) Tradespools Ltd., Frome, Somerset

270 BUCHHOLZ AND KEMPER

3. Reduction of Components

The approach presented so far is completely compositional: it is possible to exchange
components by exchanging corresponding matrices. If a component is replaced by an
‘‘equivalent’’ but smaller component, the size of PS is obviously reduced. In the following
we derive an equivalence relation of the bisimulation type that preserves reachability after
composition and is employed to minimize components and thus to minimize the effort for
RS exploration. Assume that automaton A; = (S',d',s),L') is replaced with
A; = (§,0',5),L"). The latter is called ‘‘aggregated’’ in the following. Observe that
alphabet L/ is used in both cases to assure that the two automata have identical interfaces.
Let Q) be the matrices describing 0' and let /i’ be the number of states in S'. Replacing A,
with A,» in some composed model means that matrices Q) are replaced with Q} in the
Kronecker products and sums. The size of PS is reduced by a factor of 7' /n’ assuming
A < n'. The relation /' < n' holds in our approach, because A, is constructed from A;
through the replacement of equivalence classes of states in A; with single states in A,—. The
worst case is that each equivalence class will contain a single state, so that A; and AI- are
isomorphic and 77’ = n'.

Replacement of A, with A; is only useful if both automata behave, in some sense,
“‘equivalently’’, i.e., the properties we want to verify are identical in both cases.
Equivalence relations of the bisimulation type are among the most popular of the many
existing property-preserving equivalence relations (Milner, 1989). Bisimulation equiv-
alences can be computed efficiently (Cleaveland et al., 1993) and preserve many
interesting properties. For the next step, namely the computation of RS for the composed
model, we need an equivalence that allows the generation of RS for the original model
from the model in which automata are aggregated. This is not possible with most forms of
bisimulation equivalence. However, as shown in Buchholz (1999a,b) in the context of
stochastic systems, it is possible to define an extension of bisimulation equivalence that
can be applied to deduce the required result. Before we introduce this specific equivalence
relation and its computation, we introduce aggregation of automata according to an
arbitrary equivalence relation. We first define some notations. For an equivalence relation
A<=S xS on some finite set S, we use S, to denote the set of equivalence classes and
rep(s,) for 5, €S, as the set of elements from S that are collected in equivalence class .
Consequently, (s,,s,) € #<=>s,, s, €rep(s,) for some 5, €S,.

DEFINITION 3.1 LetA = (S, 0, 8o, L) be an automaton and R be an equivalence relation on
state space S. The aggregated automaton according to R is defined as Ay, = (5 10,50, I:),
in which § = Sy, 5o is the unique equivalence class with syerep(5,), L =L, and § is
defined as follows: (5,,5,,1) € d<=s, erep(s,) and sy €rep(s,) with (s, s, 1) €0 exist.

Automaton A, is described by matrices Q, that are computed elementwise as
0,(%,5) = > s erep(s.) st erep(s,) 0,(x,y). For this general concept of aggregation, we have
to define appropriate equivalence relations.

We start with observational graphs (Cleaveland et al., 1993). The underlying concept is
that the interleaving semantics make it possible to perform non-synchronized transitions
independently in the components. In the following, we consider only transitions labeled

M10373 Kluwer Academic Publishers Discrete Event Dynamic Systems: Theory and Applications (DISC) Tradespools Ltd., Frome, Somerset

COMPUTATION AND REPRESENTATION OF LARGE REACHABILITY SETS 271

with 7 as non-synchronized or internal, because all other transitions can potentially be used
for synchronization. In a concrete environment (i.e., composition of automata), all
transitions from L’ \ LS are internal for A;. By hiding labels from L \ LS, we can explicitly
make all labels not used for synchronization internal. Now define Q.. = Z,fO:O(QT)k and
O = 0+0,0,«. Matrix Q.. describes the reflexive and transitive closure relation
according to internal transitions, and can be computed with an effort cubic in the number
of automata states (Cleaveland et al., 1993).

DEFINITION 3.2 Let A = (S, 0, sy,L) be an automaton and R be an equivalence relation
on state space S. R is a weak inverse bisimulation <=1)(s, s,) € Z implies Q.+ (0,x) and
2)if (sy,,) €ER, then Qp«(z,x) = 1 implies Q1+ (z',y) = 1 for some s, with (s,,s,) € R and
vice versa.

Unlike most other bisimulation relations, weak inverse bisimulation considers only the
past behavior of an automation, not its future behavior. This justifies the name inverse
bisimulation. The largest weak inverse bisimulation can be computed with a partition
refinement algorithm (see Buchholz, 1999b) like those commonly used to generate
bisimulations (Cleaveland et al., 1993).

THEOREM 3.1 IfA 2 results from automaton A by an aggregation with respect to some weak
inverse bisimulation R, then in every embedding environment the following relation holds:

1. ifstate 5 €S is reachable after A is embedded, then all s, e rep(3,) are reachable after
A is embedded in the same environment, and

2. if state 5 €S is not reachable after A is embedded, then all s, €rep(s,) are not
reachable after A is embedded in the same environment.

Proof: The proof of the theorem can be found in Buchholz (1999a,b); we give only an
outline here.

