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Abstract

The paper presents an empirical comparison of different methods to fit the parameters of a MAP according to the quanti-

ties derived from three different real traces. The results indicate that for two of the three traces an adequate fitting with low

order MAPs is possible whereas almost all approaches failed for the third trace. Apart form this the question for the best

approach for fitting MAPs is still open although there seems to be a tendency that the most costly EM algorithms provide the

best fitting results.

1 Introduction

In stochastic modeling, the appropriate representation of arrival and service processes is of major importance to build realistic

models. It turns out that many real processes include some correlation which implies that random variables that are identically

and independently distributed are not sufficient to describe real behavior, instead stochastic processes have to be used to

model the distribution and the autocorrelation structure. Markovian arrival processes (MAPs) [17] are stochastic processes

which can be applied to capture a wide range of different stochastic behaviors and can be used in queuing network models

as arrival or service processes. Queuing networks with MAPs can be analyzed numerically by solving the global balance

equations [23], if the state space is not too large, they can be analyzed with matrix analytical methods [18], if they are of the

MAP/MAP/m type, they may as well be analyzed approximately [9] or by simulation.

To capture real behavior by MAPs, the parameters of a MAP have to be fitted according to some trace resulting from

observations or measured behavior. The fitting problem of MAPs is a nonlinear optimization problem which becomes even

more complex since the matrix representation of MAPs is redundant [24] and a canonical representation is only available

for MAPs of order two [3]. Different fitting approaches have been proposed in the literature which all have their pros and

cons. The most general approach is to find a MAP that maximizes the likelihood according to the available trace. The

EM algorithm [2] can be used for this purpose and many specific variants of the algorithm for MAP fitting are available

[4, 5, 14, 22]. However, EM algorithms have several disadvantages since they have a slow convergence, may converge

towards local minima and require a huge effort that grows linearly in the length of a trace. Since for MAP fitting very long
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traces are required to adequately match the autocorrelation structure, in practice, EM approaches are not sufficient to obtain

good fitting result with an acceptable effort. Alternative approaches first derive some quantities from a trace, like higher order

moments, joint moments or lag-k autocorrelations and then fit the parameters of a MAP according to these quantities. This

implies that fitting becomes independent of the trace length. As shown in [24], a non redundant MAP of order n which is

characterized by 2n2 − n free parameters is completely determined by n2 parameters, e.g., by the first 2n− 1 moments and

(n− 1)2 joint moments. Thus, one may fit a MAP according to the empirical moments and joint moments of a trace as done

in [7]. Other approaches use the lag-k autocorrelation instead of the joint moments for fitting [10, 13].

However, all these approaches have their limitations since in practice n2 parameters of a trace hardly define a MAP. In [7]

we used least square fitting to obtain the nearest MAP of order n according to some measured moments and joint moments.

It turns out that it is hard to fit even approximately in the range of n2 parameters of a real trace with a MAP of order n.

Another problem which is also considered in [7] is the reliability of quantities derived from a trace. In general, a trace is only

a sample of the behavior of a system such that the quantities computed from the trace are only estimates. If one computes

confidence intervals for these quantities, it turns out that confidence intervals become very wide for higher order moments

or joint moments of traces from the Internet archive [1] which already contain more than a million entries. This observation

implies that for MAP fitting long traces are required.

Although many approaches for MAP fitting are available, it is completely unclear which is the best approach and it is not

even clear how to measure whether one approach is better than another. It seems that a lot of empirical work is necessary

to find reliable and efficient fitting methods. In this paper we perform such empirical observations by comparing different

fitting approaches and different quantities that are fitted. We apply a standard EM approach and two classes of fitting methods

that fit first order quantities like joint moments and higher order quantities like lag-k autocorrelations. For this purpose we

slightly extend available fitting methods that are based on a two step approach which first fits a phase type (PH) distribution,

then possibly do some equivalence transformation on the representation and finally fit a MAP that leaves the distribution

unchanged.

