
Simulating Stochastic Processes with OMNeT++

Jan Kriege, Peter Buchholz
Department of Computer Science

TU Dortmund
{jan.kriege,peter.buchholz}@tu-dortmund.de

ABSTRACT
Modeling of correlated traffic processes is a challenge in sim-
ulation modeling but is necessary to obtain realistic simula-
tion models of many computer or communication networks.
We present a new simple module denoted as ArrivalProcess

to be included as a traffic source in OMNeT++ simulation
models. The new traffic source supports different stochastic
process models which are defined using a XML format. The
process descriptions can be automatically generated from
trace data using the software tool ProFiDo which is also
briefly presented. By means of examples it is shown that
the use of stochastic processes rather than simple distribu-
tions results in much more accurate results for systems with
correlated arrival streams.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Stochastic processes

General Terms
Performance

Keywords
Markovian Arrival Processes, ARMA Processes, ARTA Pro-
cesses, Input Modeling

1. INTRODUCTION
The accurate modeling of the traffic is essential to obtain

sufficiently accurate models of computer or communication
networks. It is known for some time that traffic processes in
modern networks include complex dependencies such that
the simple modeling with Poisson processes or even with
some more complex interarrival time distribution is not suf-
ficient [21, 27]. Usually, arrival streams in networks have a
high variability and interarrival times are positively corre-
lated. The neglection of this correlation often results in a
dramatic underestimation of resource requirements.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
OMNeT++ 2011 March 21, Barcelona, Spain.
Copyright 2011 ICST, ISBN .

Although the necessity to model traffic sources adequately
is accepted in principle, it is not really supported in simu-
lation. In the standard simulation literature [19] the fitting
of distributions is introduced in breadth whereas the mod-
eling of correlated arrival streams using stochastic processes
is only very briefly touched. The same situation can be ob-
served in simulation software. Standard tools to model input
streams from trace data like Expert Fit [20] or the Arena
Input Analyzer [17] support the modeling of distributions
without taking correlations into account. Even more, sim-
ulation tools support the specification of a large number of
different distributions but models for correlated traffic usu-
ally have to be hand-coded.

OMNeT++ [13] as open source simulation framework is
nowadays widely used for the simulation of communication
protocols and networks. It contains support for modeling
complex networks by providing models for a large number
of protocols. However, for traffic generation, OMNeT++,
like other simulation tools, only supports the usage of dis-
tributions that have to be fitted using some external software
tool like ExpertFit [20]. We are not aware of any support
to model correlated input streams. Nevertheless, there are
a few papers which consider the modeling of more complex
traffic streams according to specific applications. In [15]
HTTP traffic generation according to general distributions
with some additional parameters to define activity periods
during a day is described. VoIP traffic generation accord-
ing to real sound files is considered in [6]. Both approaches
do not provide a general approach for modeling correlated
input traffic.

The general use of correlated arrival streams is prohibited
by missing tool support to generate arrival process specifi-
cations from measured data and by the missing support to
represent arrival processes in simulation tools. In this pa-
per we describe a step towards an integration of stochastic
processes as traffic sources for correlated input streams in
OMNeT++. We present a tool to fit the parameters of dif-
ferent types of stochastic processes according to the values
in a trace and we show how the resulting process models can
be integrated in OMNeT++ by defining an Arrival Process
Module. By means of two examples it is shown that the use
of stochastic processes rather than distributions results in a
much better representation of the real behavior of a network.

This paper is structured as follows. In Sect. 2 several
stochastic process types currently supported by our Arrival
Process Module for OMNeT++ are briefly introduced. The
ProFiDo framework which is used to generate the OMNeT++
Module from measured traces is outlined in Sect. 3. The

OMNeT++ Arrival Process Module is presented in detail in
Sect. 4 and in Sect. 5 we give some application examples for
the module. The paper ends with the conclusions in Sect. 6.

2. THEORETICAL BACKGROUND
This section presents different types of stochastic pro-

cesses that have been proposed in the past for modeling
correlated input streams, it summarizes fitting approaches
for these processes and it describes the requirements that
are necessary to use the processes in simulation.

