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Overview 1

» Continuous Time Markov Decision Processes (CTMDPs)
» Definition
» Formalization
» Applications
> Infinite Horizons
» Result Measures
» Optimal Policies
» Computational Methods
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Overview 2

» Finite horizons

» Result Measures

» Optimal Policies

» Computational Methods
» Advanced Topics

» Model Checking CTMDPs

> Infinite State Spaces

» Transition Rate Bounds

> ...
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Continuous Time Markov Chains (CTMCs) with Rewards
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Behavior of the CTMC with rewards:

» Process stays an exponentially distributed time in a state
(if it is not absorbing)

» Performs a transition into a successor state
(according to the transition rates)

» Accumulates (rate) rewards per time unit in a state and
Impulse reward per transition

Result measures:

» Average reward accumulated per unit of time in the long run

» Discounted reward

» Accumulated reward during a finite interval

» Accumulated reward before entering a state or subset of states

© Peter Buchholz 2011 CTMDP Basics
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Extension: Choose between different actions in a state

0.0 (2.0)1.0(0.0) 0.0 (1.0)
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Markov Decision Process (with finite state and action spaces)

>
>
>

State space S = {1,...,n} (S =7, in the countable case)
Set of decisions D, = {1,....m} forieS

Vector of transition rates queR",
where qY(j) < « is the transition rate from i to j (i#j, i,j €S) under
decision ue D,
— exponential sojourn time in state i with rate - q(i) = Z,; 9;“()
if decision u is taken, afterwards transition into j with probability
a;“() / - q;“(i)
ri(i)eR, the (non-negative, decision dependent) reward in state i,
we assume ri(i) < o«

sY(i,j) the (non-negative, decision dependent) reward of a transition
from statei into state j, we assume sY(i,j) < oc and sY(i,j) = O for i=j or

q;“() =0 ,

© Peter Buchholz 2011 CTMDP Basics
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Goal: Analysis and control of the system in the interval [0, T]
(T = cois included)

» d,is the decision vector at time t where d (/) € D,

I (Size [71'=1..n mi)
» Q4 eR2”with Q4(i,j) = q,40(j) transition matrix of the CTMC under

decision vector d

» Decision space D=X_, , D

» rdeRn! rate reward vector under decision vector d
» SdeR™" impulse reward matrix under decision vector d

» P, is the initial distribution of the CTMDP at time t=0

© Peter Buchholz 2011 CTMDP Basics
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Control of CTMDP via policies:

A policy zis a measurable function from [0,T] into D
(set of all policies M)

— decisions can depend on the time and the state (but not on the history)
n, defines d,, the decision vector taken at time t

m, 1 Is the policy n restricted to the interval [t, T]

Policy mis
» piecewise constant, iff 0=t,<t, <...<t_ =T exist suchthatd,=d,
for tt’ e (t_,t]

» constant, iff d is independent of ¢
(i.e., decisions depend only on the state)

: 9
© Peter Buchholz 2011 CTMDP Basics
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Other forms of policies:

» randomized policy: n, defines a probability distribution over D

» history dependent: &, depends on (x,, a;) for 0 s t' <t
restricted forms of history dependency

» reward dependent: n, depends on reward accumulated in [0,t)

Policies types can be combined:

E.g., piecewise constant history dependent, constant randomized ....

. 10
© Peter Buchholz 2011 CTMDP Basics
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CTMDP with a fixed policy n: Stochastic Process (X, A)
» X, state process

» A,action/decision process

Both processes together define

» G, gain/reward process (i.e., accumulated reward in [0,t))

Behavior of G;:
» Changes with rate ra(i) if X, =iand A, = a
» Makes a jump of height s2(i,j) if X, jumps at time tfrom itojand A, = a

. 11
© Peter Buchholz 2011 CTMDP Basics
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Policy:
— Jome % " > accept if t < 2 and popul < 3
ejeo l/ > reject otherwise
Rewards:

» 3-popul per time unit
» 1 per service

N N

g

t

WV

. 12
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Mathematical Basics:
Assume for the moment that policy = is known

