An Improved Method for Bounding Stationary Measures of Finite Markov Processes

Peter Buchholz
Informatik IV, University of Dortmund

- Basic Assumptions
- Bounding Approach by Courtois/Semal
- Improved Bounds
- A new Bounding Algorithm
- Conclusions and Outlook

04.10.2005
Basic Definitions

We consider Markov Chains in discrete time with

- State space $S = \{1, \ldots, n\}$
- Reward vector $r \in \mathbb{R}_+^n$
- A lower bound on the transition probabilities $L \in \mathbb{R}^{n \times n}$ with $L \geq 0$ and $Le^T \leq 1$
- An upper bound on the transition probabilities $U \in \mathbb{R}^{n \times n}$ with $U \geq L$ and $Ue^T \geq 1$

- Goal: Computation of bounds for pr
 where $pP = p$, $pe^T = 1$ and P is an irreducible stochastic matrix with $L \leq P \leq U$
Basic Definitions

Reasons for knowing only bounds on transition probabilities:

- Limited knowledge of the application and its environment
- Limited accuracy of measurements
- Abstraction to achieve Markovian behavior
- Markov chains resulting from decomposition and aggregation

Approach can be extended to continuous time Markov chains with

- Bounds on the transition rate matrix $V \leq W$ such that
 - $V(i,j), W(i,j) \geq 0$ for $i \neq j$ and $V(i,i) \leq -\sum_{j \neq i} V(i,j)$, $W(i,i) \leq -\sum_{j \neq i} W(i,j)$

by using randomization

(i.e., $L = V/\alpha + I$ and $U = W/\alpha + I$, $\alpha \geq \max(|V(i,i)|)$)

04.10.2005
Basic Definitions

Definition of sets of matrices

- $\mathcal{P}_L = \{ P \mid P \geq L, P e^T = e^T \text{ and } P \text{ irreducible} \}$
 - $\mathcal{V}_L = \{ v \mid v \geq 0, \exists P \in \mathcal{P}_L: vP = v \text{ and } ve^T = 1 \}$

- $\mathcal{P}_U = \{ P \mid P \leq U, P e^T = e^T \text{ and } P \text{ irreducible} \}$
 - $\mathcal{V}_U = \{ v \mid v \geq 0, \exists P \in \mathcal{P}_U: vP = v \text{ and } ve^T = 1 \}$

- $\mathcal{P}_{L,U} = \mathcal{P}_L \cap \mathcal{P}_U$
 - $\mathcal{V}_{L,U} = \{ v \mid v \geq 0, \exists P \in \mathcal{P}_{L,U}: vP = v \text{ and } ve^T = 1 \}$

Find bounds $\min_{v \in \mathcal{V}_{L,U}} (vr)$ and $\max_{v \in \mathcal{V}_{L,U}} (vr)$

- Bounds on the expected reward knowing bounds on transition probabilities/rates

04.10.2005
Courtois/Semal Bounds

Bounds based on P_L (Courtois/Semal JACM 1984)

- Let $N = (I - L)^{-1}$ and $Z = (\text{diag}(Ne^T))^{-1}N$
 - $N \geq 0$ exists and Z is a stochastic matrix
 - $\min_{v \in V_L} (vr) = \min_{i \in \{1, \ldots, n\}} (e_iZr)$ and
 $\max_{v \in V_L} (vr) = \max_{i \in \{1, \ldots, n\}} (e_iZr)$

Bounds based on P_U (Courtois/Semal JACM 1984)

- Let $M = (I - U)^{-1}$ and $Y = (\text{diag}(Me^T))^{-1}M$
 - If M exists and $Me^T < 0$, $eM < 0$, then Y is a stochastic matrix and
 - $\min_{v \in V_U} (vr) = \min_{i \in \{1, \ldots, n\}} (e_iYr)$ and
 $\max_{v \in V_U} (vr) = \max_{i \in \{1, \ldots, n\}} (e_iYr)$
Courtois/Semal Bounds

- Best possible bounds if only P_L or P_U are known (but not the best bounds if $P_{L,U}$ is known!)
- Extensions and improvements of the approach until recently
 - Better bounds and alternative bound computation if the method is used in combination with aggregation e.g. Franceschinis/Muntz 1984, Semal 1995
 - Improved bounds, partially based on $P_{L,U}$ for upper Hessenberg matrices e.g. Muntz/Lui 1994, Mahevas/Rubino 2001
- A new approach for bound computation based on $P_{L,U}$ that is applicable for arbitrary matrices
Courtois/Semal Bounds

An example to clarify the problem:
Mean population/blocking prob. in a M/M/1/K system with \(\lambda \in [\lambda^-, \lambda^- + \varepsilon_1] \) and \(\mu \in [\mu^-, \mu^- + \varepsilon_2] \)
Results can be computed only from \(L \) not from \(U \) for our parameters!