2.1 Phase-Type Distributions and Markovian
Arrival Processes

The first class of processes we consider generate arrivals
by the transitions of a finite Markov chain. We begin with
the introduction of the basic class of distributions based on
this model, namely Phase-type distributions. A Phase-type
(PH) Distribution [25] of order n can be described by an
absorbing Markov Chain with n transient and one absorb-
ing state. It is defined by a non-singular n × n matrix D0

with D0(i, j) ≥ 0 for i 6= j, D0(i, i) ≤ −
Pn
j=1,j 6=iD0(i, j)

and a row vector π with π(i) ≥ 0 and π1 = 1 where 1
is the unit column vector of length n. Markovian Arrival
Processes (MAPs) [24] are a generalization of PH distribu-
tions that can model autocorrelations. A MAP of order n
is defined by two n × n matrices (D0,D1) where D0 is as
defined for a PH distribution and D1 ≥ 0. Then Matrix
Q = D0 +D1 with Q1 = 0 is the generator matrix of an
irreducible Markov process. Matrix D0 contains the rates of
internal transitions without an arrival and matrix D1 con-
tains the rates of transitions generating an arrival. Every
PH distribution (D0,π) can be interpreted as a MAP by
setting D1 = −D01π.

0.1

0.7

0.2

0.7

1.3

Figure 1: Example for a MAP of order 2

A simple example for a MAP of order 2 is shown in Fig. 1.
Solid edges denote transition from D0, dashed edges tran-
sitions from D1. Whenever the process performs a dashed
transition, an arrival is generated. It has been shown [14]
that MAPs are capable of modeling a large number of dif-
ferent behaviors and that they allow an accurate modeling
of most processes appearing in real networks. However, the
finding of the right parameters, which is denoted as param-
eter fitting, is a nonlinear optimization problem which re-
quires some effort. Nevertheless, much progress has been
made in finding methods for parameter fitting of PH distri-
butions and MAPs such that nowadays a large number of
approaches are available in the literature. In general one can
distinguish Expectation Maximization methods, that try to
maximize the likelihood, and approaches that fit a PH dis-
tribution or a MAP according to different quantities like
empirical moments, joint moments or lag-k coefficients of
autocorrelation that have been estimated from a trace. An

overview of different methods can be found in [14]. Some
more recent approaches are summarized in [18]. However,
to use MAPs in practice, software tools have to be available
that incorporate different fitting methods and allow an easy
and efficient generation of a MAP from measured data.

PH Distributions and MAPs have originally been devel-
oped as input processes in queuing systems that are solved
analytically [22]. However, they may as well be used in
simulation models. Sampling from MAPs can be done by
simulating the underlying Markov chain and by generating
an arrival whenever a transition from D1 occurs. This re-
quires storing the two matrices (D0,D1) and the current
state and drawing random numbers from a uniform distri-
bution to determine the next state and from an exponential
distribution to determine the transition times.

2.2 Autoregressive Moving Average Processes
Autoregressive Moving Average (ARMA) Processes [7] are

used for a long time in different areas of statistics but have
been rarely used as input processes in simulation models.
They describe a time series with dependent successive values
Zt. A simple subclass is the Autoregressive process of order
p, denoted as AR(p), which is defined as

Zt = α1Zt−1 + α2Zt−2 + ...+ αpZt−p + εt (1)

where the innovation εt has a Normal distribution with zero
mean and variance σ2

ε and the coefficients αi are used to
weight the previous observations Zt−i. If one weights previ-
ous innovations instead of previous observations this results
in a time series

Zt = εt + β1εt−1 + β2εt−2 + ...+ βqεt−q. (2)

which is called a Moving Average process of order q and de-
noted MA(q). A combination of the two previous descrip-
tion finally yields an ARMA(p, q) process, which is defined
as

Zt = α1Zt−1 + ...+αpZt−p + εt +β1εt−1 + ...+βqεt−q. (3)

For estimating the parameters of AR, MA and ARMA pro-
cesses methods like maximum likelihood estimation [16] or
least squares regression approaches [23] are known for some
time and have been implemented in statistical software pack-
ages.

For sampling from ARMA processes the vectors with the
AR and MA coefficients αi and βj have to be stored. Addi-
tionally, the previous p elements of the time series and the
previous q innovations have to be saved. Moreover, ARMA
processes require the possibility to draw random numbers
from a Normal distribution to determine the next innova-
tion. Since ARMA processes always assume a Normal dis-
tribution for the generated observations Zt a sufficiently ac-
curate modeling of observed traffic process with a clearly
non normal marginal distribution is problematic. Further-
more an ARMA process may generate negative values which
cannot be used in simulation as e.g. interarrival times where
only positive values are allowed [1]. This issue can be ad-
dressed by transforming the Zt, e.g. [31] discusses several
linear and non-linear transformations and its properties.

