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Informatik IV

Overview 2
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
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Informatik IV

Continuous Time Markov Chains (CTMCs) with Rewards( )

Components:1.0 (0.0) 1.0 (0.0)1.0 (3.0) 0.0 (2.0) 0.0 (1.0)

1 2 3
States

0.5 (0.1) 0.5 (0.1)
Initial Probabilities

1.0 (0.0) Rate Rewards

Initial Probabilities

Transitions

0.01 (0.0) Transition Rates
4

( ) Transition Rates

Impulse Rewards
0 0 (0 0)
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Informatik IV

Behavior of the CTMC with rewards:
 P t ti ll di t ib t d ti i t t Process stays an exponentially distributed time in a state 

(if it is not absorbing)
 Performs a transition into a successor state 

(according to the transition rates)
 Accumulates (rate) rewards per time unit in a state and 

impulse reward per transitionimpulse reward per transition

Result measures:
 Average reward accumulated per unit of time in the long run Average reward accumulated per unit of time in the long run
 Discounted reward
 Accumulated reward during a finite interval Accumulated reward during a finite interval
 Accumulated reward before entering a state or subset of states

© Peter Buchholz 2011
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Informatik IV

Extension: Choose between different actions in a state

1.0 (0.0)1.0 (3.0) 0.0 (2.0) 0.0 (1.0)1.0 (0.0)
1.0 (0.0)

1 2 3

0.5 (0.1) 0.5 (0.1)
0.2 (0.0) 10.0 (0.0)

Decision between

red or blue

1.0 (0.0)5

0.2 (0.0) 10.0 (0.0) red or blue

in the states 2 and 3!
0.0 (0.0)

0.01 (0.0)
1.0 (0.0)

Continuous Time

0.0 (0.0)

4

( )

0 0 (0 0)

Markov Decision Process
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Informatik IV

Markov Decision Process (with finite state and action spaces)
 State space S = {1 n} (Sൌ  in the countable case) State space S = {1,…,n}  (Sൌ ൅ in the countable case)

 Set of decisions Di = {1,…,mi} for iS

 Vector of transition rates q uԹ1n Vector of transition rates qi
uԹ1,n

൅

where qi
u(j) <  is the transition rate from i to j (ij, i,j Sሻ under 

decision u Dii

 exponential  sojourn time in state i with rate - qi
u(i) = ij qi

u(j) 
if decision u is taken, afterwards transition into j with probability 

(j) / (i)qi
u(j) / - qi

u(i)

 ru(i)Թ൅ the (non-negative, decision dependent) reward in state i, 
we assume ru(i) < we assume ru(i) < 

 su(i,j) the (non-negative, decision dependent) reward of a transition 
from state i into state j we assume su(i j) <  and su(i j) = 0 for i=j or

© Peter Buchholz 2011
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Informatik IV

Goal: Analysis and control of the system in the interval [0,T] y y [ , ]
(T = ׿ is includedሻ

 dt is the decision vector at time t where dt(i)  Di dt is the decision vector at time t where dt(i)  Di

 Decision space D = Xi=1..n Di ሺsize iൌ1..n miሻ

 Qd Թn n ith Qdሺi jሻ dሺiሻሺjሻ t iti t i f th CTMC d QdԹn,n with Qdሺi,jሻ ൌ qidሺiሻሺjሻ transition matrix of the CTMC under 
decision vector d

 d Թ 1 d d d i i d rdԹn,1 rate reward vector under decision vector d

 SdԹn,n impulse reward matrix under decision vector d

 p0 is the initial distribution of the CTMDP at time tൌ0

© Peter Buchholz 2011
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Informatik IV

Control of CTMDP via policies:

A policy  is a measurable function from [0,T] into D
(set of all policies Mሻ

 decisions can depend on the time and the state (but not on the history)

t defines dt, the decision vector taken at time t t t,

t,T is the policy  restricted to the interval [t,T]

Policy  is 

 piecewise constant, iff 0 = t0 < t1 < … < tm = T exist such that dt = dt’ 

for t,t’  (ti-1,ti]

 constant, iff d is independent of t

© Peter Buchholz 2011
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Informatik IV

Other forms of policies:p

 randomized policy: t defines a probability distribution over D

 history dependent:  depends on (x a ) for 0 ≤ t’ < t history dependent: t depends on (xt’, at’) for 0 ≤ t  < t
restricted forms of history dependency

 reward dependent: t depends on reward accumulated in [0,t)

Policies types can be combined:

E i i t t hi t d d t t t d i dE.g., piecewise constant history dependent, constant randomized ….