Item 2 follows trivially from the definition of transitions in the aggregated automaton.
Item 1 can be proved by induction over the number of synchronized transitions in a
sequence. Initially, without a synchronized event, all states from rep(s,) are reachable due
to item 1 of Definition 3.2. After one synchronized transition / has taken place, all states in
rep(3) are reachable if Qz* (89,8) = 1, due to item 2 in Definition 3.2. This step can be
repeated in an induction to show that reachability of a state in the aggregated automaton
implies reachability of the set of states that the aggregated state represents in the detailed
automaton. |

In the following, we use the notation A for the automaton that results from A by
aggregation according to some weak inverse bisimulation relation; usually the largest
weak inverse bisimulation is used. Theorem 3.1 shows that the set of reachable states for
A =A|A,|...]Ay can be characterized by the reachability set of A = A,|A,|...|Ay and
the equivalence classes rep(§). Reachability of a state (5',...,5V) in A implies

reachability of all states (s',...,s") with s'erep(s') in A, and unreachability of

M10373 Kluwer Academic Publishers Discrete Event Dynamic Systems: Theory and Applications (DISC) Tradespools Ltd., Frome, Somerset

272 BUCHHOLZ AND KEMPER

(s',...,5N) implies that all states (s',...,s") with s'erep(5') are also unreachable. The
potential state space of A contains ny:l ii' instead of ny:l n' states. For many automata,
il < n', so we often reduce the potential state space drastically by an a priori aggregation
step, without losing the ability to compute RS.

4. Reachability Analysis

In this section we consider reachability analysis of an automaton A = A,|...|Ay that
resulted from the composition of N automata according to a set of synchronization labels
LS. Usually, we can assume that the isolated automata A; are already reduced, as described
in the previous section. However, to avoid an overloading of notation, we use A; instead of
A, here.

A first algorithm for computing RS in the context of Petri nets was published in Kemper
(1996b). We consider a significantly improved algorithm for composed automata. Our first
observation is that the state-numbering scheme that transfers state (x!, ..., x") to integer x
is a perfect hash function that assigns to each state from RS a unique number from
{0,...,n— 1}. Thus, a bit vector of length n = Hf\]: | ' is the basic data structure that is
used to represent RS. The main advantage of the bit vector representation is that the effort
needed to decide whether a state has already been reached is in O(1), and the same effort is
necessary to include a new state. In tree-like data structures, which are commonly used in
state-space generation algorithms, the effort for the membership operation is O(log m), in
which m is the number of states that have already been found.

The usual method for generating the reachability set of an automaton (or a network of
automata) is to compute the transitive closure of the reachability relation starting from the
initial state. The effort of this approach is proportional to the number of arcs in the
reachability graph, and the storage requirements are proportional to the number of states
plus an additional queue or stack needed to hold the indices of states for which successor
states have not been explored. Thus, an algorithm for reachability analysis would be more
efficient if it reduces the number of interleavings of transitions that are considered during
reachability analysis. In a distributed setting, like the automata network approach we
consider here, it is rather natural to reduce the number of interleavings by separating the
successor states that result from independent transitions in different automata. A first
approach in this direction was proposed in Buchholz and Kemper (2000); that approach
considers all transitions in an automaton that result from a synchronized transition
followed by an arbitrary number of local transitions. As shown in Buchholz and Kemper
(2000), this step reduces the number of interleavings during reachability analysis, but does
not reduce the number of states for which successor states are searched. Here we present
an improved algorithm that considers transitions that start with an arbitrary number of
local transitions followed by one synchronized transition. With this new approach, it is
possible to reduce the number of interleavings and, additionally, the number of states for
which successor states are generated. Both effects will be described in more detail below.
For the basic step of our algorithm define

M10373 Kluwer Academic Publishers Discrete Event Dynamic Systems: Theory and Applications (DISC) Tradespools Ltd., Frome, Somerset

COMPUTATION AND REPRESENTATION OF LARGE REACHABILITY SETS 273

[=1y if I =1,
succi(x') = 4 {2/ Qe (¥, y) Q0" 2) = 1} if leLy,
{x'} otherwise

This describes the set of all states reachable in A’ via internal transitions and, if / = 1, one
[-labeled transition. For automata that do not include label /, the state is not modified. For a

global state (x',...,x"), define the successor function according to label / as
SUCC,(x',...,x") = 0 N i(i lfl?ér.and 3 with succi(x') =0
x ¥ succi(x') otherwise

The successor function for the state (x!,...,x") that covers all states reachable with an
arbitrary number of local transitions followed by at most one synchronized transition is
given by

SUCC(x', ..., x™) = Uy SUCC,(x', ..., x™)\ {(x",...,x")}

The transitive closure of the successor relation SUCC(x!, ..., x") starting with the initial
state equals the set RS. To improve reachability analysis, the number of states for which
successor states are computed has to be minimized. This can be done using the results of
the following theorem.

THEOREM 4.1 If (y',...,yV)eSUCC.(x!,...,x"N), then
SUCC(y!,....yV)yesucc(', ... ,x")
Proof: Since (y',...,yN)eSUCC,(x',...,xM)0L.(x,y)=1 for all i=1,...,J.

Consequently, y' is reachable from x’ by a sequence of internal transitions.
This implies succl(y') S succl(x'), because

2 esucci(y') = ' : Qi* o' V0,2 =1
= Qi* (xi,yi)Qi* (yi,vi)Qﬁ(vi,zi) =1= ziesuccﬁ(xi)
Thus we have

Vi, V1 - succi(y) Ssucci(x') = VI : SUCC,(y',...,yN)ssuccC,(x', ... ,xN)
= succ(y',....,yMyesucc(x', ... xN)

A direct consequence of the theorem is that the sets SUCC (x!, ..., x") for the initial state
and for the states that are reached immediately after the occurrence of a synchronized
transition describe the complete reachability set. On the basis of these concepts, the
algorithm shown in Figure 2 can be used to generate RS.

M10373 Kluwer Academic Publishers Discrete Event Dynamic Systems: Theory and Applications (DISC) Tradespools Ltd., Frome, Somerset

274 BUCHHOLZ AND KEMPER

Reachability_analysis
1. U={0};

2. forally e PS do
3. if y € SUCC,(x},...,z)) then
4. rlyl=1;
5. else
6. rly] =0;
7. while U #0 do
8. remove (z!,...,2") from U ;
9. compute SUCC,(z!,...,zN) ;
10. for all y € SUCC,(z",...,2") with r[y] = 0 do
11. rlyl=1;
12. compute SUCC (z!,...,zN)\ SUCC,(z',...,zN) ;
13. for ally € SUCC(x!,...,2™N)\ SUCC,(z',...,2zV) with r[y] = 0 do
14. rlyl=1;
15. U=UU{y}:
16. od
17. od

Figure 2. Computation of RS for composed automata.