The paper is structured as follows. In the next section we introduce the basic notation and recall some basic results for PH

distributions and MAPs. In chapter 3 we present several MAP fitting approaches. We start with a brief introduction of EM

based MAP fitting and present afterwards two classes of approaches that expand an available PH distribution into a MAP. In

the first case, the expansion is done by a least squares approach to fit joint moments. Then we consider the fitting of lag-k

autocorrelations. In the following section we use the different fitting methods to fit MAPs according to specific quantities

derived from real traces and we compare MAPs fitted with different approaches. The paper ends with the conclusions.

2 Background

We first introduce the basic notation and define PH distributions, then we briefly outline fitting methods for PH distributions

and, finally, we present basic results for MAPs.
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2.1 Basic Definitions and Results for PH Distributions

A PH distribution [18] of order n is defined by a non-singular n × n matrix D0 with D0(i, j) ≥ 0 for i 6= j, D0(i, i) ≤

−
∑n
j=1,j 6=iD0(i, j) and a row vector π with π(i) ≥ 0 and π 1I = 1 where 1I is the unit column vector of length n. Let

M = (−D0)
−1, the so called moment matrix. The distribution function, density and the moments of a random variable X

with a PH distribution (D0, π) are given by

FX(t) = 1− πetD0 1I (1)

fX(t) = πetD0(−D0 1I) (2)

µk = E(Xk) = k!π (M)
k
1I . (3)

It has been shown [19] that every non negative random variable with a continuous density that is non-zero in (0,∞) can be

approximated arbitrarily close by a PH distribution.

2.2 Fitting Methods for PH distributions

The task of fitting PH distributions is to choose the parameters of a PH distribution in such a way that some measured

quantities are matched. Usually these quantities result from a trace which is an observation of some real behavior. From

a trace different quantities like moments, joint moments, lag-k coefficients of autocorrelation or values of the empirical

distribution function or density can be computed. Since a trace is only a sample of some real behavior, all values are

estimates. The goal of a fitting approach is to find a PH distribution that matches the quantities of the trace as good as

possible. A large number of fitting methods for PH distributions exist, an overview can be found in [11].

We only outline a few approaches which we later use as a first step for MAP fitting. In general one can distinguish between

fitting methods that work on the whole trace and those that try to match some quantities derived from the trace. Methods of

the former type usually maximize the likelihood value which is defined for a trace t1, . . . tm as

L(D0,π)(t1, . . . , tm) =

m∏
k=1

πetkD0 (−D0 1I) . (4)

Maximization is done with the so called EM algorithm [2]. However, the general variant of this algorithm is rather inefficient

but if one restricts the class of PH distributions, much more efficient variants can be defined. In [25] an EM algorithm which

fits the parameters of a generalized Erlang distribution is shown to be rather efficient. We will use this approach as a first step

for MAP fitting.

Alternatively, one may fit the PH distribution according to the moments of the trace. In this case acyclic phase type

distributions are used since for this subclass a canonical representation exists. Methods for moment fitting which we also

apply as a first step for MAP fitting are proposed in [7, 12].

2.3 Basic Definitions and Results for MAPs

A MAP [17] of order n is a stochastic process defined by two n × n matrices (D0,D1) where D0 is as defined for a PH

distribution above and D1 ≥ 0 such that Q = D0 +D1 and Q1I = 0. Matrix D0 contains the rates of internal transitions
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without an arrival and matrix D1 contains the rates of transitions generating an arrival. We assume that Q is an irreducible

generator matrix. Define P = −D−10 D1 as the transition matrix of the embedded discrete time Markov chain after an arrival.

The stationary vector πP = π, π 1I = 1 includes the distribution just after an arrival. Consequently, (D0, π) describes the

interarrival time distribution of a MAP. Similarly each PH distribution (D0, π) can be expanded into a MAP by defining

D1 = −D0 1Iπ.

The joint moments of consecutive arrivals of a MAP (D0,D1) are given by

µk,l = E(Xk
i X

l
i+1) = k! l!πMkPMl 1I , (5)

the lag-k autocorrelation equals

ρk =
µ−21 π(−D0)

−1Pk(−D0)
−1 1I− 1

2µ−21 π(−D0)−1(−D0)−1 1I− 1
(6)

and the joint density of the first m interarrival times is defined as

f(τ1, . . . , τm) = π

(
m∏
i=1

eτiD0D1

)
1I . (7)

Fitting methods as introduced in the subsequent section try to approximate the empirical measures of a trace by a MAP.