2.3 Autoregressive To Anything Processes
The major shortcoming of ARMA models is their depen-

dence on the Normal distribution. Since innovations are

drawn from a Normal distribution only marginal distribu-
tions that are simple transformations of the Normal distri-
bution can be modeled. However, it is known that real traffic
in networks often cannot be adequately described by Normal
distributions. To overcome this shortcoming Autoregressive
To Anything (ARTA) Processes have been introduced in [5,
9] for simulation input modeling. ARTA processes combine
an AR(p) base process with an arbitrary marginal distri-
bution FY and thus can model correlated input processes
with a wide variety of shapes for the distribution. They are
defined as a sequence

Yt = F−1
Y [Φ(Zt)], t = 1, 2, ... (4)

where FY is the marginal distribution, Φ is the standard
Normal cumulative distribution function and {Zt; t = 1, 2, ...}
is a stationary Gaussian AR(p) process as given in Eq. 1.
The AR(p) base process can be constructed in a way such
that the {Zt} have a standard Normal distribution and then
the probability-integral transformation Ut = Φ(Zt) ensures
that Ut is uniformly distributed on (0, 1). Application of
Yt = F−1

Y [Ut] yields a time series {Yt, t = 1, 2, ...} with the
desired marginal distribution FY . This approach works for
any distribution FY for which F−1

Y can be computed, either
by a closed-form expression or by numerical methods. [9,
10] established a relation between the autocorrelation struc-
tures of the ARTA process and the AR(p) base process and
fitting methods for ARTA models are given in [5, 9].

The simulation of an ARTA process can be performed in
two steps. First, the next random variate Zt from the under-
lying base process is determined as described in Sect. 2.2 and
in the second step the transformation from Eq. 4 is applied
to compute Yt. Hence, the simulation requires methods for
simulating an AR(p) process and for computing the inverse
cumulative distribution function of all supported distribu-
tions FY .

3. PROFIDO
ProFiDo [2, 3] is a flexible Java-based toolkit for fitting

and analyzing stochastic processes. It provides a graphical
user interface for a consistent use of commandline-oriented
tools that implement several of the fitting methods as briefly
introduced in Sect. 2. These tools can be arranged into
a workflow to realize different steps of data preprocessing,
parameter fitting and analysis of stochastic processes. For
ProFiDo we have developed an XML interchange format for
the description of stochastic processes that ensures the in-
teroperability of different fitting tools in a workflow. An

Listing 1: MAP description in ProFiDo’s XML for-
mat

1 <map >
2 <states >2</states >
3 <d0>
4 -1.0 0.7
5 0.0 -2.0
6 </d0>
7 <d1>
8 0.1 0.2
9 1.3 0.7

10 </d1>
11 </map >

example for the XML interchange format is shown in List-
ing 1 that contains the XML representation of the MAP from
Fig. 1. The interested reader is referred to [2] for a general
overview of the framework including the fitting tools cur-
rently supported by ProFiDo and a description of the XML
interchange format.

Trace

ProFiDo

PH Fitting

MAP Fitting

ARMA Fitting

ARTA Fitting

Result Visualization

Analysis
Simulation (OMNeT++)

Figure 2: ProFiDo Framework

Fig. 2 outlines the components of the toolkit. ProFiDo
takes a trace, that contains observations obtained from a
real system, as input and can fit one or several different
stochastic processes according to the specified workflow. Ad-
ditionally, ProFiDo offers the possibility to visualize various
properties like density and distribution function or autocor-
relation coefficients of the fitted processes and the measured
trace.

Once a stochastic process with the desired properties has
been fitted, it can be easily integrated into (simulation) mod-
els. For this purpose, we have linked a module for OM-
NeT++ to the ProFiDo framework that loads stochastic
processes from ProFiDo’s XML interchange format and gen-
erates correlated events by simulating these processes. In the
following sections we will introduce the architecture of this
module and give some application examples.

4. ARRIVAL PROCESS MODULE
OMNeT++ models consist of modules that can be ar-

ranged in a hierarchical way and that can communicate
via gates using message passing. One can distinguish be-
tween simple modules, that are the basic building blocks of
a model, and compound modules. Simple modules are writ-
ten in C++ accompanied by a NED-description that defines
the interface of the module consisting of gates and param-
eters which pass configuration data to the simple module.
Compound modules are a grouping of simple modules and
other compound modules introducing a hierarchy.