© Peter Buchholz 2011
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Informatik IV

CTMDP with a fixed policy : Stochastic Process (Xt, At)p y ( t, t)

 Xt state process

 At action/decision process At action/decision process

Both processes together define 

 G gain/reward process (i e accumulated reward in [0 t))

Behavior of Gt:

 Gt gain/reward process (i.e., accumulated reward in [0,t))

t

 Changes with rate ra(i) if Xt = i and At = a

 Makes a jump of height  sa(i,j) if Xt jumps at time t from i to j and At = aj p g s ( ,j) t j p j t

© Peter Buchholz 2011
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Informatik IV

Policy:

Gate
accept

reject

 accept if t < 2 and popul < 3
 reject otherwise
Rewards:
 3-popul per time unit
 1 per service 1 per service

x g

© Peter Buchholz 2011
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Informatik IV

Mathematical Basics:
Assume for the moment that policy  is known

E l ti f th t t XEvolution of the state process Xt:
Let 0 ≤ t ≤ u ≤ T

Vπ
t t = I and

d
Vπ
t = Vπ

t QduVt,t I and
du
Vt,u Vt,uQ

Vπ
t,u(i, j) := Prob. of being in j at u, if the process is in i at tt,u( j)

Let Vπ
t = V

π
0,t

We have pu = ptV
π
t,u and pt = p0V

π
t

© Peter Buchholz 2011
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Informatik IV

Evolution of the gain process Gt:

Let Wdt be a n x n matrix with:
n

Wdt(i, j) =

½
rdt(i)(i) if i = j

sdt(i)(i, j)qdti (j) otherwise
wdt(i) =

nX
j=1

Wdt(i, j)

Then − d
dt
gπt = w

π +Qdtgπt (backwards in time!)
dt

is the accumulated gain in the interval [t,T] and   

the final gain at time T

gπt,T

gπT

gπt,T = V
π
t,Tg

π
T +

Z T

t

Vπ
u,Tw

πdu

the final gain at time TgT

such that

© Peter Buchholz 2011
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Informatik IV

For (T − t)→∞ usually also gπt T (i)→∞ holds

Results for [0,׿ሿ are not meaningful in this case!

Alternative ways of defining the gain vector

o ( t)→∞ usua y a so gt,T (i)→∞ o ds

Alternative ways of defining the gain vector

 Time averaged gainÃ !
gπt,T =

1

T − t

Ã
Vπ
t,Tg

π
T +

Z T

t

Vπ
u,Tw

πdu

!
for T > t

 Discounted gain Z T

gπt,T = e
−β(T−t)Vπ

t,Tg
π
T +

Z
t

e−β(u−t)Vπ
u,Tw

πdu

for discount factor  > 0

© Peter Buchholz 2011
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Informatik IV

From analysis to optimization problems:

Find a policy  (from a specific class) that maximizes/minimizes the gain

g+ sup
¡
gπ

¢
O ti l i ( )g− = inf

¡
gπ

¢
g+0,T = sup

π∈M

¡
g0,T

¢
Optimal gain (or                                ) g0,T = inf

π∈M

¡
g0,T

¢

π+ = arg sup
π∈M

¡
gπ0,T

¢
Optimal policy (or                                   ) π− = arg inf

π∈M

¡
gπ0,T

¢
+/- need not be unique!

Policy  is -optimal iff
°°°gπ±0,T − gπ0,T °°° ≤ ²

© Peter Buchholz 2011
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Informatik IV

Examples (queuing networks)

Routing Resource allocation/deallocation

Router

offon
SchedulingScheduling

© Peter Buchholz 2011
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Informatik IV

Examples (reliability, availability)

Components

W ki

System

G1
Working

Find a maintenance 

policy to minimize
G2 G3

policy to minimize 

system down time 

A5G4 G5

FailureM i t

A1 A2 A3 A4

FailureMainte-
nance

© Peter Buchholz 2011
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Informatik IV

Examples (security)

SystemAttack tree
(specifies sequence 

f tt k t )of attack steps)

or

Adversary: Find attack steps to reach goal

Defender: Find mechanisms to defend the system

© Peter Buchholz 2011
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Informatik IV

Ai li i ld t
Examples (OR)

Airline yield management

arrival rate (t)

Inventory control

reject

accept

delivery

accept
cancellation

orders

no show

sold
goods

orders

no show

© Peter Buchholz 2011
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Informatik IV

Examples (AI)

Agent
Sensors

Environ-
ment

Actors

ment

A t d i t d l d CTMDPAgent and environment are modeled as CTMDPs

Optimal policy corresponds to an “optimal” behavior of the agent

© Peter Buchholz 2011
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Informatik IV

CTMDP I ifi it H iCTMDPs on Inifinite Horizons

We consider a CTMDP in the interval [0,׿ሻ

 Result Measures

 Reward to Absorption

 Average Reward

 Discounted Reward

 Optimal Policies

 Computational Methods

© Peter Buchholz 2011
22Infinite Horizons



Informatik IV

R d t Ab ti

Set of transient states St

Reward to Absorption
Assumptions:
 wd(i) ≥ 0 for i  St and 0 for i  Sat ( ) t a

and all d D

 lim
X

Vπ(i j) = 1 for all i ∈ S

Absorbing



and all  M

lim
t→∞

X
j∈Sa

Vt (i, j) = 1 for all i ∈ S

Absorbing 
state(s)  Sa

Goal: 
Find a policy  such that                      is        minimal/maximal 
in all components

gπ =

Z ∞

0

Vπ
t h

πdt

© Peter Buchholz 2011
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Informatik IV

A R dAverage Reward

gπ = lim
T→∞

1

T

ÃZ T

Vπ
t w

πdt

!
Find a policy  such that                                        

T→∞ T

ÃZ
0

!
p y

is maximal/minimal in all components 

No further assumptions necessary ( exists in our case!)lim (Vπ)No further assumptions necessary (                  exists in our case!) lim
t→∞

(Vt )

Discounted RewardDiscounted Reward

Find a policy  such that                                        gπ = lim
T→∞

ÃZ T

0

e−βtVπ
t w

πdt

!
is maximal/minimal in all components

(discount factor  ≥ 0) 

ÃZ
0

!