As for fitting PH distributions either the complete trace may be used resulting in the maximization of the likelihood

L(D0,D1)(t1, . . . , tm) = π

(
m∏
k=1

etkD0D1

)
1I . (8)

or some derived quantities like joint moments or lag-k autocorrelations may be used for fitting.

One approach which has been applied successfully [7, 8, 13] is to separate distribution and dependency fitting. In a

first step, a PH distribution is generated that captures the distribution of the elements in the trace and in a second step the

distribution is expanded into a MAP by considering the dependencies in the trace. This expansion implies that matrix D0

remains unchanged and D1 is chosen such that −D0 1I = D1 1I and πMD1 = π which puts 2n constraints for the elements

of D1.

3 MAP Fitting Approaches

3.1 Expectation Maximization

We begin with a brief look on EM algorithms for MAP fitting and refer for the details of the approaches to the literature

[2, 4, 5]. All EM algorithms perform an alternating sequence of expectation (E) and maximization (M) steps which improve

the likelihood values in each step. Due to the structure of the M-step zero values in the matrices remain zero which implies

that no fill in occurs if the algorithm is initially started with sparse matrices. The effort of a single iteration depends linearly

on the length of the trace and the number of non-zero elements in the D1 matrix. Furthermore, it depends on the values in the

trace in relation to the matrix entries since etiQ0 has to be evaluated for each entry ti in the trace and the effort depends on

the number of non zero entries in D0 and the relation between transition rates and time steps. Unfortunately, the convergence

of EM algorithms is very slow such that a large number of iterations is required.
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If the likelihood is the measure to be maximized, then EM algorithms are currently the best alternative. However, one

should start the EM algorithm with a MAP that has already been fitted to the trace using one of the approaches presented

in the following two subsections. In this case, the EM algorithm improves the likelihood value but may reduce the fitting

quality according to other measures like joint moments or lag-k autocorrelations which have been used to fit the initial MAP.

The effort of EM algorithms applied to real traces is usually very high, e.g. for LBL-TCP-3, one of the traces we use later,

the EM algorithm from [5] requires about 5 minutes per iteration with a MAP of order 5 and about 100 iterations are needed

to reach convergence.

3.2 Fitting of Joint Moments

If fitting of the distribution and the autocorrelation structure are done separately, then the matrix D0 and vector π result from

distribution fitting. Since we use the moment fitting approach from [7] or the EM algorithm of [25] for distribution fitting,

the result is in both cases an acyclic PH distribution with an upper triangular matrix D0. Acyclic PH distributions of order n

have n(n+1)/2+(n−1) free parameters but only 2n−1 parameters are necessary to characterize the distribution such that

different representations of the same distribution exist. [6] summarizes three methods to perform equivalence transformations

that generate different acyclic representations of the same distribution. For MAP fitting the number of non zero entries in π

and D0 1I has to be maximized to maximize the number of possible non zero entries in D1. However, even with this goal the

transformation is non unique and different approaches may be tried.

Define vk = πMk+1 and wk = Mk 1I, then

µk,l = k! l! vkD1w
l . (9)

Now assume that J is a set of joint moments that should be matched by the MAP and let for (k, l) ∈ J νk,l be the joint

moments of the trace. Then the following constrained non negative least squares problem has to be solved to find the nearest

MAP.

min
D1:D1≥0, D1 1I=−D0 1I, πMD1=π

 ∑
(k,l)∈J

(
βk,l

µk,l
νk,l
− βk,l

)2
 (10)

βk,l are some weights which allow one to discriminate higher order joint moments. In our experiments we present later, all

weights are set to 1. However, if the resulting MAP cannot match the required moments adequately, it is often appropriate to

set the weights such that lower order joint moments get a higher weight, e.g., by choosing βk,l = 2−(k−1)(l−1). In this case,

lower order joint moments are often matched exactly or almost exactly with the price of a bad fit for higher order moments.

