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Abstract

The integration of efficient implementation techniques, which have been proven in manual coding, into FDT compilers is difficult because
of the semantic constraints of the FDTs and the lack of language means to flexibly adapt to a given implementation context. In this paper, we
discuss ways to improve the efficiency of automated protocol implementations to make them applicable to real-life implementations. For
solution, we introduce the concept of a configurable FDT compiler that supports the application of different implementation techniques and
the adjustment of the implementation to the given implementation context. The paper discusses the semantic conflicts to be solved when
applying optimizing implementation techniques. It introduces a compile time reordering of transitions to cope with these problems. Finally
we present measurements that prove a considerable efficiency gain of the generated code as well as a comparison with theCadvanced
compiler of the SDT tool set.q 2000 Elsevier Science B.V. All rights reserved.
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1. Motivation

Formal description techniques (FDTs) have successfully
been applied to increase the quality of protocol develop-
ments and telecommunication systems [11,30]. However,
their application is mainly focused on design, specification,
verification, testing, and recently the performance analysis
[7,20]. The implementation phase still represents a gap in
this chain of protocol development steps. The main reason
for this is that code automatically generated by an FDT
compiler mostly does not fulfil the performance require-
ments of real-life protocol implementations.1 Therefore,
automatically derived implementations are rather used for
prototyping than for final implementations of commercial
products. Real-life protocol implementations are mainly
manually coded. This process is lengthy and requires a lot
of implementation design decisions that are not covered by
formal verification. They can only be validated by a
thorough test of the implementation. Automated protocol
implementations, on the contrary, may bring some remark-

able benefits: a considerable reduction of the duration of the
implementation process, simplification of changes, better
compliance between specification and implementation,
and independence of the implementor. Formal description
techniques will only be then successfully applied in practice
if they support a continual application of FDTs in all phases
of the protocol development process including the imple-
mentation phase. As long as protocol engineers are forced
after finishing the design and verification phase to “rewrite”
the protocol in C or another implementation language in
order to obtain an efficient implementation, they will
scarcely be willing to apply an FDT. The implementation
process often takes almost the same time as the design and
the elaboration of the formal description (usually several
weeks or months). For a thorough application of the FDT
in the whole protocol development process, techniques for
deriving adequately efficient implementations from formal
descriptions are indispensable.

Current FDT compilers are characterized by a straight-
forward implementation of the corresponding FDT seman-
tics. They lack means to reduce the overhead caused by
semantic constraints and to take the given implementation
context into account [11,13,15,16]. In recent years several
approaches have been proposed to improve the efficiency of
automated implementations. These approaches cover a wide
range of proposals from improved mapping strategies over
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parallelism to code optimizations. All these approaches
more or less focus on single aspects of the problem and
therefore did not lead to an adequate increase of efficiency.

On the contrary, protocol implementation techniques
meanwhile have become very sophisticated. They are opti-
mized for the needs of the implementation context (envir-
onment) and take aspects into account which as, for
instance, memory accesses are not covered by formal speci-
fications at all. We believe that a remarkable increase in the
efficiency of the automated protocol implementations can
only be achieved if a more general approach is applied
which combines the benefits of different proposed solutions.
Such an approach especially requires means to integrate
optimizing implementation techniques into FDT compilers
and to enable FDT compilers to adapt to different imple-
mentation contexts.

In this paper, we discuss ways to improve the efficiency
of the automated protocol implementations to make them
applicable to real-life protocol implementations. For
solution, we introduce the concept of a configurable com-
piler that supports the above mentioned requirements. We
describe the main features of the concept and present a
concrete solution for SDL, the COCOS compiler. Further,
we present measurements that prove a considerably gain of
efficiency using the approach.

The remainder of the paper is organized as follows.
Section 2 discusses the inherent constraints of automated
protocol implementation compared to handcoded imple-
mentations. In Section 3 we give a short overview of related
work. Section 4 outlines the concept of configurable FDT
compiler and discusses the required features. Section 5
introduces the protocol implementation techniques used in
our approach and explains how they can be applied in auto-
mated protocol implementation. Section 6 discusses some
specific mapping problems for a configurable compiler
using the COCOS compiler as an example. Section 7 reports
about measurements to evaluate the achieved efficiency
gain. It also compares the COCOS compiler with the
Cadvancedcode generator of the SDT tool. The final
remarks summarize the results and give an outlook on the
future research.

2. Constraints of the automated protocol implementation

Automated protocol implementation considerably differs
from the conventional nonautomated implementation
process. It is characterized by several constraints that have
to be taken into account for code generation. They are
discussed in the sequel using Fig. 1. In the conventional
implementation process a given (mostly informal) specifi-
cation of the protocol is mapped into the structure of the
given target system. The implementationIM is designed by
the implementor. It is subjectively shaped. The implemen-
tation constraints it has to take into account are the seman-
tics of the protocol specificationSP and the implementation
context IC (operating system, implementation language).
The implementor can optimally adapt the implementation
to the given implementation context. By this, she/he has to
ensure that the compliance between the specification and the
implementation is preserved what has to be validated by
conformance tests. The coding process is “manually”
carried out by the implementor (to distinguish the conven-
tional implementation techniques from automated ones
bette, we call them manual or hand-coding techniques in
the following).