© Peter Buchholz 2011
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Informatik IV

Optimal Policies:

St ti li i d i t h th tStationary policies 1 and 2 exist such that 

gπ1 = sup (gπ) and gπ2 = inf
∈M

(gπ)
π∈M π∈M

in the cases we consider here

The optimal policies might not be unique such that other criteria canThe optimal policies might not be unique such that other criteria can 
be applied to rank policies with identical gain vectors
(we do not go in this direction here)

© Peter Buchholz 2011
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Informatik IV

Computational Methodsp

 Basic step is the transformation of the CTMDP into an equivalent Basic step is the transformation of the CTMDP into an equivalent 

DTMDP (plus a Poisson process) using uniformization

 Afterwards methods for computing the optimal policy/gain vector in 

DTMDPs can be applied (Poisson process is not needed)

© Peter Buchholz 2011
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Informatik IV

The uniformization approach:
1) Poisson process with rate 

 ≥ maxd D maxi S (-Qd(i i))pp

CTMC for a fixed 
decision vector d

 ≥ maxdD maxiS ( Q (i,i))
for the timing

decision vector d
t

2) DTMC Pd=Qd/ + I for transitions

1 2
1.0

1 2
1/3

2/3

2/3 1/3

2.03.0
2/31.0 Pseudo transition

3
3

3) Transformed rewards
w0d(i) wd(i)/α or w0d(i)/(α+ β)

© Peter Buchholz 2011
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w (i) = w (i)/α or w (i)/(α+ β)
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Informatik IV

Uniformization transforms a CTMDP = (Qd, p0, wd, S, D) into aUniformization transforms a CTMDP  (Q , p0, w , S, D) into a 

DTMDP = (Pd, p0, w‘d, S, D) with an identical

 ti l i t * d optimal gain vector g* and

 optimal stationary policy * (described by vector d*)

The optimal gain vector is the solution of the following equation for the 
discounted and total reward

g∗(i) = max
∈D

⎛⎝w0u(i) + β0
nX
Pu(i, j)g∗(j)

⎞⎠ for i = 1, . . . , n
u∈Di

⎝ X
j=1

⎠
Vector d* results from setting d*(i) to argmax in the equation

© Peter Buchholz 2011
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Informatik IV

For the optimization of average rewards, we restrict the model class to 

unichain models :

A DTMDP is unichain if for every d  D matrix Pd contains a single 

recurrent class of states (plus possibly some transient states)(p p y )

For unichain DTMDPs the average reward is constant for all states and g

observes the following equations⎛ ⎞
ρ∗ + h∗(i) = max

u∈Di

⎛⎝w0u(i) +
nX
j=1

Pu(i, j)h∗(j)

⎞⎠ for i = 1, . . . , n

© Peter Buchholz 2011
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Informatik IV

Numerical methods to compute the optimal gain vector + policyNumerical methods to compute the optimal gain vector + policy
 linear programming
 value iteration value iteration 
 policy iteration

+ combinations of value and policy iteration

Practical problems

Curse of dimensionality, state space explosion

Slow convergence, long solution times

© Peter Buchholz 2011
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Informatik IV

Linear Programming
Discounted Reward Case

g ≤ maxd∈D
³
w0d + β0Pdg

´
≤

Average Reward CaseÃP P 0u( )

!
g d∈D

³
β g

´
g∗ = w0d∗ + β0Pd

∗
g∗

g* is the largest g that satisfies

max

ÃP
i∈S

P
u∈Di

xuiw
0u(i)

!
subject to

µ ¶
P
u∈Di

xui −
P
j∈S

P
u∈Di

Pu(j, i)xuj = 0P P
u 1

g ≤ max
d∈D

³
w0d + β0Pdg

´
LP max

µP
i∈S

xi

¶
subject to

P
i∈S

P
u∈Di

xui = 1

for all i ∈ S, u ∈ Dij

xi ≤ w0u(i) + β0
nP
j=1

Pu(j, i)xj

for all i ∈ S u ∈ Dj

© Peter Buchholz 2011
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Informatik IV

 d* and g* (* and h*) can be derived from the results of the LP

 An LP with

xui

 n or                    variables and
n

nX
i=1

|Di|

 or n+1 constraints 

has to be solved (this can be time and memory consuming!)

X
i=1

|Di|
i=1

has to be solved (this can be time and memory consuming!)

Usually Linear Programming is not the best choice to compute optimalUsually Linear Programming is not the best choice to compute optimal 
policies for MDP problems!