Lower bounds of transition rates
(diagonal elements are not printed)

\[
\begin{pmatrix}
-\Sigma & \lambda^- \\
\mu^- & -\Sigma & \lambda^- \\
& \ddots & \ddots & \ddots \\
& & \mu^- & -\Sigma & \lambda^- \\
& & & \mu^- & -\Sigma
\end{pmatrix}
\]
Courtois/Semal Bounds

An example to clarify the problem:
Mean population/blocking prob. in a M/M/1/K system with $\lambda \in [\lambda^-, \lambda^-+\varepsilon_1]$ and $\mu \in [\mu^-, \mu^-+\varepsilon_2]$.
Results can be computed only from L not from U for our parameters!

Matrix yielding the lower bound for the rewards
(diagonal elements are not printed)

\[
\begin{pmatrix}
-\Sigma & \lambda^- \\
\mu^- + \varepsilon_1 + \varepsilon_2 & -\Sigma + \lambda^- \\
\vdots & \vdots & \vdots & \vdots \\
\varepsilon_1 + \varepsilon_2 & \mu^- & -\Sigma & \lambda^- \\
\varepsilon_1 + \varepsilon_2 & \mu^- & -\Sigma \\
\end{pmatrix}
\]
Courtois/Semal Bounds

An example to clarify the problem:
Mean population/blocking prob. in a M/M/1/K system with $\lambda \in [\lambda^-, \lambda^-+\varepsilon_1]$ and $\mu \in [\mu^-, \mu^-+\varepsilon_2]$ Results can be computed only from L not from U for our parameters!

Matrix yielding the upper bound for the rewards (diagonal elements are not printed)

$$
\begin{pmatrix}
-\Sigma & \lambda^- & \varepsilon_1 + \varepsilon_2 \\
\mu^- & -\Sigma & \lambda^- & \varepsilon_1 + \varepsilon_2 \\
\cdots & \cdots & \cdots & \cdots \\
\mu^- & -\Sigma & \lambda^- + \varepsilon_1 + \varepsilon_2 \\
\mu^- & -\Sigma
\end{pmatrix}
$$

Matrices for the bounds include transitions changing the population in the system by adding/removing K customers in one step \Rightarrow impossible from the system specification!!
Improved Bounds

Matrices yielding better bounds (in this case easy to prove)

Matrix yielding the lower bound for the rewards
(diagonal elements are not printed)

\[
\begin{pmatrix}
-\Sigma & \lambda^- \\
\mu^- + \varepsilon_2 & -\Sigma & \lambda^-
\end{pmatrix}
\]

Matrix yielding the upper bound for the rewards
(diagonal elements are not printed)

\[
\begin{pmatrix}
-\Sigma & \lambda^- + \varepsilon_1 \\
\mu^- & -\Sigma & \lambda^- + \varepsilon_1
\end{pmatrix}
\]
Improved Bounds

Mean population for varying \(K \)
\((\lambda^- = 0.475, \; \varepsilon_1 = 0.05, \; \mu^- = 0.95, \; \varepsilon_2 = 0.1) \)
Improved Bounds

Blocking probability for varying λ^-
($K = 20$, $\varepsilon_1 = 0.1 \cdot \lambda^-$, $\mu^- = 0.95$, $\varepsilon_2 = 0.1$)
Improved Bounds

If $L \neq U$, then $P_{L,U}$ is an infinite set!

For the computation of bounds we need to generate two matrices

- $P^- \in P_{L,U}$ with steady state vector v^- such that $v^- r = \min_{v \in V_{L,U}} (vr)$

- $P^+ \in P_{L,U}$ with steady state vector v^+ such that $v^+ r = \max_{v \in V_{L,U}} (vr)$

How to compute these matrices from an infinite set?
Improved Bounds

A matrix $P \in P_{L,U}$ is an extremal point of $P_{L,U}$ iff no two matrices $P_1, P_2 \in P_{L,U} (P_1 \neq P_2)$ exist such that $P = \beta P_1 + (1-\beta)P_2$ for $0 < \beta < 1$

$E_{L,U} = \{P | P \in P_{L,U} \text{ and } P \text{ is extremal point of } P_{L,U}\}$

