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Abstract

OMNeT++ is a discrete event simulation environment primarily designed for communication networks. In this paper we

present an approach to enableOMNeT++ to simulate complex hierarchical process chains. Process chains are a common

modeling paradigm in the logistics area for the analysis andoptimization of large process chains and have been intensely

used in many practical applications. Their evaluation is supported by theProC/B toolset, a collection of software tools for

modeling, analysis, validation and optimization of process chains. Here we describe howOMNeT++ has been integrated as

a new simulation engine into the toolset. The integration has to get over some core problems to allow a smooth interaction

betweenOMNeT++ and the other tools: In particular, theOMNeT++ model description of the logistics network should

be kept manageable, it should reflect the entire model structure and non-standard performance figures, being relevant for

an economic evaluation, should be ascertainable in order tosatisfy the specific needs of the application area. The paper

highlights the main steps of the automatic transformation of a hierarchical process chain model into a hierarchical model in

OMNeT++. Furthermore, we show how the transformation has been validated and how detailed performance figures can be

evaluated withOMNeT++.

1 Introduction

For the development and operation of contemporary networksin logistics, model based analysis and in particular the use

of discrete event simulation is becoming an important factor to ensure that the networks meet the requirements concerning

technical measures like delivery times or service levels and, on the other hand, are also cost effective. In the past different

workflows in a logistics network have been specified with process chains as a poorly descriptive tool that does not allow one to

derive simulation models from the description. This, however, implies that required simulation models have to be specified on

∗This research was supported by the Deutsche Forschungsgemeinschaft as part of the Collaborative Research Center “Modeling of Large Logistics

Networks”(559).
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their own without any formal relation to the process chain model. Of course, this approach has the disadvantage that different

models have to be created for one system with all the known problems of additional modeling effort or inconsistencies

between the models. Thus, the use of the entire process chainmodel as a base model for a detailed simulation model of a

logistics network is highly recommendable.

To realize this approach partially informal process chain models have to be enhanced by formal information necessary to

build a simulation model and adequate software tools for simulation have to be available. Of course, simulation of process

chains is not a new idea [1], but a general approach which allows one to refine a high level process chain into a detailed

simulation model and which can cope with the complexity and size of models of today’s logistics networks is still missing.

Available simulation tools for this purpose are either restricted prototypes [2] or extensions of business process modeling

tools [3]. In both cases the capabilities of representing and analyzing more complex models are limited. Available simulation

tools for manufacturing systems [4, 5] that have been developed for large systems lack basic features which are necessary to

model logistics networks and general simulation frameworks are too low level such that an adequate modeling of complex

process chain models requires too much effort.

In the past we developed a class of hierarchical process chain models which include the necessary information to map them

onto discrete event simulation models [6]. The model class,denoted asProC/B, is based on a hierarchical description where

activities of a process chain are performed by some functionunit which itself can be a complex process chain or some basic

unit describing the consumption of space or time. The resulting models may include an arbitrary number of hierarchical

levels which form an acyclic graph. Originally,ProC/B models have been mapped onto simulation models using the tool

HIT [7] which has been developed in the mid eighties for modeling complex computer and communication systems. HIT

perfectly supports the hierarchical structure ofProC/Bmodels and allows the analysis of results according to arbitrary paths

through the hierarchy which is an important feature, in particular, if economic measures where cost drivers become important

should be evaluated via simulation. However, the use of HIT also introduces some serious limitations. Since HIT generates

a simulation model in the language SIMULA, a runtime environment for SIMULA has to be available to run a simulation.

Unfortunately, the number of available SIMULA compilers israther limited. Furthermore, HIT as a nearly 20 year old

tool does not support several modern features of an object oriented simulation environment like animation or interfaces to

software tools for post-processing of results or for the administration of models. For these reasons we decided to integrate

a new simulation tool in our modeling environment and to support a mapping ofProC/B models onto the corresponding

models.

An adequate simulation platform has to observe the following requirements:

• The full ProC/Bmodel world has to be mapped to the simulation model.

• The hierarchy of the process chain models has to be adequately represented in the simulation model.

• Detailed measures that are definable inProC/Bshould be analyzable in the resulting simulation models.

• The simulation tool has to be driven by theProC/B interface.
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• Simulation should be easily made interoperable with other tools of theProC/Benvironment like the optimization tool

OPEDo [8] or the trace analyzer Traviando [9].

• The simulation environment should be stable, should allow the definition and simulation of large models and it should

support modern features of object oriented simulation.

• The simulation environment should be freely available for research according to some adequate open source license.

The last two points restricted the number of available toolssignificantly since most available open source simulation tools

where not adequate to really simulate, in an efficient and error-free way, large models as they result from large logistics

networks. After a more detailed look on the remaining tools,our choice wasOMNeT++ [10, 11], a simulation environ-

ment generating simulations in C++. AlthoughOMNeT++ had been developed and used for communication systems, it is

well suited for the mapping of hierarchical process chain models and it also fulfills almost all of the above requirements.

Nevertheless, the mapping ofProC/Bmodels ontoOMNeT++ is far from being trivial since complex hierarchies have to be

transferred from one view into the other.