We now outline the proof of the correctness of the algorithm, give some implementation
hints, and argue why the algorithm is more efficient than conventional reachability
analysis for most models.

Correctness of the algorithm: Since the set of reachable states equals the transitive
closure of the relation SUCC(..) starting with the initial state, we have to show that if a
state (y',...,y") is not put into U, then there exists some state (x',...,x") that has been
putin U and SUCC(y',...,y¥)=SUCC(x!, ... ,x"V). Astate (y',...,y") is not put into U
in line 12 of the algorithm, if (y',...,yV)eSUCC,(x!, ..., xN) for some (x!,... ,xV) that
has been removed from U. However, by theorem 4.1 this implies
succhH,....yNyesucc(x', ... x").

Implementation hints: In the algorithm, U is a set for storing non-explored states; usually,
these states are stored as integers rather than vectors, but other data structures are possible
as well. r is the hash table, which is bit vector of length n. To minimize the number of
states in U, we first compute successor states that are reachable only by local transitions
(steps 9—11), because these states do not need to be put into U. Afterwards, synchronized
transitions are considered (steps 12—14), and only the states that have not been reached
before must be put into U.

Complexity of the algorithm: The worst-case complexity of the algorithm improves
conventional reachability analysis by a factor of log n, because of the use of the perfect

M10373 Kluwer Academic Publishers Discrete Event Dynamic Systems: Theory and Applications (DISC) Tradespools Ltd., Frome, Somerset

COMPUTATION AND REPRESENTATION OF LARGE REACHABILITY SETS 275

hash function for states. This holds as long as vector r fits in main memory. However, in
almost all examples, we obtained much larger improvements than log n. There are three
reasons for the improvements:

1. Pre-aggregation reduces the size of the state spaces in which reachability analysis is
performed.

2. The set of states for which successor states are computed is restricted to those states
that are reached immediately after a synchronized transition occurred and that have
not been reached before via internal transitions. In automata networks with some
internal behavior of the automata, this significantly reduces the number of states that
are put in U.

3. Due to the computation of sets of successor states, only very few interleavings are
considered. A simple example is a system with three automata, each of which has two
local transitions. Each local transition ends in a different state. Each set succi(x')
contains three states that are generated from two transitions. Thus, 9 states have to be
stored, and 6 transitions are necessary to generate the sets. The reachability graph
resulting from the composition of the three automata contains 27 states that result
from 54 transitions; if reachability analysis is performed for the global system, all
transitions are considered during computation of the reachability set.

The proposed algorithm is efficient as long as vector r fits in main memory. Since r
stores each state of PS as a single bit, relatively large state spaces can be handled with
contemporary workstations. However, for realistic systems, PS is often too large even after
the size of components has been reduced. In that case, it is possible to perform reachability
analysis in an incremental way. We will discuss the corresponding algorithm in Section 6
after presenting the compact representation of RS in the next section.

5. Compact Representations of Reachability Sets

For the representation of RS, we have already introduced three different structures, namely
the bit vector of length n, the vector representation (x',...,x"), and an integer
representation. All representations require a great deal of space if PS and RS are large (i.e.,
in the range of several billion states). To represent RS in a compact form, we borrow ideas
from ordered binary decision diagrams (OBDDs) (Bryant, 1986) and multi-valued
decision diagrams (MDDs) (Wegener, 2000) to represent RS as an acyclic graph with N
levels, for a system of N composed automata (Buchholz and Kemper, 1999). The
difference to OBDDs and MDDs is that we can allow nodes to have a variable number of
outgoing arcs, and that nodes of the lowest level do not refer to Boolean values. The idea is
that a node at level i for 1 < i < N represents the reachable subset of states in component
that are subject to the condition of states of components at levels j < 1.

To introduce the concept, we first note that PS can be represented by a tree with N levels,
where each node at level i has n' sons. A path in the tree corresponds to a state (x!, ..., x").

M10373 Kluwer Academic Publishers Discrete Event Dynamic Systems: Theory and Applications (DISC) Tradespools Ltd., Frome, Somerset

276 BUCHHOLZ AND KEMPER

If we eliminate from this structure all paths to unreachable states, we obtain a
representation of RS. Nodes at level i describe reachable states from S'. Let
RS(x',...,x') = {yeRS|x' =y' A ... Ax' =y}, the subset of states from RS with
fixed states for the automata 1 through i. RS(x!, ..., x’) refers to a subtree with root node at
level i + 1; the root note is denoted by RS**1(x!, ..., x'). RS"T1(x!, ..., x) is the subset of
states from S'T! that are reachable if the state of the automata 1 through i equals
(x',...,x%). To complete the notation, RS() = RS and RS'() is the root node of the tree.

Two subtrees RS(x',...,x") and RS(y!,...,y') are equal, if and only if
RS'(x', ..., X1y =RSi(y',...,y 1) and all pairs of subtrees RS(x!,... ,x x'*1),
R(Y',...,y",y'*1) with x¥*! =y'*! are equal. By applying a folding operation in a
bottom-up manner, like that of OBDDs, we represent equal subtrees only once, and we
obtain a unique acyclic graph (DAG) for a given ordering of components (whose set of
paths is equal to the set of paths in the tree and represents the states from RS). By
introducing appropriate arc inscriptions, it is possible to derive for each state from RS a
number {0, ... |RS| — 1} that corresponds to its relative position in PS; i.e., for x < y and
x,ye PS N RS, x receives a smaller number than y; see Buchholz and Kemper (1999) for
further details.

