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Abstract

Fitting of the parameters of a Phase Type (PH) Distributioa Markovian Arrival Process (MAP) according to some
guantities of measured data streams is still a challengs.pEtper presents a new approach which computes in two steps f
a set of moments and joint moments for an Acyclic PH distidsuthat is expanded into a MAP.

In contrast to other known approaches, parameters are ¢ethpmminimize the weighted squared difference between
the measured moments and the moments of the resulting PHbDi&In or MAP. The proposed approach is very flexible and
allows one to generate a MAP of a predefined order to apprdgimgiven set of moments and joint moments. It is shown
that the approximation is often sufficiently accurate evétln WIAPs of a moderate size. However, we also show that the
practical applicability of the approach is limited since #xact determination of higher order moments from tracgsires
an extremely high effort.

Keywords: Acyclic Phase Type Distributions, Markovian Arrival Prgees, Moments, Fitting Procedures

1 Introduction

To apply numerical or analytical solution approaches ferahalysis of queueing networks or other stochastic motteds,
models usually have to describe a Markov chain which impghes distributions have to be modeled as phase type distribu
tions (PH distributions) or Markovian arrival processes\®%). PH distributions and MAPs have a long history in stetica
modeling [19] 20] and are powerful model classes which ilmthallow the representation of almost all relevant stotibas
behaviors that are observed. However, the building of a Rittidiition or a MAP according to a set of characteristics of
stochastic behavior that has been observed in practicdl Brsbpen and hard problem. In particular, one is oftenrigged

in PH distributions or MAPs with a small number of phases thanic the behavior of some real system for which some
field data is available. Although some progress has been indtle analysis and fitting of PH distributions and MAPs, the
practical applicability of many approaches is limited [4].

In this paper we propose an approach for fitting the paramefer MAP according to the moments or joint moments. The
technique may be easily extended to other measures likevaliuthe distribution function or joint density. The apprioa
applies the idea of a separate fitting of the distribution ByHedistribution and the expansion of the PH distribution ké&P
in a second step [16]. For the first step, the distributiom{jttwe present a heuristic approach to fit an acyclic PHibigtion

in canonical form to a set of moments, then this APH distidits transformed by some equivalence transformatiorms int



a representation that is more convenient for MAP fitting. ‘Bheond step then uses some joint moments to expand the
distribution into a MAP.

The paper is structured as follows. In the next section wadhice our notation, present some known results and give
a brief overview of related work. Afterwards, in Sect(dn Be ffitting approach for APH distributions and the equiva&enc
transformations for APH distributions are presented. Themethod to fit joint moments by expanding an APH distribution
into a MAP is introduced. Sectigh 5 summarizes the two priecgsteps and puts them into an algorithmic frame. Afterward
some examples are presented. The paper ends with the donslasd some hints about possible extensions of the prdpose

approach.

2 Definitions, Notations and Related Work
2.1 Basic Definitions
We use a coherent notation for the representation of PHlalismns and MAPs and begin with the introduction of MAPs

(seel[16]_2]7] for more details). A MAP of orderis characterized by twa x n matricesDy andD; such that

e Dy(i,5) > 0fori # j and
DO(ivi) < - Z;‘LzLi;éj Do(i,j),

e Dy (i,7) > 0andDye” = —D;e” wheree is the unit row vector and” is its transposed,
e Dy is nonsingular an®, + D; is an irreducible generator matrix.

The MAP characterizes a stochastic process where evergeaeeated whenever a transition fr@jq occurs, transitions in
Dy are silent.

Matrix P = —Dngl is the stochastic transition matrix of the embedded phaseegs at arrival instants. The stationary
distribution at arrival instants is denoted foyand is given byrP = m andre” = 1.0.

A PH distribution is characterized by a matii), with the same properties as above and an initial distributioThe PH
distribution is acyclic (an APH distribution) D, is an upper (or lower) triangular matrix.

Every MAP describes an embedded PH distribution charae iy the paifr, Dg) and a PH distribution can be ex-
panded into an equivalent MAP by definiily = (—Dge”)n.