This paper introduces the combination ofProC/BandOMNeT++ to build a new and powerful simulation environment for

process models of logistics networks. First steps of the work presented here have been developed in [12, 13]. In the following

section we briefly present theProC/Bformalism, the corresponding toolset and the toolOMNeT++. Afterwards, in section 3

it is shown how the hierarchical structure ofProC/B is mapped onto a module structure ofOMNeT++. Then we show how

the behavior ofProC/Bprocesses is performed inOMNeT++. Section 5 is devoted to the validation of the mapping, followed

by a first comparison ofOMNeT++ andHIT by means of small examples. The paper ends with the conclusions.

2 Basic Software Tools

The approach we present in this paper usesProC/Bas input format, maps the models toOMNeT++, simulates the resulting

model usingOMNeT++ and maps the results back toProC/B. In this section we briefly present the main features of the

ProC/Bapproach including the available toolset and give afterwards a brief introduction intoOMNeT++. For further details

about both tools we refer to the literature [6, 11].

2.1 Introduction to ProC/B

ProC/B[6] is a process chain-based modeling approach which is usedin the collaborative research center “Modeling of Large

Logistics Networks” 559 (CRC 559;[14]) for modeling and performance evaluation of logistics networks.ProC/Baccounts

for the specifics of the application area by capturing the structure in form of function units (FUs) and the behavior by process

chains (PCs). InProC/B, FUs might offer services, which can be used by activities ofprocess chains. Each service is again

described by a process chain.

Figs. 1-3 present an example of aProC/Bmodel representing a simplified freight village. A freight village is a node of a

logistics network which provides facilities for storing goods temporarily and transshipment between several type of carriers.

4



EVERY poisson(6)

1
(randint(0,2):INT) truck

(load:INT)

()

EVERY poisson(60)

1
(randint(30,50):INT) train

(load:INT)

()

Terminal.
truck_handling

handle_truck
(data.load)-->(data.load)

DELAY

drive_to_terminal
(uniform(4,6))

Terminal.
train_handling

handle_train
(data.load)-->(data.load)

Terminal

train_handling
(load:INT)-->(new_load:INT)

truck_handling
(load:INT)-->(new_load:INT)

DELAY

leave_freight_village
(uniform(4,6))

DELAY

drive_to_terminal
(uniform(4,6))

DELAY

leave_freight_village
(uniform(4,6))

Freight_Village

Figure 1:ProC/BTop level model “Freight Village”

The top level of the model (see Fig. 1) is specified by FUFreight Village whose behavioral part is described by two

PCs:truck andtrain. The structure part consists of a single (user defined) FU, namedTerminal, which offers two

services:truck handling andtrain handling. Services can be compared to functions in programming languages.

In the example both services have an input parameter (load) and an output parameter (new load). Behavior and structure

part of a FU specification are interrelated by expressing which service of which FU performs an activity. In Fig. 1 the two PCs

truck andtrain consist of three process chain elements (PCEs) each, and in both cases the second activity calls a service

of FUTerminal. The inner view of FUTerminal is shown in Fig. 2. The offered services are specified by PCs and some

of their activities use the services of two function units. One of them, FUstorage, is a so-called standard function unit

which offers predefined services (e.g.change). ProC/Boffers two kinds of standard FUs: servers and storages. Servers (see

e.g.pool1 forklifts in Fig. 3) capture the familiar behavior of traditional queues describing the consumption of time

and storages describe the consumption of space (seestorage in Fig. 2) and support the manipulation of passive resources.

A simplified version of a storage is a so called counter, whichis a standard FU often used for modeling synchronization

aspects. A change to a counter or a storage is immediately granted iff the result respects specified upper and lower bound

vectors; otherwise the requesting process gets blocked until the change becomes possible.

As indicated by the exampleProC/Ballows for the description of hierarchical models thus helping to cope with complexity.

Fig. 4 shows the static structure of theProC/Bmodel of Figs. 1-3 exhibiting the relation of all FUs. User-defined FUs are

displayed by squares and standard (pre-defined) FUs by circles.

Process chains directly visualize behavior. The freight village model of Figs. 1-3 reads as follows: Incarnations of process

chaintrain are generated according to a Poisson distribution (with a mean of60 time units). Each train has a load which

is initially chosen by random according to an uniform distribution (between30 and50). After incarnation, the train “drives”

to the terminal which is modeled here by a delay of the processfor a uniformly distributed duration. Afterwards the train“is

handled” by servicetrain handling of Terminal. This might result in a change of the train’s load. Finally the train

“leaves” the freight village and the process terminates at the sink. Considering Fig. 2 we see that handling a train meansfirst to

unload the train, which is possible if thestorage’s capacity of300 units is not exceeded, otherwise the train has to wait until
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train_handling
(load:INT)

-->
(new_load:INT)

()

storage.
change

unload
([data.load])

forklifts.
load_unload_request

use_forklifts
(2 * data.load)

DELAY

drive_to_load_position
(uniform(1,3))

forklifts.
load_unload_request

use_forklifts
(2 * data.new_load)

CODE

determine_load
(data.new_load := randint(1,3);)

storage.
change

load
([-data.new_load])

storage.
change

unload
([data.load])

storage.
alter_or_skip

load
(1,-data.new_load,0)-->(data.new_load)

forklifts.
load_unload_request

use_forklifts
(2 * data.load)

DELAY

shunt
(uniform(4,6))

forklifts.
load_unload_request

use_forklifts
(-2 * data.new_load)

CODE

determine_load
(data.new_load := randint(30,50);)

truck_handling
(load:INT)