The situation changes when automated implementa-
tion is applied. It requires formal protocol descriptions.
In contrast to manual coding automated implementation
has to take into account the formal semantics of the
given FDT SFDT to assure the correct interpretation of
the formal specification, i.e. the transformation process
IA is determined by the semantics of the protocol speci-
fication SP, the semantics of the FDTSFDT, and the
implementation environmentITS which usually supple-
ments the operating system by a specific runtime
support. An obvious approach for automated protocol
implementation is the straightforward implementation
of the FDT semantics. It is often applied because the
transformation is pretty simple. The correctness of
transformation can be validated easily. The experience,
however, has shown that such implementations usually
do not fulfil the requirements of real-life protocol
implementations [8,13–15,29]. For that reason, they
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are mainly used for prototyping rather than for the
development of final products.

The inefficiency of automatically derived protocol imple-
mentations arises because of the following reasons [15]:

• Design of the implementation model during tool devel-
opment phase. The implementation model describes the
logical structure of the implementation, its components
and the interactions between them. It determines the
(module) structure of the implementation, the interfaces
(internal, external), the mapping on the process structure
of the target operating system (process model), and the
implementation environment. It automated protocol
implementation, the implementation model defines the
set of transformation rules for the code generator to
map the formal specification into the implementation.
Thereby, it determines the architecture of the generated
implementations. In contrast to the manual implemen-
tation, however, the implementation model is designed
during the tool development process without any consid-
erations of specific implementation contexts.

• Lack of capability to adapt to a given implementation
environment. Owing to the rigid implementation model
the code generator is not able to adapt flexibly to the
characteristics of the implementation context. FDT
compilers do not possess means to select different imple-
mentation techniques or to introduce the parameters of
the target system into the code generation.

• Overhead because of the FDT semantics. The semantics
of the used FDT highly influence the design of the imple-
mentation model. The transformation of certain language
features may require additional implementation efforts
that cause a runtime overhead compared to hand-coded
implementations. A well-known example for this is the
scheduling algorithm for selecting the fireable transitions
in Estelle [15,21].

• Lack of integrating protocol layers. Current FDT
compilers mainly focus on single-layer implementations
due to their orientation on prototyping. They do not provide
means for an integrated implementation of several protocol
layers.

In order to overcome these shortages of current FDT
compilers optimizations have to be introduced into the
code generation process that decrease the distance in
efficiency between the hand-coded and the automatically
generated implementations. Automated implementation
techniques can only successfully be applied for real-life
implementations of protocols if their efficiency comes
close to the efficiency of the manual implementation tech-
niques (see Fig. 1).

3. Related work

In recent years the derivation of efficient implementations
from formal specifications has been investigated in several

works. They have brought interesting experimental results,
especially for FDTs based on finite state machines as Estelle
and SDL, but the question whether FDT based implemen-
tations can compete with the hand-coded ones in perfor-
mance has not yet been answered definitely. The
approaches pursued in these works were different. The
research on the development of efficient code generation
concepts started at the beginnings of this decade. In Ref.
[23] an intermediate level as a basis for the automated code
generation was proposed. This intermediate level refines the
given protocol specification, resolves nondeterminism and
adds all the information needed for the implementation, e.g.
about the target system. Hofmann [19] discusses the
integrated implementation of several protocol layers by
constructing the product automaton of the related protocol
automata. In Ref. [15], experiments with the experimental
Estelle-C compiler EECT are reported that applies opti-
mized algorithms for implementing certain features of the
Estelle semantics, e.g. for the selection of the fireable tran-
sitions and for the handling of the input queues of the
modules. The results show that the performance of the
generated implementations can be increased by optimizing
algorithms but the improvements are not yet adequate for
real-life implementations. Further, the concept of a variable
implementation model was proposed in this work to better
adjust the derived implementation to a given implemen-
tation environment. Several approaches were dedicated to
the exploitation of the protocol inherent parallelism
[6,12,31]. The obtained results are summarized in Ref.
[13]. They show that the efficiency of the derived
implementations can be improved by using parallelism.
The potential of parallelism in protocols, however, is
often too small and the additional overhead for synchroni-
zation and communication too high to achieve a consider-
able efficiency gain. More promising results are expected
from an integrated handling of layers and data operations.
Abbott and Peterson [1] present a compiler for a special
language called Morpheus that uses the integrated layer
processing (ILP) approach [10]. It achieves a performance
gain of about 50%. Leue and Oechslin [28] describe an
algorithm computing theCommon Pathfrom SDL specifi-
cations as a basis for ILP implementations. A compiler for
deriving ILP implementations from Estelle is reported in
Ref. [4]. The authors state that they achieve the same effi-
ciency like manual implementations, but they do not
describe how the semantic constraints are reflected in the
mapping process. For standardized FDTs, such a compiler is
not yet reported. Recent research [2,5], however, has
pointed out that the application of ILP is not recommended
in every case. Efficient implementations using the activity
thread model [9,32] are reported in Ref. [16]. The approach
can be applied to SDL without special assumptions. For
Estelle, the application is limited as Estelle’s parent/chil-
dren priority principle introduces semantic constraints [17].

As long as there do not exist automated implementation
techniques that provide an adequate efficiency, other
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solutions are chosen in practice. Mansurov [29] and Hakan-
son et al. [14] propose to combine programming languages
and SDL specification to increase the efficiency of auto-
matically generated implementations. For the SDL,Cmicro
code generator [33], the use of certain SDL constructs
(object-oriented features, enabling conditions, continuous
signals, import/export, view/reveal etc.) is entirely prohib-
ited. Further, there is a recommendation to avoid the appli-
cation of other constructs (save, create, output to
parent/sender… ). Thus, the implementation overhead
caused by the semantics of these language elements is
avoided.