A statei of a PH distribution or a MAP is an entry statezifi) > 0 and it is an exit state if théth row of D, is nonzero

or, equivalently, if the row sum of thagh row of Dy is negative.

2.2 Analysis of PH and MAPs
In this paper we introduce an approach for fitting the paranseif a PH distribution or MAP to approximate the moments

or joint moments of a process. We first introduce the compmrtatf some quantities, in particular, of the moments anctjoi
moments for PH distributions and MAPs. L&t be a random variable with phase type distribution ahd) a stochastic

process characterized by a MAP, respectively.



The density ofX realized by a PH distributiofir, D) is given by

(Dot)*

fru(t) =meP!(-Do)e” =1y ==7—(~Do)e” (1)
k=0 ’
and the joint density oX (¢) realized by a MARD,, D;) is given by
fMAP(f,l, tg, c. ,l‘,lm) = 7T6D0t1DleDotZDl...eDotleeT . (2)

The moments and joint moments are derived from the momembadek = —D; *. Such that we obtain for the moments
wi = B(X") =ilrM‘e” (3)

and for the joint moments

pi; = E(X', X7) = iljlstM'PM/e” . 4)

As shown in[[27], a PH distribution of orderis characterized bn — 1 moments and an orderMAP is characterized by
n? joint moments, if it is non redundant. Since a PH distribati@sn? + n — 1 free parameters and a MAP hais® — n free
parameters, the matrix representations are highly redindasich makes the fitting of parameters even harder. In thaele
we speak of a PH/APH distribution or a MAP, if the concrete anijue distribution/stochastic process is meant and we use
PH/APH/MAP representation for the matrices and vectorsteel to the concrete representation. Thus, each représanta
describes a unique distribution and for a distribution iitdily many representations exist.

One of the problems for any fitting approach is that canonigatesentations of PH distributions or MAPs do not exist
in general. This implies that different representationthefsame distribution are available and fitting algorithhag tvork
on the matrix representations may switch between diffexgaivalent representations resulting in bad approximatigVith
the exception of: = 2 or 3 canonical representations exist only for APH distribusiomhe canonical representation and a
method to transform a APH representation into the canofocal are given in[[9]. We briefly present this form here sirice i

is the base of our transformation method.
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Figure 1. Canonical representation of APH distributions.
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Figure 2. Equivalent representations of an exponential distribution.



The structure of the canonical representation of APH distions withn phases is shown in Fidll 1. For the canonical
representatiorh, > \,_1 > ... > A; holds. It hasl exit and up ton entry states. The transformation of an APH
representation into the canonical form is based on equived@resentations of the exponential distribution as shiovFig.

[2, details about an algorithm to transform any APH distilouinto its canonical form can be found [n [9] (see alsd [15])1
Unfortunately, the results cannot be easily extended tback¢d distributions and this class is larger than the cldsSRH
distributions[[4[ 11].

2.3 Fitting Problems
The goal of the algorithms developed in this paper is to campMAP that matches or approximates the moments and joint

moments of some observed process. ieandy; ; be the observed (joint) moments that should be approximéatedally
the values are extracted from some measurements and aeéotieerandom variables which would in principle require a
statistical evaluation. However, this point is usually takten into account in fitting approaches. We assume here tlaaid
v;,; are unbiased estimates of the true values.

Even if an APH distribution of order is completely characterized 2y, — 1 moments2n — 1 measured moments usually
will not define a proper APH distribution of order Unfortunately, it is not even known which combinations aments
can be matched by an ordeiPH or APH distribution. Consequently, it is recommendablgd from an exact matching to a
good approximation. Thus, the fitting problem becomes fsirihiutions

min (Z <ﬁzﬂ - @)2) (5)
(mDo) \ /i Vi
where(wr, Dy) is a valid PH (or APH) representation with momenpts M is a set of moments to be approximated ahd
is a non negative weight which allows one to give differenighits to the moments, e.g., to privilege lower order moments
There is no relation between the order of the (A)PH distidbuand the number of moments ixf since we are searching
for anoptimalapproximation which becomes exact if the minimun{ih (5) mees zero.