We consider a small example to clarify the representation of RS by means of acyclic
graphs. The automata model and the corresponding representation of RS() are shown in
Figure 3. In the model, 12 out of 18 states are reachable. The graph representation of RS is
very compact, because it allows the folding of several subtrees. For large systems, the
graph representation often remains compact, even when the size of PS or RS explodes.
This can also be seen in the example presented in Section 8. As in other BDD-like
structures, the ordering of components determines the size of the resulting data structure;
furthermore, as in other graph structures, an optimal ordering cannot be determined
efficiently, but heuristics based on the number of component states and the
synchronization structure may be found.

In Figure 3, the state space is represented without a priori aggregation of components.
However, using the equivalence relation defined above, it is possible to reduce automata

Al A2 A3 RS(

I s6| s7| | s6l s7| 58|

Figure 3. Automata model and the corresponding representation of RS as an acyclic graph.

M10373 Kluwer Academic Publishers Discrete Event Dynamic Systems: Theory and Applications (DISC) Tradespools Ltd., Frome, Somerset

COMPUTATION AND REPRESENTATION OF LARGE REACHABILITY SETS 277

Al A2

Figure 4. Aggregated automata and the corresponding graph representation of RS.

Al and A3 from three to two states. The aggregated automata and the corresponding
representation of RS is shown in Figure 4. Only states that represent equivalence classes
with more than one member are renamed. Thus, s12 represents sl and s2 and s67
represents s6 and s7. Due to the aggregation condition that preserves reachability of states,
the structure of the graph is identical for the aggregated and unaggregated systems, but the
nodes of the graph for the aggregated system may contain fewer elements, yielding a more
compact representation.

6. Incremental Reachability Analysis

If PS is extremely large, even a bit vector for hashing can be too costly. Therefore, we
formulate an incremental reachability analysis algorithm that is based on the observation
that if PS >> RS, then PS’ >> RS’ often holds for a subset I of synchronized automata. If
subset [is explored beforehand, one can proceed with RS’ instead of PS’ for the overall
exploration. Define a partition A"',..., /™ on the set of components such that
M {1,.. N}, A" =0 and UM A" = {1,...,N}. Each partition group ./’
describes composition of a subset of components, and the resulting composed model can
be analyzed with the methods presented so far. Thus, A = A;|...|Ay is described by
A=A"...|AM and A" = A, | ...|A; withi;e 4", The set of synchronized labels LS is in
all cases identical. PS” = x,_ ,1S' is the potential state space for the subset of components
in A", PS! contains [[;. ,+ n' states. We consider a partition to be feasible if for each PS' a
bit vector fits in primary memory. We search for partitions that are feasible and include a
small number of partition groups. It is usually not necessary to find the ‘“best’’ partition for
the automata, in the sense that the number of partition groups is minimized. Usually, it is
more important to collect into a partition group those automata that are strongly
synchronized. For example, one adequate heuristic algorithm that has been implemented
groups automata that are synchronized until the size of PS’ becomes too large. Of course, it
cannot be assured that a feasible partition exists, even if RS is small enough to fit in
memory. In those cases, one has to use secondary memory that slows down the generation,

M10373 Kluwer Academic Publishers Discrete Event Dynamic Systems: Theory and Applications (DISC) Tradespools Ltd., Frome, Somerset

278 BUCHHOLZ AND KEMPER

or already reached states are stored in the graph structure for RS, thus introducing a log n
overhead.

Let RS’ be the set of reachable states for the model composed of the components from
A1, Knowing RS’ and RS’ for partition groups .4 and A4, we can define PS'*/ as
RS x RS’ which is smaller than PS resulting from .4/ U 4"/ whenever RS’ and RS’ are
smaller than PS” and PS’ (i.e., whenever the composition of some components produces
unreachable states in the potential reachability set). Obviously, it is good to select
components with tight synchronization for a partition group.

We can now outline the following algorithm for compositional reachability analysis:

1. Reduce all components with respect to reachability as proposed in Section 3.
2. Find a feasible partition with a small number of partition groups.

3. For each subset of components, perform reachability analysis as described in Section
4, and represent the set of reachable states in compact form as introduced in Section 5.
If all automata belong to a single partition group, then the algorithm terminates
successfully.

4. If more than one partition group exists, then find a new feasible partition by
combining partition groups, and go to step 3, for which only new partition groups have
to be analyzed. If no such partition exists, then analysis cannot be performed with the
available memory.

If the algorithm terminates successfully, then we obtain a DAG representation of RS and

a Kronecker representation of the transition system. Note that if step 3 is reached after step

4, computation of SUCC requires that one either adapt the Kronecker representation to the

explored partition groups, which usually requires more space since matrix dimensions

increase, or compute SUCC from the original Kronecker representation and translate state
indices among the different representations.
Once a DAG of RS is available, it can be used in two ways:

1. The bisimulation remains present, so to decide whether state (x!,...,x") is
reachable, we first need representation (%', ..., #)(x?erep(¥")). It can be found in a
time proportional to the number of components, if we store with each x' the
corresponding #. Afterwards, state (3',...,%") has to be found in the DAG; this
requires at most N steps with an effort of O(log ;) at level i.

2. The bisimulation is resolved, i.e., each & is replaced by its elements in each node of
the DAG. This transformation is in O(G - n) if the DAG contains G nodes and each
component contains at most n states. Although this approach slightly enlarges the
space used by the DAG, it results in a DAG representation of RS that is simpler to
combine with other analysis methods. For example, a different bisimulation can be
applied subsequently to obtain a reduced representation for certain properties, or
model-checking algorithms (see Section 7) can be applied using other analysis tools.