-->
(new_load:INT)

()

storage

MAX=[300]

change
(amount:INT[])

alter
(position:INT,by_value:INT)

alter_or_skip
(position:INT,from_value:INT,
to_value:INT)->(achieved:INT)

content
(position:INT)->(content_value:INT)

forklifts

load_unload_request
(amount:REAL)

Terminal

Figure 2: Function Unit “Terminal”

unloading is possible. Afterwards FUforklifts is called with the formal parameteramount of FU forklifts set to

2 * data.load1. Afterwards the train “shunts” to a new position (which is again modeled by a delay of the process) and

determines the new load. The new load is removed from the storage if possible, otherwise the available number of units are

removed from the storage (which is the semantics of servicealter or skip). Finally serviceload unload request

of FU forklifts is called again before the process “leaves” the terminal. The behavior specification of FUforklifts

is a bit more complex (cf. Fig. 3). After calling serviceload unload request a train equiprobably selects one of two

pools of forklifts for service. This choice is modeled by a probabilistic OR-connector specifying alternative behaviors by

different branches. After selection of a branch a train applies for service by incrementing one of the global variablesreq1

or req2 and waits for the availability of a worker who is needed to operate a forklift. Waiting is modeled by a so-called

process chain connector which synchronizes processes of different process chains. In the example a train can only proceed

to PCEuse pool1 or use pool2 if a worker has arrived or is waiting at the corresponding process chain connector.

After synchronization the train calls servicerequest of the standard FUpool1 forklifts or pool2 forklifts

resp. and parallel to this activity the worker decrements the variablereq1 or req2 resp. in that way recording service of

the train. In the shown model we do not distinguish between individual workers, and thus the worker waits for the end of

the service of some train, which is again modeled by a processchain connector. Once the train has finished service at FU

1Access notations to parameters and variables of processes are prefixed with keyworddata for technical reasons in order to distinguish them from global

variables of an FU. Fig. 3, e.g., shows two global variables:req1 andreq2.
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load_unload_request
(amount:REAL)

()

pool1_forklifts

CAP=3

request
(amount:REAL)

pool2_forklifts

CAP=3

request
(amount:REAL)

AT 0

5

req1:INT=0
 {count requests for pool1}
req2:INT=0
 {count requests for pool2}

CODE

apply_for_service
(req1 := req1 + 1;)

CODE

record_service
(req1 := req1 - 1;)

pool1_forklifts.
request

use_pool1
(data.amount)

CODE

apply_for_service
(req2 := req2 + 1;)

CODE

record_service
(req2 := req2 - 1;)

pool2_forklifts.
request

use_pool2
(data.amount)

LOOP -->

begin_loop
<-- ENDLOOP

restart_loop

DELAY

do_other_work
(normal(4.0,1.0))

worker

()

0.5

0.5

ELSE

(req1 > 0) AND (req1 >= req2)

(req2 > 0) AND (req2 > req1)

forklifts

Figure 3: Function Unit “forklifts”

pool1 forklifts orpool2 forklifts it leaves FUforklifts. The behavior of workers within FUforklifts

is modeled by PCworker. The source generates5 workers at time0 and each worker infinitely often repeats the behavior

pattern described between the two loop constructs. The behavior pattern implements a simple control logic by3 different

branches which are selected according to a so-called boolean OR-connector. E.g., if trains (or trucks) have applied forservice

at pool1 forklifts by incrementing variablereq1 the upper branch is selected by a worker provided the number of

requests forpool1 is at least as much as forpool2. If no trains (or trucks) are requesting service (i.e.req1= 0 and

req2= 0) a worker is engaged in some other work which is modeled by a delay of the process.

The behavior of trucks and corresponding service calls reads similar to the described behavior of trains. In the sequel we

will use the term process for the process description and itsincarnations.

2.2 Software Support for ProC/B

In the course of the CRC 559 a toolset has been developed whichprovides a graphical user interface to specifyProC/B

models and transformer modules which mapProC/Bmodels to the input languages of existing tools, so thatProC/Bmodels

can be analyzed automatically (cf. [6] and Fig. 5). Since modeling and analysis is intended to be used during the whole

development cycle and also during the operation of a system,the toolset contains apart from modules to specify and simulate
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Freight_Village

Terminal

storage

forklifts

pool1_forklifts

pool2_forklifts

Figure 4: Hierarchy of model “Freight Village”

ProC/B models also modules for several non simulative analysis steps and for optimization. TheProC/B toolset has been

successfully applied to different areas of logistics networks, such as for the modeling and analysis of freight villages, air cargo

centers and supply chains [15]. We give a brief overview of the different parts of the toolset (cf. Fig. 5) with a particular

focus on simulation.

HIT
− Simulation
− QN Analysis

− Modeling
− Measure Specification
− Result Visualization

ProC/B GUI

 & Measures & Measures & Measures

ProC/B Model

− Simulation
− Animation

APNN Toolbox
− CTMC Analysis
− Invariant Analysis
− Model Checking

QN Model GSPN Model

OMNeT++

Simulation Model

Traviando OPEDo
− Response Surface

− Optimization
Generation

− Trace
Visualization

 & Measures

Transformer 

Figure 5:ProC/B toolset

2.2.1 Graphical User Interface

The graphical user interface (GUI) which resides on top of the whole toolset (cf. Fig. 5) allows the user to specifyProC/B

models hierarchically by using a separate window for every non-standard functional unit. Standard functional units are

described by their parameters. The hierarchical structureof ProC/Bmodels supports the specification of huge and complex
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process chains in a user friendly way by considering only a small portion of the model in a single window. Additionally,

the hierarchical and modular structure supports the reuse of modules by using standardized processes in logistics networks.

