
Online Companion to the Paper ’Model Checking
Stochastic Automata for Dependability and

Performance Measures’

Peter Buchholz, Jan Kriege, and Dimitri Scheftelowitsch

Department of Computer Science, TU Dortmund
{peter.buchholz,jan.kriege,dimitri.scheftelowitsch}@udo.edu

Abstract. This note includes some additional details as an extension of the paper
“Model Checking Stochastic Automata for Dependability and Performance Mea-
sures” [4]. In particular, it introduces the Kronecker operations, which are the
base of the approach, it presents some basic ideas to prove the steps of the model
checking approach, and it introduces some algorithmic details. It should be noted
that the note is a supplement of [4] and is not intended to be self-explanatory.

1 Stochastic Automata and the underlying Stochastic Process

The compositional generation of matrices describing automata transitions is based on
Kronecker operations which are introduced first. For further details we refer to the lit-
erature [6, 7]. Let A ∈ IRra,ca and B ∈ IRrb,cb , then

A ⊗ B =


A(1, 1)B · · · A(1, cA)B

...
. . .

...
A(rA, 1)B · · · A(rA, cA)B

 (1)

is the Kronecker product. The Kronecker sum of two square matrices A ∈ IRra,ra and
B ∈ IRrb,rb is defined as

A ⊕ B = A ⊗ Irb + Ira ⊗ B (2)

where Ir is the identity matrix or order r. There are some fundamental rules that are
useful if Kronecker operations are applied to describe the composition of stochastic
processes, Markovian or not.

– If S(a) and S(b) are state spaces of order n and m, respectively, then the joint state
space S(a) × S(b) includes nm states and states are described by tuples (i, j) with
i ∈ S(a) and j ∈ S(b). If π(a) ∈ IRn and π(b) ∈ IRm are vectors including weights of
the states, then
• the composition of the weights such that the weight of state (i, j) in the joint

state space is given by the sum of weights of the constituent states can be
described by π(a) ⊕ π(b);

• the composition of the weights such that the weight of state (i, j) in the joint
state space is given by the product of weights of the constituent states can be
described by π(a) ⊗ π(b).

– If A(a) ∈ IRra,ra and A(b) ∈ IRrb,rb are transition matrices on S(a) and S(b), respec-
tively, then a transition in the joint state space S(a) × S(b) is given by a transition
from (i, j) into (k, l). The weights can be described in a matrix B ∈ IRrarb,rarb which
can be computed as follows:
• If the transition weight is given by B((i, j), (k, l)) = A(a)(i, k)A(b)(j, l) (i.e., a

joint transition in both processes), then B = A(a) ⊗ A(b). This composition
can be easily extended to non-square matrices describing transitions between
different state spaces.

• If transition occur independently and not at the same time, then a transition
from (i, j) into (k, l) is only possible if i = k or j = l). In this case B =

A(a) ⊕ A(b).

With these rules, Kronecker operations can be used to generate matrices of Markov
processes. The advantage of a Kronecker representation is that it can be exploited in
computational algorithms, i.e. several matrix operations can be realized using the small
matrices in the Kronecker operations rather than the large matrix which is built. This
allows a very memory efficient implementation which sometimes results in a more effi-
cient computation, for details we refer to the literature [3, 5–7].

The rules are applied to build the transition matrix of SAs (see Eqs. 11 and 12 in
[4]). We now briefly derive the matrices.

In general, a SA is specified by the automaton and the clock processes. A clock
process is characterized by a set of matrices

(
π(c)

0 ,G(c)
0 ,G(c)

1 , . . . ,G(c)
Kc

)
that specify an

MMAP or MRAP or a distribution if G(c)
k = gkπ

(c)
0 (i.e. is given by the product of two

vectors). Informally, the behavior of a SA can be described by the following two rules:

1. In a location I clocks from the set ena(I) run independently and in parallel.
2. If in a location a clock generates an event, then this triggers a transition in the

automaton and according to this transition clocks are enabled, disabled or reset.

Now we can apply the basic rules given above.

– In location I the state of clocks from set act(I) is relevant. Thus the joint state can
be described by a vector with |act(I)| entries. If πc) is the weight vector for clock
c and the weight of state (i1, . . . , iC) is given by

∏C
c=1 π

(c)(ic), then indices can be
linearized and the joint weight vector is given by ⊗C

c=1π
(c).