Evolution of the state process X::
LletO<t<susT q

Vi =Tand VI, = V] Q%

Vi .(i,7) := Prob. of being in j at u, if the process is in j at t
Let Vi = g,t

We have p, =p;Vy, and p; = poV;

CTMDP Basics 13
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Evolution of the gain process G;:

Let W9 be a n x n matrix with:

d:(9) (7) ifi=y dt (4 S Wi,
wde; oy b wo (i) = p W(, )
(4,4) { s34, 1)gd(j) otherwise ;::1

d
Then —%g? =w" +Q¥gf

gZT Is the accumulated gain in the interval [t,T] and

gt the final gain attime T

T
such that 8t = Vir8T +/ Varw'du
t

: 14
© Peter Buchholz 2011 CTMDP Basics
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For (T'—t) — oo usually also g; (i) — oo holds

Results for [0, cv/are not meaningful in this case!
Alternative ways of defining the gain vector

» Time averaged gain
T 1 T
8t,7 = T _¢ (VtTgT‘l‘/ Vorw" du) for T' >t

» Discounted gain
T
g = e_B(T_t)VZTg_Z} —I—/ e_ﬁ(“_t)VZ,TW”du
t

for discount factor 5> 0

. 15
© Peter Buchholz 2011 CTMDP Basics
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From analysis to optimization problems:

Find a policy © (from a specific class) that maximizes/minimizes the gain

(86,7))

Optimal gain go T = fg}& (gg,T) (or 8o 1 = 1;1/{‘4

Optimal policy mt = arg :;1/1\)4 (go T) (or T = arg Wléljf/l (ggT))

n*/7- need not be unique!

+
Policy 7z is e-optimal iff Hgg,:r - gZ{,TH <€

. 16
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Examples (queuing networks)
Routing Resource allocation/deallocation
@ o

Router D000

e |

on off

Scheduling

© Peter Buchholz 2011 CTMDP Basics
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Examples (reliability, availability)

Components System

Working

&

A) 62) 63) (3

© Peter Buchholz 2011 CTMDP Basics

Find a maintenance
policy to minimize

system down time

18
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Examples (security)

Attack tree
(specifies sequence
of attack steps)

Adversary: Find attack steps to reach goal

Defender: Find mechanisms to defend the system

19
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Examples (OR)

Inventory control

Inventory

© Peter Buchholz 2011 CTMDP Basics

Airline yield management

arrival rate A(t

reject
?accept
cancellation

%p - no show
[€)

) 20
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Examples (Al)

Sensors

Agent and environment are modeled as CTMDPs

Optimal policy corresponds to an “optimal” behavior of the agent

. 21
© Peter Buchholz 2011 CTMDP Basics
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CTMDPs on Inifinite Horizons

We consider a CTMDP in the interval [0,c0)
» Result Measures

» Reward to Absorption

» Average Reward

» Discounted Reward
» Optimal Policies

» Computational Methods

© Peter Buchholz 2011 Infinite Horizons 22
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Reward to Absorption

Assumptions:
Set of transient states S, »wd(i)=0forie S;andOforie S,
® ° and alld D
®
®
b > lim Vi(i,j)=1forallie S
\ / t— 00
:| ',’ jGSa
and all x € M
Absorbing y J
state(s) S
( ) a .
Goal: o
Find a policy © such that &" = / Vih™dt minimal/maximal
in all components 0
© Peter Buchholz 2011

Infinite Horizons 23
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Average Reward

T—oo T

Find a policy 7 such that g" = lim — (/ Viw ”dt>

is maximal/minimal in all components

No further assumptions necessary (tlim (V) exists in our case!)
— 00
Discounted Reward

T— o0

T
Find a policy n such thatg” = lim (/ eﬁtV?W”dt>
0
is maximal/minimal in all components

(discount factor 3 = 0)

© Peter Buchholz 2011 Infinite Horizons 24
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Optimal Policies:

Stationary policies n, and m, exist such that

7'('1:S T ad 7T2:'f T
g W;l/a(g) nd g ngM(g)

in the cases we consider here

The optimal policies might not be unique such that other criteria can
be applied to rank policies with identical gain vectors
(we do not go in this direction here)