© Peter Buchholz 2011
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Informatik IV

V l it tiValue iteration 

Initialize k=0 and g(k) ≥ 0, then iterate until convergence

g(k+1)(i) = max
u∈Di

⎛⎝w0(i) + β0
nX
j 1

Pu(i, j)g(k)(j)

⎞⎠⎝
j=1

⎠
Repeated 
vector matrix 
products

or
(k+1)

Ã
n

(k)

!
productsh(k+1)(i) = maxu∈Di

Ã
w0(i) +

P
j=1

Pu(i, j)h(k)(j)

!

ma

Ã
w0(n) +

nP
Pu(n j)h(k)(j)

!
− max
u∈Dn

Ã
w0(n) +

P
j=1

Pu(n, j)h(k)(j)

!

for all i = 1 n

© Peter Buchholz 2011
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Informatik IV

 Easy to implement

 Convergence towards the optimal gain vector and policy

stop if policy does not change and ||g(k) – g(k-1)|| < 

 Eff t it ti n · nz ·
nX
mi Effort per iteration:

where nz is the average number of non-zeros in a row of Pd

n · nz ·
X
i=1

mi

 Often slow convergence and a huge effort even for CTMDPs of a 

d t imoderate size 

© Peter Buchholz 2011
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Informatik IV

Policy iterationPolicy iteration 

Initialize k=0 and initial policy d0, then iterate until convergence

g(k) = w0dk + β0Pdkg(k) or

h(k) k 0dk β0Pd h(k) d h(k)( ) 0

Repeated 
solution of 
sets of linearh(k) + ρke = w0dk + β0Pdkh(k) and h(k)(n) = 0

and

sets of linear 
equations

dk+1 = argmaxd∈M
³
w0d + β0Pdg(k)

´
or

³ ´
dk+1 = argmaxd∈M

³
w0d +Pdh(k)

´
until d = d

© Peter Buchholz 2011
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Informatik IV

 Optimal policy and gain vector is computed after finitely many steps

 Effort per iteration: O(n
3) +O(n · nz ·

nX
mi) Effort per iteration:

 For larger state spaces huge effort

X
i=1

(solution of a set of linear equations of order n)

© Peter Buchholz 2011
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Informatik IV

Improvements by combining policy and value iteration 

Initialize k=0 and initial policy d0, then iterate until convergence

g(k) ⇐ iterate
³¡
I− β0Pdk

¢
g = w0dk

´
org ⇐ iterate

³¡
I β P

¢
g = w

´
or

h(k) + ρk ⇐ iterate
³¡
I−Pdk

¢
h = w0dk subject to h(k)(n) = 0

´
ρ

³¡ ¢
j ( )

´
where iterate is some advanced iteration techniques like SOR, ML, 

GMRES….and

dk+1 = argmaxd∈M
³
w0d + β0Pdg(k)

´
or

dk+1 = argmaxd∈M
³
w0d +Pdh(k)

´
until d = d and ||g(k) g(k-1)|| <  or ||h(k) h(k-1)|| < 

© Peter Buchholz 2011
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Informatik IV

Example: Exponential Example:
class switching 
delay and 
service times 

Determination of the best 

non-preemptive scheduling 

Poisson 
or IPP 

strategy in steady state

Methods
arrivals

 Value iteration

P li it tiFinite buffer 
capacity over all 
classes 

 Policy iteration

 Combined approach with 

Nonlinear reward function:
(n1 + n2 + n3)

1.2 + n1 + 1.5n2 + 2n3

BiCGStab or GMRES + 

ILU preconditioning

© Peter Buchholz 2011
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Informatik IV

Exponential interarrival times (fast convergence of all solvers)Exponential interarrival times (fast convergence of all solvers)

No need for 

advanced solvers 

value iteration 

works fine!

© Peter Buchholz 2011
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Informatik IV

IPP interarrival times (systems are much harder to solve)IPP interarrival times (systems are much harder to solve)

Advanced solvers 

are much more 

efficient for larger 

configurations!g

© Peter Buchholz 2011
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Informatik IV

Some remarks:

 Analysis for infinite horizons in principle well understood 

 Complex models with larger state spaces require sophisticated Complex models with larger state spaces require sophisticated 

solution methods

Work on numerical methods less developed than in CTMC/DTMC 

analysis

Which method to use?

Which preconditioner?Which preconditioner?

 How many iterations?

© Peter Buchholz 2011
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Informatik IV

CTMDP Fi it H iCTMDPs on Finite Horizons

We consider a CTMDP in the interval [0,Tሿ  ሺT ൏ ׿ሻ

 Result Measures

 Accumulated Reward

 Accumulated Discounted Reward Accumulated Discounted Reward

 Optimal Policies

 Computational Methods

© Peter Buchholz 2011
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Informatik IV

Many problems are defined naturally on a finite horizon, e.g.,

 yield management (for a specific tour)y g ( p )

 scheduling (for a specific set of processes)

 maintenance (for a system with finite operational periods)

…

use of the optimal stationary policy is suboptimal 

(e.g., maintenance for a machine just before it is shut down)(e g , a te a ce o a ac e just be o e t s s ut do )

© Peter Buchholz 2011
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Informatik IV

Optimal policies for DTMDPs on a horizon of T steps

Compute iteratively

g(k+1)(i) = max
u∈Di

⎛⎝wu(i) + β

nX
Pu(i, j)g(k)(j)

⎞⎠
u∈Di

⎝
j=1

⎠

for k=1,2,…,T starting with g(0)(i) = 0 for all i=1,…,n

where  = 1.0 for the case without discounting

Effort O(T·n·nz·(i=1..nmi)) 

© Peter Buchholz 2011
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Informatik IV

H b t l i th DTMC lti f if i ti f thHow about applying the DTMC resulting from uniformization for the 
transient analysis of CTMDPs?