– Since inside location I clocks from the set act(I) run independently, the joint tran-
sitions are characterized by the Kronecker sum of the matrix G(c)

0 for c ∈ ena(I).
Additionally, clocks may be suspended. This means that they keep their state which
is characterized by a transition matrix 0 of order n(c). Together this defines the di-
agonal blocks HD

I,I .
– Transitions in the automaton are triggered by clocks that generate events. If in loca-

tion I clock c′ ∈ ena(I) generates an event of class k′ and the new location is J (i.e.,
trans(I, (c′, k′), J) > 0), then the state of clock c′ changes due to the transition. The
change of the automata state implies that immediately the state of other clocks may
be modified. This means that the states changes synchronously and the Kronecker
product has to be used to combine the matrices. The matrices in the Kronecker
product describe the state changes of the clocks. We have to distinguish between

2

clock c′ that triggers the transition and the remaining clocks c ∈ C \ {c′}. For clock
c′ the following three cases have to be distinguished:
1. If clock c′ remains active (i.e., enabled or suspended) in the new location and is

not reset, then a normal class k′ transition occurs as described by matrix G(c′)
k′ .

2. If clock c′ becomes inactive in the new location, then only the transition rates
or weights are needed, such that a vector G(c′)

k′ I1 described the transition.
3. If clock c′ is reset in the new location, the new state vector will be π(c′)

0 and the
transition is characterized by the matrix G(c′)

k′ I1π(c′)
0 .

For clocks c ∈ C \ {c′} four cases have to be distinguished.
1. If clock c ∈ act(I) remains active, then its state remains as it is and the transition

can be characterized by an identity matrix I of order n(c).
2. If clock c is not active in the new location J, its state is no longer needed which

is described by the column vector I1.
3. If clock c is reset, then the corresponding matrix equals I1π(c)

0 .
4. If c < act(I) but c ∈ act(J), then it has to be newly initialized and the state

vector has to be considered in the state vector for location J which is described
by vector π(c)

0 .
5. If clock c is not active in both locations I and J, then the state change can be

described by the matrix (1), the neutral element of the Kronecker product, that
does not modify the expression.

The different cases are considered in Eq. 10 in [4]. Kronecker products of this form
build the blocks of matrix HN .

The matrix H and the initial vector π0 specify a CTMC for SAMs and a rational
process (RP) [2, 5] for general SAs. As already mentioned in [4], transitions in HN

correspond to transitions in the automaton where HD contains rates or weights of local
transitions and the diagonal entries. In this way (π0,HD,HN) can be interpreted as an
MMAP/MRAP.

2 Computation of State Vectors

We have to distinguish between a state vector πt at time t and the expected state vector
pt = E[πt] at time t. The state vector is a concrete state (i.e., all non-zero entries belong
to one location) that is observed at time t. For a given sequence

F(I0,π) = ((I0, (c1, k1), t1), (I1, (c2, k2), t2), . . . , (IF−1, (cF , kF), tF), IF)

that starts in (I0, π0), the state can be computed as shown below. Since F(I0,π) has a den-
sity with which it can be observed, a distribution over the possible weight vectors can
be defined for each t ≥ 0. Consequently, the expectation pt can be computed. However,
pt defines a distribution or weight vector over all/several locations.

To compute the expectation at time t pt, the differential equation

pt = π0etH = π0

∞∑
h=1

(tH)h

h!

3

has to be solved. In general the system can be solved by a standard solver for dif-
ferential equations, like a Runge Kutta method. For SAMs and the resulting CTMCs
uniformization [7] can be used. Let H be the generator matrix of a CTMC and α ≥
maxi∈M (|H(i, i)|). Then U = H/α + I is a stochastic matrix and

pt = π0

∞∑
h=1

e−αt (αt)h

h!
(U)h .

This computation is more stable and allows one to truncate the sum after a finite number
of steps with a predefined error bound. The stationary vector can be computed for irre-
ducible systems as the solution of a system of linear equations using standard means. It
should be noted that stationary and transient analysis can exploit the Kronecker repre-
sentation of H. For details see [1, 2].

For the computation of the state π that is reached after observing F(I0,π) starting in
state (I0, π) we first compute (see Eq. 13 in [4])

Dens(F(I0,π0)) = π0

 F∏
f =1

e
t f

⊕
c∈act(I f−1)

X(c)
I f−1

⊗
c∈act(I)∪act(J)

Y(c)
I f−1,I f ,(c f ,k f)

 I1 (3)

where the matrices X(c)
I and Y(c)

I,J,(c′,k′) are defined in [4]. For Dens(F(I0,π0)) = 0, the
sequence F(I0,π) cannot be observed, otherwise

π =
(
Dens(F(I0,π0))

)−1 π0

 F∏
f =1

e
t f

⊕
c∈act(I f−1)

X(c)
I f−1

⊗
c∈act(I)∪act(J)

Y(c)
I f−1,I f ,(c f ,k f)

 (4)

and (IF , π) is the state of the system after observing the sequence. Again Eq. 4 can be
computed using a standard differential equation solver or for SAMs uniformization.

