
Online Companion to the Paper

‘Aggregation of Markovian Models

- An Alternating Least Squares Approach -’∗

Peter Buchholz and Jan Kriege

Department of Computer Science

TU Dortmund

Dortmund, Germany

Email: {peter.buchholz,jan.kriege}@udo.edu

June 13, 2012

Abstract

This includes some additional details as an extension to the paper “Aggregation of Markovian
Models - An Alternating Least Squares Approach -” (QEST’12).

1 Introduction

The online companion is, of course, written to add information which could not be included in
the paper due to space restrictions. In so far it is only understandable with the knowledge of the
original paper [1]. It includes 3 sections which describe some basic steps to transform the used non
negative least squares problems in standard form, the basic octave programs realizing the approach
and some more example results. This online companion will be modified and extended from time
to time. Therefore take a look on the date of the current version.

2 Transformation of the LLS Problems in Standard Form

We show how to transform the problems LLSEI (12) and NNLSE (15) into the form NNLS
minx:x≥0 (‖Cx‖). Equation numbers point to the numbers of the equations in the paper. Ob-
serve that the basis for the following steps can be found in the standard literature [2, 3] which is
adopted to our specific needs here.

In the first step LLSEI is transformed into a problem of the type NNLSE. We consider general
equalities of the form Ex = f , Fx ≥ 0 and assume that C is an r × c matrix, F is an ri × c and E

an re × c matrix. Consequently, x is a vector of length c and f is of length re.

2.1 Elimination of Inequalities

Define a new vector 0 ≤ w = Fx. For matrix F the following orthogonal factorization exists

HTFK =

(
S 0

0 0

)

∗To appear at 9th Int. Conf. on Quantitative Analysis of Systems (QEST’12).

1

where H, K are orthogonal matrices and S is a non-singular lower triangular matrix which can be
computed with the algorithm proposed in [3, chap. 14] or any other algorithm for orthogonal matrix
factorization [4]. S is an c1 × c1 matrix and, of course, c1 is also the rank of F and c1 ≤ c since
otherwise no solution for the inequalities exists. Now use the substitution x = Ky ⇒ y = KTx.
With

y =

(
y1

y2

)

and H = (H1 H2)

where yi is of length ci (c2 = c− c1). We have

Fx = w ⇒ (H1 H2)

(
S 0

0 0

)(
y1

y2

)

= w

and Sy1 = HT
1
w ⇒ y1 = S−1HT

1
w and 0 = HT

2
w with w ≥ 0. This relations can be substituted

in (12) yielding

Cx = CK

(
y1

y2

)

= CK

(
S−1HT

1
0

0 I

)(
w

y2

)

.

Now define

Ĉ = CK

(
S−1HT

1
0

0 I

)

and x̂ =

(
w

y2

)

where Ĉ is an r × (ri + c2) matrix. The inequalities are integrated into the equality constraints.

Ex = f ⇒ EK

(
y1

y2

)

= f ⇒

EK

(
S−1HT

1
0

0 I

)(
w

y2

)

.

Additionally, HT
2
w = 0 and w ≥ 0 has to hold. Then define

Ê =

EK

(
HT

1

0

)

EK

(
0

I

)

HT
2

0

 and f̂ =

(
f

0

)

where Ê is a (re + ri − c1)× (re + c2) matrix.

Then minx̂

(

‖Ĉx̂‖
)

with the equality constraints Êx̂ = f̂ and x̂ = (w,y2)
T where w ≥ 0 is an

NNLSE where only some but not all variables need to be non-negative.

2.2 Elimination of Unconstrained Variables

The remaining problem equals minx:x≥0 (‖Cx‖2) with the equality constraints Ex = f , x =
(x1,x2)

T and x1 ≥ 0. Let r × c be the dimension of C and re × c the dimension of E. We
assume that x1 is of length c1 and x2 is of length c2 = ce − c1.

According to the decomposition of vector x the matrices C and E by considering the first c1
columns and the remaining c2 columns resulting in

(E1 E2)

(
x1

x2

)

= f and min

∥
∥
∥
∥
(C1 C2)

(
x1

x2

)∥
∥
∥
∥
.