© Peter Buchholz 2011 Infinite Horizons 25
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Computational Methods

» Basic step is the transformation of the CTMDP into an equivalent

DTMDP (plus a Poisson process) using uniformization

» Afterwards methods for computing the optimal policy/gain vector in

DTMDPs can be applied (Poisson process is not needed)

© Peter Buchholz 2011 Infinite Horizons 26
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| o 1) Poisson process with rate
The uniformization approach: o 2 max,_p max;_gs (-Q4(i,i))
for the timing
CTMC for a fixed
decision vector d lu l l l

> 1
2) DTMC P9=Q¢d/a + | for transitions

2/3

3) Transformed rewards

w9 (i) = wi() /a or W (i)/(a + B)

discount factor B’ = o/ (a+p)

© Peter Buchholz 2011 Infinite Horizons
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Uniformization transforms a CTMDP = (Q¢Y, p,, w9, S, D) into a
DTMDP = (P9, p,, w'd, S, D) with an identical

» optimal gain vector g* and

» optimal stationary policy ©* (described by vector d*)

The optimal gain vector is the solution of the following equation for the
discounted and total reward

* /e U . / wu/le e % [ -+ .
€)= e | W)+ 5 PUGAED) | fori=1com
J:

Vector d* results from setting d*(i) to argmax in the equation

© Peter Buchholz 2011 Infinite Horizons 28
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For the optimization of average rewards, we restrict the model class to

unichain models :
A DTMDP is unichain if for every d € D matrix P9 contains a single

recurrent class of states (plus possibly some transient states)

For unichain DTMDPs the average reward is constant for all states and

observes the following equations

* % [/ - — 1w . U/l X [/ :1 o
p* +h(i) = max | w (Z)+ZlP (i, j)h*(j) | fori=1,...,n
‘7:

29
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Numerical methods to compute the optimal gain vector + policy
» linear programming
» value iteration

L _ + combinations of value and policy iteration
» policy iteration

Practical problems

» Curse of dimensionality, state space explosion

» Slow convergence, long solution times

© Peter Buchholz 2011 Infinite Horizons 30
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Linear Programming

Discounted Reward Case

g < maxXgep (W’d + ﬁ’Pdg) <
g* _ W’d* + ﬁ/Pd*g*
g* is the largest g that satisfies

< 'pd )
g < i (w4 5

LP max (Z azz>
teS
subject to

z; < w' ()+ﬂ’ZP“(J, 1)z,

foralleSuED

© Peter Buchholz 2011

Average Reward Case

max(Z 3 x;‘w’u(z))

iES UGDZ'
subject to

2wt — 2, 2, PUji)ef =0

>y af =1

for allt € S,u e D,

31
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> d* and g* (p* and h*) can be derived from the results of the LP x;’

» An LP with

n

> nor Z |D;| variables and
n i=1
> Y _|Dilor n+1 constraints
i=1
has to be solved (this can be time and memory consuming!)

Usually Linear Programming is not the best choice to compute optimal
policies for MDP problems!

© Peter Buchholz 2011 Infinite Horizons 32
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Value iteration
Initialize k=0 and g® = 0, then iterate until convergence
(k+1) (7 — I(: / i Newlk)(
g (i) = max | w'(i) + 8 ZP (4,4)8™ (4)
Repeated
or / \ > vector matrix
h(k+1)(i) = maXyep, \W + Z P (4, §) h(k) ) products

- <wf<n> 3 P, )R ()

),

foralli=1,....,n

© Peter Buchholz 2011 Infinite Horizons 33
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» Easy to implement

» Convergence towards the optimal gain vector and policy
stop if policy does not change and ||[g® — gk7)|| < ¢
> Effort per iteration: 7% Z my
1=1

where nz is the average number of non-zeros in a row of P4

» Often slow convergence and a huge effort even for CTMDPs of a

moderate size

© Peter Buchholz 2011 Infinite Horizons 34
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Policy iteration

