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Abstract

Fitting of the parameters of a Phase Type (PH) Distribution or a Markovian Arrival Process (MAP) according to some

quantities of measured data streams is still a challenge. This paper presents a new approach which computes in two steps for

a set of moments and joint moments for an Acyclic PH distribution that is expanded into a MAP.

In contrast to other known approaches, parameters are computed to minimize the weighted squared difference between

the measured moments and the moments of the resulting PH Distribution or MAP. The proposed approach is very flexible and

allows one to generate a MAP of a predefined order to approximate a given set of moments and joint moments. It is shown

that the approximation is often sufficiently accurate even with MAPs of a moderate size. However, we also show that the

practical applicability of the approach is limited since the exact determination of higher order moments from traces requires

an extremely high effort.
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1 Introduction
To apply numerical or analytical solution approaches for the analysis of queueing networks or other stochastic models,the

models usually have to describe a Markov chain which impliesthat distributions have to be modeled as phase type distribu-

tions (PH distributions) or Markovian arrival processes (MAPs). PH distributions and MAPs have a long history in stochastic

modeling [19, 20] and are powerful model classes which in theory allow the representation of almost all relevant stochastic

behaviors that are observed. However, the building of a PH distribution or a MAP according to a set of characteristics of

stochastic behavior that has been observed in practice is still an open and hard problem. In particular, one is often interested

in PH distributions or MAPs with a small number of phases thatmimic the behavior of some real system for which some

field data is available. Although some progress has been madein the analysis and fitting of PH distributions and MAPs, the

practical applicability of many approaches is limited [4].

In this paper we propose an approach for fitting the parameters of a MAP according to the moments or joint moments. The

technique may be easily extended to other measures like values of the distribution function or joint density. The approach

applies the idea of a separate fitting of the distribution by aPH distribution and the expansion of the PH distribution to aMAP

in a second step [16]. For the first step, the distribution fitting, we present a heuristic approach to fit an acyclic PH distribution

in canonical form to a set of moments, then this APH distribution is transformed by some equivalence transformations into
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a representation that is more convenient for MAP fitting. Thesecond step then uses some joint moments to expand the

distribution into a MAP.

The paper is structured as follows. In the next section we introduce our notation, present some known results and give

a brief overview of related work. Afterwards, in Section 3, the fitting approach for APH distributions and the equivalence

transformations for APH distributions are presented. Thena method to fit joint moments by expanding an APH distribution

into a MAP is introduced. Section 5 summarizes the two preceding steps and puts them into an algorithmic frame. Afterwards

some examples are presented. The paper ends with the conclusions and some hints about possible extensions of the proposed

approach.

2 Definitions, Notations and Related Work
2.1 Basic Definitions
We use a coherent notation for the representation of PH distributions and MAPs and begin with the introduction of MAPs

(see [16, 27] for more details). A MAP of ordern is characterized by twon× n matricesD0 andD1 such that

• D0(i, j) ≥ 0 for i 6= j and

D0(i, i) ≤ −
∑n

j=1,i6=j D0(i, j),

• D1(i, j) ≥ 0 andD0e
T = −D1e

T wheree is the unit row vector andeT is its transposed,

• D0 is nonsingular andD0 +D1 is an irreducible generator matrix.

The MAP characterizes a stochastic process where events aregenerated whenever a transition fromD1 occurs, transitions in

D0 are silent.

Matrix P = −D−1
0 D1 is the stochastic transition matrix of the embedded phase process at arrival instants. The stationary

distribution at arrival instants is denoted byπ and is given byπP = π andπeT = 1.0.

A PH distribution is characterized by a matrixD0 with the same properties as above and an initial distribution π. The PH

distribution is acyclic (an APH distribution) ifD0 is an upper (or lower) triangular matrix.

Every MAP describes an embedded PH distribution characterized by the pair(π,D0) and a PH distribution can be ex-

panded into an equivalent MAP by definingD1 = (−D0e
T )π.

A statei of a PH distribution or a MAP is an entry state, ifπ(i) > 0 and it is an exit state if theith row ofD1 is nonzero

or, equivalently, if the row sum of theith row ofD0 is negative.