In the second step we start with a PH representdtiol,) that is expanded to a MAP representat{@y, D;) to match

additionally some joint momenig ; from a set7. The resulting minimization problem becomes

min Z (51;% - ﬂi,j) (6)

D1, 7Dy Di=n \ ;52 J

Here(Dy, D) is a valid MAP representation with a given matfy and a given stationary arrival distributian

2.4 Related Work
There is an enormous amount of material on PH distributiovtslass but still much material on MAPs. In particular, a

large number of fitting methods exists but almost all appneatave problems when applied to field data which is in the
area of computer or communication systems often given aace twith10°, 10 or even more elements. We cannot give a
comprehensive overview of related work and only highligithe major results related to our work.

For PH distributions different papers exist that consitier tange of distributions that can be expressed with a PH dis-

tribution of fixed order and which search for canonical orqua representations (e.d., [21) 11]). However, apart fioen t



mentioned canonical representation for APH distributif@jsnd analytical results for PH distributions of order tj2@], a

general characterization of the set of reachable momest#limissing for PH distributions. I [15] a recursive appch is
developed that allows one to fit the parameters of an APHildigion of ordern to a given set on — 1 moments, if such
a fitting is possible. Since the approach is exact, the masrteavte to be representable by an ord&PH distribution, it is

not possible to compute an approximation or increase theraftthe distribution to fit a given set of moments.

An overview of different heuristic fitting methods for PH tlibutions and MAPs can be found in_[|13]. Most of these
heuristic techniques are based on the EM algorithm [2] wineximizes the likelihood according to a trace or a set of
computed values of the distribution function. Since thgioal algorithm is very slow, several variants have beeretiped
subsequently [17, 10, 28,123], which are more efficient bliinsight have problems if the order of the phase type disttitn
is large or the trace contains many values. Additionallgeoheuristic nonlinear optimization approaches have beefied
to compute ML estimates for the parameters of an APH didiohiaccording to an empirical density [3,114]. The major
limitation of EM based approaches compared to moment fittilgat the former techniques have to work on the whole and
possibly huge trace whereas moment fitting is independetiteofength of the trace. On the other hand, the meaning of
higher order moments is not really clear and their estimagmften unreliable as shown by our examples.

The fitting of MAPs is significantly more complex than the figiof PH distributions. Moment and joint moment fitting
has been developed for acyclic MAPs of order tiva [12]. EM &lthms can be and have been extended to fit MAPS [5, 24]
but are usually rather inefficient and therefore only agtlle if the order of the MAP is small and the trace is not toalon
Alternative techniques like the KPC approach [7] build a MBythe composition of several MAPs of order 2 for which
moment fitting is easier. However, the price of this appraadht be a MAP with a huge state space.

Most related to our work is [27] where a characterization Bif distributions and MAPs is introduced and a moment
fitting method is presented. In contrast to our moment fittimegthod, [27] first fits a matrix exponential distribution aad
matrix exponential process and then transforms thesegeptaions into a PH distribution or MAP. The transformaigthe
crucial step which is done via a general purpose optiminagohnique which may fail to find an appropriate representat
In contrast, our method always finds an APH distribution aiifd® but usually only approximates the given moments and
joint moments. If one keeps in mind that moments and joint s are only estimates derived from some sample, an

approximation is often as good as an exact fitting, if the epipnation error is small.

3 Approximate Fitting of APH-Distributions

In this section we propose an approach to fit the parameters APH distribution according to some moments which usually
have been measured. The problem is treated as a generaizapiim problem which is solved approximately in subsattio
3.7 by the repeated optimization of simpler problems. Tisalteng APH distribution in canonical form is not suited far
subsequent MAP fitting since it contains only a single esitest Thus, it is transformed into an equivalent APH reprizdiem

with additional exit states.



3.1 Generation of an APH Distribution in Canonical Form
We now develop an algorithm to find an APH distribution in caical form that approximates a set of moments In other

words, we solve the optimization problefd (5). M contains2n — 1 moments which can be exactly matched by an order
n APH distribution, then an exact matching using the apprdearh [15] is preferable. However, since this is usually not
the case for empirical moments, the use of a general optiibizapproach has the advantage of computing approxinmstion
independently of the number and size of the moments and tiex of the APH distribution.