Initialize k=0 and initial policy d,, then iterate until convergence

gb) = w4 grpdig(k)  op Repeated
solution of
h®) 4+ pke = w' + gPdeh(*) and h®) (n) =0 sets of linear
equations
and

di1 = arg maxqge amm (W’d + ﬂ’Pdg(k)) or
di 1 = arg maxqe pm (W’d — Pdh(’“))

until d,, = d,

35
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» Optimal policy and gain vector is computed after finitely many steps

O(n®) +O0(n-nz- Z m;)

1=1

» Effort per iteration:

» For larger state spaces huge effort

(solution of a set of linear equations of order n)

© Peter Buchholz 2011 Infinite Horizons 36
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Improvements by combining policy and value iteration

Initialize k=0 and initial policy d,, then iterate until convergence

g(k) < jterate ((I — B’Pdk) g = W’d"“> or

h(F) + pF < iterate ((I — P4 )h = w'?* subject to h®) (n) = 0)

where iterate is some advanced iteration techniques like SOR, ML,
GMRES....and
dy1 = arg maxqe pm (w’d - 6’Pdg(k)) or

dk_|_1 — arg maxXde m (W/d + Pdh(k))
until d,,, =d, and [|g® —gT|| < gor ||h® — hT)|| < &

© Peter Buchholz 2011 Infinite Horizons 37
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: Exponential
Example: el o
P class switching Determination of the best
delay and _ _
I service times non-preemptive scheduling
Poisson i = strategy in steady state
of I.PP Methods
arrivals -
| ] = Value iteration
Finite guffer = Policy iteration
capacity over all ] . |
classes Combined approach with

Nonlinear reward function:

(n1 + no +n3)'? + ny + L.5ny + 2n3

© Peter Buchholz 2011 Infinite Horizons

BiCGStab or GMRES +

ILU preconditioning

38
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Exponential interarrival times (fast convergence of all solvers)

1000 |
No need for
100 |- K - advanced solvers
) value iteration
E I 1 ,
o works fine!
1 - 7
value, —— |
policy, —><—
BiCGStab, —¥¢—
BiCGStab+ILUO, ———
‘ ‘ o ‘ ‘ o BiCG.Stab+!LU'|"h.‘ -
0'1'100. 1000. 10000 100000

states.

39
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IPP interarrival times (systems are much harder to solve)

1000 -
100 O -
10 -
1F .
valug, —— -
policy, —>¢— |

BiCGStah. —¥—

BiCGStab+ILUTh, ———
GMRES, ]

| GMRES+ILUTh,
100 1000. 10000 100000

states.

© Peter Buchholz 2011

Advanced solvers
are much more
efficient for larger

configurations!

40
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Some remarks:
» Analysis for infinite horizons in principle well understood

» Complex models with larger state spaces require sophisticated

solution methods

» Work on numerical methods less developed than in CTMC/DTMC

analysis
» Which method to use?
» Which preconditioner?

» How many iterations?

41
© Peter Buchholz 2011
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CTMDPs on Finite Horizons

We consider a CTMDP in the interval [0,T] (T < o)
» Result Measures

» Accumulated Reward

» Accumulated Discounted Reward
» Optimal Policies

» Computational Methods

.. . 42
© Peter Buchholz 2011 Finite Horizons
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Many problems are defined naturally on a finite horizon, e.g.,
» yield management (for a specific tour)

» scheduling (for a specific set of processes)

» maintenance (for a system with finite operational periods)

> ...

use of the optimal stationary policy is suboptimal

(e.g., maintenance for a machine just before it is shut down)

.. . 43
© Peter Buchholz 2011 Finite Horizons
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Optimal policies for DTMDPs on a horizon of T steps

Compute iteratively

(k+1) (7 — wr - wie () (o
g" (i) = max | w (@)+ﬁ_§;P (i, ))g™ (5)
J:

for k=1,2,...,T starting with g@(i) = 0 for all i=1,...,n
where £ = 1.0 for the case without discounting
Effort O(T:n:nz:(%,_ ,m)

. . 44
© Peter Buchholz 2011 Finite Horizons
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How about applying the DTMC resulting from uniformization for the
transient analysis of CTMDPs?