 Times between transitions in the uniformized DTMC are exponentially 
distributed with rate a rather than constant

 Substitution of the distribution by the mean as done in the stationary 
case does not workcase does not work

 It has been shown that the approach computes the optimal policy for 
uniformization parameter uniformization parameter 
(but this results in O(T) steps to cover the interval [0,T])
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Informatik IV

Poisson process with rate 
 ≥ max max ( Qd(i i)) Uniformization revisited ≥ maxdD maxiS (-Qd(i,i))

for the timing
Uniformization revisited

t

Each event equals a transition in the 
DTMC

Probability for k 
events in [t  t] 1 2

1/3

2/3

2/3 1/3
events in [t-,t]
(t, k) = e-t tk / k!

f 2/31.0 Pseudo transition
Probability for >k 
events
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Known results for CTMDPs on finite horizons 
(by Miller 1968, Lembersky 1974, Lippman 1976 all fairly old!)

 A policy is optimal if it maximizes for almost all t[0,T]p y p [ ]

max
π∈M

(Qπgt +w
π) where − d

dt
gt = Q

dtgt +w
dt and gT ≥ 0

 There exists a piecewise constant policy * which results in vector g*t

and maximizes the equation

∈ dt

(a policy is piecewise constant, if m< and 
0=t0<t1<…<tm=T exist and di is the decision vector in [ti-1,ti))
i.e., the optimal policy depends on the time and the state but changes 
only finitely often in [0,T]
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Informatik IV

Selection of an optimal policy (using results of Miller 1968)Selection of an optimal policy (using results of Miller 1968)

Assume that g*t is known, then the following selection procedure select d*

which is optimal in (t-,t) for some >0

Define the sets
F1(g*t) = {dD | d maximizes q(1)(d)}1(g t) { | q ( )}
F2(g*t) = {dF1(g*t) | d maximizes -q(2)(d)}
…
Fn+1(g*t) = {dFn(g*t) | d maximizes (-1)nq(n+1)(d)}
where q(1)(d) = Qdg*t + wd

(j)(d) Qd (j 1) h (j 1) (j 1)(d) f d F ( * )q(j)(d) = Qdq(j-1) where q(j-1)= q(j-1)(d)  for any dFj-1(g*t)

Select the lexicographically smallest vector from Fn+1(g*t) 
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Constructive proof in Miller 1968 defines a base for an algorithm:

1. Set t’ =T and initialize gT ;

2. Select dt’ as described ;2. Select dt as described ;

3. Obtain gt for t ≤ t’ ≤ T by solving
d
g Qdtg +wdt

with terminal condition gt’ ;

4 Set t’’ = inf{t | d satisfies the selection procedure} ;

−
dt
gt = Q

tgt +w t

4. Set t  = inf{t | dt satisfies the selection procedure} ;

5. If t’’ ≤ 0 terminate, else goto 2. with t’ = t’’ ;

Not implementable!

© Peter Buchholz 2011
49Finite Horizons
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From exact to approximate optimal policies:pp p p

A policy  is -optimal if ||g*t – g
t|| ≤  for all t  [0,T]

Discretization approach:

Define for h:                          
for h small enough this defines a stochastic matrix 

Let g h = P
d
hgt + hw

d + o(h)Let  

Representation of a DTMDP for policy optimization

gt−h = Phgt + hw + o(h)

 For h0 the computed policy is -optimal with 0

 Value of  is unknown effort O(h-1·n·nz·(i 1 mi))
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 Value of  is unknown, effort O(h n nz (i=1..nmi))
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Informatik IV

Idea of the uniformization based approachpp

Idealized policies
non realizable

Best reward
reward

d* locally best policy

Best reward

t t t-
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t t-t 
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A uniformization based approachA uniformization based approach
Basic steps
1 Start with t=T and g =g -=g+ =0 ;1. Start with t=T and gT=gT =g+

T=0 ;
2. Compute an optimal decision vector d based on g-

t;
3. Compute a lower bound for g-

t- using decision d in (t-,t);
4. Compute an upper bound g+

t- for any policy in (t-,t) ;
5. Choose  such that || g+

t- – g-
t- || <  (t – ) / T ;

6. Store d and t- ;;
7. If t- > 0 then set t = t- and goto 2; else terminate ;
All this has to be computable!

© Peter Buchholz 2011
52

All this has to be computable!
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Informatik IV

Computation of the lower bound g-
t-using decision d in [t-,t);

d is the optimal decision at t based on g-
t

Since d is constant, this equals the transient analysis of a CTMC S ce d s co s a , s equa s e a s e a a ys s o a C C
which can be computed using unformization

Consider up to K Poisson steps (Prob. known!)Consider up to K Poisson steps (Prob. known!)
Reward gained at the
end of the intervalReward gained

+ accumulated

g-
t

in k+1, k+2, … 
steps (lower
bound)

tt-

g t

Reward accumulated
in the inter al

© Peter Buchholz 2011
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in the interval
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Informatik IV

Formally, we get:

v
(k)
− = Pdv

(k−1)
− with v

(0)
− = g−t and w

(k)
− = Pdw

(k−1)
− with w

(0)
− = wd

t

Then
K K

Ã
k

!
g−t−δ =

KX
k=0

γ(αδ, k)v
(k)
− +

1

α

KX
k=0

Ã
1−

kX
l=0

γ(αδ, l)