The matrixD, of an APH distribution in canonical form has the followingustture.

AN M 0 0
0 —d2 g

0 _)\n—l )\n— 1

such that matrixM becomes
1 1 1
EYREEDYY An
1
0 = v
1 1
0 An—1 An
0 - ... 0 A
Letm; = M‘e” be the vector of théth conditional moment, thep; = mm;. Assume that\ = (\;,...,\,) is known,

then the minimization problenhl(5) accordingtdecomes

. T™im; 2
W;weITn:Hll,wz() (Z (Bt v, _ﬁz) ) (7)

ieEM

This is a non negative least squares problem with a singdatinonstraint for which efficient solution algorithms ¢fis3].
Optimization according ta is harder since matric@sl’ are required for the computation of tilh moment. Thus, we
consider the optimization according to a single ratdor 1 < r < n. Assume that we modify,. such thatl/)\,. becomes

1/A + A (i.e. \. becomes\,./(1 4+ A\.A)). Then the moments matrix becomes
Ma,, = M+ AE,

whereE, is an x n matrix with 1 in the position(1,7),. .., (r,r) and0 elsewhere. Théth conditional moment for a fixed

initial vectorm and fixed rates; (s # r) is then given by
wi(A,r) =7 (M + AE,)’ e

such that the minimization problem

i (3 (52482 5)') ®

ieM



has to be solved..;(A,r) is a polynomial of orderi and a minimum of[(8) can be found with standard optimization
techniques. EitheA is chosen fron{1/X;11 — 1/X\;, 1/X;—1 — 1/);] such that the resulting APH distribution is still in
canonical form or the optimum is computed fare (—1/\,, c0) that assures thai,. remains non negative and the resulting
APH distribution can be transformed into the canonical faising the approach frorhl[9].

The two steps(7) and](8) can be iterated by optimization m@itieg to = and according to\,. (r = 1,...,n) until the
parameters remain almost constant. This approach reswdtsequence of APH distributions with a decreasing errdiin (
However, the approach converges to local minima such tisabitild be restarted several times at random points to oatain

good approximation. We come back to concrete algorithmedétian[5.

3.2 Transformation of the Canonical Form
A transformation from the canonical form to a general APHribation with more than one exit state has been proposed

in [16]. We present here another transformation which ladlgiinverts the transformation process into the canorfimanh
as given in[[9]. However, this inversion is not unique anduefices the range of joint moments that can be reached in the
steps where the APH representation is expanded to a MAP.r&hsftrmation performs modification dby and~ that do
not alter the distribution. Of course, the transformatitaps can be applied to any APH representation, it need nat be i
canonical form. Unfortunately, it is not clear yet how to fitlhé most flexible APH representation for a distribution veher
most flexible means the one with widest range of joint mom#iatscan be represented by expanding the representaton int
a MAP. Thus, several transformation may be checked.

The transformation consists of a sequence of steps and mstap two states andj (i < j) that are connected by
a transition are handled. Each transformation step can be lbeally by considering only incoming and outgoing transi
tions of 7, incoming transitions of, and the probabilities (i) and=(j). Consequently, the representation remains acyclic.
Furthermore, our transformations keep the transitiorsrate. . . , A, unchanged such that < A; holds fori < j.

In the following description of a transformation step, weake two statesandj with i < j, ¢(¢,7) > 0 and compute
new transition rateg'(., .) and initial probabilitiesr’(.) for a different representation of the same distribution.

Defined < §* where
WE\i)Q(;iJ),
S | 9)
s i) 4(k.g)
MINg < q(k,i)>0 (i) a(k,0) :

for \; > \;. If \; = );, then the second term in the minimum (9) becomesnd does not count such that the minimum

0* = min (w(j),

is computed according to the remaining two conditionsi*If> 0, we can choosé* > § > 0 and perform the following

transformations forr
w(i)+o fork=1

(k) =< w()—6 fork=j (10)

(k) otherwise



andgq(k,1) .

q'(k,1) =

q(iaj)ﬂj(z()ilg_
Q:(;)i‘g” fork =iandl = j
. (1)

q(%l)wu)+§4— a
a0, ) 575 for k =i andl # j

q(’fJ)”iﬁ?# fork <iandl =i

q(k,j) —q(k,i) 705 fork < jandl=j

q(k, 1) otherwise

The following theorems summarize some properties of thigiloligion resulting from the transformation. Proofs can be

found in a technical reporit [6].