3 Compositional Model Checking

If vector π0 = ⊗c∈act(I0)π
(c)
0 , then Eq. 4 can be decomposed. The decomposition is based

on the following relation.

e⊕c∈CX(c)
Ic = ⊗c∈CeX(c)

Ic (5)

This implies that instead of a matrix exponential of order
∏

c∈C n(n), |C| matrix of expo-
nentials of order n(c) can be computed. The proof of (5) is based on the relation

eG(1)⊕G(2)t =
∞∑

i=0

((G(1)⊕G(2))t)i

i! =
∞∑

i=0

((G(1)⊗I+I⊗G(2))t)i

i! =

∞∑
i=0

1
i!

i∑
j=0

(
i
j

)
(G(1)t) j ⊗ (G(2)t)i− j =

∞∑
i=0

(G(1)t)i

i! ⊗
∞∑
j=0

(G(2)t) j

j! = eG(1)t ⊗ eG(2)t

(5) can be exploited to evaluate (4). If vector π0 is only available as a full vector, then

the matrix exponentials e
t f⊕c∈act(I f−1) X(c)

I f−1 can be represented as ⊗c∈act(I f−1)e
t f X(c)

I f−1 . Even if

4

the matrices in the Kronecker product may become full matrices, it is usually recom-
mended to compute these matrices which are of order n(c). If π0 = ⊗c∈Cπ

(c)
0 , then one

can compute

π(c) =
(
Dens(F(I0,π0))

)−1 π0

 F∏
f =1

e
t f X(c)

I f−1 Y(c)
I f−1,I f ,(c f ,k f)

 (6)

for every c ∈ C where π(c) = (1), X(c)
I = (0) for c < act(I) and Y(c)

I,J,(c′,k′) = (1) for
c ∈ C \ {act(I) ∪ act(J)}. Then

π = ⊗c∈Cπ
(c).

If clock c is an MMAP, then vector π(c) can be computed using uniformization otherwise
a general differential equation solver has to be applied.

The decompositional approach can be directly applied for the evaluation of Eqs. 19
and 21 in [4].

4 Some Detailed Examples

We consider the two running examples in some more detail.

4.1 First Running Example

The first running example is shown in Figure 1. It describes a simple model contain-
ing two processes that iterate between a local computation phase and an access to a
shared resource. Process 1 has preemptive priority over process 2 when accessing the
shared resource. The preemption is of the type preemptive resume which means that the
second process starts from that point where its has been interrupted. Furthermore, the
sequence of local computation steps of the first process are correlated, all other times
are independently and identically distributed.

The automaton has 5 location with the following interpretations:

1. Both processes are computing locally.
2. Process 1 has access to the shared resource and process 2 is computing locally.
3. Process 2 has access to the shared resource and process 1 is computing locally.
4. Process 1 has access to the shared resource and process 2 is waiting for access.
5. Process 1 has access to the shared resource and process 2 has been interrupted at

the shared resource.

The events are driven by 4 clocks with the following interpretation:

c1 The clock triggers the local computation times of process 1. It is never disabled,
which means that it keeps its state even if not enabled. The clock is described by a
MAP or RAP.

c2 The clock triggers the local computations of process 2, it is either enabled or dis-
abled, but never suspended. The clock is described by a PHD or MED.

c3 The clock triggers the access times to the shared resource of the first process. It is
never suspended. The clock is described by a PHD or MED.

5

c1 c2

1

c1 c4

c3c2 c3

c3

c1

c4c1

c1

c3

c2

c4

c2

c3

c1

c3
5

2

3

4

c3 service 1

c4 service 2

c2 local 2

c1 local 1

c1

Fig. 1. Simple system with two processes and a shared resource.

c4 The clock triggers the access times of the second process to the shared resource.
It is suspended, if the second process is preempted during its access to the shared
resource. It is not enabled when the second process is computing locally. The clock
is also described by a PHD or MED.