!
w
(k)
− + η(αδ,wd,g−t )

where (, wd, g-
t) bounds the missing Poisson probabilities

Effort 
 for vector computation in O(K·n·nz) 
 for evaluation of a new  in O(K·n)
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Computation of the upper bound g+
t-based on two ideas:

1. Compute separate policies for accumulated reward and reward gained 
at the end

2. Assume that we can choose at every jump of the Poisson process a 
new policy

Compute for k = 0, 1,…, K steps in the interval

Reward gained
+ accumulated

Compute for k  0, 1,…, K steps in the interval
Reward gained at the
end of the interval

in k+1, k+2, … 
steps (upper
bound)

g-
t

new d
new dnew d

tt-

g t

Reward accumulated
in the inter al d‘

new d‘
new d‘

new d‘

© Peter Buchholz 2011
55

in the interval new d‘
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Formally

andand

w
(k)
+ = max

d∈D

³
Pdw

(k−1)
+

´
with w(0) = max

d∈D

¡
wd
¢

(identical for all intervals)

For g+
t ≥ g*

t we obtain 

+
KX ³

(k)
´ Ã

kX !
(k) d +g+t−δ =

X
k=0

γ(αδ, k)
³
v
(k)
+

´
+

Ã
1−

X
l=0

γ(αδ, l)

!
w
(k)
+ + ν(αδ,wd,g+t ) ≥ g∗t−δ

(, wd, g+
t ) bounds the truncated Poisson probabilities

Policy is better than any realizable policy!!
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EffortEffort 

 for vector computation in O(K·n·nz·(i=1..nmi)) 

 for evaluation of a new  in O(K n) for evaluation of a new  in O(K·n)
can be applied in a line search to find an appropriate 

Ch  h th t || + || < (t ) / T

Error proportional to the length of the subinterval

Choose  such that || g+
t- – g-

t- || <  (t – ) / T ;
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If  is known and s is independent of the decision vector, the p ,
upper bound can be improved
by computing a non-realizable bounding policy for 

l t d d i d daccumulated and gained reward

x
(k)
+ = max

dk dk∈D

Ã
kY
Pd

k
i (ηkg

+
t + ζkw)

!
dk1 ,...,d

k
k
∈D

ÃY
i=1

!

where

We have then

where 
∞X
x
(k)
+ ≥ g∗t−δ

k=0

Effort O(K2·n·nz·(i=1 nmi))
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Effort O(K n nz (i=1..nmi)) 
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 Overall effort O(K·n·nz·(i=1..nmi)) 

if the optimal policy is selected from F (g- ) for someif the optimal policy is selected from Fi(g-
t) for some 

small i

(usually the case)

 Local error O(2)  Global error O() 

for any >0 (theoretically) the appropriate policy can be y ( y) pp p p y

computed
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Informatik IV

1.0 1.0 F T 70 5058
1 2 3

1.0 1.0

10 0

1.0
1.0
1.0

1.0
1.0

1.0

For T ≥ 70.5058:

 b,b in [T - 4.11656, T]

4

0.2

1.0

10.010.0

1.0

 b,r in (T – 70.5058, 
T – 4.11656]

5

0.01
0.0  r,r in [0, T - 70.50558)

5

0.0

g0
T = (20.931, 20.095, 19.138, 20.107, 8.6077)

Bounds with  = 1 0e 6
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Informatik IV

P P P P 4 processors, 2 buses, 3 memories, 1 repair unit
Prioriti ed repair Comp tation of the a ailabilit

M M M

Prioritized repair  Computation of the availability
CTMDP with 60 states

M M M

Availability in [0,100] Availabilty at T=100

 iter Lower
bound

Upper
bound

iter Lower
Bound

Upper
Bound

1.0e-2 1080 0.986336 0.995790 872 0.987109 0.9953861.0e 2 1080 0.986336 0.995790 872 0.987109 0.995386

1.0e-4 2026 0.995633 0.995722 1419 0.995188 0.995282

1.0e-6 5896 0.995721 0.995721 21089 0.995279 0.995280

1.0e-8 34273 0.995721 0.995721 1513361 0.995280 0.995280
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Informatik IV

=1Cap = 10
CTMDP with 121 states

=1 =0.5

CTMDP with 121 states
Goal maximization of the throughput 
in [0,100]

Troughput in [0,100]

 iter Lower
bound

Upper
bound

Sw.  
Timebound bound Time

1.0e+0 6098 97.4599 98.4556 68.2561

1 0e 1 45866 97 4878 97 5875 68 30371.0e-1 45866 97.4878 97.5875 68.3037

1.0e-2 334637 97.4879 97.4979 68.3099

1 0e-3 2981067 97 4881 97 4891 68 3102
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1.0e 3 2981067 97.4881 97.4891 68.3102
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Informatik IV

Effort

 Linear in t and in -1 (and in n·nz)
 Influence of K depends on the model Influence of K depends on the model
K too small results in small time steps due to the 

truncated Poisson probabilitiestruncated Poisson probabilities
K too large results in many unneccessarry 

computations that are truncated due to the differencecomputations that are truncated due to the difference 
in the policy bounds