The Arrival Process Module for OMNeT++ presented in
this work is a simple module that can generate random num-
bers from the stochastic processes introduced in Sect. 2, i.e.
MAPs, ARTA processes and ARMA processes. The model
description is parsed from a file in the ProFiDo XML inter-
change format. In this way, the process description derived
by ProFiDo with some fitting algorithm can be used in an
OMNeT++ simulation model without any additional pro-
gramming effort.

ArrivalProcess: cSimpleModule

Process

MAP

ARMA

ARTA

Dist

Uniform Exponential Triangular Normal

Lognormal Johnson

Erlang Gamma

ChiSquare Weibull

Matrix
2

Figure 3: Class Hierarchy of the Arrival Process
Module

Fig. 3 shows the class hierarchy of the module. The class
ArrivalProcess is the main class of the module that contains
its C++ implementation. It inherits from cSimpleModule as
all simple modules in OMNeT++ do. The corresponding
NED-description is shown in Listing 2.

Listing 2: NED description of the Arrival Process
Module

1 simple ArrivalProcess
2 {
3 parameters:
4 xml model;
5 string transform = default ("");
6 @display ("i=block/source ");
7 gates:
8 output out;
9 }

The module has one XML type parameter that is used to
pass the model description and one string parameter that
can be used to specify a function for a transformation of the
time series as it will be explained later. The only gate of the
module is an output gate. Whenever an arrival according
to the stochastic process is generated, a message is passed
through this gate to another module that is connected to
this gate with one of its input gates and processes the incom-
ing arrival. The implementation of the class ArrivalProcess

is actually quite simple, since all the code necessary for
simulating the processes is contained in the class Process

and its subclasses shown in Fig. 3. ArrivalProcess pro-
vides methods for loading the process description from an
XML file and initializes a Process according to the contents
of the XML description. Additionally, it has to provide a
method handleMessage() for dealing with message events.
Process is an abstract class that all the classes for the actual
stochastic processes like MAPs or ARTA processes inherit

from. All inheriting classes have to implement a method
called getNextRandomVariate() that generates the next ran-
dom number from that process. Hence, handleMessage()

from the class ArrivalProcess schedules the next arrival ac-
cording to getNextRandomVariate(). When the arrival is due,
a message is sent to the outgoing gate and the next arrival is
scheduled according to the result of getNextRandomVariate()
by initiating a self-message that arrives at the generation
time of the next message.

In the following paragraphs we will briefly introduce the
subclasses that inherit from the class Process and that imple-
ment the random number generation for the different process
types.

4.1 Simulation of MAPs
The class MAP is used for simulating Markovian Arrival

Processes. Of course, it can also be used for the simula-
tion of PH distributions as well, if they are transformed into
MAPs. The class Matrix is used as an utility class to store
the two matrices D0 and D1. A MAP is initialized by draw-
ing the initial state from the distribution defined by π which
is given as the unique solution of π(−D−1

0 D1) = π normal-
ized to 1 and contains the stationary distribution just after
an arrival has occurred. The class simulates the underly-
ing Markov Chain by drawing an exponentially distributed
random number with rate |D0(i, i)| corresponding to the
current state i to determine the next transition time and an
uniformly distributed random number to compute the next
state according to the probability distribution defined by
D0(i, j)/|D0(i, i)| and D1(i, j)/|D0(i, i)|. This is repeated
until a transition fromD1 occurs. In this case the sum of the
transition times is returned and the current state is stored as
starting point for the generation of the next random sample.
For drawing the required random numbers with exponential
and uniform distribution the random number generators of
OMNeT++ are used.

4.2 Simulation of ARMA Processes
The simulation of ARMA(p, q) processes is realized by the

class ARMA. The class can serve for generating arrival events
directly or as a base process for an ARTA model. In the
former case it is recommended to transform the generated
observations (see below) to avoid the problems with nega-
tive times that cannot be processed in simulation models
as mentioned in Sect. 2.2. The class manages four lists for
the p AR coefficients, the q MA coefficients, the last p ob-
servations and the last q innovations. The first two lists
are fixed after initialization while the last two have to be
updated after each generation of an arrival event. For ini-
tialization the p previous observations and the q previous
innovations have to be determined. For the innovations this
is straightforward, because they are iid random numbers,
and consequently the εt−1, . . . , εt−q can be drawn from a
Normal distribution with zero mean and variance σ2

ε . The p
previous observations are correlated and have to be initial-
ized by drawing from a multivariate Normal distribution,
which is done using a procedure as described in [19]. Let

Σ =

26664
r0 r1 · · · rp−1

r1 r0 · · · rp−2

...
...