» Times between transitions in the uniformized DTMC are exponentially
distributed with rate a rather than constant

» Substitution of the distribution by the mean as done in the stationary

case does not work

» It has been shown that the approach computes the optimal policy for
uniformization parameter a—»a
(but this results in O(aT) steps to cover the interval [0, T])

.. . 45
© Peter Buchholz 2011 Finite Horizons
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Poisson process with rate
o 2 maxy.p max._g (-Q4(i,i)) Uniformization revisited
for the timing

Wil 0
| )

t

Y Each event equals a transition in the
DTMC

Probability for k
events in [t-0,1]
v(t, k) = et tk / k!
Probability for >k
events

T =20k v(t k)

© Peter Buchholz 2011 Finite Horizons
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Known results for CTMDPs on finite horizons
(by Miller 1968, Lembersky 1974, Lippman 1976 all fairly old!)

» Apolicy is optimal if it maximizes for almost all te[0,T]

d

m ™) where — —g; = Q% 4 and g7 >0
max (Q"gy + w") where —— g = Q%g; +w" and gr >

» There exists a piecewise constant policy n* which results in vector g*
and maximizes the equation
(a policy is piecewise constant, if m<oc and
0=t ,<t,<...<t =T exist and d, is the decision vector in [t_;,t))
l.e., the optimal policy depends on the time and the state but changes
only finitely often in [0, T]

.. . 47
© Peter Buchholz 2011 Finite Horizons
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Selection of an optimal policy (using results of Miller 1968)

Assume that g*, is known, then the following selection procedure select d
which is optimal in (t-0*,t) for some 6*>0

Define the sets
F.(g*) ={deD | d maximizes q(")(d)}
F2(9*) = {deF4(g*) | d maximizes -q*(d)}

Fre1(9%) = {deF,(g”) | d maximizes (-1)"q"1)(d)}
where q(")(d) = Qdg*, + wd
qi)(d) = Qdqt-" where qi-"= q0-")(d) forany deF;,(g*)

Select the lexicographically smallest vector from F, (g%

.. . 48
© Peter Buchholz 2011 Finite Horizons
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Constructive proof in Miller 1968 defines a base for an algorithm:

1. Sett =T and initialize g+ ;
2. Select d, as described ;

3. Obtain g, fort <t <T by solving

d d d
_Egt:Q ‘g W

with terminal condition g, ;

4. Sett” =inf{t| d, satisfies the selection procedure} ;

5. Ift” <0 terminate, else goto 2. witht' =1t ;

Not implementable!

.. . 49
© Peter Buchholz 2011 Finite Horizons
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From exact to approximate optimal policies:

A policy rt is g-optimal if ||g* —g7||,. = eforall t € [O,T]

Discretization approach:

Define for h: P =1+ hQ¢
for h small enough this defines a stochastic matrix

Let g, 1, = Phge +hw + o(h)

Representation of a DTMDP for policy optimization

» For h—>0 the computed policy is s-optimal with e—-0
» Value of ¢ is unknown, effort O(h""-n-nz-(%_, ,m))

.. . 50
© Peter Buchholz 2011 Finite Horizons
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|dea of the uniformization based approach

|dealized policies
non realizable

Best reward
reward . :
/ / d" locally best policy

t t-o* -8

.. . 51
© Peter Buchholz 2011 Finite Horizons
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A uniformization based approach
Basic steps

Start with t=T and g+=g+=9*1=0 ;

Compute an optimal decision vector d based on g-;
Compute a lower bound for g-_; using decision d in (t-0,t);
Compute an upper bound g*, ; for any policy in (t-5,t) ;
Choose d such that || g*.s— 9 || <e(t—90)/T;

Store d and t-3 ;

If t- 5 > 0 then set t = t-0 and goto 2; else terminate ;

N o s~ Db~

All this has to be computable!

.. . 52
© Peter Buchholz 2011 Finite Horizons
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Computation of the lower bound g-_; using decision d in [t-5,t);
d is the optimal decision at t based on g~

Since d is constant, this equals the transient analysis of a CTMC
which can be computed using unformization

Consider up to K Poisson steps (Prob. known!)