Considering the different approaches, we state that in
principle there are two ways to improve the performance
of automatically generated implementations:

1. To support the implementation process by modifying or
restricting the semantics of the FDT, i.e. to prohibit the
use of certain language features, to introduce new
language concepts or to employ specific specification
styles for which an efficient implementation strategy
exists.

2. To improve the mapping strategies and to make them
more flexible.

In this paper, we follow the second way. To cope with the
constraints of automated implementation a more general
approach is required which combines the benefits of the
different proposed solutions discussed above.

4. A configurable FDT compiler

The approach we persue to overcome the constraints of
the automated protocol implementation is that of a config-
urable compiler. The following features characterize such a
compiler:

• the support of optimizing implementation techniques;
• a flexible adaptation to different implementation

contexts.

The compiler should give the implementor the possibility
to select the most appropriate mapping for his/her problem.
For example, the implementor should have the possibility to
select between different implementation strategies when
implementing signalling or data transfer protocols, or a
single protocol or a whole protocol stack, respectively. It
is obvious that this cannot be carried out by a simple
straightforward implementation of the FDT semantics.
Here the application of manual implementation techniques
is indispensable. In addition to the selection of an appro-
priate implementation model, the implementor should be
given the opportunity to introduce information on the used
target system and the implementation context (number of
processors, memory organization, timer values) as para-
meters for the code generation process to generate a tailored
runtime system. Thus, it will be possible to reduce the

semantic overhead of FDT based implementations, to
integrate several protocol layers in the implementation
process, and to make implementation models more flexible.

The development of a configurable FDT compiler
requires the solution of several problems. These problems
concern:

• the integration of optimizing implementation techniques;
• the mapping of the FDT elements into an appropriate

internal representation;
• the design of the runtime system;
• language means for controlling the configuration and

code generation process.

In the following we present with the SDL compiler
COCOS a concrete solution for such a configurable com-
piler. Before describing the structure of the compiler we
discuss the problems listed above. The solutions proposed
in this discussion relate to SDL. Similar solutions can be
developed for other FDTs if the specific of their semantics is
taken into account [17]. The COCOS compiler currently
supports three implementation techniques: the server
model, the activity thread model and the integrated layer
processing. Owing to lack of space we focus in this paper
on the first two, implementation techniques. The generation
of integrated layer processing implementations will be
described in a separate paper.

5. Applied implementation techniques

In this section we discuss the semantic problems of the
integrating server and the activity thread model implemen-
tations into FDT compilers. These techniques denote differ-
ent process models. The process model describes the
manner how the specification is mapped on the process
structure of the implementation environment or operating
system, respectively [32]. It represents the main component
of the implementation model. We briefly introduce the prin-
ciple of each process model and discuss its applicability. For
the application of the activity thread approach, we present a
new technique calledtransition reordering for mapping
formal descriptions on activity threads during compilation.
Beforehand, we begin with a short overview on the basic
features of SDL.

5.1. SDL

SDL (Specification and Description Language) [22] is the
specification language of the ITU-T. It is a widely accepted
specification technique for the software design of telecom-
munication systems. SDL has also successfully been applied
for the specification of communication protocols. The
development of SDL started in the seventies. The language
is redefined and extended in a 4-year cycle. Important
versions are SDL’88 and SDL’92. SDL possesses two
syntactical forms: the graphical representation SDL/GR
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and the textual representation SDL/PR. The graphical repre-
sentation is more widely used.

SDL distinguishes three description levels: system, block,
and process. The system level forms the frame of the
description. It represents an abstract machine that commu-
nicates with its environment. A system consists of several
blocks that describe subsystems. The blocks in turn may
contain subblocks thus forming a treelike specification
structure. The blocks at the leave level consist of one or
more processes. The process is the basic description element
in SDL. It represents an extended finite state machine
(EFSM). Processes are independent and run concurrently.
They interact with other processes by exchanging messages,
called signals in SDL. Each process has an unlimited input
queue storing incoming signals and timer signals (timeouts).
The input queue is a FIFO queue. As other formal descrip-
tion techniques SDL distinguishes between the definition of
a process and the incarnation of process exemplars, called

process instances. Every process instance gets a unique
identification at runtime.

The communication in SDL is asynchronous. Processes
located in the same block exchange signals via signal routes.
The interaction across block boundaries is carried out by
means of channels.

For the description of the behaviour of the processes,
SDL provides different symbols for indicating the states,
the inputs and outputs, and local actions. The description
is state oriented. It lists all states of the process. For each
state, the possible input events and the transitions they
trigger are specified. A transition contains local actions
like assignments and other calculations. It may contain
one or more outputs. At the end of each transition the
successor state is indicated. In a current state, a process
awaits and consumes the front signal of its input queue. If
a transition is defined for this signal, the transition is
executed. Otherwise, the process remains in its current
state and the signal is removed. Thesave mechanism,
however, can save a removed signal in order to match a
subsequent transition. Timer signals are handled like any
other signal and put in the input queue.

5.2. Implementation techniques

5.2.1. Server model
Basic principle: the server model [32] implements the

protocol entities by a cyclic task (process or thread of the
operating system or runtime system) (see Fig. 2). This task
is similar to a device driver. It reads an incoming signal
from an input queue, analyses it and switches to the code
segment that handles the signal. The code segment repre-
sents a transition of an extended finite state machine. After
handling the signal a possible output is written in the input
queue of the protocol entity of the next layer and the server
returns to the beginning to read the next signal. The protocol
entities are usually executed in a round robin fashion so that
every entity can proceed. This technique also supports the
handling of spontaneous transitions.