. . .
...

rp−1 rp−2 · · · r0

37775

be the covariance matrix with the autocovariance values
(r0, r1, · · · , rp−1) of the ARMA process and let µ = (µ, · · · , µ)
be a vector that contains p times the mean value µ of the
ARMA process. We draw p independent random numbers
X = (X0, X1, · · · , Xp−1)T from a standard Normal distri-
bution and compute the lower triangular matrix C with
Σ = CCT . Then, we can generate the multivariate Normal
random numbers that are used to initialize the Zt−i, i = 1...p
by setting Z = µ +CX. See [8] for a method to compute
the autocovariance values of an ARMA process and [11] for
a simple method to perform the Cholesky decomposition to
obtain matrix C. For simulation the class draws a normally
distributed random number as new innovation and computes
the weighted sum according to Eq. 3. Finally, the oldest ob-
servation and the oldest innovation are replaced by the newly
computed observation and the new innovation, respectively.

4.3 Simulation of ARTA Processes
The class ARTA provides methods for simulating ARTA

models. The ARTA class has two objects, one of type ARMA

and one of type Dist that are required to perform the sim-
ulation of the ARTA process. The ARMA class is used to
simulate the base process and generates correlated random
number with Normal distribution. This random number is
then transformed twice; first into a uniformly distributed
random number and then using the inverse cdf to yield the
final ARTA random number (cf. Eq. 4). The class Dist is
an abstract superclass with the virtual method inverse_cdf

(double x) that all the distributions from Fig. 3 have to im-
plement to compute the inverse cdf for the last transforma-
tion step. The implementation of the ARTA class requires
several numerical methods for which fast approaches exist
in the literature. For the transformation from normally to
uniformly distributed random numbers the computation of
the Normal cdf is necessary which is done by using the ap-
proach from [12]. All other required numerical methods are
related to the computation of the inverse cumulative distri-
bution function. The inverse cdf of the Normal distribution
is computed using the algorithm from [30]. The same holds
for the inverse cdf of the Lognormal and Johnson distribu-
tion, which are both derived from the Normal distribution.
The algorithm from [4] is used to compute the inverse cdf
of Gamma, Erlang and χ2 distributions, that are all related.
For the Uniform, Exponential, Weibull and Triangular dis-
tribution closed-form expressions exist for the inverse cdf
[19].

4.4 Post-Processing of the Time Series
As already mentioned before, it might be desirable or even

necessary to transform the generated interarrival times in a
post-processing step. This is for example the case when the
input process has been fitted according to a trace that uses
a different time scale than the rest of the model. For these
models one could adjust the complete process to the desired
time scale or transform the generated values of the model
in a post-processing step. Another reason for a transforma-
tion of the generated interarrival times are processes that
might output invalid values. In Sect. 2.2 linear and non-
linear transformations for ARMA(p, q) have been mentioned
for such cases. The OMNeT++ Arrival Process Module ac-
counts for these requirements by providing the possibility to
enter a post-processing function using OMNeT++’s NED
language expressions. The function is passed as parameter

transform (cf. Listing 2). NED language expressions have
a C-like syntax and may make use of various mathematical
functions. A list with possible functions can be found in
[26]. For example non-linear transformations of the type

Yt = c
1−c2

c2+c3
Zt

1

for given c1 > 1, 0 < c2 < 1 and some small constant
c3 can be realized by the function pow(c_1, $ARRIVAL * (1-

c_2)/(c_2+c_3)). Note, that $ARRIVAL is a placeholder and
the Arrival Process Module will replace every instance of
$ARRIVAL in the expression with the current value obtained
from simulating the stochastic process when the expression
is evaluated. The transformation of the values Zt from the
ARMA process assures that the resulting values Yt that are
used in the simulation model are all non-negative. Observe
that for the fitting of the ARMA process generating Zt the
original values τi in the trace have to be scaled to νi =
(c2 + c3)/(1− c2) · logc1 τi such that the resulting values Yt
build a model for the original trace.