2.2 Analysis of PH and MAPs
In this paper we introduce an approach for fitting the parameters of a PH distribution or MAP to approximate the moments

or joint moments of a process. We first introduce the computation of some quantities, in particular, of the moments and joint

moments for PH distributions and MAPs. LetX be a random variable with phase type distribution andX(t) a stochastic

process characterized by a MAP, respectively.



The density ofX realized by a PH distribution(π,D0) is given by

fPH(t) = πeD0t(−D0)e
T = π

∞
∑

k=0

(D0t)
k

k!
(−D0)e

T (1)

and the joint density ofX(t) realized by a MAP(D0,D1) is given by

fMAP (t1, t2, . . . , tm) = πeD0t1D1e
D0t2D1...e

D0tmD1e
T . (2)

The moments and joint moments are derived from the moment matrix M = −D−1
0 . Such that we obtain for the moments

µi = E(X i) = i!πMieT (3)

and for the joint moments

µi,j = E(X i, Xj) = i!j!πMiPMjeT . (4)

As shown in [27], a PH distribution of ordern is characterized by2n−1 moments and an ordern MAP is characterized by

n2 joint moments, if it is non redundant. Since a PH distribution hasn2+n− 1 free parameters and a MAP has2n2−n free

parameters, the matrix representations are highly redundant which makes the fitting of parameters even harder. In the sequel

we speak of a PH/APH distribution or a MAP, if the concrete andunique distribution/stochastic process is meant and we use

PH/APH/MAP representation for the matrices and vectors related to the concrete representation. Thus, each representation

describes a unique distribution and for a distribution infinitely many representations exist.

One of the problems for any fitting approach is that canonicalrepresentations of PH distributions or MAPs do not exist

in general. This implies that different representations ofthe same distribution are available and fitting algorithms that work

on the matrix representations may switch between differentequivalent representations resulting in bad approximations. With

the exception ofn = 2 or 3 canonical representations exist only for APH distributions. The canonical representation and a

method to transform a APH representation into the canonicalform are given in [9]. We briefly present this form here since it

is the base of our transformation method.

λ 1 λ 2 λ n

π(2) π(n)π(1)

...

Figure 1. Canonical representation of APH distributions.
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Figure 2. Equivalent representations of an exponential distribution.



The structure of the canonical representation of APH distributions withn phases is shown in Fig. 1. For the canonical

representationλn ≥ λn−1 ≥ . . . ≥ λ1 holds. It has1 exit and up ton entry states. The transformation of an APH

representation into the canonical form is based on equivalent representations of the exponential distribution as shown in Fig.

2, details about an algorithm to transform any APH distribution into its canonical form can be found in [9] (see also [11, 15]).

Unfortunately, the results cannot be easily extended to cyclic PH distributions and this class is larger than the class of APH

distributions [4, 11].

2.3 Fitting Problems
The goal of the algorithms developed in this paper is to compute a MAP that matches or approximates the moments and joint

moments of some observed process. Letνi andνi,j be the observed (joint) moments that should be approximated. Usually

the values are extracted from some measurements and are therefore random variables which would in principle require a

statistical evaluation. However, this point is usually nottaken into account in fitting approaches. We assume here thatνi and

νi,j are unbiased estimates of the true values.

Even if an APH distribution of ordern is completely characterized by2n−1 moments,2n−1 measured moments usually

will not define a proper APH distribution of ordern. Unfortunately, it is not even known which combinations of moments

can be matched by an ordern PH or APH distribution. Consequently, it is recommendable to go from an exact matching to a

good approximation. Thus, the fitting problem becomes for distributions

min
(π,D0)

(

∑

i∈M

(

βi

µi

νi
− βi

)2
)

(5)

where(π,D0) is a valid PH (or APH) representation with momentsµi, M is a set of moments to be approximated andβi

is a non negative weight which allows one to give different weights to the moments, e.g., to privilege lower order moments.

There is no relation between the order of the (A)PH distribution and the number of moments inM since we are searching

for anoptimalapproximation which becomes exact if the minimum in (5) becomes zero.

In the second step we start with a PH representation(π,D0) that is expanded to a MAP representation(D0,D1) to match

additionally some joint momentsνi,j from a setJ . The resulting minimization problem becomes

min
D1, πD

−1

0
D1=π





∑

(i,j)∈J

(

βi,j

µi,j

νi,j
− βi,j

)2


 (6)

Here(D0,D1) is a valid MAP representation with a given matrixD0 and a given stationary arrival distributionπ.