This implies E2x2 = f −E1x1. As for the elimination of inequalities an orthogonal decomposition
of E2 can be computed such that

HTE2K =

(
S 0

0 0

)

2

where H and K are orthogonal matrices and S is an c21× c21 non-singular lower triangular matrix.
Matrices HT and KT are written as

HT =

(
H1

H2

)

and KT =

(
K1

K2

)

where K1 and H1 involve the first c21 rows of HT and KT , respectively. Observe that K1 and H1

are orthogonal matrices too. E2x2 = f −E1x1 can be rewritten as

(
S 0

0 0

)(
K1

K2

)

x2 =

(
H1

H2

)

(f −E1x1) ⇔
(

SK1

0

)

x2 =

(
H1f

H2f

)

−

(
H1E1

H2E1

)

x1 ⇒

SK1x2 = H1f −H1E1x1 ⇔

x2 = KT
1
S−1H1f

︸ ︷︷ ︸

f2

−KT
1
S−1H1E1x1

︸ ︷︷ ︸

−E12x1

Substituting this representation of x2 into the optimization problem we obtain

(E1 +E2E12)x1 = f − f2 and min ‖(C1 +C2E12)x1‖

which has to be solved for x1 ≥ 0. Renaming of the variables such that E = E1+E2E12, f = f− f2,
C = C1 +C2E12 and x = x1 results in a NNLSE problem with c1 variables.

2.3 Integration of the Equalities

The remaining problem is to solve min (‖Cx‖) under the constraints Ex = f and x ≥ 0 (problem
NNLSE). The commonly used approach for the solution of the problem is the use of weighting to
integrate the equalities in the minimization problem and the subsequent solution of the problem
NNLS. This approach is also proposed in [2]. The idea of weighting is to substitute the constrained
problem by an unconstrained problem with a penalty function of the equality constraints. Thus,
we consider the unconstrained NNLS

min
x:x≥0

‖Cǫx− fǫ‖

where Cǫ =

(
E

ǫC

)

and fepsilon =

(
f

0

)

.

As proved in [2] the solution of the unconstrained problem converges to the solution of the
constrained problem for ǫ → 0. The solution can be computed with the algorithm proposed in [3]
or its variant [5]. Further details about the structure of the problem and the choice of ǫ can be
found in [2]. It should be noted that if Ex = f has no non-negative solution, then the algorithm
computes a vector x that minimizes ‖Ex− f‖.

3 Programs in octave to perform the minimization

In the previous section the mathematical basis of the optimization problem is given which allows
one to implement a solver based on the solution of unconstrained least squares problems. Here
we present another approach to realize the approach, namely the use of the standard optimization
solver for quadratic problems in the software package octave qt. For details of octave and the solver
we refer to [6, 7].

3

3.1 Algorithm 1 in octave

function
[B0, B1, B2, W, err] = agg iter(iniv, A0, A1, A2, B0, B1, B2, V, max eps);

% AGG ITER

% iniv = 1xm initial vector

% matrices of the original component

% A0 = m×m matrix with internal transition probabilities

% A1 = m×m matrix with output event transition probabilities

% A2 = m×m matrix with input event transition probabilities

% max eps allowed difference between elements

% n size of the aggregate (< m)

% OUTPUT:

% matrices for the aggregate

% B0 = n× n matrix with internal transition probabilities

% B1 = n× n matrix with output event transition probabilities

% B2 = n× n matrix with input event transition probabilities

% V = m× n transformation matrix

% DESCRIPTION:

% The function computes iteratively the aggregate and the corresponding

% transformation matrix

%

%

% set the dimensions

m = rows(A0);

n = columns(V);

if n > m

error(’Number of states in orginal smaller than number of states for the aggregate’) ;

end

if rows(A0)! = m||rows(A1)! = m||rows(A2)! = m

error(’Wrong matrix dimension for A matrix’) ;

return ;

endif

if rows(B0)! = n||rows(B1)! = n||rows(B2)! = n

B0 = B1 = B2 = zeros(n);

endif

iter = 1;

do

max diff = 0.0;

[C0, C1, C2] = agg comp b(A0, A1, A2, B0, B1, B2, V);

W = agg comp v(iniv, A0, A1, A2, C0, C1, C2, V);

4

iter = iter + 1;

diff = norm(V −W, inf);

if diff > max diff

max diff = diff ;

end

diff = norm(B0− C0, inf);

if diff > max diff

max diff = diff ;

end

diff = norm(B1− C1, inf);

if diff > max diff

max diff = diff ;

end

diff = norm(B2− C2, inf);

if diff > max diff

max diff = diff ;

end

V = W ;

B0 = C0;

B1 = C1;

B2 = C2;

until max diff < max eps||iter > 10;

end

The function can be used to compute approximate aggregates with K ≤ 2. It uses two sub-
function agg comp b to compute a new component B (see equation (14) and (15)) and agg comp v
to compute a new matrix V (see equation (12)). Both functions use the octave standard solver qp.

function [C0, C1, C2] = agg comp b(A0, A1, A2, B0, B1, B2, V);