Apart from the model, the user can specify measures in experiment descriptions. Experiments belong to a model specification

and allow the definition of detailed measurements describing technical results like throughputs, sojourn times or utilizations

as well as economical measures related to costs.ProC/B models and experiments are stored in a proprietary intermediate

format which needs to be transformed to be used as input format for other tools. Currently, an alternative format forProC/B

models based on the standardized process description language BPEL [16] is under development [17].

From the interface different tools and operations can be started. It is possible to invoke the simulation and the transfor-

mation ofProC/Bmodels into queueing networks or generalized stochastic Petri nets as briefly outlined below. Furthermore,

one can use tools for result visualization and trace analysis. ProC/Bmodels may as well be used as black box functions for

optimization. The tool OPEDo [8] provides several different optimization techniques also being able to deal with stochastic

functions.

2.2.2 Non Simulative Analysis

Simulation is the major analysis technique forProC/Bmodels, but also other techniques can be applied for analysis. Very

prominent are queueing network analysis approaches which allow the very efficient analytical computation of performance

measures like mean throughputs or sojourn times. Usually, QN analysis is applied in the early design stages when abstract

models are used to obtain rough estimates for performance measures. In order to apply these analysis techniques,ProC/B

models have to be mapped onto queueing networks which may notcontain process synchronizations, simultaneous resource

possession or general probability distributions. Thus, only ProC/Bmodels without elements like storages, code elements and

synchronization constructs can be used as an input for QN analysis. A transformer module maps theProC/Bdescription to

the input language of a tool for QN analysis (cf. Fig. 5). After the QN analysis has been performed, results are mapped back

to ProC/Band can be interpreted at the level of the process chain.

Another application area for non simulative techniques is the validation of simulation models. Complex simulation models,

like any other complex computer program, may contain different kind of errors or bugs. Even if the hierarchical and modular

description ofProC/B supports the specification of structured models, a user may still specify undesired or even wrong

behavior. There are two classes of validation techniques, namely static techniques which use formal techniques to analyze

the model structure and operational techniques which debugin some sense the output of the simulator. We briefly outline the

use of static techniques here and introduce operational techniques in the following paragraph in conjunction with simulation.

Different approaches exist to validate simulation models during the whole life cycle [18]. In theProC/B toolset Petri

net (PN) techniques [19] are used to analyze functional and non functional properties. Classical PN techniques allow one

to analyze properties like deadlocks or liveness of a systemand recently we developed an additional PN-based techniqueto

detect non-ergodic models [20]. All these, usually undesired properties of a model are often difficult to detect with simulation.

In order to apply PN techniquesProC/Bmodels are mapped onto colored Petri nets with finite color domains. This class

of Petri nets can be efficiently analyzed but cannot describeall behaviors ofProC/Bmodels. In particular data dependencies
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are often difficult to describe or cannot even be modeled in a PN and thus are substituted by non deterministic choices. This

implies that the PN includes some behaviors that cannot be observed in the simulation model and the user has to decide

whether an undesired behavior in the PN is a valid behavior for the simulation model. Despite of this need for user support,

PN techniques are a powerful tool to detect specification errors inProC/Bmodels [21].

2.2.3 Simulation Techniques

Simulation is the basic analysis approach applicable to allProC/B models. In the past, simulation was only supported by

HIT [7, 22]. HIT is a modeling environment which does not only provide a simulator, but also offers efficient non-simulative

analysis algorithms being based on product-form QNs and is also used as a QN solver in the toolset.HIT is basically tailored

to steady-state analysis, based on a single replication approach. Time Series Analysis techniques are applied to individual

streams of data produced by the simulation. A key feature ofHIT and thus ofProC/Bis that these streams may be itemized in

detailed ways. E.g., in Fig. 2 it might be of interest to measure separately the number of service calls for FUstorage caused

by trucks and trains.HIT provides facilities to describe and to evaluate measures for such activities at a lower level which are

caused by some higher level originator and to itemize corresponding results with respect to the originators. As mentioned,

HIT is nearly 20 years old and needs a SIMULA compiler for execution. Therefore we recently integratedOMNeT++ into

the ProC/B toolset trying to benefit from the features of a modern object-oriented simulation environment. In both cases,

theProC/Bmodel is transformed into the specification language of the used simulation tool, the simulation run is performed

and results are mapped back toProC/B. The mapping ontoOMNeT++ is introduced in the following sections after a brief

overview ofOMNeT++ has been given in the next subsection.

Simulation results can be presented in different forms. Thesimplest way is to present the raw numbers including con-

fidence intervals in the graphical interface in conjunctionwith the corresponding model elements. Additionally, series of

results can be defined to plot curves, e.g. to represent the evaluation of a measure over time. Apart from result measures,

simulations can be used to generate detailed traces of the model behavior. Such traces are the base of animations and they

can also be used to validate the simulation model or the system. TheProC/B toolset contains a specific tool Traviando [9] to

represent and evaluate traces. Based on the idea of message sequence charts in UML, simulation traces of process oriented

models are presented graphically and can be analyzed using different analysis approaches for functional analysis to detect

properties like repetitive behavior, overloaded resources or unused communication relations between processes. These fea-

tures help to validate a model and to get a better understanding of possible sequences of activities. As an example Fig. 6

shows the visualization of a trace generated by the model of the freight village. To keep the presentation compact only a

small trace is used here, which contains the activities of a truck between its arrival at the freight village and its departure.