5. APPLICATION EXAMPLES
In the following we present two application examples to

show how the ArrivalProcess module can be incorporated
into OMNeT++ models. The results obtained from these
simulation models support the observation that the negli-
gence of autocorrelation may have serious impact on the
simulation results.

Figure 4: Simple OMNeT++ Model with Arrival-
Process module

Listing 3: Configurations for the Model from Fig. 4
1 [General]
2 network = Example1
3 **. server.serviceTime = exponential (0.5s)
4 **. server.buffer = 10
5

6 [Config MAP]
7 description = "Arrivals from MAP"
8 **. arrivalProcess.model = xmldoc ("map.xml")
9

10 [Config ARTA]
11 description = "Arrivals from ARTA process"
12 **. arrivalProcess.model = xmldoc ("arta.xml")

The first example model is a simple queueing model shown
in Fig. 4. It consists of the ArrivalProcess module feeding
a single server queue with a capacity of 10. We modeled
different configurations of the model by generating interar-
rival times according to a MAP of order 4 and according
to an ARTA model with exponential marginal distribution.
Listing 3 shows the different configurations for the model.

Note, that the stochastic process used by the ArrivalProcess

module can easily be exchanged by specifying another XML
description using the parameter **.arrivalProcess.model.

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 2 4 6 8 10

p
ro

b
ab

il
it

y

queue length

Trace
Dist

MAP
ARTA

Figure 5: Queue Length Distribution for Utilization
ρ = 0.4

The model is analyzed with several utilization levels for
the server between ρ = 0.4 and ρ = 0.8 and the queue length
distribution is taken as result measure. The two mentioned
stochastic processes have been obtained by fitting MAPs and
ARTA models to the trace LBL-TCP-3 [27] from the Inter-
net Traffic Archive [29]. For comparison we simulated the
same setup with a slightly modified model that reads the in-
terarrival times of the jobs directly from the trace to obtain
reference values for the queue length according to a trace
driven simulation. Finally, in another series of experiments
we used an exponential distribution (i.e. the same distri-
bution that the ARTA model uses as marginal distribution)
fitted to the trace as a traffic generator with independent
interarrival times resulting in a Poisson input process.

 0.01

 0.1

 1

 0 2 4 6 8 10

p
ro

b
ab

il
it

y

queue length

Trace
Dist

MAP
ARTA

Figure 6: Queue Length Distribution for Utilization
ρ = 0.8

Fig. 5 shows the queue length distribution for utilization
ρ = 0.4. It is clearly visible that the probabilities of queue
length up to 2 are similar for the trace, the two stochastic
processes and the distribution. For larger values towards the
tail of the queue length distribution the model with uncor-
related inputs significantly underestimates the probabilities.
E.g., for queue length 10 the difference between the val-
ues of the trace driven simulation and the model with the
Poisson input process is between 2 and 3 orders of magni-
tude. Among the two stochastic processes, the MAP pro-
vides much better results than the ARTA process.

For a utilization of ρ = 0.8 the stochastic processes per-
form better for almost all values of the queue length distri-
bution as shown in Fig. 6. Again, the MAP gives better
results than the ARTA process.

Figure 7: Example Model with simple Network

Figure 8: Host from Fig. 7

As a second example we modified the NClients model that
is part of the INET Framework to use the ArrivalProcess

module. Fig. 7 gives an overview of the network that consists
of four client hosts connected to a server via different routers.
Fig. 8 shows the inner view of one of those hosts.

The host consists of a module for the TCP protocol im-
plementation, a module for the network layer and several
interfaces, that are taken from the implementation of the
StandardHost of the INET framework. TCP packets are gen-
erated according to the events created by the ArrivalProcess

module. Since the ArrivalProcess module only generates
correlated events, but is not tailored to a specific proto-

 0.001

 0.01

 0.1

 1

 0 2 4 6 8 10

p
ro

b
ab

il
it

y

queue length

Trace
Dist

ARTA
MAP

Figure 9: Queue Length Distribution for the Server
from Fig. 7

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 1 2 3 4 5 6 7

p
ro

b
ab

il
it

y

queue length

Trace
Dist

ARTA
MAP

Figure 10: Queue Length Distribution for one Inter-
face of a Router from Fig. 7

col implementation, this module is connected to the module
tcpGen that generates a TCP connection and sends packets
to the server whenever it is notified by the ArrivalProcess

module. The server replies with a larger chunk of data to
the request of tcpGen, i.e. the modules model typical web
browsing behavior with a small request to the server and a
larger reply by the server.