M10373 Kluwer Academic Publishers Discrete Event Dynamic Systems: Theory and Applications (DISC) Tradespools Ltd., Frome, Somerset

COMPUTATION AND REPRESENTATION OF LARGE REACHABILITY SETS 279

In conventional algorithms that completely enumerate RS and store it in a tree-like
structure, searching for a specific state requires an effort in O(log |RS|), which is usually
much higher than the effort to access a DAG. Additionally, our representation requires
only a small fraction of the memory that is needed for storing the complete set RS. Based
on the DAG structure, state-based analysis can be applied on the DAG of either the
aggregated or the original model. The disaggregation step expands the DAG of the
aggregated state space to the DAG of the original state space, but it leaves the number of
nodes in the DAG unchanged; only the cardinality of single nodes is enlarged. The choice
between these alternatives depends on the required results. If the aggregated DAG
includes enough information, it is usually preferable to do analysis at that level. Since the
set of successor states of a state reachable by specific transitions can be generated
efficiently from the Kronecker representation, typical state-based analysis algorithms can
be applied.

7. Model Checking of Composed Systems

To analyze more complex functional properties of discrete event systems, it is necessary to
express the properties to be proved in some formal notation. Usually, temporal logics are
used for this purpose. The process of proving a logical formula for a finite transition
system is called model checking (Clarke et al., 1986 and Clarke et al., 1996). Very
roughly, model checking performs an exhaustive search algorithm on the state space to
verify for which states the required property holds and for which states it does not hold. If a
system is described in a compositional form, it is sometimes possible to exploit the
component structure for a more efficient analysis. Two different types of model checking
exist. One of them uses an efficient search procedure to check the required properties, and
the other one represents the system and the negated property as automata and checks
whether the intersection of the languages of both automata is empty. Both approaches
create state-space explosion problems that need to be alleviated. OBDDs have been
successfully used for model checking, allowing the analysis of extremely large systems
provided that the system can be coded by Boolean formulas (Burch et al., 1992). In a
similar way, model-checking algorithms can be combined with the graph-based
representation of RS and the Kronecker representation of the composed automaton
presented in this paper. In fact, we have implemented model checkers of both types for the
compositional structure in the APNN toolbox (Bause et al., 1998 and Kemper and Liibeck
et al., 1998).

Here we present briefly a model checker of the first type that uses computational tree
logic (CTL) for specifying the desired properties. CTL is a temporal logic that is
commonly used, because it can be checked efficiently; however, not all properties can be
expressed by CTL. Since CTL model checking is now well-established, we only give a
very brief introduction of the logic and the basic functions for checking a formula for a
finite transition system; further details can be found in the literature (Clarke et al., 1986
and McMillan, 1993). We present in some more detail the advantages that arise from the
use of the compositional representation in model-checking algorithms.

CTL formulas are built from atomic propositions, logical compositions, and temporal

M10373 Kluwer Academic Publishers Discrete Event Dynamic Systems: Theory and Applications (DISC) Tradespools Ltd., Frome, Somerset

280 BUCHHOLZ AND KEMPER

operators. Atomic propositions are defined as Boolean functions that have the state of the
system as an argument; i.e., f((x!,...,x"))—B is an atomic proposition. Often f can be
defined compositionally such that

J

P = \ AW or f((. ™)) = A\ A

i=1 i=1

or any other combination of v and A composition. In this case the set of states observing
the proposition can be very efficiently generated from the DAG representation of RS.
Since —(a v b) = —a A —b it is sufficient to consider the f((x!,...,xV)) = AY_ fi(x").

To determine the set of states that observe the formula, it is sufficient to run once
through the DAG for RS to generate a DAG that includes all states that observe atomic
proposition. At each level j, only those states x/ for which]j-(xj) =1, and therefore
implicitly also f;(x') = 1(i <j) holds, remain in the DAG. Other states and their
successors are deleted.

This approach can also start with the DAG without resolving the bisimulation. In that
case a state X/ is kept in the DAG if f;(x/) = 1 for some x/ € rep(%/). After generation, it is
easy to generate the DAG including all states that observe the proposition by expanding
(#',...,%') only for those states (x',...,x") for which x’ € rep(¥') and f;(x') = 1 for all
i=1,...,J.

Each atomic proposition is a CTL formula. CTL formulas can be composed via logical
operations. Thus, if f and g are CTL formulas, then so are

S fAagfvef=8f<g

with the usual meaning. A DAG representation of the set of states that observe a composed
formula can be generated from the DAG representations of the subformulas. The
corresponding operations are similar to the same operations for other BDD data structures
(Wegener, 2000).

Additionally, CTL contains temporal operators to express conditions over paths. The
temporal operators are nexttime (X), globally (G), sometimes (or finally) (F), and until (U).
These operators have to be combined with the all-path quantifier (A) or the exists-path
quantifier (E). The set of states that observe a temporal formula is computed by a search
algorithm on the reachability graph (Clarke et al., 1986); the search algorithm can be
combined with the Kronecker representation of composed automata networks (Kemper
and Liibeck, 1998).

8. Example

As a larger example, we consider the modeling of the control software of a system of
concurrent pushers. Pushers are devices used in manufacturing systems to move an item
from one position to another. A chain of pushers can be built to move an item from A to B,
from B to C, and so forth. A small chain of pushers is shown in Figure 5. Pushers are driven

M10373 Kluwer Academic Publishers Discrete Event Dynamic Systems: Theory and Applications (DISC) Tradespools Ltd., Frome, Somerset

COMPUTATION AND REPRESENTATION OF LARGE REACHABILITY SETS 281

a — 7
| Controller2 |
Pos. 3 Pos. 2 = — —
r\— — —
1 774 [
LLJ LJ| -
- 7 Pusher 2
Piece, Pos. 1
o
a — —

Pusher 1

| Controller 1 |
|

R1

Figure 5. Chain of two pushers.

by electric motors and need to have controllers in order for their movements to be useful
within a larger setting. Heiner® (1997) provides a Petri net model of N pushers and their
controllers, which is a safe net that is scalable by parameter N. The model naturally
partitions into N 4 2 components, including one per pusher plus a consumer and a producer
component that consume and produce items to be pushed around. We consider the time and
space requirements for the DAG generation of the reachability set, which includes:

1. Generation of a set of synchronized automata for the Kronecker representation.
2. Aggregation of these automata by weak inverse bisimulation.
3. Kronecker-based state-space exploration of the aggregated system, yielding a DAG.