Theorem 1:
1. $P \in E_{L,U} \iff \forall r \in \{1, \ldots, n\} \exists c_r \in \{1, \ldots, n\}$ such that $P(r,i) = L(r,i)$ or $P(r,i) = U(r,i)$ for all $i \neq c_r$
2. The set $E_{L,U}$ is finite and contains at most $(n!)^n$ matrices
Improved Bounds

Theorem 2:

1. \(\exists P^- \in E_{L,U} \) with steady state vector \(\mathbf{v}^- \) such that
 \[\mathbf{v}^- \mathbf{r} = \min_{\mathbf{v} \in V_{L,U}} (\mathbf{v} \mathbf{r}) \]

2. \(\exists P^+ \in E_{L,U} \) with steady state vector \(\mathbf{v}^+ \) such that
 \[\mathbf{v}^+ \mathbf{r} = \max_{\mathbf{v} \in V_{L,U}} (\mathbf{v} \mathbf{r}) \]

Where are we?

- The set can be enumerated and the maximum/minimum can be computed
- Unfortunately, the effort is too high even for small matrices
A new Bounding Algorithm

- Let Π be the set of permutations on $\{1,\ldots,n\}$
- For $\pi \in \Pi$ generate a matrix P as follows in at most n steps:
 - Start with $P^{(0)} = L$
 - Let for $m=1,\ldots,n$, $i=1,\ldots,n$ and $j=\pi(m)$:
 \[
 P^{(m)}(i,j) = \min(U(i,j), 1 - \sum_{k \neq i} P^{(m-1)}(i,k))
 \]
- Let $F_{L,U}$ be the set of all matrices P which are generated according to some $\pi \in \Pi$

Theorem 3:

1. $F_{L,U} \subseteq E_{L,U}$
2. $F_{L,U}$ contains at most $n!$ matrices
3. $P, P^+ \in F_{L,U}$

04.10.2005
A new Bounding Algorithm

For $\pi \in \Pi$ define

$$\Pi^{(1)}(\pi) = \{ \theta \mid \exists i,j: \pi(i)=\theta(j), \pi(j)=\theta(i) \text{ and } \forall k \neq i,j: \pi(k)=\theta(k) \}$$

- $\Pi^{(1)}(\pi)$ contains at most $n(n-1)/2$ permutations

Theorem 4:
Let $P_{\pi} \in F_{L,U}$ be generated using permutation π and let v_{π} the corresponding stationary vector, then

1. if $v_{\pi}r \leq v_{\theta}r$ for all $\theta \in \Pi^{(1)}(\pi) \Rightarrow v_{\pi}r = \min_{v \in V_{L,U}} (vr)$

2. if $v_{\pi}r \geq v_{\theta}r$ for all $\theta \in \Pi^{(1)}(\pi) \Rightarrow v_{\pi}r = \max_{v \in V_{L,U}} (vr)$
A new Bounding Algorithm

Outline of an algorithm (here computation of the upper bound):

1. Choose one $\pi \in \Pi$ and compute P_{π}
2. While $\theta \in \Pi^{(1)}(\pi)$ exist such that $v_{\pi}r \leq v_{\theta}r$ do
 i. $\pi = \theta$
3. $v_{\pi}r$ is the upper bound for the reward

Effort of the approach

- Analysis of a new permutation in step 2 requires rank one update of an inverse matrix for all columns (worst case effort $O(n^3)$)
- Number of permutations π that is considered can be in $O(n!)$

Worst case complexity is horrible, but average case seems to be much better!
A new Bounding Algorithm

Capacity 20

\[\lambda \in [0.792, 0.808] \]
\[\mu \in [0.990, 1.010] \]
\[\xi \in [0.99 \cdot 10^{-x}, 1.01 \cdot 10^{-x}] \]
\[\nu \in [0.99 \cdot 10^{-x-1}, 1.01 \cdot 10^{-x-1}] \]

04.10.2005
A new Bounding Algorithm

- Erlang 2 distribution at the central station
- K nearly lumpable peripheral stations
- N customers

State space detailed/aggregated (K,N)

Spread of the bounds for the throughput

04.10.2005
Conclusions and Outlook

✓ Bounding matrices in a polyhedron of matrices
✓ Algorithm to compute bounding matrices
✓ Bounds are sharp (and improve known bounds significantly)
✓ Effort for bound computation is high

➢ Further Investigation of the algorithm
➢ Application of the approach for decomposition and aggregation
➢ More efficient methods for specific classes of matrices