The least squares solution can be computed with available algorithms [15]. The major advantage of joint moment fitting

is the efficiency. I.e., to fit the joint moments νk,l with 1 ≤ k, l ≤ 3 for LBL-TCP-3 with a MAP of order 5 requires less than

1 second which is negligible compared to the fitting times of EM-algorithms.

3.3 Fitting of Autocorrelations

The approach for the fitting of autocorrelation works similarly to joint moment fitting. In a first step, the initial probability

vector π and the matrix D0 are determined by a PH fitting algorithm like [7] or [25] and are transformed such that the number
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of non zero entries is maximized. Then matrix D1 is generated such that the autocorrelations ρ = (ρ1, · · · , ρn) of the MAP

(D0,D1) (cf. Eq. 6) approximate the autocorrelations ρ̂ = (ρ̂1, · · · , ρ̂n) that have been estimated from the trace, i.e. we

have to solve the following minimization problem:

min
D1:D1≥0, D1 1I=−D0 1I, πMD1=π

(
n∑
i=1

(βi|ρi − ρ̂i|)

)
(11)

where the βi are weights which again may be used to privilege lower lag autocorrelations.

In this paper, we use a slightly modified approach of the two step algorithm presented in [13]. For minimizing Eq. 11 we

use the Nelder-Mead algorithm [16]. An implementation can for example be found in [21]. For a MAP of order n we have n2

variables from matrix D1 and Nelder-Mead requires n2 + 1 initial solutions D(i)
1 , i = 1, · · · , n+ 1. The first initial solution

is the MAP representation of the given PH distribution (π,D0), i.e. D(1)
1 = (−D0 1I)π. The possible range for other valid

initial solutions is bounded by the constraints on the row sums (−D0 1I = D1 1I) and on the steady-state vector (πP = π).

Let x be a vector that contains the first row of matrix D1 in positions 1, · · · , n, the second row in positions n + 1, · · · , 2n

etc. Then we can define a linear system of equations using the conditions on row sums and steady-state vector (cf. [13]):



1 1 · · · 1
...

...
. . .

...

0 0 · · · 0

π′(1) 0 · · · 0
...

...
. . .

...

0 0 · · · π′(1)

0 · · · 0

. . .

0 · · · 0

· · ·
. . .

· · ·

0 0 · · · 0
...

...
. . .

...

1 1 · · · 1

π′(n) 0 · · · 0
...

...
. . .

...

0 0 · · · π′(n)


︸ ︷︷ ︸

A



D1(1, 1)

D1(1, 2)
...

D1(1, n)

D1(2, 1)

D1(2, 2)
...

D1(n, n)


︸ ︷︷ ︸

x

=




−D0 1I


π(1)

π(2)
...

π(n)


︸ ︷︷ ︸

b

(12)

where π′ = π(M).

If initial solutions of the Nelder-Mead algorithm differ only slightly, the algorithm gets stuck at a local minimum close to

one of the starting points. Therefore we apply the simplex algorithm to find the initial solutions for Nelder-Mead: For each

xi of Eq. 12 we solve

maxxi , Ax = b , and x ≥ 0

which ensures that the Nelder-Mead algorithm has initial solutions with a large stepwidth for each xi.

Fitting according to autocorrelations is not as efficient as fitting according to joint moments, since the minimization

problem is not a simple least squares problem. Depending on the number of lag-k autocorrelations that are considered the

approach takes between some seconds and few minutes, e.g. to fit the first 30 lags for LBL-TCP-3 with a MAP of order 5 the

algorithm required less than 10 seconds, for the first 100 lags it took 2 minutes.
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4 Experimental Results

To compare the different fitting algorithms we use three different traces. The trace BC-pAug89 contains a million packet

arrivals observed at the Bellcore Morristown Research and Engineering facility in August 1989. The trace LBL-TCP-3 [20]

contains two hours of TCP traffic from the Lawrence Berkeley Laboratory and was recorded in January 1994. Both traces

are taken from the Internet Traffic Archive [1]. The third trace TUDo contains the interarrival times of one million packets

that have been measured from the Squid proxy server at the Computer Science Department of TU Dortmund in 2006.