2.3 OMNeT++

OMNeT++ is a public-source simulation environment that has been developed for the modeling of communication protocols

and has been extensively used in this area. Although it is mentioned on the web page [11] thatOMNeT++ has been used

for the analysis of business processes there is nothing available about this application and it does not seem that a complete
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Figure 6: Sequence chart of a trace

mapping of hierarchical business processes ontoOMNeT++ models has been done before. The whole tool environment

includes a graphical front end and several other tools that support the modeling and simulative analysis of complex systems.

Of particular interest is the simulation kernel which is written in C++ and offers several classes to support the specification

of complex hierarchical models. Furthermore, the resulting simulation models are known to be rather efficient.

The basic entities of anOMNeT++ simulation are modules. Modules can be simple, which means that they are imple-

mented as C++ classes, or compound modules which implies that they are composed of other simple or compound modules.

In this way OMNeT++ models are hierarchical. The complete model containing theoverall hierarchy is denoted as the

system module. Modules communicate via gates using messages. Gates can be input or output and a module may have an

arbitrary number of gates. Messages are sent either directly to a gate or along a path. Basically paths are used to describe

the transfer of messages over some medium. Therefore they offer parameters to specify e.g. the bandwidth or loss rate. The

connection of modules via paths is specified in the*.ned file which includes the structure of the model and can be defined

with the help of a graphical interface. The graphical interface can also be used for the animation of the running model by

visualizing messages that are sent along a path from one module to another. In this way, anOMNeT++model consists of two

parts, the module descriptions in C++ and theneddescriptions which specify the model structure given by theconnection of
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modules.

An arriving message is interpreted in a module as an event andthe user has to specify a routinehandleMessage()for each

arriving message type. Messages themselves can be structured data types and may include information that is used in the

correspondinghandleMessage()routine. In the routines new messages may be generated immediately or after some delay

and already scheduled messages may be deleted. Thus, the basic event driven approach is realized by the processing and

sending of messages. Apart from this general mechanism, thesimulation kernel ofOMNeT++ offers a lot of support to

realize complex simulation models like up to date random number generators, support for statistical evaluation of results or

support for parallel replications.

From this very brief description it should become clear thatboth,ProC/BandOMNeT++ use a hierarchical structure to

describe models. However, at a second view it becomes clear that the model views differ in several yet important details.

OMNeT++ has been designed with communication systems in mind such that messages have a physical meaning whereas

in ProC/B hierarchy is introduced by calling services of FUs without explicit messaging. Another important aspect is, as

already mentioned, the definition of detailed and origin dependent measures which are not directly supported byOMNeT++

and therefore have to be implemented separately.

The challenge is to get a correct mapping fromProC/B onto OMNeT++. Since correctness of the mapping cannot be

formally defined because only a subset ofProC/B has a formal semantics in form of a Petri-net mapping [21], wedefine

correctness by comparing the simulation usingHIT andOMNeT++. The HIT simulation is usually taken as the correct

behavior, since we defined an operational semantics of the whole ProC/Bparadigm viaHIT [23], and thus theOMNeT++

model has to show the same behavior. Of course, a detailed comparison implies that the model is completely deterministic

since otherwise different random number streams will necessarily result in different behaviors such that only statistical results

can be compared using adequate statistical methods [24]. Weused both, simple deterministic models to show that the basic

behavior is the same and more complex stochastic models to compare statistically the result measures.

Of course, ifOMNeT++ is used as simulation kernel forProC/Bmodels, then one may as well useOMNeT++ modules

in ProC/Bmodels by including them in code elements. In this way it is possible to realize communication in process chains

in a very detailed way. E.g., two different processes described inProC/B communicate via a computer network specified

in OMNeT++ using predefined protocol models. In [25] this approach is presented to model service oriented architectures

where the services are described byProC/B models and communication among the Internet is realized in an OMNeT++

model. Thus, the presented mapping ofProC/BontoOMNeT++enables the definition of very large heterogeneous simulation

models. However, the completely automatic specification, simulation and evaluation of those models is still a subject of

ongoing research.

In the following two section we first describe how the hierarchical structure of aProC/Bmodel is mapped onto a corre-

sponding structure of anOMNeT++ model. Then the mapping of the behavior is presented. Both steps are accompanied by

small examples showing the basic ideas.
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3 Mapping of Structure

ProC/Bmodels are specified graphically in theProC/Beditor and are stored in files. Next to the model itself the editor allows

for saving experiment descriptions in separate files. As stated above, these general model/experiment description files can be

used in different analyzers, either numeric or simulative.Thus, the generic model descriptions generated by the editor have

to be translated to specific input formats.

Our implementation of mappingProC/B to OMNeT++ consists of two main components: The converterprocb2nedand

a library namedOsimucontaining generic implementations ofProC/B’s behavior as simple modules forOMNeT++. OM-

NeT++ requires behavior to be located in simple modules, that are written in C++ and handle arriving messages in order

to trigger specific reactions. The C++ sources of simple modules are combined with*.ned-files using an identical naming

scheme, describing module interfaces toOMNeT++’s simulation system. TheOsimulibrary contains a predefined simple

module for each type of element of aProC/B-model, except user defined FUs, capturing the behavior of those elements.