Applicability: the automatic derivation of code according
to the server model is straight-forward, because the above
explained basic principle corresponds to the description
paradigm of most FDTs (whereby the decision, which
code segment the server switches to, is determined by
semantic rules of the FDT). Therefore, automated imple-
mentation techniques usually apply this process model.
The server model, however, exhibits heavy overhead for
storing the events between the protocol entities and for
process management so that it limits the generation of
efficient code [16].

5.2.2. Activity thread model
Basic principle: the activity thread technique [17,32]

implements a protocol entity as a set of procedures. For
each input signal, a procedure is provided. It usually imple-
ments a transition of the protocol automaton. The active
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elements in this model are the signals. An incoming signal
activates the corresponding procedure, which immediately
handles the signal, and when producing an output calls the
respective procedure of the next entity. The sequence of
inputs and outputs (input! output! input…input!
output) results in a sequence of procedure calls called activ-
ity thread. Note that the term activity thread does not refer to
an operating system thread. It denotes the execution path a
signal triggers in the protocol stack. Activity threads can run
in both directions, upwards and downwards. The respective
procedure calls are also denoted as upcalls and downcalls.
Fig. 3 depicts the structure of an activity thread procedure.
After calling the procedure first the state of the protocol
automaton has to be determined. If the entity is not in the
state for handling the signal the control is returned to the
calling entity, optionally with an error code. Otherwise the
respective transition is executed. If the transition contains an
output the corresponding procedure is called. An activity
thread terminates if a transition contains nooutput state-
ments or if the incoming signal cannot be handled in the
current state (see above). In these cases the control is
returned to the initiator of the call sequence.

Applicability: the activity thread technique provides very
efficient implementations because it avoids the storing of
signals when calling the next protocol entity [9]. Its seman-
tic model (synchronous computation and communication),
however, considerably differs from the semantic model of
SDL. The application of synchronous communication in
SDL implementations causes several semantic conflicts.
Therefore, SDL compilers usually apply the server model
that supports a straight mapping of the SDL semantics
instead of the more complicated activity thread approach.

5.3. Handling of semantic conflicts

The semantic conflicts which may appear when directly

mapping SDL specifications into activity threads can be
divided in two groups: interferences of transitions, and over-
taking of signals. In both cases they are caused by the
appearance of cyclic process call sequences at runtime. In
real-life implementations server and activity thread model
are usually combined. The server model is used to imple-
ment the asynchronous interface to the environment
whereas the activity thread technique is applied within the
protocol stack. In such combined implementations an over-
taking of signals may also appear [27].

5.3.1. Interference of transitions
In the communication between two or more processes the

activity thread implementation principle may cause situ-
ations in which a signal is consumed by the receiving
process before the sender has finished its transition. This
may lead to the following errors:

• discarded signals;
• inverted order of state changes and variable assignments.

The discarding of signals may occur when a procedure
call implementing anoutput statement is executed before
the assignment of the next state. In this case the process
instance cannot change its state until the called procedure
has returned control. Fig. 4 gives an example for such a
situation.2

A conforming implementation has to guarantee that
processP1 changes to stateupdateafter sending the signal
auth. Then it can accept the signalsaccountor reject by
means of which processP2 responds toauth. In contrast
to the expected correct behaviour the signalsaccountand
reject, respectively, are always discarded by processP1,
becauseP1 remains in statelogin until the procedure call
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for the output ofauth is finished. Fig. 5 shows the resulting
cyclic process call sequence.

5.3.2. Overtaking of signals in activity thread
implementations

SDL guarantees that the order of signals sent via a signal
route or a channel is preserved at destination. If, for
instance, a signals1 is sent at timet and a signals2 at
time t 1 x; s1has to be delivered befores2. When straight-
way applying the activity thread approach signals may over-
take each other.

This situation may happen if a transition contains several
output statements. The mapping ofoutput statements
onto procedure calls causes that the second, third and any
further procedure call is delayed until the first one and all
successor calls have been finished. If one of these successors
uses a signal route that is also used by one of the other
output statements of the transition with multiple outputs,
the signals overtake. Fig. 6 shows an SDL specification in
which the preconditions for signal overtaking are fulfilled.

In a straightway-generated activity thread implemen-
tation of the specification given in Fig. 6 the signalregister
would trigger the following execution. ProcessP1 sends
signalauth to processP2 that replies withnotokor ok. P1
immediately forwards the signalrejectrespectively account
to processP3, which responds withacc, or Nacc to the
address given innewadr. After that the control returns to

P1 which sends the signaladr to P3. In contrast to the
specified behaviour, one of the signalsaccountor reject
now has overtakenadr. As consequence,P3sends the signal
acc or Nacc to a wrong address. The resulting process call
sequence is depicted in Fig. 7.

5.3.3. Overtaking of signals in combined implementations
An implementation, which uses both process models,

combines rather different implementation approaches. The
server model processes are usually executed by a runtime
system scheduler whereas the activity thread procedures are
executed whenever a signal arrives. In such a combined
implementation overtaking of signals may appear if the
following preconditions are fulfilled:

• at least one server, model process communicates via the
global input queue with two activity thread process;

• these activity thread process are communicating via
procedure calls with each other.