2.4 Related Work
There is an enormous amount of material on PH distributions and less but still much material on MAPs. In particular, a

large number of fitting methods exists but almost all approaches have problems when applied to field data which is in the

area of computer or communication systems often given as a trace with105, 106 or even more elements. We cannot give a

comprehensive overview of related work and only highlight some major results related to our work.

For PH distributions different papers exist that consider the range of distributions that can be expressed with a PH dis-

tribution of fixed order and which search for canonical or unique representations (e.g., [21, 11]). However, apart from the



mentioned canonical representation for APH distributions[9] and analytical results for PH distributions of order two[26], a

general characterization of the set of reachable moments isstill missing for PH distributions. In [15] a recursive approach is

developed that allows one to fit the parameters of an APH distribution of ordern to a given set of2n − 1 moments, if such

a fitting is possible. Since the approach is exact, the moments have to be representable by an ordern APH distribution, it is

not possible to compute an approximation or increase the order of the distribution to fit a given set of moments.

An overview of different heuristic fitting methods for PH distributions and MAPs can be found in [13]. Most of these

heuristic techniques are based on the EM algorithm [2] whichmaximizes the likelihood according to a trace or a set of

computed values of the distribution function. Since the original algorithm is very slow, several variants have been developed

subsequently [17, 10, 28, 23], which are more efficient but still might have problems if the order of the phase type distribution

is large or the trace contains many values. Additionally, other heuristic nonlinear optimization approaches have beenapplied

to compute ML estimates for the parameters of an APH distribution according to an empirical density [3, 14]. The major

limitation of EM based approaches compared to moment fittingis that the former techniques have to work on the whole and

possibly huge trace whereas moment fitting is independent ofthe length of the trace. On the other hand, the meaning of

higher order moments is not really clear and their estimation is often unreliable as shown by our examples.

The fitting of MAPs is significantly more complex than the fitting of PH distributions. Moment and joint moment fitting

has been developed for acyclic MAPs of order two [12]. EM algorithms can be and have been extended to fit MAPs [5, 24]

but are usually rather inefficient and therefore only applicable if the order of the MAP is small and the trace is not too long.

Alternative techniques like the KPC approach [7] build a MAPby the composition of several MAPs of order 2 for which

moment fitting is easier. However, the price of this approachmight be a MAP with a huge state space.

Most related to our work is [27] where a characterization of PH distributions and MAPs is introduced and a moment

fitting method is presented. In contrast to our moment fittingmethod, [27] first fits a matrix exponential distribution anda

matrix exponential process and then transforms these representations into a PH distribution or MAP. The transformation is the

crucial step which is done via a general purpose optimization technique which may fail to find an appropriate representation.

In contrast, our method always finds an APH distribution and aMAP but usually only approximates the given moments and

joint moments. If one keeps in mind that moments and joint moments are only estimates derived from some sample, an

approximation is often as good as an exact fitting, if the approximation error is small.

3 Approximate Fitting of APH-Distributions
In this section we propose an approach to fit the parameters ofan APH distribution according to some moments which usually

have been measured. The problem is treated as a general optimization problem which is solved approximately in subsection

3.1 by the repeated optimization of simpler problems. The resulting APH distribution in canonical form is not suited fora

subsequent MAP fitting since it contains only a single exit state. Thus, it is transformed into an equivalent APH representation

with additional exit states.



3.1 Generation of an APH Distribution in Canonical Form
We now develop an algorithm to find an APH distribution in canonical form that approximates a set of momentsM. In other

words, we solve the optimization problem (5). IfM contains2n − 1 moments which can be exactly matched by an order

n APH distribution, then an exact matching using the approachfrom [15] is preferable. However, since this is usually not

the case for empirical moments, the use of a general optimization approach has the advantage of computing approximations

independently of the number and size of the moments and the order of the APH distribution.

The matrixD0 of an APH distribution in canonical form has the following structure.
























−λ1 λ1 0 · · · 0

0 −λ2 λ2
. . .

...
...