We fitted MAPs of different order (from n = 2 to n = 6) with the three fitting approaches from Sec. 3. Since fitting

according to joint moments and autocorrelations both require a given distribution that is fitted in the first step, we used Gfit

[25] and a moment matching approach [7]. In a first step of our empirical evaluation we will compare the joint moments,

lag-k autocorrelations and the likelihood of MAPs that have been fitted according to one of the characteristics with MAPs

for which other properties have been used in the fitting process. The second part of our empirical evaluation compares the

queueing behavior. In the following we will present the results for some of the fitted MAPs.

4.1 Comparison of Quantities

We start with the comparison of the fitted MAPs for the trace BC-pAug89. Figs. 1 and 2 show the results for MAPs of order

4 and 6 that we obtained for the different fitting algorithms. The curves resulting from autocorrelation fitting are labeled

with AC and the number of lags that have been considered for fitting. Curves from joint moment fitting and expectation

maximization are labeled with JM and EM, respectively. For moment matching we used the first five moments νk, (k = 1...5)

and for joint moment fitting 25 joint moments νk,l, (k, l = 1...5) and set all weights βk and βk,l to 1. Usually we used moment

matching [7] to obtain the distribution for joint moment and autocorrelation fitting. In cases where Gfit [25] was used this is

denoted in the plots. In addition to the pure EM algorithm that starts with a random MAP to improve the likelihood we used

the MAPs resulting from AC and JM fitting as initial solutions for the EM algorithm as mentioned in Sec. 3.1. These MAPs

are labeled with JM + EM or AC + EM. The likelihood values for the MAPs are shown in Table 1.

Likelihood Trace pAug89 Likelihood Trace pAug89

MAP(4) AC50 -891757.644354 MAP(6) AC100 -1138434.529730

MAP(4) EM -857368.761951 MAP(6) EM -850032.779585

MAP(4) JM Gfit -833728.156640

MAP(4) JM -879217.986678 MAP(6) JM -1142582.505733

MAP(4) JM Gfit + EM -806247.089218 MAP(6) AC100 + EM -804071.232488

Table 1: Likelihood for the MAPs of order 4 and 6 for the trace BC-pAug89

The MAPs resulting from joint moment fitting failed to capture the autocorrelations, while both autocorrelation fitting and

EM algorithm resulted in a much better approximation of the lag-k autocorrelations, although the latter tends to underestimate

the autocorrelation. In contrast EM and AC fitting do not capture the joint moments of the trace, while, of course, JM fitting
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Figure 1: Fitting results for MAPs of order 4 for the trace BC-pAug89

provides a good approximation as one can see from Figs. 1 d) and 2 d). The curves show the joint moments µk,k of the

MAPs relative to the joint moments of the trace. Joint moments µk,l(k 6= l) are not shown but are similar. Additionally

the confidence intervals of the joint moments are printed in red. For all the MAPs we fitted with the EM algorithm the

joint moments are smaller than the ones of the trace, while AC fitting resulted in larger joint moments. Similarly the MAPs

resulting from the EM algorithm underestimated the higher moments of the trace (cf. Figs. 1 c) and 2 c)). The distributions of

the MAPs are shown in Figs. 1 b) and 2 b). Note, that AC fitting and JM fitting used the same PH distribution. Regarding the

likelihood EM fitting provides a larger likelihood than AC fitting and JM fitting that used a PH distribution obtained from the

moment matching algorithm (cf. Table 1). Interestingly, using a PH distribution that has been fitted by Gfit as basis for MAP

fitting resulted in a very high likelihood. As a drawback those PH distributions showed to be less flexible for the subsequent

AC fitting and JM fitting compared to PH distributions resulting from the moment matching approach.
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Figure 2: Fitting results for MAPs of order 6 for the trace BC-pAug89

As already mentioned we used the MAPs resulting from AC and JM fitting as initial solution for the EM algorithm. In

these cases EM fitting was able to improve the likelihood significantly, although the fitting quality according to other measures

was reduced as one can see from Figs. 1 and 2.