Adaptive approach to choose K such that fraction ofAdaptive approach to choose K such that fraction of 
the error due to the truncation of the Poisson 
probabilities remains constant
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Informatik IV

Extensions
 Method can be applied to discounted rewards after 

introducing small modificationsintroducing small modifications

 Method can be applied to CTMDPs with time dependent 
b t i i t t t d dbut piecewise constant rates and rewards

 Method can be extended to CTMDPs with time 
dependent rates and rewards

 Method can be extended to countable state spacesp
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64Finite Horizons



Informatik IV

Advanced TopicsAdvanced Topics

 Model Checking CTMDPsode C ec g C s

 Inifinite State Spaces

 CTMDPs with bounds on the transition rates

 Equivalence of CTMDPs

 Partially observable CTMDPs


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 ……
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CSL model checking of CTMDPsCSL model checking of CTMDPs
joint work with Holger Hermanns, Ernst Moritz Hahn, Lijun Zhang

 Model checking of CTMCs is very popular

 Extension for CTMDPs define formulas that hold for a set of states 

and all schedulers / some scheduler

 M d l h ki f h h f l Model checking means to compute for every state whether a formula 

holds/does not hold

 Validation of  path formulas requires computation of minimal/maximal 

gain vectors for finite or infinite horizons
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Informatik IV

Syntax of CSL for CTMDPs:Syntax of CSL for CTMDPs:

Φ | Φ | Φ Φ | P (Φ I Φ) | S (Φ) | It (Φ) | CI(Φ)Φ := a | ¬Φ | Φ ∧ Φ | PJ(Φ UI Φ) | SI(Φ) | ItJ(Φ) | CIJ(Φ)

h I d J l d i t l d t i ti i twhere I und J are closed intervals and t is some time point

a | ¬Φ | Φ ∧ Φ with the usual interpretation
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Informatik IV

s |= PJ(Φ UI Ψ) if the probability of all paths that start in state s observe 

until  in I falls into J for all policies

| S (Φ) if th t t i t t d h ti d t tis |= SI(Φ) if the process starts in state s and has a time averaged stationary 

reward over state observing  that lies in I for all policies 

s |= ItJ(Φ) if the process starts in state s and has a instantaneous reward at 

time t in states obser ing  that lies in J for all policiestime t in states observing  that lies in J for all policies 

| CI(Φ) if the process starts in state s and has an accumulated rewards |= CIJ(Φ) if the process starts in state s and has an accumulated reward  

over states observing in the interval I that lies in J for all 

li i
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Informatik IV

Validation of formulas, an example:

s |= C[t0,T ][p1,p2]
(Φ) iff a−(s) ≥ p1 ∧ a+(s) ≤ p2

where a− = inf
π∈M

¡
Vπ
0,t0
gπt0,T |Φ

¢
and a+ = sup

π∈M

¡
Vπ
0,t0
gπt0,T |Φ

¢
Two step approach to compute          and gπt0,T |ΦVπ

0,t0 t0,T
|0,t0

Computation of          with the standard approach, i.e.Vπ
0,t0

Vπ I and
d
Vπ Vπ QduVt,t = I and du
Vπ
t,u = V

π
t,uQ

du

Computation of              using vectors                          then  gπt0,T |Φ sπ|Φ and gT |Φ
T

Separate 
error 
bounds for 

gπt,T |Φ = Vπ
t,Tg

π
T |Φ +

Z T

t

Vπ
u,Tw

π|Φdu both 
quantities
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Informatik IV

A small example

s4 is made absorbing to
compute the probabilitycompute the probability
of reaching s4 in the
interval [3,7] ³

P π
³

U [3 7]
´´

Pmax
³
♦[3 7]

´
² = 1.0e− 3 ² = 6.0e− 4

² time bounded prob iter iter time bounded prob iter iter

sup
π∈M

³
P π
s1

³
true U [3,7]s4

´´
= Pmaxs1

³
♦[3,7]s4

´
²1 time bounded prob. iter1 iter2 time bounded prob. iter1 iter2

9.0e− 4 0.97170 0.97186 207 90 — — — —
5.0e− 4 0.97172 0.97186 270 89 0.97176 0.97185 270 93
1 0e 4 0 97175 0 97185 774 88 0 97178 0 97185 774 911.0e− 4 0.97175 0.97185 774 88 0.97178 0.97185 774 91
1.0e− 5 0.97175 0.97185 5038 88 0.97179 0.97185 5038 91

Table 1: Bounds for reaching s4 in [3 7] i e Pmax (♦[3,7]s4)
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Informatik IV

Infinite (countable) state spaces

 Infinite horizon Infinite horizon

 Discounted reward

 Average reward

 Finite horizon

We assume that the control space per state remains finiteWe assume that the control space per state remains finite, 

all rewards and transitions rates are bounded
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Informatik IV

Infinite horizon discounted case

 We assume that the optimality equations (slide 28) for the original 

model have a solutionmodel have a solution

 We compute results on  = {1,…,n} ؿ S Ŝ

 Let       be the n x n submatrix of     and         the n dimensional  

subvector of restricted to states from

Q̂
d

Ŝ

Qd ŵd

wdsubvector of      restricted to states from 

 Define                             and                              (see slide 27)