Reward gained at the
end of the interval

Reward gained
+ accumulated
in k+1, k+2, ...
steps (lower
bound)

-5 o —

Reward accumulated
in the interval

.. . 53
© Peter Buchholz 2011 Finite Horizons
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Formally, we get:

v = pdy ) wigh v = g, and w = Pdw Y with wl® = wd

Then
k

K K
_ 1 _
gis = > ad kv + =% (1 -3 (as, D) w® 4 (s, w, g7)
k=0 k=0

[=0

where n(ad, w4, g-) bounds the missing Poisson probabilities
Effort

» for vector computation in O(K:n:nz)

» for evaluation of a new 6 in O(K:n)

.. . 54
© Peter Buchholz 2011 Finite Horizons
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Computation of the upper bound g*,_ s based on two ideas:

1. Compute separate policies for accumulated reward and reward gained
at the end

2. Assume that we can choose at every jump of the Poisson process a
new policy
Compute fork =0, 1,..., K steps in the interval

Reward gained at the
end of the interval

new d
}»A g%

t5 | g —— [ — :

new d’ Reward accumulated new d*
in the interval new d’

Reward gained
+ accumulated
in k+1, k+2, ...
steps (upper
bound)

new d

.. . 55
© Peter Buchholz 2011 Finite Horizons
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Formally
() do (k=1) 0) _
v =y (P it v = g
and
w = max (PIdw"™") with w(® = max (wd) - - :
+ = Max + T dep (identical for all intervals)

Forgt g’ we obtain

k
g 5—27045% V/ kl—ZW(afSl)W +v(ad,w,gh) > gl ;

v ad, w9, g*;) bounds the truncated Poisson probabilities

Policy is better than any realizable policy!!

.. . 56
© Peter Buchholz 2011 Finite Horizons



technische universitat

dortmund Informatik 1V

Effort
» for vector computation in O(K-n-nz:(Z_, ,m.))

» for evaluation of a new & in O(K-n)
can be applied in a line search to find an appropriate

Error proportional to the length of the subinterval

Choose 6 such that || g% s —Q9s 1| <e(t—9)/T;

.. . 57
© Peter Buchholz 2011 Finite Horizons



technische universitat Informatik IV
dortmund

If 5 is known and s is independent of the decision vector, the
upper bound can be improved

by computing a non-realizable bounding policy for
accumulated and gained reward
k
x{) = max (H PY (g + Ck:w)>
1=1

d¥,....d¥eD

k
where n, =~v(ad, k) and ¢ = o (1 - (as, l))
[=0

We have then Y x{ >g/_,
k=0

Effort O(K?-n-nz-(Z.; ,m;))
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» Overall effort O(K:n-nz-(X,_, ;mM,))
If the optimal policy is selected from F(g-,) for some
small |

(usually the case)

> Local error O(8%) = Global error O(3) =
for any €>0 (theoretically) the appropriate policy can be

computed

.. . 59
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1.0 1.0

For T = 70.50358:
> b,bin[T-4.11656, T]

> b,rin (T — 70.5058,
T — 4.11656]

> rrin [0, T - 70.50558)

g,' = (20.931, 20.095, 19.138, 20.107, 8.6077)
Bounds with ¢ = 1.0e-6

.. . 60
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4 processors, 2 buses, 3 memories, 1 repair unit

| | | | Prioritized repair = Computation of the availability
| | CTMDP with 60 states
M (M) (M)

| Availability in [0,100] Availabilty at T=100
= iter Lower Upper iter Lower | Upper
bound bound Bound | Bound

1080 | 0.986336 | 0.995790 0.987109 | 0.995386

2026 | 0.995633 | 0.995722 1419 | 0.995188 | 0.995282
5896 | 0.995721 | 0.995721 21089 | 0.995279 | 0.995280
34273 | 0.995721 | 0.995721 | 1513361 | 0.995280 | 0.995280

.. . 61
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=10 o CTMDP with 121 stat
wi states
i1 @ e
Goal maximization of the throughput

A=1

=05  in[0,100]

/\

i

Troughput in [0,100]
€ iter Lower Upper Sw.
bound bound Time

1.0e-1 45866 | 97.4878 | 97.5875 | 68.3037
1.0e-2 334637 | 97.4879 | 97.4979 | 68.3099
1.0e-3 2981067 | 97.4881 97.4891 68.3102