These simple modules, like sources, PCEs, OR-connectors, process chain connectors etc. are configured by parameters

specified in the corresponding*.ned-files. The library will be treated in Sect. 4 in a more detailed manner.

The converterprocb2nedreads process chain models and outputsOMNeT++network descriptions (*.ned-files) as a direct

input format for theOMNeT++ simulation system. AsOMNeT++ supports hierarchical modeling of modules these*.ned-

files describe the hierarchy of the model as compound modules. In ProC/B-models the hierarchy is represented by user

defined FUs usually including at least one process chain offered as a service by the FU.procb2nedcreates a*.ned-file, i.e.

a compound module, for every FU preserving the structure of theProC/B-model. As already mentioned for every language

element inProC/B exists a corresponding implementation as a basic module inOMNeT++. For model design these basic

modules are instantiated and related by connections in a*.ned file, forming a compound module. Non-basic modules can

be used similar to basic modules, making it easy to build hierarchical models. PCEs only form linear structures at the same

model level, soprocb2nedsimply inserts them as basic modules into its output*.ned files. Of course, synchronization and

event driven generation of new processes are also possible in ProC/Busing available language elements (see [6]) which are

realized as C++-implementations inOMNeT++. Following the rule of one module perProC/B language element, Standard-

FUs like ServerFU, StorageFU and CounterFU are also inserted directly into the model. If the converter reads a constructed

FU on input, it goes one level down in the recursion, applyingthe above mapping rules to a new*.nedfile named after its FU

in ProC/B. After returning from recursion, the compound module representing a constructed function unit can be used like

any basic module. The subsequent step is to map process flow through a process chain by establishing connections between

modules. The acting entities ofProC/B are all processes within a module. While processes are no specific object-types in

HIT, it was a natural choice to map exactly one process type toexactly one message type inOMNeT++. Hence,ProC/B’s

connections between process chain elements are mapped to module connections inOMNeT++.

As shown in Fig. 1, connections inProC/B only exist within a PC specification, there are no explicit connections from

PCEs to FUs or the other way round. Only implicit relations between PCEs and FUs exist by specifying parameters in PCEs

denoting which FU and offered service they call.

We transferred this idea toOMNeT++ by using traditional message passing through gateways and direct message sending
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as two separate forms of connections. The first task is done straightforwardly byprocb2ned. Basic modules act as PCEs

(excluding sinks) and obtain one connection to their successor, forming a structure similar to process chains inProC/B. For

this purpose, every PCE module has at least one set of input/output gateways acting as a socket forOMNeT++’s connections.

Again, relationships between modules of PCEs and FUs exist only implicitly in OMNeT++. Two parameters are given in

the*.nedfile for every instance of a PCE using a function unit: The identifier of the FU and the name of the offered service

(keeping in mind that FUs can offer multiple services). Thisinformation is used in the PCE initialization phase to find the

reference to their loosely bound function unit. Requestinga service in the simulation phase is done by transferring messages

directly usingOMNeT++’s sendDirect() method to the function unit bound to the service. Finishing aFU’s service is

also signalized by returning the message.

Using OMNeT++’s alternative way to transfer messages has some advantagescompared to the traditional way of using

module connections:

1. As FUs can be used by possibly infinitely many PCEs, omitting explicit connections helps to keep models concise.

The target to which direct messages are sent to is determinedduring the initialization phase byOMNeT++ and saved

as a reference, so no extra time is consumed when analyzing the model.

2. Messages sent directly keep track of their senders on a stack, so returning a process message to its sender after per-

forming a service is a simple task in the FU’s implementation.

3. The visual appearance in theProC/Beditor andOMNeT++/TKenv is kept similar.

Function units need one input gate per offered service. Output gates are redundant here, as the virtual sink terminatingthe

service’s process chain will return the message via direct transfer to the calling PCE. The ability to send and receive direct

messages requires some preconditions for modules inOMNeT++: Direct messages can only be delivered to dedicated input

gates without any other incoming connection. Therefore, PCE modules calling FUs need an additional input gate reservedfor

callbacks of their associated FUs. By convention, new processes arrive at the first, status messages from FUs at the second

input gateway.

An example of the output generated byprocb2nedcan be found in Listing 12. The Listing contains an excerpt of the

compound module generated for the top level FU of Fig. 1 containing the simple modules corresponding to a source, a

Delay-PCE and a PCE calling a service of the contained FUTerminal. The simple modules are configured by parameters,

e.g. describing the interarrival times for the source or thedelay of the PCE. More information about simple modules can be

found in Sect. 4. Furthermore, the*.ned-file contains a section specifying the connections betweenthese simple modules.

3.1 Animation

An important additional benefit of usingOMNeT++ for simulatingProC/Bmodels is the animation capability ofOMNeT++’s

graphical workbenchOMNeT++/Tkenv. ExistingProC/Banalyzers are tuned according to efficiency and performanceof the

solution and are consequently batch processing systems, making it difficult to explain the dynamic behavior of processes

2For a unique naming schemeProC/Bvariables and names are prefixed.
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Listing 1: Source of the .ned-file for FU FreightVillage

module F1Freight_Village

[...]

submodules:

Q120Source1: EverySource;

parameters:

Interarrivaltime = "poisson(6)",

Batchsize = "1",

Parameter = "randint(0,2)";

[...]