. . .
. . . 0

... 0 −λn−1 λn−1

0 · · · · · · 0 −λn

























such that matrixM becomes






















1
λ1

1
λ2

· · · · · · 1
λn

0 1
λ2

· · · · · · 1
λn

...
. . .

. . .
...

... 0 1
λn−1

1
λn

0 · · · · · · 0 1
λn























Let mi = MieT be the vector of theith conditional moment, thenµi = πmi. Assume thatΛ = (λ1, . . . , λn) is known,

then the minimization problem (5) according toπ becomes

min
π:πeT=1,π≥0

(

∑

i∈M

(

βi

πmi

νi
− βi

)2
)

(7)

This is a non negative least squares problem with a single linear constraint for which efficient solution algorithms exist [18].

Optimization according toΛ is harder since matricesMi are required for the computation of theith moment. Thus, we

consider the optimization according to a single rateλr for 1 ≤ r ≤ n. Assume that we modifyλr such that1/λr becomes

1/λr +∆ (i.e. λr becomesλr/(1 + λr∆)). Then the moments matrix becomes

M∆,r = M+∆Er

whereEr is an× n matrix with1 in the position(1, r), . . . , (r, r) and0 elsewhere. Theith conditional moment for a fixed

initial vectorπ and fixed ratesλs (s 6= r) is then given by

µi(∆, r) = π (M+∆Er)
i
eT

such that the minimization problem

min
∆

(

∑

i∈M

(

βi

µi(∆, r)

νi
− βi

)2
)

(8)



has to be solved.µi(∆, r) is a polynomial of orderi and a minimum of (8) can be found with standard optimization

techniques. Either∆ is chosen from[1/λi+1 − 1/λi, 1/λi−1 − 1/λi] such that the resulting APH distribution is still in

canonical form or the optimum is computed for∆ ∈ (−1/λr,∞) that assures thatλr remains non negative and the resulting

APH distribution can be transformed into the canonical formusing the approach from [9].

The two steps (7) and (8) can be iterated by optimization according toπ and according toλr (r = 1, . . . , n) until the

parameters remain almost constant. This approach results in a sequence of APH distributions with a decreasing error in (5).

However, the approach converges to local minima such that itshould be restarted several times at random points to obtaina

good approximation. We come back to concrete algorithms in section 5.

3.2 Transformation of the Canonical Form
A transformation from the canonical form to a general APH distribution with more than one exit state has been proposed

in [16]. We present here another transformation which basically inverts the transformation process into the canonicalform

as given in [9]. However, this inversion is not unique and influences the range of joint moments that can be reached in the

steps where the APH representation is expanded to a MAP. The transformation performs modification onD0 andπ that do

not alter the distribution. Of course, the transformation steps can be applied to any APH representation, it need not be in

canonical form. Unfortunately, it is not clear yet how to findthe most flexible APH representation for a distribution where

most flexible means the one with widest range of joint momentsthat can be represented by expanding the representation into

a MAP. Thus, several transformation may be checked.

The transformation consists of a sequence of steps and in each step two statesi and j (i < j) that are connected by

a transition are handled. Each transformation step can be done locally by considering only incoming and outgoing transi-

tions of i, incoming transitions ofj, and the probabilitiesπ(i) andπ(j). Consequently, the representation remains acyclic.

Furthermore, our transformations keep the transition ratesλ1, . . . , λn unchanged such thatλi ≤ λj holds fori < j.

In the following description of a transformation step, we choose two statesi andj with i < j, q(i, j) > 0 and compute

new transition ratesq′(., .) and initial probabilitiesπ′(.) for a different representation of the same distribution.

Defineδ ≤ δ∗ where

δ∗ = min
(

π(j), π(i)q(i,j)
λj−λi

,

mink<i,q(k,i)>0

(

π(i) q(k,j)
q(k,i)

))

.
(9)

for λj > λi. If λi = λj , then the second term in the minimum (9) becomes∞ and does not count such that the minimum

is computed according to the remaining two conditions. Ifδ∗ > 0, we can chooseδ∗ > δ > 0 and perform the following

transformations forπ

π′(k) =



















π(i) + δ for k = i

π(j)− δ for k = j

π(k) otherwise

(10)



andq(k, l) .

q′(k, l) =


































































q(i, j) π(i)
π(i)+δ

−

(λj−λi)δ
π(i)+δ

for k = i andl = j

q(i, l) π(i)
π(i)+δ

+

q(j, l) δ
π(i)+δ

for k = i andl 6= j

q(k, i)π(i)+δ

π(i) for k < i andl = i

q(k, j)− q(k, i) δ
π(i) for k < j andl = j

q(k, l) otherwise

(11)

The following theorems summarize some properties of the distribution resulting from the transformation. Proofs can be

found in a technical report [6].