© Peter Buchholz 2011 Finite Horizons
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Effort

» Linear in atand in ¢! (and in n-nz)
» Influence of K depends on the model

» K too small results in small time steps due to the
truncated Poisson probabilities

» K too large results in many unneccessarry

bUIIIIJUl.dLIUI 1S5 Ulidl dl

In the policy bounds

Hfaranmrno

+IPII 7~ fl A
U 1S Ul ClILT

e uu

» Adaptive approach to choose K such that fraction of
the error due to the truncation of the Poisson
probabilities remains constant

.. . 63
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Extensions

» Method can be applied to discounted rewards after
introducing small modifications

» Method can be applied to CTMDPs with time dependent
but piecewise constant rates and rewards

» Method can be extended to CTMDPs with time
dependent rates and rewards

» Method can be extended to countable state spaces

.. . 64
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Advanced Topics

» Model Checking CTMDPs

> |Inifinite State Spaces

» CTMDPs with bounds on the transition rates
» Equivalence of CTMDPs

» Partially observable CTMDPs

. 65
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CSL model checking of CTMDPs
joint work with Holger Hermanns, Ernst Moritz Hahn, Lijun Zhang

» Model checking of CTMCs is very popular

» Extension for CTMDPs define formulas that hold for a set of states

and all schedulers / some scheduler

» Model checking means to compute for every state whether a formula
holds/does not hold

» Validation of path formulas requires computation of minimal/maximal

gain vectors for finite or infinite horizons

. 66
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Syntax of CSL for CTMDPs:

P:=a|-P|OAND|Py (DU ®)|S(P)|I5(D) | C3(D)

where | und J are closed intervals and t is some time point

a|-®|® AP with the usual interpretation

. 67
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s =P;(® U* ¥) if the probability of all paths that start in state s observe @

until ¥ in | falls into J for all policies

s = S1(®) if the process starts in state s and has a time averaged stationary

reward over state observing @ that lies in | for all policies

s E ]Iﬁ(CD) if the process starts in state s and has a instantaneous reward at

time t in states observing ® that lies in J for ali policies

s = CY(®) if the process starts in state s and has an accumulated reward
over states observing @ in the interval | that lies in J for all
policies

. 68
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Validation of formulas, an example:

sECT (@) iffa(s) > piAat(s) <p

— . + T T
where a = inf 0. el nle) and a” = sup (V
ere ey ( 0,toSto,T ) ﬂe}a ( 0,t0Bto,T

Two step approach to compute Vg,to and g?O,Tlcb

2)

Computation of Vg, with the standard approach, i.e.

7T d T T
V7, =Iand @VW = V7, ,Q

Separate
Computation of gf | using vectors s"|¢ and gr|e then error
’ bounds for
! both
trle = Virgr -I—/ VT W |odu B
girle = Virgtle . s quantities

where h|g(s) = h(s) if s = ® and 0 else

. 69
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A small example N
(1, B[ Ii“
s, is made absorbing to = (22
compute the probabmt;/’ Bl L]
of reaching s, in the s\
interval [3,7] ||';.,
sup (P;Tl (true U3 34>> = P <<>[3’7]84> (s) |
TEM — '
e=10e—3 e =6.0e—4
€1 | time bounded prob. | iter; iters | time bounded prob. | iter; iters
9.0e —4 | 0.97170 0.97186 207 90 — — — —
5.0e — 4 | 0.97172 0.97186 270 89 | 0.97176 0.97185 270 93
1.0e —4 | 0.97175 0.97185 774 88 | 0.97178 0.97185 774 91
1.0e — 5 | 0.97175 0.97185 | 5038 88 | 0.97179 0.97185 | 5038 91

Table 1: Bounds for reaching s4 in [3,7], i.e., P (137 sy).