L527drive_to_terminal: DelayPCE;

parameters:

Delaytime = "uniform(4,6)";

[...]

L509handle_truck: ServicePCE;

parameters:

FUName = "F729Terminal",

Servicename = "P892truck_handling",

Parameter = "data.load",

gatesizes:

in[2],

out[2];

[...]

connections:

[...]

L527drive_to_terminal.out --> L509handle_truck.in[0];

[...]

endmodule
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from the model. However, such an explanation is often important in teaching and also in real projects as we noticed when

modeling large systems in cooperation with real users. Using OMNeT++/Tkenv, messages moving between modules can be

animated by a moving red dot as an adequate visualization forprocesses moving through process chains and making use of

FUs. In this way, the dynamics of a system is clearly visible.

ProC/B’s graphical representation was carried toOMNeT++, usingOMNeT++’s feature to define pictograms for modules.

procb2nedassigns bitmaps to every instance of the basic module matching its type inProC/B.

Figure 7: Animation of PCMessages

When settingOMNeT++ to a ”slow” running mode inOMNeT++/Tkenv, the user can trace processes created by a source

as a red dot moving along the process chain element’s outgoing connection (see Fig. 7). Arriving at a PCE, the dot is delayed

until the PCE ends its call to an FU. Since no permanent connection exists between PCEs and FUs, a temporary connection

is drawn acting as a path for messages performing a request bybeing sent directly to the module of the FU (Fig. 8). When

the request is served, a message can be seen moving backward to the calling PCE on a reverse connection. Furthermore,

different windows can be opened to view the animation simultaneously at different levels, i.e. in different FUs.

Figure 8: PCMessage moving over temporary connection

4 Mapping of Behavior

The second component of our framework is the mapping of the behavior of ProC/B language elements onto modules in

OMNeT++. These modules are completely configurable by passing parameters, so we were able to compile a libraryOsimu
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containing generic implementations for PCEs and standard FUs.

OMNeT++ offers two different programming styles, lightweight processes and a transaction based programming para-

digm. We decided to follow the latter as it matches the basic ideas of process chain models and it scales much better for

large models. Since process chains are characterized by theinterval of time consumed by a process between entering and

leaving a chain, a transaction based discrete event approach makes it natural to map these intervals to arrivals and departures

of messages to/from modules inOMNeT++.

The dynamic part ofProC/Bmodels are processes following the route defined by process chains. Analogously, processes

are represented by messages inOMNeT++. The mapping toOMNeT++ is done by subclassingcMessage only once to

PCMessage (short for ”process chain message”). Processes are marked with a unique identification number to trace their

movement inside the model for debugging and statistics. InProC/B, transitions of processes between PCEs are instantaneous,

time is consumed by requesting services at function units orby dedicated delay PCEs. This idea is reproduced inOMNeT++

by messages of typePCMessage that use connections in zero time, leaving progress of modeltime to the modules.

Implementation ofProC/B’s behavior is completely located in basicOMNeT++ modules, the leaves of the model tree.

Compound modules used inOMNeT++ to group simple modules to complex model elements are not allowed to define own

behavior in C++ code next to their*.ned-file. For this reason the behavior of higher level FUs had to be the union of semantics

defined by lower level PCEs, FUs and the way they are connectedwith each other. In syntactic terms we had to flatten the

model hierarchy to basicProC/Belements and connections.

This is an important difference to the former wayProC/Bwas implemented. Several functions regarding time progress,

message routing and measurement are located in every node ofthe model tree ofHIT. In the following we will describe our

solution for the implementation ofProC/B’s behavior withOMNeT++. Section 4.1 will also focus on an alternative to add

measurements to specific constructed FUs.

TheProC/B-mapping toOMNeT++ is conducted with an inheritance hierarchy. Each implementation of a basicProC/B

element inherits fromProCBElement. ProCBElement itself is a direct successor ofOMNeT++’s modeling interface

cSimpleModule. ProCBElement encapsulates several common functions forProC/Belements. On initialization, each

ancestor ofProCBElementwill register itself to the system. This allows faster location of ProC/Belements by name or by

their position in the model hierarchy. Sending process messages direct or via connection is also implemented at this place.

Keeping such basic functions at a high level in the inheritance hierarchy helps to keep a model wide consistent numbering

of input and output gates forOMNeT++ modules. An important group of functions is related to the centralized creation and

destruction of processes with unique identification numbers. The hierarchy tree splits into common base classes for each

general type ofProC/B-element. There are basic classes for sources, PCEs, FUs, sinks and connection elements. Figure 9

shows an extract of the inheritance hierarchy for all types of basic function units available inProC/B’s modeling library. The

base class for function units namedBaseFU provides consistent handling of arriving and leaving processes including updates

of statistic functions. For this reason, thehandleMessage()method required byOMNeT++ being implemented in every

module is forked into specialized handlers inside the base classes. PCEs must implementhandleProcessActivity()

and FUhandleProcessService() as shown later in Listings 3 and 4. Sources and sinks have similar constructs.