Theorem 1. If (10) and (11) are applied to an APH representation, then the resulting representation is still an APH represen-

tation and describes the same distribution.

Theorem 2. If (10) and (11) are applied to an APH representation, then
∑n

l=k+1 q
′(k, l) =

∑n
l=k+1 q(k, l) for k 6= i and

n
∑

l=i+1

q′(i, l) =
n
∑

l=i+1

q(i, l) + δ
π(i)+δ

(q(i, n+ 1)− q(j, n+ 1))

whereq(k, n+ 1) = λk −
∑n

l=k+1 q(k, l) (k = i, j).

Theorem 2 implies that ifj is an exit state, then alsoi becomes an exit state. The following theorem shows that the

repeated application of the transformation results in an APH representation withn exit states under certain conditions.

Theorem 3. If we apply the transformation rules (10) and (11) withδ∗ > δ > 0 consecutively to statesi = 1, 2, . . . , n

andj = i + 1, . . . , n of an APH representation in canonical form withπ(i) > 0 for all i = 1, . . . , n, we obtain an APH

representation of the same distribution where all states are exit states.

The resulting APH representation of the distribution depends on the choice ofδ in every step and defines the range of the

joint moments that can be reached in the subsequent fitting step. We obtained good results by choosingδ = 0.9δ∗.

Theorem 3 implies that in the canonical representation all states are entry states. If this is not the case, then the transfor-

mation may generate a representation with fewer exit states. E.g., for an Erlangn distribution no transformation is possible.

By a slight modification of (7), it can be assured thatπ(i) > ǫ > 0 for someǫ < 1/n. In the modified problem the minimum

is computed according to vectorφ with the constraintφeT = 1 − nǫ andφ ≥ 0. For ǫ > 0 we obtain a transformed APH

representation where every state is entry and exit state.

4 Fitting of Joint Moments for MAPs
Starting from some APH or PH representation we now present anapproach to fit additionally some joint moments by ex-

panding the distribution into a MAP. The following approachcan be applied to any PH representation. Thus, it need not be



an APH representation and it can be generated with any of the available methods. Alternatively to the approach presentedin

the previous section, exact moments fitting as in [15] may be applied, if possible, or a PH representation is generated using

one of the approaches presented in [2, 5, 17, 14, 28]. Of course, the range of joint moments that can be fitted depends on the

structure of the PH representation. Representations with only one entry or exit state have no flexibility and cannot be used to

fit joint moments.

The goal is to find a matrixD1 for givenπ andD0 such thatD1 ≥ 0, −D0e
T = D1e

T andπMD1 = π. The first

condition is a non negativity condition for all elements in the matrix, the second and third condition define together2n linear

constraints for the elements ofD1. Define

vi = πMi+1 andwi = MieT ,

then

µi,j = i!j!
n
∑

r=1

n
∑

s=1

vi(r)D1(r, s)w
j(s) . (12)

Now consider again the general minimization problem (6) where (12) is plugged in forµi,j . The resulting problem is a

non negative least squares problem withn2 variables and2n linear constraints. This problem can be solved with standard

algorithms for non negative least squares problems [18].

In summary, for a given PH representation the expansion intoa MAP to approximate a set of joint moments is fairly easy

and can be done efficiently as long asn is moderate (i.e. in the range of20 to 50). If for an APH representation where the

moments are adequately fitted, the fitting of joint moments isnot good enough, one may either repeat moment fitting with

additional states or one may expand the given APH representation by substituting one of its phases with rateλi by two phases

with ratesλi andµi (> λi) according to the equivalence in Fig. 2. This transformation keeps the distribution unmodified but

enlarges the flexibility of fitting joint moments.