Theorem 1. If (@0) and[[11) are applied to an APH representation, themdBulting representation is still an APH represen-

tation and describes the same distribution.

Theorem 2. If (I0) and [11) are applied to an APH representation, agh,. ., ¢'(k,1) = >°_ ., q(k,1) fork # i and

n

Z q/(ivl) = Z Q(Z,l)‘i’ﬁ
l=i+1 l=i+1

(q(i,n+1) —q(j,n +1))

WhereQ(k7n + 1) = )‘k - Z?:k+1 q(k7 l) (k = Zm])

Theoren{® implies that if is an exit state, then alsobecomes an exit state. The following theorem shows that the

repeated application of the transformation results in ahl A&presentation with exit states under certain conditions.

Theorem 3. If we apply the transformation rulels (10) and](11) with > 6 > 0 consecutively to states= 1,2,...,n
andj = i+ 1,...,n of an APH representation in canonical form withi) > 0 for alli = 1,...,n, we obtain an APH

representation of the same distribution where all stategxsit states.

The resulting APH representation of the distribution defsson the choice af in every step and defines the range of the
joint moments that can be reached in the subsequent fittapg ¥e obtained good results by choosing 0.95*.

Theorenl B implies that in the canonical representatiortaiés are entry states. If this is not the case, then theftmrans
mation may generate a representation with fewer exit st&ieg, for an Erlang: distribution no transformation is possible.
By a slight modification of[{[7), it can be assured thé&t) > ¢ > 0 for somee < 1/n. In the modified problem the minimum
is computed according to vecterwith the constrainte’ = 1 — ne and¢ > 0. Fore > 0 we obtain a transformed APH

representation where every state is entry and exit state.

4  Fitting of Joint Moments for MAPs

Starting from some APH or PH representation we now presemjpanoach to fit additionally some joint moments by ex-

panding the distribution into a MAP. The following approan be applied to any PH representation. Thus, it need not be



an APH representation and it can be generated with any ofvtiable methods. Alternatively to the approach preseimed
the previous section, exact moments fitting as in [15] maydpdied, if possible, or a PH representation is generateathusi
one of the approaches presented.in [2, 5] 17, 14, 28]. Of eptlrs range of joint moments that can be fitted depends on the
structure of the PH representation. Representations withane entry or exit state have no flexibility and cannot bedu®
fit joint moments.

The goal is to find a matriD; for givenr andDg such thafD; > 0, —Dye” = D;e” and7MD; = 7. The first
condition is a non negativity condition for all elementstie imatrix, the second and third condition define togethdmear

constraints for the elements B¥;. Define
vi = 7sM*! andw’ = M‘e” |

then

n n

pig =iG1Y Y vi(r)Dy(r, )W (s) . (12)

r=1s=1

Now consider again the general minimization probléin (6) ieh@2) is plugged in fog; ;. The resulting problem is a
non negative least squares problem withvariables and®n linear constraints. This problem can be solved with stathdar
algorithms for non negative least squares probléms [18].

In summary, for a given PH representation the expansioraM&\P to approximate a set of joint moments is fairly easy
and can be done efficiently as longrass moderate (i.e. in the range 26 to 50). If for an APH representation where the
moments are adequately fitted, the fitting of joint momentwisgood enough, one may either repeat moment fitting with
additional states or one may expand the given APH represamtay substituting one of its phases with rateby two phases
with rates); andu; (> A;) according to the equivalence in Fig. 2. This transfornrakieeps the distribution unmodified but

enlarges the flexibility of fitting joint moments.

5 An Algorithmic Approach for Fitting

The two steps presented in the previous section will now lmebioed and described in an algorithmic framework resulting
in a complete fitting algorithm. The first step is the detemtion of an APH distribution in canonical representatiors A
mentioned, a single optimization step converges towardsal minimum such that the algorithm should be restartetl wit

random values several times. The following algorithm perfothe fitting.