The following transitions describe the dynamics of the model. Transitions are trig-
gered by clocks, i.e., if a clock elapses in a location, then the corresponding transition
occurs. In this example, successor states are defined by the source location and the
clock, i.e., there is always a unique successor location.

a) Clock c1 elapses in location 1 and causes a transition to location 2. This means that
process 1 finishes local computation and accesses the shared resource. Since local
computation times of process 1 are possibly correlated, the state of c1 is kept which
means that the clock is suspended. Clock c2 remains enabled and keeps its state.
Clock c3 triggering the access time of process 1 to the shared resource is newly
enabled.

b) Clock c2 elapses in location 1 and causes a transition into location 3. This means
that process 2 finishes its local computations and gets access to the shared resource.

6

Clock c1 remains enabled and keeps its state since process 1 continues with local
computations. Furthermore, clock c4, triggering the access to the shared resource
of process 2, is newly enabled. Clock c2 is disabled since local computation times
of process 2 are independently and identically distributed such that the state of the
clock is not kept during phases where process 2 is not computing locally.

c) Clock c2 elapses in location 2. The second process ends its local computations and
tries to access the shared resource that is held by process 1. Since process 1 has
priority at the shared resource, process 2 has to wait. Clock c2 is disabled since the
local computation has ended and clock c4 is disabled since the access time to the
shared resource by the second process has not yet started.

d) Clock c3 elapses in location 2. In this case, process 1 ends its access to the shared
resource and continues its local computation with the state where it finished before.
The system is again in location 1.

e) Clock c1 elapses in location 3. This implies that the first process ends local computa-
tion and gets access to the shared resource. Since process 1 has preemptive priority
at the shared resource, access is gained. Since the priority is preemptive resume,
clock c4, triggering the access of the second process to the shared resource, keeps
its state.

f) Clock c4 elapses in location 3. Process 2 ends its access to the shared resource and
starts local computation. Clock c2, triggering the local computation of process 2,
becomes enabled.

g) Clock c3 elapses in location 4. The first process finishes its access to the shared
resource and starts local computation with the suspended state of clock c1. Since
process 2 waits for access to the shared resource, it starts the access by initializing
clock c4 which is enabled in the new location 3.

h) Clock c3 elapses in location 5. This case is similar to the previous one. However,
in contrast to the previous case, process 2 had been interrupted during its access to
the shared resource and starts from the state where is has been interrupted which is
stored for the suspended clock c4.

4.2 Second Running Example

The second running example from [4] describes a system with one processor and two
hard drives which are united into one RAID unit shown in Figure 2. The system is
down if either the processor or both disk drives fail. Additionally, the system can be
under maintenance. The times are modeled by seven clock processes: Failure times for
the hard drives are distributed according to the clock processes c1 and c2, respectively.
Failure and maintenance times for the processor are modeled by the process p that has
two classes: Class a indicates a failure, class b indicates a maintenance. Note, that the
system can be under maintenance only if both disk drives are working, otherwise it re-
quires the more time consuming repair. The repair times for disks are modeled by the
clock processes r1 and r2. If the system is down the repair time is modeled by rd. The
maintenance time is modeled by rm. As described in [4] the process p is modeled by an
PHD with two classes, c1 and c2 are modeled by ME distributions and the processes r·
are described by Erlang distributions. In the following we will give MRAP descriptions
for all clock processes that are equivalent to the mentioned distributions and then show

7

p c1 c2

(1, 1, 1)

rm

maint.

p c2 r1

(1, 0, 1)

p c1 r2

(1, 1, 0)

rd

down

c2c1

c1c2

p(a,b)p(a,b)

rd p(a)

p(b)

rm

r1 r2

Fig. 2. A system with two hard drives and a processor.

how matrices HD and HN can be constructed that describe the complete automaton as
an MRAP.

In particular, the clock processes are modeled by the following MRAPs:

– Clock processes c1 and c2:

π(c1)
0 = π(c2)

0 = (0.2, 0.3, 0.5)

G(c1)
0 = G(c2)

0 =

−0.1 0.0 0.0
0.0 −0.3 0.2
0.0 −0.2 −0.3

 G(c1)
1 = G(c2)

1 =

0.02 0.03 0.05
0.02 0.03 0.05
0.10 0.15 0.25


– Clock process p:

π
(p)
0 = (0.6, 0.4, 0.0)

G(p)
0 =

−2.0 0.0 0.0
0.0 −3.0 1.0
0.0 1.0 −4.0

 G(p)
1 =

0.2 0.4 0.0
0.6 0.1 0.0
0.8 0.7 0.0

 G(p)
2 =

1.0 0.4 0.0
0.6 0.7 0.0
1.0 0.5 0.0


8

– Clock processes r1 and r2:

π(r1)
0 = π(r2)

0 = (1, 0, 0, 0, 0)

G(r1)
0 = G(r2)