5 An Algorithmic Approach for Fitting
The two steps presented in the previous section will now be combined and described in an algorithmic framework resulting

in a complete fitting algorithm. The first step is the determination of an APH distribution in canonical representation. As

mentioned, a single optimization step converges towards a local minimum such that the algorithm should be restarted with

random values several times. The following algorithm performs the fitting.

Algorithm 1.

1. repeat

2. generaten positive random numbers ;

3. order the generated numbers and initializeλi ;

4. generate randomly an initial distributionπ ;

5. repeat



6. λ′
i = λi andπ′(i) = π(i) (i = 1, . . . , n) ;

7. for (i = 1, . . . , n) do

8. compute∆ ∈ (−1/λi,∞) that minimizes (8) ;

9. recompute the canonical representation using

the approach from [9] ;

10. recomputeπ by computing the minimum of (7) ;

11. until |λ′
i − λi| < ǫ and|π′(i)− π(i)| < ǫ

(i = 1, . . . , n) ;

12. until maximal number of restarts is reached or the momentapproximation is good enough ;

If the approximation of the moments is not appropriate, thenn is set ton+ 1 and the algorithm is restarted or the number of

restarts is increased. In the next step, the canonical representation is transformed to increase the number of exit states using

the following algorithm.

Algorithm 2.

1. InitializeQ(i, i) = −λi (i = 1, . . . , n) ;

2. InitializeQ(j, j + 1) = λj (j = 1, . . . , n− 1) ;

3. for (i = 1, . . . , n)

4. for (j = i+ 1, . . . , n)

5. computeπ′ from π using (10) ;

6. computeQ′ fromQ using (11) ;

7. π = π′ andQ = Q′ ;

8. D0 = Q ;

If the representation is appropriate (i.e., moments are appropriately fitted and several entry and exit states exist which can be

always assured by defining a minimal non zero value for the elements inπ), the third algorithm expands the distribution into

a MAP.

Algorithm 3.

1. computevi andwj for all (i, j) ∈ J ;

2. solve (6) representing the joint moments by (12) and considering the constraintsπMD1 = π and

−D0e
T = D1e

T ;



If the joint moments are not adequately approximated, thenn is set ton + 1 and the whole approach starts again or the

representation is expanded by cloning some of its phases which results in a larger state space and more flexibility for the

fitting of joint moments.

For the solution of the non negative least square problems in(6) and (7) the procedure [25] is used. Constraints are

integrated in the goal function using Lagrange multipliers. The most costly step of the approach is the moment fitting with

the APH distribution since it is usually recommended to do some (10−100) restarts for a good fitting. However, even this step

requires only a few second, ifn is not too large. If other methods for distribution fitting are available, these may as well be

used. We made good experience with thegfit approach from [28] which uses an EM algorithm to fit hyper Erlang distribution.

Forn equal to10 or below, the whole fitting requires only a few seconds. In particular the fitting of joint moments using non

negative least squares is much faster than EM algorithms or similar approaches working on a complete trace.

6 Experiments and Results
We present now some examples to show the potential and limitations of the proposed fitting algorithm. In practice we are

interested in fitting MAPs to real traffic traces. However, inthe first subsection we consider some results generated from

a MAP which are fitted by MAPs of the same size. In this case, exact values for moments and joint moments are known.

Afterwards we consider some real traces.
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Figure 3. Confidence intervals for the moments E(Xi) and joint moments E(Xi,Xi) of the example MAP.

6.1 Fitting MAPs
We present results for one of the example MAPs from [16]. Of course, theoretically, if2n− 1 moments and(n − 1)2 joint

moments are known, then a MAP can be recreated. However, in practice the following problems may come up:

• We use APH distributions rather than PH distributions and restrict for n > 2 the class of distributions that can be

represented.

• The moment fitting approach for APH is only a heuristic that may fail to find the optimal representation.

• The transformation of the canonical form to a general APH is non unique and the resulting distribution may not be

adequate for fitting the required joint moments.



• In practice, moments are estimated from some trace since theexact moments are not known such that the quality of the

MAP depends on the quality of the estimates.

• In practice2n − 1 moments and(n − 1)2 joint moments often will not define a proper MAP of ordern and even if

such a MAP exists it is not clear whether it adequately approximates additional quantities of the trace like additional

moments or lagk autocorrelations.