Fig. 8 shows a specification that fulfils these precon-
ditions. We suppose that ProcessP1 is mapped on a server
model process, while processesP2andP3 are implemented
using the activity thread model. In a straightforward imple-
mentation of the specification the signalregister would
trigger the following execution. The process call sequence
belonging to this example is represented in Fig. 9. Process
P1 appends the signalsauth and adr to the global input
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queue (see Fig. 9(b)). Then the scheduler executesP2 with
signal auth. P2 immediately sends one of the signals
account orreject to P3 (see Fig. 9(c)).P3 forwardsacc or
Naccto the address given innewadr. After that the control
returns to the scheduler which executes nowP3 with adr
(see Fig. 9(d)). In contrast to the specified behaviour, one of
the signalsaccountor reject now has overtakenadr. As
consequence,P3 will send the signalacc or Nacc to a
wrong address.

5.4. Transition reordering

5.4.1. Principle
So far the semantic conflicts described above could only

be resolved at runtime. In Ref. [16] this was carried out by
extending the activity thread implementation with an activ-
ity thread scheduler and a global signal list. Fig. 10(a)
depicts the structure of such an implementation. When
executing anoutput statement the signal and its receiver
are stored in a signal list. The activity thread scheduler
processes the signal list in a FIFO manner. It always acti-
vates the receiver processes of the first entry. The receiver
process consumes the signal and executes the respective
transition. By this, further signals can be added by means
of an append function to the signal list if the transition

containsoutput statements. After finishing the procedure
the control is returned to the scheduler. The shortage of this
mechanism is that the execution of theoutput statement is
delayed, i.e. it may be processed afteroutput statements
of other transitions. This leads to an asynchronous commu-
nication and considerably increases the overhead of the
implementation compared to a pure activity thread imple-
mentation.

In the following we present an approach called transi-
tion reordering, which enables the handling of during
compilation. The approach adapts the principle of code
restructuring which is applied for loop optimization in
modern programming language compilers [3]. The tran-
sition reordering designates that the SDL statements of a
transition are not implemented in the order as they are
specified. The reordering only concerns theoutput
statements. They are reordered at compile time in such
a way that the semantic conflicts described above cannot
occur. Theoutput statements are now implemented in
two steps.

• Replace theoutput statement by an operation that
stores the signal.

• Append theoutput statement with the stored signal to
the end of the transition. If adecision statement
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follows the output statement the modifiedoutput
statements has to be appended to each branch of the
decision statement.

All other SDL statements are implemented in the order
they are specified, i.e. only the sending of the signals is
delayed. This approach does not require any additional
runtime support. Theoutput statements are executed
after the transition has reached the successor state. Thus,
according to the activity thread principle the receiver
process is triggered by the sender process. The control
only returns to the receiver process if no furtheroutput
statements have to be processed or if in connection with a
server model implementation a signal is sent to an asynchro-
nous (buffering) interface (see Fig. 10(b)). Using transition
reordering the indirect realization of the activity thread
proposed in Ref. [16] can be avoided. The transitions can
now straightway be mapped on procedures.

The reordering of actions inside a transition is allowed,
because of the following:

1. SDL processes are nonpreemptive. A transition is

finished before a new transition can be executed.
2. Signals cannot be modified after theoutput state-

ment.

These conditions guarantee that the shift of theoutput
statements to the end of the transition does not influence the
compliance between specification and implementation.
Condition (1) expresses that theoutput statements are
also executed if they are implemented at the end of the
transition, because there is no statement in SDL, which
can interrupt the execution of the transition. Condition (2)
ensures that a statement following theoutput statement
cannot modify the data transferred by a signal. Thus, the
delay in the sending of the signals cannot lead to a transmis-
sion of falsified data.

The transition reordering cannot be used to avoid seman-
tic conflicts if:

• output statements are used inside a loop for which the
number of executions cannot be computed during
compile time;

• two or moreoutput statements of the same transition
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trigger cyclic process call sequences that terminate with
this transition;

• severaloutput statements send signals to the same
receiver and theoutput statement that triggers the
cyclic process call sequences is not specified as last.

In these exceptional cases which can be detected during
compilation a buffered signal exchange, similar as in Ref.
[16], has to be generated.

In the next sections we show how the semantic conflicts
discussed above are avoided by applyingtransition
reordering.

5.4.2. Avoiding transition interferences
The reordering of transitions ensures that assignments to

variables and state changes are carried out in the correct
order even if cyclic process call sequences appear. It
prevents the discarding of signals and the inversion of vari-
able settings. The conformance between specification and
implementation is preserved. Fig. 11 shows the specification
of the example from Fig. 4 after transition reordering. Fig.
12 depicts the respective process call sequence and indicates
that the implementation is executed correctly.

5.4.3. Avoiding overtaking of signals in activity thread
implementations

Since at compile time the logical structure of the imple-
mentation is known the compiler can determine whether
there are transitions with multiple outputs which lead to
an overtaking of signals. This is carried out by analysing

the execution paths and the state changes of the transitions
as described next. Based on this information it can deter-
mine in which order the procedure calls implementing
output statements have to be inserted into the final code
to prevent the overtaking of signals.

In the first step a data flow analysis is applied to detect
possible cyclic process call sequences. For this purpose, for
each signal sent in a transition with severaloutput state-
ments the set of successor signals and of receiving processes
is determined. The algorithm is recursively applied to the
successor signals and terminates when the signals are either
sent to the environment or to a process instance implemen-
ted according to the server model. For this analysis, it is
assumed that each receiving process is in a state where it
can accept the incoming signal and executes the correspond-
ing transition. Thus, we obtain the execution path triggered
by eachoutput statement. If possible cyclic behaviour is
detected it is proved whether the first and the last transition
of the call sequence use the same signal route. If this
happens theoutput statement triggering the cyclic
process call sequence has to be executed last so that the
signal which may be overtaken is sent before the other
signals.