Algorithm 1.

1. repeat

generate positive random numbers ;

w N

order the generated numbers and initiakze
4. generate randomly an initial distributiary

5. repeat



6. N, =N andr' (i) =7(i) i=1,...,n);
7. for@=1,...,n)do
8. compute € (—1/X;, 00) that minimizesl(B) ;

9. recompute the canonical representation using

the approach from [9] ;
10. recompute by computing the minimum of{7) ;
11, until|\; — X\ < eand|n’ (i) — w(i)| < e
(t=1,...,n);

12. until maximal number of restarts is reached or the mompptoximation is good enough ;

If the approximation of the moments is not appropriate, thémset ton + 1 and the algorithm is restarted or the number of
restarts is increased. In the next step, the canonicalseptation is transformed to increase the number of exgstading

the following algorithm.

Algorithm 2.

1. InitializeQ(i,i) = =X i=1,...,n);
2. InitializeQ(j,j +1) =X j=1,...,n—1);
3. fori=1,...,n)
4, for(j=i+1,...,n)
5. computer’ fromn using [(10) ;
6. computeQ’ from Q using [(11) ;
7. r=7"andQ =Q’;
8 Dy=Q;
If the representation is appropriate (i.e., moments arecgpjately fitted and several entry and exit states existtvban be

always assured by defining a minimal non zero value for thmefs inr), the third algorithm expands the distribution into

a MAP.
Algorithm 3.

1. computev® andw? forall (i, j) € J ;

2. solvel(b) representing the joint momentsby (12) and ctemsig the constraintsMD, = 7 and

T T .
—Dpe’ =Dje" ;



If the joint moments are not adequately approximated, thés set ton + 1 and the whole approach starts again or the
representation is expanded by cloning some of its phaseshwhgults in a larger state space and more flexibility for the
fitting of joint moments.

For the solution of the non negative least square problenf8)imnd [¥) the procedure [25] is used. Constraints are
integrated in the goal function using Lagrange multipliefee most costly step of the approach is the moment fitting wit
the APH distribution since it is usually recommended to dosd@ 0 — 100) restarts for a good fitting. However, even this step
requires only a few second,iifis not too large. If other methods for distribution fittingeaavailable, these may as well be
used. We made good experience withgfieapproach from[28] which uses an EM algorithm to fit hyper Bgldistribution.
Forn equal tol0 or below, the whole fitting requires only a few seconds. Irtipalar the fitting of joint moments using non

negative least squares is much faster than EM algorithmisnilas approaches working on a complete trace.

6 Experiments and Results

We present now some examples to show the potential and fiomgaof the proposed fitting algorithm. In practice we are
interested in fitting MAPs to real traffic traces. Howeverthe first subsection we consider some results generated from
a MAP which are fitted by MAPs of the same size. In this casectexalues for moments and joint moments are known.

Afterwards we consider some real traces.

moment joint moments

Figure 3. Confidence intervals for the moments E(X*) and joint moments E(X*, X*?) of the example MAP.

6.1 Fitting MAPs
We present results for one of the example MAPs from [16]. Qfrse, theoretically, iPn — 1 moments andn — 1)? joint

moments are known, then a MAP can be recreated. Howeveraatipe the following problems may come up:

e We use APH distributions rather than PH distributions arsdriet for n > 2 the class of distributions that can be

represented.
e The moment fitting approach for APH is only a heuristic thayrfal to find the optimal representation.

e The transformation of the canonical form to a general APHas nnique and the resulting distribution may not be

adequate for fitting the required joint moments.



e In practice, moments are estimated from some trace sin@xtw moments are not known such that the quality of the

MAP depends on the quality of the estimates.

e In practice2n — 1 moments andn — 1)? joint moments often will not define a proper MAP of ordeand even if
such a MAP exists it is not clear whether it adequately apprates additional quantities of the trace like additional

moments or lag: autocorrelations.

The first three points are related to the fitting method, tketl®o are more general. We begin with the analysis of the

following MAP with 3 states that has been used.inl[16] as example one.