The first three points are related to the fitting method, the last two are more general. We begin with the analysis of the

following MAP with 3 states that has been used in [16] as example one.

D0 =











−3.721 0.5 0.02

0.1 −1.206 0.005

0.001 0.002 −0.031











D1 =











0.2 3.0 0.001

1.0 0.1 0.001

0.005 0.003 0.02











The MAP is cyclic but can be adequately represented by a MAP with acyclic matrixD0. The algorithm computes the

following MAP.

D0 =











−0.031 0.00244 0.00267

0.0 −0.115 0.0107

0.0 0.0 −1.637











D1 =











0.02 0.000432 0.00538

0.0 0.104 0.0

0.00951 0.00235 1.625











The whole computation of the MAP requires about2 seconds which is much faster than with other known methods. Although

the original and the fitted MAP look fairly different, their moments and joint moments are almost the same.

(µi) = (1.14986, 35.7530, 3375.66, 435509, 70277728)

(νi) = (1.14986, 35.7398, 3378.09, 435482, 70253190)

(µi,j) =











1.18e+ 1 7.37e+ 2 7.12e+ 4

7.36e+ 2 4.70e+ 4 4.55e+ 6

7.12e+ 4 4.55e+ 6 4.41e+ 8











(νi,j) =











1.19e+ 1 7.36e+ 2 7.12e+ 4

7.35e+ 2 4.70e+ 4 4.55e+ 6

7.11e+ 4 4.55e+ 6 4.41e+ 8











The lagk autocorrelations are also almost identically for the original and the fitted MAP, whereas the density functions differ

slightly at some points. In summary, for the example MAP the fitting was efficient and adequate. However, in practice we

do not have the exact moments and joint moments for a MAP, theyhave to be extracted from a trace. To show the potential
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Figure 4. Confidence intervals for the moments E(Xi) and joint moments E(Xi, Xi) of the LBL-trace and the fitted moments and joint

moments.

problems which may come up in such a case, we generate a trace from the example MAP and estimate the moments and joint

moments from the trace. The accuracy of the estimates is shown by computing confidence intervals for the moments and joint

moments. Since the values in the trace are dependent, we use bootstrapping to compute confidence intervals by applying the

approach for mean values from [8].

For the following results a trace with107 elements has been generated from the MAP. From this trace themoments and

joint moments are computed. Figure 3 shows the width of the confidence intervals for the moments and joint moments relative

to the estimated mean values for significance level1 − α = 90%. Furthermore, the exact values of the moments and joint

moments which have been computed numerically from the MAP are drawn in the figure relative to the estimated moments.

It can be seen that for lower order moments and joint moments confidence intervals are small and the estimated and exact

values are very similar. However, for higher order moments and, in particular joint moments, the situation is problematic.

The width of the confidence interval of the fifth moment is already10% of the estimated mean and for the ninth moment the

confidence interval is60% of the estimated mean. It can also be seen that higher order moments and joint moments of the

trace and the MAP differ significantly. To show the practicalproblems which arise, we consider some of the values resulting

from three traces with107 elements which are generated from the original MAP with different seeds of the random number

generator. For the MAPµ1 equals1.149 from the traces we estimate (1.152, 1.150, 1.150), µ5 equals7.028e + 7 from the

traces we estimate (7.192e+ 7, 6.758e+ 7, 6.808e+ 7) and forµ3,3 the exact value equals4.406e+ 8 whereas the traces

result in (4.031e + 8, 4.856e+ 8, 4.368e + 8). Similarly, the lag10 autocorrelation of the MAP equals5.69e − 2 and the

traces result in values between5.45e− 2 and6.19e− 2.

If we fit a MAP according to the estimated values of one of the traces, we obtain a process that significantly differs in its

behavior from the original MAP. We analyzed several other MAPs (e.g., all the examples presented in [16]). In all cases the

fitting results are very good. Thus, the fitting procedure is much more accurate than the information we obtain from a trace

even with10 million entries. We will come back to this point after considering some real traces.

6.2 Fitting Real Traces
As real examples we use two traces from the internet traffic archive [22, 1] which often have been used as benchmarks for

MAP or distribution fitting. The first traces is theLBL-TCP-3trace which describes two hours of wide-area TCP traffic



capturing about1.8 million packets. The second trace is thepAug89trace which includes the interarrival times of one million

Ethernet packets.