Fig. 13 shows the order in which the example given in
Fig. 6 is implemented after reordering of the transitions.
Note that the outputs of processP1 are not only delayed
but that their order has also been changed. Fig. 14 shows
again the resulting process call sequence. In this implemen-
tation the signalsadr andaccountarrive in the correct order
at P3.
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5.4.4. Avoiding overtaking of signals in combined
implementations

To avoid signal overtaking in combined implementa-
tions the execution path triggered by eachoutput
statement have to be determined. This is carried out by
applying the algorithm described in Section 5.4.3 to each
signal that a server model process sends to an activity
thread process. Then it is checked whether there are
process that receives signals via their input queue as
well as via procedure calls. If no such process exists no
additional measures have to be taken. Otherwise it has to
be assured that the signals sent via the input queues are
consumed always first. To achieve this theoutput state-
ments that do not trigger an execution path are implemen-
ted first. Then the statements are implemented whose
execution paths do not containoutputs to processes
that are also addressed by the server model process
under implementation. Finally the remainingoutput
statements are implemented.

Fig. 15 shows the execution order of the example given in
Fig. 8 after the reordering of transitions. Note that the order
of the outputs of processP1 has been changed. Fig. 16
shows again the resulting process call sequence. In this
implementation the signalsadr and accountarrive in the
correct order atP3.

6. Further mapping issues

The development of a configurable compiler further
requires solutions for the mapping of the basic structures
of the given FDT into an internal representation, for the
runtime support of the compiler, and for the controlling of
the compiling process. These issues are considered in this
section. The discussion is again oriented to SDL.

6.1. Implementation of SDL processes

To handle SDL processes for different implementation
techniques during the code generation process a generic
internal structure for the processes is required. An obvious
solution for this is the use of re-entrant procedures, which
embody the behaviour part of the process [16] (see Fig. 17).
For mapping SDL processes on re-entrant procedures, the
data parts have to be separated. They are stored in a so-
called instance control block (ICB) which is created for
each process instance. Each instance control block contains
the following data:

• all variables of the process;
• all internal information asoffspring, parent,

self andsender ;
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• a list of all saved signals (save list);
• the state of the process.

The implementation of the re-entrant procedures differs
for the chosen implementation technique. When the server
model is applied one procedure (SM procedure) is imple-
mented for each SDL process type. In activity thread imple-
mentations a procedure for each input signal (At procedure)
is generated. All re-entrant procedures are extended by a
function that checks whether thesave list in the instance
control block is empty or not. In the latter case, the elements
of the save listare executed first.

6.2. Runtime system

For the runtime system of a configurable compiler,
similar decisions have to be taken. It must be capable of
simultaneously supporting different implementation tech-
niques. This requires means to support the communication
between SDL processes that are implemented according to

different implementation strategies as well as a scheduler
that is able to manage all kinds of runtime system tasks.

In server model implementations an individual input
queue is used to buffer signals. But it has proved that it is
more efficient to use a common input queue for all processes
[15] in the implementation. In order to improve the effi-
ciency of the server model implementations we use a
common input queue. The activity thread concept dissolves
the queue principle, since the signals are immediately
processed. However, a buffered interface is needed at the
interface to the environment (application, network) to accept
the incoming signals and for signal exchange between
server model processes and activity thread model
processes. This interface is provided by using the
common input queue.

Normally, server model processes are scheduled in round
robin fashion. This introduces a considerable scheduling
overhead. In order to decrease this overhead it is useful to
introduce a ready queue for the scheduler. This ready queue
can be used to schedule server model processes as well as
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activity thread model processes, since both are implemented
as procedures. Server model processes are identified by their
names whereas the activity thread procedures are identified
by the signal name. This ready queue has to provide the
following information:

• the identity of the receiving process instance;
• the identity of the sending instance;
• the name of the signal.

The distinction between a common input queue and a
ready queue introduces additional overhead as the identity
of processes that received a signal has to be appended to the
ready queue. This overhead can be avoided if the global
input queue is used as ready queue. We call this combined
queueprocedure call list(PCL). It provides all information
needed for scheduling and contains additionally apointer to
the data of the signal.

Further, the runtime system has to provide a timer
management and an interface to the environment. There
are no specific demands on these components by the config-
urable compiler. Fig. 18 shows the structure of such a
runtime support system. It can be realized using operating
system threads. The description of a concrete solution of
such a runtime system is given in Ref. [26].

6.3. Configuration and control language

A configurable compiler requires language means to
support the configuration and to control the code generation

process. For this purpose, a specific control language is
required which allows the implementor to indicate imple-
mentation decisions as the selected implementation tech-
nique or to introduce parameters of the target system. This
information refines the protocol specification to an imple-
mentation-oriented specification that is finally the basis for
code generation. These refinements can be either given in a
separate configuration file or can be embedded into the
formal specification. The main drawback of configuration
files is that it is difficult to specify implementation decisions
concerning single transitions, as it is for instance needed for
integrated layer processing implementations. When embed-
ding implementation decisions into specifications this short-
age can be avoided. This can be carried out by extending the
FDT or by applying annotations. The extension of the FDT
would lead to interferences with already available tools.
Therefore, we decided to define a control and configuration
language for SDL called iSDL [25].