© Peter Buchholz 2011
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Infinite (countable) state spaces
> Infinite horizon

» Discounted reward

» Average reward

> Finite horizon

We assume that the control space per state remains finite,

all rewards and transitions rates are bounded

71
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Infinite horizon discounted case

» We assume that the optimality equations (slide 28) for the original

model have a solution
> We compute results on §={1,....n} c S

> Let Qd be the n x n submatrix of Qd and Wd the n dimensional

subvector ofwdrestricted to states from S

~d A~
> Define P =Q%/a+T andw'® = wd/(a + 3)(see slide 27)

This defines an DTMDP with n states

72
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Value iteration:

» Modified DTMDP can be analyzed with value iteration (see slide 33)
: ~dilg  (r_ _
S If hm HP k Sg(k 1)‘5’ . (Pdkg(k: 1)) ‘g Hoo < € then

where

€
e &lsle < =
> g*, g* are the vectors to which value iteration applied to the

reduced and original MDP converges

> d (i) equals the decisio

- O
3

in state / during
&

iteration applied to the finite system if ¢ S and is arbitrary else

» g(*)(;) equals the value in in the k-th iteration of value iteration
applied to the finite system ifj ¢ S and is an upper bound for the

value function otherwise.

© Peter Buchholz 2011
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Policy iteration:

» If for some policy = , vector g“‘“) | ¢ is the gain vector restricted to states

k) .

from S and g< is the approximate solution computed for the finite

system, such that 18X s — &™) < 6 and

> ||15d"’+1|9g("’)\g - (Pdk+1g("f)> ‘ |leo < € Where di1results from g,
S
and g(k)is an arbitrary extension of g(k)to S,
e+ 206
(1-p")

then ./ .
I
e

* \
— 8 [gllec ) <
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Infinite horizon average case

» Additional conditions are required to assure existence of an optimal

policy (many different conditions exist in the literature)

» Let for some policy 7 be:
C . the expected gain of a cycle that starts in state 7 and ends when
entering state 7 again
N . the expected number of visited states between two visits of state 1
if for all policies C _ is finite and the N_ are uniformly bounded, then

the Bellman equations have an optimal solution

Solution often via simulation

© Peter Buchholz 2011
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Finite horizon but infinite state spaces

(not much known from an algorithmic perspective!)
Assumptions:
> Sy =A{i| po(i) > 0}, let |Sy| < e

» Transition rates are bounded by o < v

Sc=1{J| (24.p PY)¥(i,j) > 0 for some i € Sy}

>
> S1(é) = Upeo,... .k, Sk Where K, =ming 2oy« (T.k) 2 1-¢
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Algorithm for approximating/bounding the accumulated reward in [0, T]

1. Define some finite subset gof the countable state space S
(e.g. using S+(¢) for some appropriate ¢)

2. Define a new CTMDP with state space S U {0}

Matrices . 4 Q4(4, ) iti,5 #0
Q =40 ifi=0
> g QUG R) ifi#0,j=0
Vectors 41 w(7) if i £ 0
W — * . . .
maX/mll’leS,ueDj (w¥(j)) ifi=0
o _ [ &r() if § 0
T max/minjes, (gift(])) if1=0

3. Solve the resulting CTMDP to obtain bounds for the original one
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Bounds on the transition rates

» Transition rates QY(i,j) and reward vectors s are not exactly known
but we know L4(i,j) < Qd(i,j) < U4(i,j) and 19 <wd < yd
(sometimes known as Bounded Parameter MDPs see e.g. Givan et

al 2000)

realistic model if parameters result from measurements

» Goal: Find a policy that maximizes the minimal/maximal gain over an

infinite or finite interval
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Infinite horizon case:
We assume that the CTMDP is unichain for all L¢

» Uniformization can be used to transform the CTMDP in an equivalent
DTMDP (as we did before)

» For a fixed decision vector d the minimal/maximal average reward is
obtained by a matrix P € [L,U] where in every row all except one
elements are equal to the corresponding element in matrix U or L
= only finitely many possibilities exist

= determination of the bounds is again an MDP problem
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Infinite horizon case (continued):

» QOverall solution is the combination of two nested MDP problems

(Markov two person game)

» Some solution algorithms exist (stochastic min/max control) but
advanced numerical techniques are rarely used

(room for improvements remains!)

Finite horizon case

» Inherently complex to the best of my knowledge almost no results

(even for the simpler DTMDP case!)
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Thank you!
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