For both traces we estimatedνi andνi,j for i, j = 1, . . . , 8 from the traces and computed90% confidence intervals via

bootstrapping. Then MAPs with3, 5 and7 states are fitted according to the moments and joint moments.We use the weights

βi = 2i+1 andβi,j = 2−(i−1)(j−1). Of course, this choice is somehow arbitrary but captures the observation that lower order

moments are more important and can be estimated more reliable. However, an appropriate choice of weights requires further

investigations.
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Figure 5. Lag k autocorrelation of the LBL-trace and the fitted MAPs.

Fig. 4 shows the results of moment and joint moment fitting forthe LBL-trace. In the figures we plotted the width of the

confidence intervals for the moments and joint moments relative to the absolute values. For the joint moments we show only

the values forνi,i, however, results forνi,j (i 6= j) are similar. Like in the previous examples, confidence intervals for the

first three moments and joint moments are acceptable, afterwards the confidence intervals become too large. The1.7 million

elements in the trace are not sufficient for an accurate estimation of the higher order moments and joint moments. The figures

also include curves forµi/νi andµi,i/νi,i whereµ. are the values of the fitted MAP andν. are the estimated values.MAPx

stands for a MAP withx states fitted according to the weighted moments, whereasMAPxbstands for a MAP of orderx

fitted according to the raw moments and joint moments. It can be seen that fitting of the weighted moments results in an

almost exact fitting of the first five moments and the first threejoint moments in all cases whereas higher order moments are

underestimated and higher order joint moments are overestimated. An increased number of states results in a better fitting,

e.g. going from3 to 7 states reduces the squared error in (5) by a factor of10 and the squared error of (6) by a factor of

2. Fitting without weights results in a better approximationof higher order moments but the price are small errors in lower

order moments. E.g., withMAP7bthe first moment is underestimated by2% and the second moment is overestimated by2%

whereas the MAPs fitted according to the weighted moments yield exact results.

Fig. 5 shows the autocorrelation of the original trace and the fitted MAPs. It should be remarked that the autocorrelation

plays no role in the fitting algorithm. It can be seen that the confidence intervals for the lagk autocorrelation are small

and that the MAPs do not adequately represent the autocorrelation structure. Only the first two lags are described by the

MAPs fitted according to the weighted traces whereas the unweighted fitting first over- and then underestimates the lagk
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Figure 6. Confidence intervals for the moments E(Xi) and joint moments E(Xi,Xi) of the pAug-trace and the fitted moments and joint

moments.

autocorrelation. The results indicates that moment and joint moment fitting without fitting the autocorrelation for larger

lags can be questionable. However, it is also the other way round, fitting according to the autocorrelation without the

moments usually results in a bad approximation of joint moments other than the first one which is determined by the lag1

autocorrelation coefficient.

Results for the second tracepAug89are shown in the Fig. 6. For this example moments are slightlyeasier to fit, whereas

higher order joint moments are hard to fit by low order MAPs.

7 Conclusions
We presented an approach to fit the moments and joint moments of a MAP according to the moments and joint moments of a

traffic trace. In contrast to other approaches, moment fitting is considered as a minimization problem such that the fitting of

MAP parameters according to the joint moments becomes a non negative least squares problem, if the distribution has already

been fitted. Since distribution fitting is usually easier than fitting of MAPs, the approach describes an easy and fast method

to expand a PH distribution to a MAP. The method usually results in good fitting results, if moments and joint moments

generated from some MAP are used for fitting. However, the situation becomes much more complex, if moments and joint

moments result from traces. It has been shown that even for large traces the estimates for higher order moments or joint

moments are unreliable such that moment fitting can only be recommended for the low order moments. In so far, the question

for the best measures to be used in a fitting approach is still open. However, our results indicate that a statistical evaluation

of the trace is recommended since an accurate fitting of unreliable measures is not better than a loose approximation of exact

measures.

Of course, the approach presented here requires some additional tuning in particular to find appropriate values for the

weights used for the goal functions and to find the best representation of an APH distribution for expansion into a MAP.

These steps will be considered in future research.
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