The iSDL statements are syntactically included as
comments in the SDL specification (SDL/GR: comment
and text symbols, SDL/PR: comments). The use of
comments does not interfere the processing of the specifi-
cation with existing SDL tools such as SDT [17] and Geode
[34] and simplifies the reuse of the specification. The iSDL
annotations are marked by the keywords iSDL and
iSDLend, or for short by ${ and }. The iSDL statements
are separated by semicolon.

iSDL annotations may be introduced at any level of an
SDL specification. Annotations at system or block level are
applied to all substructures. iSDL descriptions given at
system level may be refined or changed at block level.
Note that for elaborating the implementation-oriented speci-
fication the implementor does not need a detailed
knowledge of the structure of the compiler. She/he must
be familiar with the selected implementation technique
and the memory organization of the target system. Whether
the chosen implementation strategy may be applied in
combination with the given implementation context is
detected automatically during compilation. Below we give
some examples of elements of the annotation. A complete
description of iSDL is given in Ref. [25].

• Mapping on the target hardware. iSDL assists to control
the mapping of processes of the implementation on
processor clusters, e.g.

define cluster cluster1: processor1, processor2
shared memory ; mapping process_1, process_2
on cluster1;
The implementation of the signal exchange depends on
the underlying hardware. If SDL processes are mapped
on processors with distributed memory message
passing has to be applied. For shared memory refer-
ences are exchanged via the procedure call list. Shared
memory allows more efficient implementations.

• Selection of the process model. iSDL allows the
implementor to select between the supported process
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models, e.g.
process model server;
The server model can be used independently of the
memory organization of the target hardware. The
activity thread model can only be applied for target
systems with shared memory.

• Definition of time units. SDL does not allow defining
timer ranges required for the final implementation. This
information can be added by means of iSDL. The pre-
defined time units are s, ms,ms.

• Definition of the length of input and save queues. In
SDL, the length of an input queue is unlimited. For
the generation of efficient implementations, it is necessary
to know the length of the input queues to initialize the
PCL when setting up the SDL system. Thus, no time is lost
for allocating entries to the PCL during runtime.

input queue 30;
For the same reason, iSDL also supports the definition
of the length of the save list. The distinction between
input queue and save list is necessary, because activity
thread implementations do not use input queues at all.

Further, iSDL provides means to support integrated layer
processing implementations and to evaluate the perfor-
mance of the selected implementation solution.

6.4. The SDL compiler COCOS

In this section we give an example for a configurable
compiler which has been implemented at the Brandenburg
University of Technology for the FDT SDL. It is called
COCOS (COnfigurable COmpiler for SDL) [26]. Owing to
its experimental character the compiler does not support the
full scope of SDL. The COCOS parser accepts the full
SDL’92 language. The code generation supports SDL’92
without object oriented features and the axiomatic definition
of data types. COCOS implement the principles the princi-
ples, which were introduced in the previous sections.

A configurable compiler requires special means for the

parsing process. In addition to the syntax and semantics
check of the formal description, it has to prove the correct-
ness of the implementation-oriented settings. As these state-
ments are not handled as pure FDT extensions a second
parser is needed for their compilation. To prove whether
the implementation oriented settings assure a conform
implementation of the formal description it is useful to
transfer both specifications into a common intermediate
representation which can be analysed by the same tool
component. The intermediate representation is also required
to determine, process, and document changes in the imple-
mentation order as it is applied, for instance, for the tran-
sition reordering. Moreover, a selector component is
required which controls the generation of different code
sequences for an FDT statement from the intermediate repre-
sentation depending on the selected implementation model.

The COCOS compiler implements these design prin-
ciples. It consists of three main components: the analyser,
the intermediate format analyser (IF-analyser), and the synthe-
sizer. The structure of the compiler is depicted in Fig. 19.

The basis for the code generation is an SDL protocol
specification which was refined with implementation related
information presented in iSDL. The implementation-
oriented specification is input to the analyser for syntax
checking. The analyser consists of two parsers, one for the
SDL text and one for the iSDL annotation. It outputs code in
an intermediate format in which the SDL constructs are
denoted by an implementation oriented representation or a
corresponding default value. The intermediate represen-
tation is used for computations needed to detect semantics
violations and to optimize the performance. These compu-
tations are performed by the IF-analyser. They comprise:

• the detection of cyclic execution which prevents the
application of the activity thread model;

• the identification of the receiving process instances as far
as possible at compile time.

If semantic violations are detected the code generation stops
and indicates the respective errors. Otherwise, the inter-
mediate code including the results of the analysis is input
into the synthesizer for final code generation.

The synthesizer consists of three parts: theselector; a set
of codewriting functions; and auser repository. For certain
SDL statements, e.g. output, there exist several mapping
rules. Each mapping rule implements a separate code writ-
ing function. The selection of the concrete rules is deter-
mined by the iSDL specification. The selector identifies the
mapping rule and calls the respective code writing function.
The code segments provided in the user repository are inlined
by the selector at the places where the corresponding actions
are specified. This is also controlled by means of iSDL.

The synthezier generates various C files, which comprise
the implemented SDL processes and the required configur-
able components of the runtime support system (see Fig.
20). All these files plus the static part of the runtime system
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(timer management, interface to the environment) have to
be translated by a C compiler to obtain executable code.

7. Performance measurements

In this section we describe measurements which
demonstrate the effect of the approach. For the measure-
ments, we used the SDL specification of a client/server
application based on a TCP/IP protocol stack described in
Ref. [18]. The structure of the specification is depicted in
Fig. 21.