-3.721 0.5 0.02
Dy, = 0.1  —1.206 0.005
0.001  0.002 —0.031
02 3.0 0.001
D, = 1.0 0.1 0.001
0.005 0.003 0.02

The MAP is cyclic but can be adequately represented by a MAR adyclic matrixDy. The algorithm computes the

following MAP.
—0.031 0.00244 0.00267

Dy = 0.0  —0.115 0.0107
0.0 0.0  —1.637
0.02  0.000432 0.00538
D, = 0.0 0.104 0.0

0.00951 0.00235  1.625
The whole computation of the MAP requires ab®geconds which is much faster than with other known methotlkoAgh

the original and the fitted MAP look fairly different, theiraments and joint moments are almost the same.

(15) = (1.14986, 35.7530, 3375.66, 435509, 70277728)
(v;) = (1.14986, 35.7398, 3378.09, 435482, 70253190)
118+ 1 7.37e+2 712 +4
(pij) = 1| 7.36e+2 4.70e+4 4.55¢+6
7.12e+4 4.55e+6 4.4le+8
1.19e+1 7.36e+2 T7.12+4
(vij) =1 7.35e+2 4.70e+4 4.55¢+6
71le+4 4.55e4+6 4.4le+8

The lagk autocorrelations are also almost identically for the orddjand the fitted MAP, whereas the density functions differ
slightly at some points. In summary, for the example MAP thienfi was efficient and adequate. However, in practice we

do not have the exact moments and joint moments for a MAP,liheg to be extracted from a trace. To show the potential



Figure 4. Confidence intervals for the moments E(X?) and joint moments E(X?, X?) of the LBL-trace and the fitted moments and joint

moments.

problems which may come up in such a case, we generate atoac#fe example MAP and estimate the moments and joint
moments from the trace. The accuracy of the estimates isrshgpwomputing confidence intervals for the moments and joint
moments. Since the values in the trace are dependent, weatstrapping to compute confidence intervals by applyieg th
approach for mean values from [8].

For the following results a trace wittD” elements has been generated from the MAP. From this tracedheents and
joint moments are computed. Figlife 3 shows the width of tdidence intervals for the moments and joint moments redativ
to the estimated mean values for significance lévelo = 90%. Furthermore, the exact values of the moments and joint
moments which have been computed numerically from the MARlaawn in the figure relative to the estimated moments.
It can be seen that for lower order moments and joint momesrifidence intervals are small and the estimated and exact
values are very similar. However, for higher order moments @& particular joint moments, the situation is probleimat
The width of the confidence interval of the fifth moment is athg10% of the estimated mean and for the ninth moment the
confidence interval i§0% of the estimated mean. It can also be seen that higher ordeemts and joint moments of the
trace and the MAP differ significantly. To show the practigadblems which arise, we consider some of the values ragulti
from three traces with0” elements which are generated from the original MAP withedléht seeds of the random number
generator. For the MAR; equalsl.149 from the traces we estimaté.{52,1.150, 1.150), x5 equalsr.028e + 7 from the
traces we estimat& (192e + 7,6.758¢ + 7,6.808e + 7) and forus 3 the exact value equals406e + 8 whereas the traces
result in @.031e + 8,4.856¢ + 8,4.368¢ + 8). Similarly, the lagl0 autocorrelation of the MAP equals69¢ — 2 and the
traces result in values betwegrdb5e — 2 and6.19¢ — 2.

If we fit a MAP according to the estimated values of one of theds, we obtain a process that significantly differs in its
behavior from the original MAP. We analyzed several otherMéAe.g., all the examples presented.in [16]). In all cases th
fitting results are very good. Thus, the fitting procedure iglmmore accurate than the information we obtain from a trace

even with10 million entries. We will come back to this point after consishg some real traces.

6.2 Fitting Real Traces
As real examples we use two traces from the internet traficiee [22, 1] which often have been used as benchmarks for

MAP or distribution fitting. The first traces is tHeBL-TCP-3trace which describes two hours of wide-area TCP traffic



capturing about.8 million packets. The second trace is fhug89race which includes the interarrival times of one million
Ethernet packets.