0 =


−100 100 0 0 0

0 −100 100 0 0
0 0 −100 100 0
0 0 0 −100 100
0 0 0 0 −100

 G(r1)
1 = G(r2)

1 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

100 0 0 0 0


– Clock process rd:

π(rd)
0 = (1, 0)

G(rd)
0 =

(
−6 6
0 −6

)
G(rd)

1 =

(
0 0
6 0

)
– Clock process rm:

π(rm)
0 = (1, 0)

G(rm)
0 =

(
−20 20

0 −20

)
G(rm)

1 =

(
0 0
20 0

)
HD and HN are composed of submatrices HI,J that are constructed according to

Eqs. 11 and 12 from [4]. For our example we have

HD =


HD

(1,1,1),(1,1,1) 0 0 0 0
0 HD

(1,0,1),(1,0,1) 0 0 0
0 0 HD

(1,1,0),(1,1,0) 0 0
0 0 0 HD

maint,maint 0
0 0 0 0 HD

down,down


and

HN =



0 HN
(1,1,1),(1,0,1) HN

(1,1,1),(1,1,0) HN
(1,1,1),maint HN

(1,1,1),down
HN

(1,0,1),(1,1,1) 0 0 0 HN
(1,0,1),down

HN
(1,1,0),(1,1,1) 0 0 0 HN

(1,1,0),down
HN

maint,(1,1,1) 0 0 0 0
HN

down,(1,1,1) 0 0 0 0


According to [4, Eq. 11] the matrices HD

I,I are given as the Kronecker sum of the matri-
ces G(c)

0 of all enabled clock processes in location I. In location (1, 1, 1) the processes
c1, c2 and p are enabled and consequently we get the 27 × 27 matrix

HD
(1,1,1),(1,1,1) = G(c1)

0 ⊕G(c2)
0 ⊕Gp

0 .

In a similar way we obtain

HD
(1,0,1),(1,0,1) = G(r1)

0 ⊕G(c2)
0 ⊕Gp

0

HD
(1,1,0),(1,1,0) = G(r2)

0 ⊕G(c1)
0 ⊕Gp

0

HD
maint,maint = G(rm)

0

HD
down,down = G(rd)

0 .

9

The matrices HN
I,J are computed as the Kronecker product of clock processes that are

active in locations I and J according to [4, Eq. 11]. Depending on whether the clock
process remains active, becomes active or becomes inactive one of the cases from [4,
Eq. 10] applies. As an example we will consider the submatrix HN

(1,1,1),(1,0,1). We have
to treat the clock processes r1, c1, c2 and p that are active in at least one of the two
locations.

– Clock process r1 becomes active in location (1, 0, 1) (but was not active in (1, 1, 1)).
This is case (f) from [4, Eq. 10] and thus, we use π(r1)

0 in the Kronecker product.
– Clock process c1 triggered the transition and becomes inactive (case (b) from [4,

Eq. 10]. Hence, G(c1)
1 1 is used.

– Clock processes c2 and p remain active but did not trigger the transition and are not
reset (case (d) from [4, Eq. 10]). Both are represented by an identity matrix of the
corresponding order.

In summary, we get
HN

(1,1,1),(1,0,1) = π(r1)
0 ⊗ (G(c1)

1 1) ⊗ I ⊗ I

resulting in a 27 × 45 matrix. The remaining matrices HN
I,J are constructed in a similar

way.

References

1. P. Buchholz. Structured analysis approaches for large Markov chains. Applied Numerical
Mathematics, 31(4):375–404, 1999.

2. P. Buchholz. Numerical analysis of rational processes beyond Markov chains. Perform. Eval.,
70(9):646–662, 2013.

3. P. Buchholz, G. Ciardo, S. Donatelli, and P. Kemper. Complexity of Kronecker operations
and sparse matrices with applications to the solution of Markov models. INFORMS Journal
on Computing, 12(3):203–222, 2000.

4. P. Buchholz, J. Kriege, and D. Scheftelowitsch. Model checking stochastic automata for de-
pendability and performance measures. In DSN, 2014 (to appear).

5. P. Buchholz and M. Telek. Rational automata networks: A non-Markovian modeling ap-
proach. INFORMS J. on Computing, 25(1):87–101, 2013.

6. C. F. Loan. The ubiquitous Kronecker product. Journal of Computational and Applied Math-
ematics, 123(12):85 – 100, 2000. Numerical Analysis 2000. Vol. III: Linear Algebra.

7. W. J. Stewart. Introduction to the numerical solution of Markov chains. Princeton University
Press, 1994.

10