Figs. 3 and 4 and Table 2 show fitting results for the trace LBL-TCP-3. The results are similar to the previous trace: JM fit-

ting and to a lesser degree EM fitting underestimate the autocorrelations, while AC fitting over- and EM fitting underestimate

the joint moments.

The last trace we used for our comparison was observed at a proxy server at TU Dortmund. It contains various bursts with

very small interarrival times followed by a larger break until the next burst and therefore has high autocorrelations. As one

can see from Figs. 5 and 6 the trace was difficult to fit for all algorithms. Again we used the MAPs resulting from AC and

JM fitting as initial solutions for the EM algorithm. The MAP (4) resulting from AC fitting using a PH distribution obtained
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Figure 3: Fitting results for MAPs of order 3 for the trace LBL-TCP-3

Likelihood Trace lbl3 Likelihood Trace lbl3

MAP(3) AC10 -1652039.018594 MAP(4) AC10 -1654146.788752

MAP(3) EM -1637813.770617 MAP(4) EM -1627420.100721

MAP(3) JM -1639440.176623 MAP(4) JM -1647272.298004

MAP(3) JM + EM -1626938.629808 MAP(4) JM + EM -1626267.526219

Table 2: Likelihood for the MAPs of order 3 and 4 for the trace LBL-TCP-3

from Gfit showed to be unsuitable for this task, since the structure of the MAP caused a very poor runtime performance of

the EM algorithm. Hence, we only used the MAPs that resulted from moment matching and subsequent AC or JM fitting as

initial solutions.

4.2 Comparison of Queueing Behavior

Table 4 shows the queueing results for the different traces. The original traces and the fitted MAPs are used as arrival

processes, for the service process we used an exponential distribution with different rates between µ = 0.6 and µ = 1.2.

We use a single server system with capacity 10. The system was simulated for each of the traces until all of the interarrival

times from the trace have been used. After that we simulated the model with the fitted MAPs for the same amounts of

time. Table 4 contains the mean queue length and the probability that the queue is completely filled for all combinations of

arrival and service processes. For each trace and order of the MAPs the results that are closest to the results of the trace are

emphasized. For the Trace BC-pAug89 one can see that the MAPs resulting from the EM algorithm result in a mean queue

length that is closest to the one of the trace. Regarding the probability that the queue is completely filled all the fitted MAPs

provide an appropriate approximation of the results from the trace, although in almost all cases either the pure EM or the
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Figure 4: Fitting results for MAPs of order 4 for the trace LBL-TCP-3

Likelihood Trace TUDo Likelihood Trace TUDo

MAP(2) AC30 Gfit 409209.247942 MAP(4) AC30 Gfit 450455.635351

MAP(2) AC5 17874.468130 MAP(4) AC10 297622.747212

MAP(2) EM 34339.840111 MAP(4) EM 134878.147095

MAP(2) JM 33220.591429 MAP(4) JM 285171.814999

MAP(2) AC30 Gfit+EM 487457.907053 MAP(4) AC10 + EM 385977.643978

Table 3: Likelihood for the MAPs of order 2 and 4 for the trace TUDo

EM algorithm combined with one of the other approaches provided the closest approximation. For the trace LBL-TCP-3 we

obtained similar results. As already mentioned all fitting algorithms had problems with the MAP TUDo. This becomes also

visible in Table 4. Only the MAP(4) that has been fitted with Gfit and a subsequent fitting of the autocorrelations provided a

sufficient approximation of the queueing behavior.

5 Conclusions

This paper presents a comparison of different MAP fitting approaches applied to three different traces. Two of the traces have

been taken from the Internet archive and have been used several times as benchmarks for MAP fitting approaches. However,

these traces are also very old. The third trace is much newer and shows different characteristics. Our results indicate that the

older traces can be fitted adequately with most approaches whereas the new trace exhibits a much stronger autocorrelation

and is much harder to fit. It is an interesting question whether current network traffic, which probably differs from the

traffic analyzed twenty years ago, really contains higher autocorrelations or whether this is an artifact in our measurements.
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Figure 5: Fitting results for MAPs of order 2 for the trace TUDo

However, to answer this question, more measurements are necessary.