The four ArrivalProcess modules are initialized with ARTA
models with different exponential marginal distributions and
MAPs that have been fitted to different parts of the trace
BC-pAug89 [27]. For comparison we run the same setup
with a slightly altered model where uncorrelated TCP pack-
ets are generated according to the exponential distributions
that have also been used for the ARTA models. To obtain
reference values a trace driven simulation with the original
traces was run again.

Fig. 9 shows the queue length distribution of the server’s

network interface. Again, it is visible that the arrivals gener-
ated from stochastic process provide a better approximation
of the tail of the queue length distribution than uncorrelated
arrivals. For the first router the load is distributed between
several different interfaces connected to the different clients
and thus, the effect of the correlated packets is not as sig-
nificant as for the server. Nevertheless, one can see from
Fig. 10 that arrivals generated by MAPs result in a very
close approximation of the queue length distribution, while
independent and identically distributed arrivals underesti-
mate the higher values of the distribution.

These results clearly demonstrate the importance of incor-
porating autocorrelation into input models. In particular,
the results of the ARTA processes with exponential marginal
distribution compared to the same independent exponential
distribution show that adding a few lags of autocorrelation
might help to improve the quality of simulation models sig-
nificantly.

6. CONCLUSIONS
In this paper we present a new simple module, called

ArrivalProcess, which can be used in OMNeT++ simula-
tion models as a traffic source. In contrast to other available
traffic sources, the new module supports the use of stochas-
tic processes to generate correlated arrival streams with a
wide variety of marginal distributions. In its current version
the module supports the well known ARMA processes, as
well as ARTA processes that have been developed more re-
cently for the use in simulation models and it also supports
Markovian Arrival Processes. For process description a sim-
ple XML interface has been defined. The arrival process
module is accompanied by a software tool named ProFiDo
which allows one to compute the parameters of arrival pro-
cesses from trace data and generates automatically the XML
description of the resulting stochastic process such that the
whole approach is ready to be used for modeling real sys-
tems. Both, ProFiDo and the ArrivalProcess module for
OMNeT++, are available on the ProFiDo homepage [28].

The approach can be easily extended by incorporating
other process types in the module ArrivalProcess and addi-
tional fitting methods into ProFiDo. However, our current
impression is that the major available techniques for mod-
eling correlated arrival streams are adequately supported.

7. REFERENCES
[1] F. Bause, P. Buchholz, and J. Kriege. A Comparison

of Markovian Arrival and ARMA/ARTA Processes for
the Modeling of Correlated Input Processes. In M. D.
Rossetti, R. R. Hill, B. Johansson, A. Dunkin, and
R. G. Ingalls, editors, Proc. of the Winter Simulation
Conference (WSC) 2009, pages 634–645. Institute of
Electrical and Electronics Engineers, Inc., 2009.

[2] F. Bause, P. Buchholz, and J. Kriege. ProFiDo - The
Processes Fitting Toolkit Dortmund. In Proc. of the
7th International Conference on the Quantitative
Evaluation of Systems (QEST), pages 87–96, 2010.

[3] F. Bause, P. Gerloff, and J. Kriege. ProFiDo - A
Toolkit for Fitting Input Models. In
B. Müller-Clostermann, K. Echtle, and E. P. Rathgeb,
editors, Proceedings of the 15th International GI/ITG
Conference on Measurement, Modelling and
Evaluation of Computing Systems and Dependability

and Fault Tolerance (MMB & DFT 2010), volume
5987 of LNCS, pages 311–314. Springer, 2010.

[4] D. J. Best and D. E. Roberts. Algorithm AS 91: The
Percentage Points of the χ2 Distribution. Journal of
the Royal Statistical Society. Series C (Applied
Statistics), 24(3):385–388, 1975.

[5] B. Biller and B. L. Nelson. Fitting time-series input
processes for simulation. Oper. Res., 53(3):549–559,
2005.

[6] M. Bohge and M. Renwanz. A realisitic VoIP traffic
generation and evaluation tool for OMNeT++. In
OMNeT++ 2008: Proceedings of the 1st International
Workshop on OMNeT++, 2008.