% INPUT:

% matrices of the original component

% A0 = m x m matrix with internal transition probabilities

% A1 = m x m matrix with output event transition probabilities

% A2 = m x m matrix with input event transition probabilities

% matrices of the aggregate

% B0 = n x n matrix with internal transition probabilities

% B1 = n x n matrix with output event transition probabilities

% B2 = n x n matrix with input event transition probabilities

% V = m x n transformation matrix V >= 0 and V*1 = 1

% it is assumed that all matrices are non-negative and

% A2*1 = 1 as well as (A0 + A1)*1 = 1

5

% m is the order of the original component

% n (<= m) is the order of the aggregate

% OUTPUT:

% improved matrices for the aggregate

% C0 = n x n matrix with internal transition probabilities

% C1 = n x n matrix with output event transition probabilities

% C2 = n x n matrix with input event transition probabilities

% DESCRIPTION:

% The function computes improved matrices for the aggregate from the matrices

% of the original component and an available transformation matrix V

%

% set the dimensions

m = rows(V);

n = columns(V);

% first the row sums for B0 and B1 are computed

% generate matrix H, q, and E

H = kron(eye(2), V ′ ∗ V);

c = [(A0 ∗ ones(m, 1))′, (A1 ∗ ones(m, 1))′];

c = −c′;

q = kron(eye(2), V ′) ∗ c;

E = kron(ones(1, 2), eye(n));

% Solve the optimization problem for b0 and b1

[x, obj, info, lambda] = qp([], H, q, E, ones(n, 1), zeros(2 ∗ n, 1), ones(2 ∗ n, 1));

if info.info > 0

printf(”QLP for (b0, b1)’ not successful info %i\n”, info.info) ;

end

b0 = x(1 : n);

b1 = x(n+ 1 : 2 ∗ n);

% Now the matrices C0, C1 and C2 have to be computed

E = kron(ones(1, n), eye(n));

H = kron(eye(n), V ′) ∗ kron(eye(n), V);

c = −1 ∗ reshape(A0 ∗ V, n ∗m, 1);

q = kron(eye(n), V ′) ∗ c;

x = reshape(B0, n ∗ n, 1);

[x, obj, info, lambda] = qp(x,H, q, E, b0, zeros(n ∗ n, 1), ones(n ∗ n, 1));

if info.info > 0

printf(”QLP for C0 not successful info %i\n”, info.info) ;

end

C0 = reshape(x, n, n);

c = −1.0 ∗ reshape(A1 ∗ V, n ∗m, 1);

6

q = kron(eye(n), V ′) ∗ c;

x = reshape(B1, n ∗ n, 1);

[x, obj, info, lambda] = qp(x,H, q, E, b1, zeros(n ∗ n, 1), ones(n ∗ n, 1));

if info.info > 0

printf(”QLP for C1 not successful info %i\n”, info.info) ;

end

C1 = reshape(x, n, n);

c = −1.0 ∗ reshape(A2 ∗ V, n ∗m, 1);

q = kron(eye(n), V ′) ∗ c;

f = ones(n, 1);

x = reshape(B2, n ∗ n, 1);

[x, obj, info, lambda] = qp(x,H, q, E, f, zeros(n ∗ n, 1), ones(n ∗ n, 1));

if info.info > 0

printf(”QLP for C2 not successful info %i\n”, info.info) ;

end

C2 = reshape(x, n, n);

end

function W = agg comp v(iniv, A0, A1, A2, B0, B1, B2, V);

% INPUT:

% matrices of the original component

% pi = 1 x m initial vector of the original component

% A0 = m x m matrix with internal transition probabilities

% A1 = m x m matrix with output event transition probabilities

% A2 = m x m matrix with input event transition probabilities

% matrices of the aggregate

% B0 = n x n matrix with internal transition probabilities

% B1 = n x n matrix with output event transition probabilities

% B2 = n x n matrix with input event transition probabilities

% V = m x n transformation matrix V >= 0 and V*1 = 1

% it is assumed that all matrices are non-negative and

% A2*1 = 1 as well as (A0 + A1)*1 = 1

% m is the order of the original component

% n (<= m) is the order of the aggregate

% OUTPUT:

% improved transformation matrix W

% DESCRIPTION:

% The function computes an improved transformation matrix

%

% initialize the dimensions

7

m = rows(V);

n = columns(V);

% first the row sums for B0 and B1 are computed

% generate matrices F, E and H

% F is only needed, if negative elements are allowed for V

% F = kron(eye(n), iniv);

E = kron(ones(1, n), eye(m));