The client process generates data that have to be trans-
mitted to the server process and to be confirmed. Before the
client can open a TCP connection it has to ask for a socket.
The server process initiates a passive open to the socket
layer. Then it listens. The socket process forwards the appli-
cation data to the TCP process and vice versa. The TCP
process contains the known functionality of the protocol:
division of the application data into TCP segments, timer
control of the transmission, discarding of duplicate IP pack-
ets, flow control, congestion control and error handling. The
IP process has a simplified functionality in this specifi-
cation. It only supplements the IP headers to TCP packets
and assigns the incoming IP packets to TCP connections.
Fragmentation is not included. The network process stimu-
lates the network and transfers the packets from the client to
the server site.

We generated two implementations with COCOS. In the
first one all SDL processes were implemented as server
model processes. In the second we combined server model
processes and activity thread model processes. The SDL
processSOCKET, TCP and IP are implemented as activity
thread processes usingtransition reordering. We also
present measurements which compare the efficiency of

these implementations with code generated by a commer-
cially available tool—theCadvancedcode generator of the
SDT tool version 3.4 [33].

COCOS as well asCadvancedimplement the whole
specification by a single operating system process. Thus,
the interfaces between the generated code and the operating
system do not influence the measurement results. Note that
both compilers use the same technique to reduce the oper-
ating system overhead. For each signal that is sent memory
has to be allocated to store its data. This memory is usually
allocated by the operating system at runtime.Cadvanced
[33] as well as COCOS allocate this memory during system
initialization.

The generated C code of all implementations was
compiled with the gcc compiler without any optimizing
options in order to assure that the performance gain is
achieved by the applied implementation techniques and
not due to compiler optimizations.

We measured the time for the transmission of a sequence
of packets starting from the transmission of the first packet
until the reception of the last acknowledgement at client
site. The process client sends the signal start to the environ-
ment when it forwards the first packet. The end of the trans-
mission is indicated by the stop signal.

The measurements were made on a Sun Sparc 20 work-
station with four processors and Solaris 2.5 as the operating
system. We measured the time for the transmission of 1000,
10 000 and 20 000 packets with a packet size of 1024 byte.
Each measurement was repeated 50 times. To exclude
exceptional behaviour we determined the frequency of the
measured values. Then we defined an interval with a length
of 100 ms around the most frequent values. The values
shown in Fig. 22 represent the arithmetic middle of the
values of this interval.

The results show that the implementations generated by
COCOS achieve a 50–110% better performance than those
of Cadvanced. For the server model implementation, the
performance gain is achieved by using a predefined length
of the individual input queues and due to the optimized
scheduling (see Section. 6.2). The activity thread based
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processes do not use the procedure call list for communi-
cation. Thereby they do not have to be scheduled by the
runtime support system. This brings another performance
gain of 35%.

Further performance improvements will result from the
avoidance of data copy operations [26] and an optimized
timer management.

8. Concluding remarks

In this paper, we have discussed steps to improve the
quality of automated implementations. The objective of our
work has been to increase the performance of automatically
derived code so that this technique can be applied to the
implementation of real-life protocols. This can only be
achieved if the efficiency of the generated code comes
close to that of manually developed implementations. A
successful solution of this problem will considerably
increase the acceptance of formal description techniques
in practice because it permits a continual application of a
FDT based technology in all phases of the protocol devel-
opment process from design to test.

Our approach combines two concepts: the integration of
proved implementation techniques applied for manual
coding and the integration of features to make the transfor-
mation process more flexible. This helps to overcome the
rigid mapping rules applied so far in FDT compilers. It gives
the implementor the opportunity to take the characteristics
of the given implementation context into account. She/he
can select the most appropriate implementation model and
generate a tailored runtime support system.

For the code generation process, we use an implemen-
tation oriented specification level that refines the protocol
specification by adding all needed information about the
implementation and the target system. The introduction of
an implementation oriented specification level brings
several benefits for the implementation process: It allows
introducing implementation-oriented information into the
protocol specification. It documents implementation design

decisions at specification level. This facilitates the reuse of
the implementation-oriented specification and the imple-
mentation as well. It can be further used to add features to
evaluate the performance of different implementation
options.

By integrating efficient implementation techniques which
are proved in manual coding we have shown that, on the one
hand, techniques such as the activity thread model can be
applied for automated protocol implementation and that, on
the other hand, there is still a large potential for optimiz-
ations in this area. The presented transition reordering
approach allows it to dissolve most semantic conflicts
during compilation.

The described concepts have been implemented in the
configurable SDL compiler COCOS. The measurements
we have presented indicate a considerable increase in the
efficiency of the generated code compared to existing SDL
tools as theCadvancedcompiler. Efficiency improvements
from 50 up to 110% depending on the applied technique
show that a considerable progress has been achieved.

In a next step, we will further evaluate the applicability of
the different implementation techniques of COCOS includ-
ing the integrated layer processing component. So we plan
to compare our tool with hand-coded implementations of
appropriate protocols. The latter seems to be a simple
task, but there scarcely exist real-life protocol implemen-
tations of protocols that are derived from SDL specifica-
tions, e.g. for the TCP/IP protocol stack, that could be
taken as basis for such comparisons. For TCP/IP, there is
the additional problem that most real-life implementations
are kernel-integrated implementations. Such transfor-
mations from a formal description are not possible at the
current state of the research. They require further investi-
gations. Though TCP/IP implementations will scarcely be
the preferred application area of automated protocol imple-
mentation techniques. We see the application of these tech-
niques mainly for application-near protocols and for newly
designed protocols to fast derive an efficient implementation
from the formal description of the design, which can be
further, optimized if required.
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