The comparison of the different fitting methods gives a mixed picture. Obviously, using a method that fits a MAP according

to one quantity, like the joint moments or the autocorrelation, gives good results according to this quantity but usually results

in a bad fitting according to other quantities that are not used for fitting. Thus, no approach is superior to all others according

to all quantities. However, our results indicate that fitting according to the likelihood using the EM algorithm gives the best

results but is, unfortunately, also the by far most costly method. Furthermore, it should be mentioned that the fitting quality

and the effort of the EM algorithm depends on the initial MAP and might be poor for badly chosen initial MAPs.
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Model Mean queue length Probability for full queue

µ = 0.6 0.8 1.0 1.2 µ = 0.6 0.8 1.0 1.2

Trace pAug89 6.688 5.530 4.333 3.282 0.347 0.234 0.150 0.094

MAP(4) AC50 7.466 6.315 4.955 3.540 0.3779 0.246 0.139 0.066

MAP(4) EM 6.749 5.556 4.352 3.321 0.328 0.219 0.140 0.089

MAP(4) JM Gfit 7.363 6.290 5.027 3.627 0.374 0.249 0.143 0.068

MAP(4) JM 7.316 6.156 4.909 3.626 0.367 0.243 0.145 0.072

MAP(4) JM Gfit+EM 6.752 5.645 4.521 3.428 0.341 0.231 0.146 0.087

MAP(6) AC100 7.462 6.298 4.941 3.532 0.383 0.251 0.143 0.068

MAP(6) EM 6.736 5.617 4.459 3.392 0.333 0.226 0.145 0.091

MAP(6) JM 7.367 6.151 4.899 3.609 0.370 0.246 0.147 0.075

MAP(6) AC100+EM 6.926 5.861 4.868 3.797 0.361 0.253 0.164 0.093

Trace lbl3 7.081 5.407 4.009 2.969 0.304 0.183 0.110 0.067

MAP(3) AC10 7.309 6.015 4.590 3.312 0.333 0.206 0.115 0.059

MAP(3) EM 7.467 5.641 4.117 3.019 0.309 0.178 0.103 0.061

MAP(3) JM 7.461 5.838 4.325 3.163 0.313 0.184 0.105 0.059

MAP(3) JM+EM 7.302 5.591 4.121 3.020 0.310 0.183 0.107 0.064

MAP(4) AC10 7.311 6.016 4.593 3.313 0.335 0.208 0.116 0.059

MAP(4) EM 7.376 5.580 4.029 2.939 0.308 0.178 0.103 0.063

MAP(4) JM 7.528 5.941 4.432 3.212 0.323 0.193 0.108 0.058

MAP(4) JM+EM 7.295 5.565 4.092 3.012 0.309 0.183 0.108 0.065

Trace TUDo 2.510 2.226 1.999 1.816 0.137 0.114 0.098 0.086

MAP(2) AC30 Gfit 1.317 1.163 1.088 1.038 0.087 0.083 0.080 0.078

MAP(2) AC5 4.202 4.110 3.997 3.849 0.317 0.279 0.241 0.204

MAP(2) EM 4.894 4.552 4.245 3.934 0.308 0.260 0.214 0.172

MAP(2) JM 4.383 4.254 4.116 3.945 0.322 0.283 0.244 0.204

MAP(2) AC30 Gfit+EM 3.645 2.886 2.417 2.100 0.119 0.096 0.083 0.074

MAP(4) AC30 Gfit 2.118 2.051 1.999 1.949 0.156 0.142 0.129 0.118

MAP(4) AC10 4.343 3.930 3.547 3.186 0.236 0.193 0.158 0.131

MAP(4) EM 4.283 3.949 3.688 3.457 0.267 0.232 0.200 0.169

MAP(4) JM 3.862 3.507 3.161 2.847 0.211 0.172 0.141 0.117

MAP(4) AC10+EM 3.541 3.214 2.951 2.732 0.215 0.185 0.162 0.144

Table 4: Queueing results
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