H = kron(eye(n), A0′ ∗A0) + kron(B0 ∗B0′, eye(m))− kron(B0, A0)− kron(B0′, A0′);

H = H + kron(eye(n), A1′ ∗A1) + kron(B1 ∗B1′, eye(m))− kron(B1, A1)− kron(B1′, A1′);

H = H + kron(eye(n), A2′ ∗A2) + kron(B2 ∗B2′, eye(m))− kron(B2, A2)− kron(B2′, A2′);

q = zeros(m ∗ n, 1);

f = ones(m, 1);

x = reshape(V,m ∗ n, 1);

% Solve the optimization problem for b0 and b1

% without negative elements

[x, obj, info, lambda] = qp(x,H, q, E, f, zeros(m ∗ n, 1), ones(m ∗ n, 1));

% with negative elements

% [x, obj, info, lambda] = qp(x,H, q, E, f,−10∗ones(m∗n, 1), 10∗ones(m∗n, 1).zeros(n, 1), F, ones(n, 1));

if info.info > 0

printf(”QLP for W not successful info %i\n”, info.info) ;

end

W = reshape(x,m, n);

end

3.2 Algorithm 2 in octave

The function hcl in the following procedure realizes the hierarchical clustering approach.

function [B0, B1, B2,W] = agg overall(A0, A1, A2, n);

% INPUT:

% matrices of the original component

% A0 = m x m matrix with internal transition probabilities

% A1 = m x m matrix with output event transition probabilities

% A2 = m x m matrix with input event transition probabilities

% n size of the aggregate

% OUTPUT:

% matrices for the aggregate

% B0 = n x n matrix with internal transition probabilities

% B1 = n x n matrix with output event transition probabilities

% B2 = n x n matrix with input event transition probabilities

% V = m x n transformation matrix

8

% DESCRIPTION:

% The function computes iteratively the aggregate and the corresponding

% transformation matrix

%

% set the dimensions

m = rows(A0);

if n > m

error(’Number of states in orginal smaller than number of staes for the aggregate’) ;

end

if rows(A0)! = m||rows(A1)! = m||rows(A2)! = m

error(’Wrong matrix dimension for A matrix’) ;

return ;

endif

B0 = B1 = B2 = zeros(n);

V = agg new v(m,n, 0);

iniv = zeros(1,m);

for i = 1 : m

iniv(i) = 1.0/m;

endfor

iter = 1;

min err = 1.0e+ 6;

while iter < 3

Z = V ;

[B0, B1, B2, V, err] = agg iter(iniv, A0, A1, A2, B0, B1, B2, V, 1.0e− 3);

if err < min err

C0 = B0;

C1 = B1;

C2 = B2;

W = V ;

min err = err;

if min err < 1.0e− 12

break ;

endif

endif

[M, cl] = hcl(V, n);

% Check the number of clusters

for i = 1 : n

count(i) = 0;

endfor

no cluster = 0;

9

for i = 1 : m

count(cl(i)) + +;

if count(cl(i)) == 1

no cluster ++;

endif

endfor

if no cluster! = columns(V)

printf(”Reset the number of aggregated states from %i to %i\n”, columns(V), no cluster) ;

endif

V = zeros(m,n);

for i = 1 : m

V (i, cl(i)) = 1;

endfor

if norm(V − Z) < 1.0e− 6||norm(V −W) < 1.0e− 6

printf(”Norm(V-Z) %.3e norm(V-W) %.3e\n”, norm(V − Z), norm(V −W)) ;

break ;

endif

iter ++;

endwhile

end

4 Some more Example Results

References

[1] P. Buchholz and J. Kriege, “Aggregation of markovian models - an alternating least squares
approach -,” in Proc. 9th Int. Conf. on Quantitative Evaluation of Systems (QEST). IEEE
Press, 2012.

[2] K. H. Haskell and R. J. Hanson, “An algorithm for linear least squares problems with equality
and nonnegativity constraints,” Mathematical Porgramming, vol. 21, pp. 98–118, 1981.

[3] C. L. Lawson and R. J. Hanson, Solving Least Squares Problems, ser. Classics in Applied Math-
ematics. SIAM, 1995.

[4] G. H. Golub and C. F. van Loan, Matrix Computations. John Hopkins University Press, 1996.

[5] J. Cantarella and M. Piatek, “tsnnls: A solver for large sparse least squares problems with
non-negative variables,” http://www.michaelpiatek.com/papers/tsnnls.pdf.

[6] “Gnu octave,” http://www.gnu.org/software/octave/.

[7] “Quadratic programming in octave,” http://www.gnu.org/software/octave/doc/interpreter/Quadratic-
Programming.html.

10