4. Disaggregation of the DAG from the aggregated system into the DAG of the original
system.

Table 1 gives the results observed for increasing numbers of N pushers (first column)
yielding a system with C components (second column). The number of places and

Table 1. Analysis results for an increasing number of pushers.

DAG DAG Time Time Time
N C PT R| IR| Nodes KB Rt.cl. Rtcl R Basic
8 10 150/140 2.644e+6 49,266 17 1.2/2.6 5 250 1,333
10 12 186/174 1.073e +9 682,686 37 2.6/5.9 18 — —
12 14 222208 4.204e+10 9.508¢ +6 53 3.7/8.5 260 — —
14 16 258/242 1.640e+12 1.324e+8 69 49/11.1 4,435 — —

M10373 Kluwer Academic Publishers Discrete Event Dynamic Systems: Theory and Applications (DISC) Tradespools Ltd., Frome, Somerset

282 BUCHHOLZ AND KEMPER

transitions are given in the third column to illustrate the size of the Petri net model.
Columns 4 and 5 give the dimensions of the state space of the original system |R| and the
aggregated system \Ié |. The number of nodes is the same for the DAGs of both systems
(column 6). The DAGs differ only in the number of outgoing arcs; this causes the DAGs to
have different sizes (column 7, given in kilobytes). For example, for N = 8, the DAG of R
uses 1.2 KB, while the one for R uses 2.6 KB. The last three columns give the computation
times in seconds for ‘‘wall clock time’’. The value time R (column 8) describes the time it
takes for aggregation to first reduce the components, and for reachability analysis of the
aggregated system, using the algorithm presented in this paper (i.e., the transitive closure
of local transitions is exploited). The time includes the disaggregation step that generates
the DAG representing R from R. The next to last column shows the time it takes to
generate the DAG for R without local aggregation of the automata, but with the
reachability analysis algorithm presented here. The last column shows the time it takes to
generate R with a conventional reachability analysis algorithm that does not precompute
the transitive closure of local transitions, but uses the Kronecker representation for the
automata matrices and the DAG for state-space representation. Since the effort is much
higher without aggregation than with aggregation, we stopped the computation without
aggregation for N > 8. The same software is used for state-space exploration with and
without aggregation, but for the aggregated system, an incremental generation is only
necessary for N > 8, while for the original system, it is used for all N > 5. Comparing the
results in the last two columns, one can see that the new reachability analysis algorithm
reduces the generation time by a factor of 6; this is, of course, model-dependent.
Furthermore, the new algorithm requires less memory, because the number of states to be
stored in U is reduced. In the example, memory requirements are reduced by a factor of 3,
e.g., for N = 8 the conventional approach requires 87 MB for state-space generation, and
the new approach only 27 MB. All results are obtained on a PC with a 550 Mhz processor
and 1 GB primary memory. Programs are written in C and compiled with the gcc and
compiler option — O4.

The user’s ability to select partitions is a degree of freedom in our approach that is useful
for influencing performance of the algorithms but also for checking consistency. The table
below considers models for N up to 16 with partitions that result from grouping adjacent
pushers into components, i.e., for N = 16 we build C = 8 components by (producer,
pusherl, pusher2), (pusher3, pusher4), ..., (pusherl5, pusherl6, consumer). For this
partition, it is possible to reduce the size of the components significantly by applying the
aggregation. Thus, the resulting state space of the aggregated system is moderate and can
be generated with great efficiency. It takes only 17 seconds to generate the overall state
space of the model with N = 16 that contains 6.39¢ + 13 states. Obviously, that is not the
limit of the method on the current machine. For the system with N = 16 pushers described
by C =8 components, the potential state space resulting from the cross product of
component state spaces contains 4.94e + 19 states, of which 6.39¢ + 13 are reachable.

However, we should be honest and point out, that the example shows a behavior that is
very convenient for our method, because components communicate only with their
neighbors. If such a case, a grouping of adjacent components makes synchronizations
internal and usually allows a significant reduction of the component state spaces by
aggregation. In models with a more complex synchronization structure, we cannot expect

M10373 Kluwer Academic Publishers Discrete Event Dynamic Systems: Theory and Applications (DISC) Tradespools Ltd., Frome, Somerset

COMPUTATION AND REPRESENTATION OF LARGE REACHABILITY SETS 283

such extreme effects. Nevertheless, as shown by the results for N = 8 without pre-
aggregation, reachability analysis can be performed on our current machine with the
proposed algorithm for systems with up to 10% states. Since in almost all cases, pre-
aggregation of components yields some reduction of the component state spaces, even
models with a complex synchronization structure can be analyzed for large state-space
sizes. Since the effort of computing the aggregates is cubic in the number of component
states, it is not possible to enlarge components arbitrarily; there is always a trade-off
between the effort for aggregation and the effort for reachability analysis. Few large
component state spaces increase the effort for aggregation and usually decrease the effort
for reachability analysis, many small component state spaces have the opposite effect.