For both traces we estimateglandy; ; fori,j = 1,...,8 from the traces and computéd% confidence intervals via
bootstrapping. Then MAPs wit, 5 and7 states are fitted according to the moments and joint moméfgsise the weights
B; =2t andp; ; = 2~ (—DU~1, Of course, this choice is somehow arbitrary but capturesbservation that lower order
moments are more important and can be estimated more eelidbivever, an appropriate choice of weights requires éurth

investigations.

Figure 5. Lag k autocorrelation of the LBL-trace and the fitted MAPs.

Fig.[4 shows the results of moment and joint moment fittingtierLBL-trace. In the figures we plotted the width of the
confidence intervals for the moments and joint momentsivel&d the absolute values. For the joint moments we show only
the values fow; ;, however, results for; ; (i # j) are similar. Like in the previous examples, confidencerimtis for the
first three moments and joint moments are acceptable, atdsthe confidence intervals become too large. IThenillion
elements in the trace are not sufficient for an accurate astmof the higher order moments and joint moments. Thedigur
also include curves fau; /v; andy; ; /v; ; wherep, are the values of the fitted MAP amdare the estimated valueSIAPx
stands for a MAP withe states fitted according to the weighted moments, whdw®RBxb stands for a MAP of order
fitted according to the raw moments and joint moments. It aasden that fitting of the weighted moments results in an
almost exact fitting of the first five moments and the first thog® moments in all cases whereas higher order moments are
underestimated and higher order joint moments are overattd. An increased number of states results in a bettegfitti
e.g. going from3 to 7 states reduces the squared erroifin (5) by a factabaind the squared error dfl(6) by a factor of
2. Fitting without weights results in a better approximatadrhigher order moments but the price are small errors in towe
order moments. E.qg., withlAP7bthe first moment is underestimated H§ and the second moment is overestimate@%y
whereas the MAPs fitted according to the weighted momentd gieact results.

Fig.[3 shows the autocorrelation of the original trace ardfitted MAPs. It should be remarked that the autocorrelation
plays no role in the fitting algorithm. It can be seen that thefidence intervals for the lag autocorrelation are small
and that the MAPs do not adequately represent the autoatiarelstructure. Only the first two lags are described by the

MAPs fitted according to the weighted traces whereas the igite fitting first over- and then underestimates thedag



Clfor joint moments E(X",X")

Figure 6. Confidence intervals for the moments E(X*) and joint moments E(X?, X?) of the pAug-trace and the fitted moments and joint

moments.

autocorrelation. The results indicates that moment amt joioment fitting without fitting the autocorrelation for dgr
lags can be questionable. However, it is also the other wapdpfitting according to the autocorrelation without the
moments usually results in a bad approximation of joint matmether than the first one which is determined by thellag
autocorrelation coefficient.

Results for the second trap&ug89are shown in the Fid.]6. For this example moments are sligiatbjer to fit, whereas

higher order joint moments are hard to fit by low order MAPs.

7 Conclusions
We presented an approach to fit the moments and joint momeafglAP according to the moments and joint moments of a
traffic trace. In contrast to other approaches, momentdiisrconsidered as a minimization problem such that theditbiin
MAP parameters according to the joint moments becomes aegatine least squares problem, if the distribution hasédiye
been fitted. Since distribution fitting is usually easientliigting of MAPs, the approach describes an easy and fastadeth
to expand a PH distribution to a MAP. The method usually tesal good fitting results, if moments and joint moments
generated from some MAP are used for fitting. However, theasiin becomes much more complex, if moments and joint
moments result from traces. It has been shown that evenrige taaces the estimates for higher order moments or joint
moments are unreliable such that moment fitting can only t@nenended for the low order moments. In so far, the question
for the best measures to be used in a fitting approach is pgthoHowever, our results indicate that a statistical extan
of the trace is recommended since an accurate fitting of ialbfelmeasures is not better than a loose approximationauftex
measures.

Of course, the approach presented here requires someoaddiitining in particular to find appropriate values for the
weights used for the goal functions and to find the best reptation of an APH distribution for expansion into a MAP.

These steps will be considered in future research.
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