[7] G. Box and G. Jenkins. Time Series Analysis -
forecasting and control. Holden-Day, 1970.

[8] P. J. Brockwell and R. A. Davis. Time Series: Theory
and Methods. Springer, 2nd edition, 1998.

[9] M. C. Cario and B. L. Nelson. Autoregressive to
anything: Time-series input processes for simulation.
Operations Research Letters, 19(2):51–58, 1996.

[10] M. C. Cario and B. L. Nelson. Numerical Methods for
Fitting and Simulating Autoregressive-To-Anything
Processes. INFORMS J. on Computing, 10(1):72–81,
1998.

[11] G. Fishman. Concepts and Methods in Discrete Event
Digital Simulation. John Wiley, New York, 1973.

[12] I. D. Hill. Algorithm AS 66: The Normal Integral.
Journal of the Royal Statistical Society. Series C
(Applied Statistics), 22(3):424–427, 1973.

[13] R. Hornig and A. Varga. An Overview of the
OMNeT++ Simulation Environment. In Proc. of 1st
International Conference on Simulation Tools and
Techniques for Communications, Networks and
Systems (SIMUTools), 2008.

[14] A. Horvath and M. Telek. Markovian modeling of real
data traffic: Heuristic phase type and MAP fitting of
heavy tailed and fractal like samples. In M. C.
Calzarossa and S. Tucci, editors, Performance 2002,
volume 2459 of LNCS, pages 405–434. Springer, 2002.

[15] K. V. Jonsson. HttpTools: a toolkit for simulation of
web hosts in OMNeT++. In Proceedings of the 2nd
International Conference on Simulation Tools and
Techniques (Simutools 09), 2009.

[16] S. Kay. Recursive maximum likelihood estimation of
autoregressive processes. IEEE Trans. Acoust. Speech
Signal Process., 31:56–65, 1983.

[17] W. D. Kelton, R. P. Sadowski, and D. A. Sadowski.
Simulation with Arena. McGraw-Hill, 4 edition, 2007.

[18] J. Kriege and P. Buchholz. An Empirical Comparison
of MAP Fitting Algorithms. In
B. Müller-Clostermann, K. Echtle, and E. P. Rathgeb,
editors, Proceedings of the 15th International GI/ITG
Conference on Measurement, Modelling and
Evaluation of Computing Systems and Dependability
and Fault Tolerance (MMB & DFT 2010), volume
5987 of LNCS, pages 259–273. Springer, 2010.

[19] A. M. Law and W. D. Kelton. Simulation modeling
and analysis. Wiley, 2000.

[20] A. M. Law and M. G. McComas. Expertfit
distribution-fitting software: how the expertfit
distribution-fitting software can make your simulation

models more valid. In Winter Simulation Conference,
pages 169–174, 2003.

[21] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V.
Wilson. On the self-similar nature of ethernet traffic
(extended version). IEEE/ACM Trans. Netw.,
2(1):1–15, 1994.

[22] D. M. Lucantoni, K. S. Meier-Hellstern, and M. F.
Neuts. A single server queue with server vacations and
a class of non-renewal arrival processes. Advances in
Applied Probability, 22:676–705, 1990.

[23] H. Luetkepohl. Introduction to Multiple Time Series
Analysis. Springer Verlag, New York, 1991.

[24] M. F. Neuts. A versatile Markovian point process.
Journal of Applied Probability, 16:764–779, 1979.

[25] M. F. Neuts. Matrix-geometric solutions in stochastic
models. Johns Hopkins University Press, 1981.

[26] OMNeT++ - Discrete Event Simulation System
Version 4.0 User Manual.

[27] V. Paxson and S. Floyd. Wide-area traffic: The failure
of Poisson modeling. IEEE/ACM Transactions on
Networking, 3:226–244, 1995.

[28] ProFiDo Homepage.
http://ls4-www.cs.tu-dortmund.de/profido/.

[29] The Internet Traffic Archive.
http://ita.ee.lbl.gov/.

[30] M. J. Wichura. Algorithm AS 241: The Percentage
Points of the Normal Distribution. Journal of the
Royal Statistical Society. Series C (Applied Statistics),
37(3):477–484, 1988.

[31] C. Williamson. Synthetic Traffic Generation
Techniques for ATM Network Simulations. Simulation,
72(5):305–312, 1999.