Heiner exercises the model for different analysis tools, including INA, PEP, and PROD,
which implement invariant analysis, conventional state-space exploration, stubborn set
methods, and the prefix algorithm. Our results are consistent with respect to |R| for
N =5, 6, but they differ for N = 7 from the results in Heiner (1997); for N > 8 no values
are given in Heiner (1997). Our exploration approach outperforms the other tools
evaluated there. Of course, the effort of the approach must also be compared with that of
OBDD techniques. First experiences show that analyzable state-space sizes and the
performance of the algorithm are comparable to established OBDD-based tools, but that
our approach handles a different class of models, as OBDD techniques rely on a Boolean
representation of states; that can be inefficient for general models. Furthermore, OBDD-
based techniques do not exploit the compositional structure of a model. Our results show
that the presented state-based analysis is a useful addition to the variety of approaches
available for the functional analysis of discrete event systems.

One purpose of reachability analysis is the detection of functional properties by model
checking. In Heiner (1997), the pusher model is analyzed with respect to many properties.
In this paper, we focus on some safety properties that are requirements of the real system
and that can be computed with great efficiency; i.e., we consider properties P2, P5, and P6
of Heiner (1997):

P2 requires, that at any time, a pusher can be driven in one direction only:
AG(—(Pi_R1_on A Pi_R2_on)) where Pi_R1_on and Pi_R2_on indicate controler states of
pusher Pi that demand the pusher to drive in and out.

PS5 requires, that no pusher should extend too far: AG(—(Pi_px A Pi_py)) where Pi_px
and Pi_py are specific places in the Petri net model of pusher Pi. If both places are marked
in a state, then the pusher can extend too far.

P6 requires, that while a pusher moves, no new work piece must arrive at its input
position: AG(Pi_position_full = Pi_basic) where Pi_position_full refers to the marking of

Table 2. Results for partitions enlarged by the grouping of pushers.

N C P/T R| IR| DAG Nodes DAG KB Time R t. cl.
14 7 258/242 1.640e + 12 122,617 27 2.3/26.1 7
15 8 276/259 1.024e + 13 595,541 35 2.9/20.3 12
16 8 294/276 6390e + 13 755,600 35 3.0/31.3 17

M10373 Kluwer Academic Publishers Discrete Event Dynamic Systems: Theory and Applications (DISC) Tradespools Ltd., Frome, Somerset

284 BUCHHOLZ AND KEMPER

an input place and Pi_basic describes that the pusher is in a state where it is not moving but
awaiting an input.

Clearly, these properties shall hold for all pushers Pi,i = 1,2,...,N. We can evaluate
these formulas by searching the DAG of R for appropriate states. Note, that each formula
considers only a single pusher Pi, such that its atomic proposition can be computed on
behalf of S'. If the evaluation yields the same value for all states s eS’, for example, frue,
then the atomic proposition has this value for all states in R. However, if the evaluation
yields different values for different states s, s € St as it is the case for formulas P2, P35, and
P6 above, then we need to check states in the nodes at a level of the DAG of R that
corresponds to the component with pusher Pi. Since the DAG contains only few nodes per
level, this evaluation is extremely fast, i.e., measuring cpu time and user time gives results
as 0.0 seconds, which means that the system library functions are simply not precise
enough to measure the computation, so the real value is significantly less than a single
second. The effort does not vary among the selected pushers i for any i€ {1, ..., 16}. Note
that this class of properties is the one that is analyzed most efficiently, for other properties
like liveness properties the computational burden is significant and requires other
techniques for model checking. Nevertheless, the class of properties we selected is of
interest, and by doing so we could restate some results of Heiner (1997) for increased
values of N; i.e., properties P2 and P6 are fulfilled, but PS5 is not fulfilled. For the sake of
completeness, we recall from Heiner (1997) that property PS5 requires additional
constraints on timing to be fulfilled by the model as well as by the real system.

9. Conclusions

In this paper, we present an approach to compute and represent the set of reachable states
for a network of automata in a compact way. Analysis is compositional and combines steps
that include reduction of components due to equivalence, creation of Kronecker
representations of large graphs, and creation of compact representations of large sets by
acyclic graphs. The basic model class, that of automata composed via synchronized
transitions, is very general and is used as a low-level view for several other specification
techniques, like process algebras and specific classes of Petri nets. The approach allows the
handling of much larger state spaces than is possible with conventional means. Since our
approach supports Depth-First-Search strategies as well as Breadth-First-Search strategies,
it should be useful to combine our approach with the method of Stern and Dill (1998) that
uses second-level memory. Unlike OBDD techniques, our approach cannot go beyond the
state spaces described in Burch et al. (1992), but the kind of models that can profit from our
approach is larger, since we do not restrict ourselves to Boolean function representations.
An obvious future improvement to our approach would be to adopt the efficient methods of
OBDDs to compute sets of successor states from sets of predecessor states (Burch et al.,
1992). The approach can be easily adopted for our DAG data structure, but has not yet been
implemented in our tool environment. Thus, we did not introduce it here.

The presented method has been integrated in a toolbox for the quantitative and
qualitative analysis of discrete event dynamic systems described as Petri nets with

M10373 Kluwer Academic Publishers Discrete Event Dynamic Systems: Theory and Applications (DISC) Tradespools Ltd., Frome, Somerset

COMPUTATION AND REPRESENTATION OF LARGE REACHABILITY SETS 285

transition fusion or at the automata level (Bause et al., 1998 and Buchholz and Kemper,
1999). Thus, the approach is completely automated and requires no user interaction once
the system has been defined as a set of interacting components. It is applied in combination
with an available model checker for computational tree logic and various quantitative
analysis tools.

Future directions in the area of compositional analysis include further integration of
OBDD techniques, parallelization of analysis algorithms, the extension of equivalence
relations, and further exploitation of the model structure in CTL model-checking
algorithms.

Notes

1. The state space of an automaton is isomorphic to a finite set of integers. It depends on the context whether we
use the notation x or s, for the x-th state in the set.