S

P̂
d
= Q̂d/α+ I ŵ0d = wd/(α+ β)

w

This defines an DTMDP with n states
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Value iteration:

 M difi d DTMDP b l d i h l i i ( lid 33) Modified DTMDP can be analyzed with value iteration (see slide 33)

 If                                                                                thenlim
k→∞

kP̂dk|Ŝg(k−1)|Ŝ −
³
Pdkg(k−1)

´¯̄̄
Ŝ
k∞ < ²

where

 are the vectors to which value iteration applied to the 

kĝ∗ − g∗|Ŝk∞ <
²

1− β0

ĝ∗, g∗ pp

reduced and original MDP converges 

 equals the decision in state i during the k th iteration of value

g , g

d (i) equals the decision in state i during the k-th iteration of value 

iteration applied to the finite system if            and is arbitrary elsei ∈ Ŝ
dk(i)

 equals the value in in the k-th iteration of value iteration 

applied to the finite system if          and is an upper bound for the i ∈ Ŝ
g(k)(i)
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Informatik IV

Policy iteration:

 If f li i h i i d(k)| If for some policy  , vector             is the gain vector restricted to states 

from     and         is the approximate solution computed for the finite ĝ(k)
g̃(k)|Ŝ

Ŝ

k (k)| (k)ksystem, such that                                      and 

 where         results from     kP̂dk+1|Ŝ ĝ(k)|Ŝ −
³
Pdk+1 ḡ(k)

´¯̄̄
Ŝ
k∞ < ²

kg̃(k)|Ŝ − ĝ(k)k∞ < δ

dk+1 ĝk
and        is an arbitrary extension of        to S,

then

S

³ ´¯
S

gk
g(k) ĝ(k)

li
³
kˆ(k) ∗| k

´
<
²+ 2β0δ

lim
k→∞

³
kg(k) − g∗|Ŝk∞

´
<

β

(1− β0)2

© Peter Buchholz 2011
74



Informatik IV

Infinite horizon average case

 Additional conditions are required to assure existence of an optimal 

policy (many different conditions exist in the literature)policy (many different conditions exist in the literature)

 Let for some policy  be:

C the expected gain of a cycle that starts in state 1 and ends when 

entering state 1 again

N the expected number of visited states between two visits of state 1

if  for all policies C is finite and the N are uniformly bounded, then   y

the Bellman equations have an optimal solution
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Informatik IV

Finite horizon but infinite state spaces 

(not much known from an algorithmic perspective!)

Assumptions:Assumptions:

 S0 = {i | p0(i) > 0}, let |S0| < ׿

 Transition rates are bounded by  ׿ >

DefineDefine 

 Sk = { j | (dD Pd)k(i,j) > 0 for some i  S0}

 ST() = k=0,…,K Sk where K = minK k=1…K (T,k) ≥ 1-
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Algorithm for approximating/bounding the accumulated reward in [0,T]

1. Define some finite subset    of the countable state space
(e.g. using ST() for some appropriate )

Ŝ S

2. Define a new CTMDP with state space 

Matrices

Ŝ ∪ {0}

Q̂
d
=

⎧⎨ Qd(i, j) if i, j 6= 0
0 if i = 0

Vectors 

Q =
⎨⎩ 0 if i = 0P

h/∈Ŝ Q
d(i, h) if i 6= 0, j = 0

ŵd± =

½
wd(i) if i 6= 0

w =

½
max /minj∈S,u∈Dj (w

u(j)) if i = 0

ĝ±T =

½
g±T (i) if i 6= 0

/ i
¡ ±(j)

¢
if i 0

3 Solve the resulting CTMDP to obtain bounds for the original one

gT

½
max /minj∈S,

¡
g±T (j)

¢
if i = 0
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Informatik IV

Bounds on the transition rates

 Transition rates Qd(i,j) and reward vectors sd are not exactly known

but we know Ld(i j) ≤ Qd(i j) ≤ Ud(i j) and ld ≤ wd  ≤ udbut we know L (i,j) ≤ Q (i,j) ≤ U (i,j) and l ≤ w ≤ u

(sometimes known as Bounded Parameter MDPs see e.g. Givan et 

al 2000)al 2000)

realistic model if parameters result from measurements

 Goal: Find a policy that maximizes the minimal/maximal gain over an 

infinite or finite interval
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Infinite horizon case:Infinite horizon case:

We assume that the CTMDP is unichain for all Ld

 Uniformization can be used to transform the CTMDP in an equivalent 

DTMDP  (as we did before)

 For a fixed decision vector d the minimal/maximal average reward is 

obtained by a matrix P  [L,U] where in every row all except one y [ ] y p

elements are equal to the corresponding element in matrix U or L

 only finitely many possibilities exist only finitely many possibilities exist

 determination of the bounds is again an MDP problem
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Infinite horizon case (continued):Infinite horizon case (continued):

 Overall solution is the combination of two nested MDP problems

(Markov two person game)

 Some solution algorithms exist (stochastic min/max control) but 

advanced numerical techniques are rarely used

(room for improvements remains!)( p )

Finite horizon case

 Inherently complex to the best of my knowledge almost no results 

(even for the simpler DTMDP case!)

© Peter Buchholz 2011
80



Informatik IV

Thank you!Thank you!
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(incomplete and biased selection but there is too much to be exhaustive!)
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