2. L. denotes the set of labels that can be used to observe the dynamics of the automaton, and will also be used to
compose automata via synchronized transitions.

3. We thank M. Heiner for web access to the original model at http://www-dssz.Informatik. TU-Cottbus.DE.

References

Bause, F,, Buchholz, P., and Kemper, P. 1998. A toolbox for functional and quantitative analysis of DEDS. In R.
Pujanger, N. N. Savino, and B. Serra, (eds), Quantitative Evaluation of Computing and Communication
Systems 356-359, Springer LNCS 1469.

Behrmann, G., Larsen, K., Andersen, H. R., Hulgaard, H., and Lind-Nielsen, J. 1999. Verification of hierarchical
state/event systems using reusability and compositionality. In W. R. Cleaveland (ed.) Tools and Algorithms for
the Construction and Analysis of Systems 163—177, Springer LNCS 1579.

Best, E., Fraczak, W., Hopkins, R. P., Klaudel, H., and Pelz, E. 1998. M-nets: An algebra of high-level Petri nets,
with an application to the semantics of concurrent programming languages. Acta Informatica 35: 813-857.
Bryant, R. E. 1986. Graph based algorithms for Boolean function manipulation. /[EEE Transactions on Computer

35(8): 677-691.

Buchholz, P. 1999a. Exact performance equivalence—an equivalence relation for stochastic automata.
Theoretical Computer Science 215(1/2): 263-287.

Buchholz, P. 1999b. Hierarchical structuring of superposed GSPNs. IEEE Transactions on Software Engineering
25(2): 166-181.

Buchholz, P. 1999c. Structured analysis approaches for large Markov chains. Applied Numerical Mathematics
31(4): 375-404.

Buchholz, P., and Kemper, P. 1999. Modular state level analysis of distributed systems—techniques and tool
support. In R. Cleaveland (ed.), Tools and Algorithms for the Construction and Analysis of Systems 420-434,
Springer LNCS 1579.

Buchholz, P., and Kemper, P. 2000. Efficient computation and representation of large reachability sets for
composed automata. In R. Boel and G. Stremersch (eds), Discrete Event Systems Analysis and Control 49-56,
Kluwer Academic.

Burch, J. R., Clarke, E. M., McMillan, K. L., Dill, D. L., and Hwang, L. J. 1992. Symbolic model checking: 10%°
states and beyond. Information and Computation 98(2): 142—-170.

Ciardo, G., and Miner, A. S. 1997. Storage alternatives for large structured state spaces. In R. Marie and B.
Plateau (eds), Proc. 9th Int. Conf. on Modelling Techniques and Tools for Computer Performance Evaluation
44-57, Springer LNCS 1245.

M10373 Kluwer Academic Publishers Discrete Event Dynamic Systems: Theory and Applications (DISC) Tradespools Ltd., Frome, Somerset

286 BUCHHOLZ AND KEMPER

Clarke, E. M., Emerson, E. A., and Sistla, A. P. 1986. Automatic verification of finite state concurrent systems
using temporal logic specifications. ACM Transactions and Programming Languages and Systems 8(2): 244—
263.

Clarke, E. M., and Wing, J. M. et al. 1996. Formal methods: State of the art and future directions. ACM Computing
Surveys 28(4): 626—643.

Cleaveland, R., Parrow, J., and Steffen, B. 1993. The concurrency workbench: a semantics based tool for the
verification of concurrent systems. ACM Transactions on Programming Languages and Systems 15(1): 36-72.

Davio, M. 1981. Kronecker products and shuffle algebra. I[EEE Transactions on Computers 30: 116—125.

Graf, S., Steffen, B., and Liittgen, G. 1996. Compositional minimization of finite state systems. Formal Aspects of
Computing 8(5): 607-616.

Heiner, M. 1997. Verification and optimization of control programs by Petri nets without state explosion. In Proc.
2nd Workshop on Manufacturing and Petri Nets 69-84, available via http://www-dssz.Informatik. TU-
Cottbus.DE/ wwwdssz/

Hoare, C. 1985. Communicating Sequential Processes. Prentice Hall.

Holzmann, G. J. 1998. An analysis of bitstate hashing. Formal Methods in System Design 13(3): 301-314.

Kemper, P. 1996. Numerical analysis of superposed GSPNs. /IEEE Transactions on Software Engineering 22(9):
615-628.

Kemper, P. 1996. Reachability analysis based on structured representations. In J. Billington and W. Reisig (eds),
Application and Theory of Petri Nets 1996 269288, Springer LNCS 1091.

Kemper, P., and Liibeck, R. 1998. Model checking based on Kronecker algebra. Forschungsbericht 669,
Fachbereich Informatik, Universitdt Dortmund.

Lynch, N. A. 1996. Distributed Algorithms. Morgan Kaufmann.

Magee, J., and Kramer, J. 1999. Concurrency—State models & Java programs. Wiley.

McMillan, K. L. 1993. Symbolic model checking: an approach to the state space explosion problem. Kluwer.

Milner, R. 1989. Communication and Concurrency. Prentice Hall.

Plateau, B. 1985. On the stochastic structure of parallelism and synchronisation models for distributed algorithms.
Performance Evaluation Review 13: 142—154.

Stern, U., and Dill, D. L. 1998. Using magnetic disk instead of main memory in the Mur¢ verifier. In A. J. Hu and
M. Y. Vardi (eds), CAV’98 172—-183, Springer LNCS 1427.

Stewart, W. J. 1994. Introduction to the Numerical Solution of Markov Chains. Princeton University Press.

Wegener, 1. 2000. Branching Programs and Binary Decision Diagrams. Monographs on Discrete Mathematics
and Applications. SIAM.

M10373 Kluwer Academic Publishers Discrete Event Dynamic Systems: Theory and Applications (DISC) Tradespools Ltd., Frome, Somerset