Assessing the way messages are handled in modules forProC/B elements also helps to realize timeouts for the activity
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Figure 9:ProC/B’s class hierarchy

duration of process chain elements. Each time a process chain element derived from typeBasePCE performs a service call

to a function unit, the process message is held back and replaced with a copy. The only difference between both messages is

a new unique ID for the copy. Both ID numbers are stored in an associative collection. The copy will be sent to the called

function unit while the original message still waits at the process chain element. When the service call is finished and the

copy returns, the original message is deleted and the ID is transferred to the copy rendering it as the original message from

now on. Recently we enhancedProC/Bby the option to set a timer before the copy is sent to the function unit (essentially

this timer option makes copying of processes necessary). Ifthe service call duration exceeds the time limit (i.e. the copy

does not arrive in time) the original message is released andsent to the next process chain element. The ID of the copy is

blacklisted and the copy is deleted when it arrives back later. Timeouts are a new feature realized in theProC/Bmapping to

OMNeT++ and are not supported by theHIT simulation environment. An extensive description including examples can be

found in [25].

Now we will describe two examples to explain our mapping of behavior more explicitly.

Figure 10 shows the symbol of a Delay PCE as a simple language element ofProC/B. It has the task to delay arriving

processes by some amount of time, either deterministic or bya random number from some predefined distribution. Listing 2

shows the corresponding*.ned-file used byOMNeT++ to pass parameters to modules and define gateways where messages

arrive and leave.
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Figure 10:ProC/B’s symbol for a delaying PCE

Listing 2: Source of DelayPCE.ned

simple DelayPCE

parameters:

delay : string

gates:

in: in;

out: out;

endsimple

A process chain element DelayPCE is defined with just one pairof gates because it is connected to only two other process

chain elements. Parameterdelay is set by the*.ned-file instantiating this module as specified in the originalProC/Bmodel.

Implementations of DelayPCE subclassingcSimpleModule have to respect the fact that a second or third or an arbitrary

number of processes can arrive while the first process is still delayed. The concrete implementation in Listing 3 is short,

overloading the functionhandleProcessActivity (PCMessage* msg) and implementing the specific reaction on

arriving messages. The delay time is generated from the predefined distribution, the following line in the code delays the

incoming message by the amount of time usingOMNeT++’s sendDelayed() method. Please note that no messages are

stored inside the module, allowing the module to accept an infinite number of processes. Methodparam() reassembles the

well known methodpar() to fetch parameters stored in*.ned files. The new method parses expressions used inProC/B

models, which can be either arithmetic expressions or aProC/Bspecific naming of random distributions.

All elements ofProC/B’s process flow control had to be implemented as modules, too.As described before, process chain

connectors (Fig. 11) are used to synchronize processes. Their implementation asOMNeT++ module is shown in Listing 4.

Process messages arrive at the input gates of the module. They are stored immediately in queues, one queue for each input

gate. ProC/B allows us to specify a number of processes per gate that are required to start a transition which realizes the

synchronization. Such semantics similar to token consumption in Petri Nets can for example be used to model usage of goods

in production processes. The exact numbering is read from the process parameters of the arriving message in the first loop. If

Listing 3: Source of DelayPCE.cc

#include "DelayPCE.h"

void DelayPCE::handleProcessActivity(PCMessage* msg) {

double delay = (double) param("delay");

sendDelayed(msg, delay, "out");

}
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Listing 4: Source of PCConnector.cc

void PCConnector:: handleProcess(cMessage *msg) {

PCMessage* message = (PCMessage*) msg;

int msgArrivalIndex = msg->arrivalGate()->index();

incomingQueues[msgArrivalIndex].insert(msg);

ProcessPar& p= message->getProcessPar();

for (int m=0; m<numberOfInputGates; m++) {

requiredProcessesPerGate[m] = p->requiredProcesses(name(), m);

}

if (! transitionEnabled()) return;

for (int gate=0; gate<numberOfInputGates; gate++) {

for (int m=0; m<requiredProcessesPerGate[gate]-1; m++) {

[...]

// consume enough messages for transition

delete incomingQueues[gate].pop();

}

// forward original message

PCMessage* lastOriginalMessage = (PCMessage*) incomingQueues[gate].pop();

[...]

send(lastOriginalMessage, "out", gate);

}

}

bool PCConnector::transitionEnabled() {

for (int i=0; i<numberOfOutputGates; i++) {

if (incomingQueues[i].length() < requiredProcessesPerGate[i]) return false;

}

return true;

}

20



Figure 11: PCConnector inProC/B for synchronization of three chains

a sufficient number of processes arrived (at least one per gate) the sentinel conditiontransitionEnabled() will allow

the transition to fire. Otherwise the transition has to wait for additional processes. After synchronization all processes will

arrive at the next element in their process chain at the same time.

Figure 12: Server Function Unit inProC/B

As an advanced example ServerFU is shown in Fig. 12. It represents a set of limited and identical resources which

processes can request and use. ServerFU offers the service ”request” to PCEs, a parameter for the requested amount of

service has to be passed with the calling message.

Listing 5: ServerFU.ned

simple ServerFU

parameters:

inPath: bool,

speed: numeric,

capacity: numeric,

discipline: string;

gates:

in: in;

out: out;

endsimple

Listing 5 contains the definition of ServerFUs inOMNeT++’s modeling language. Three parameters are passed to the

module byOMNeT++ at runtime:

speed of a resource to execute service calls. This means that calling PCEs request an amount of service according to some

average resource. The concrete FU can be faster (speed> 1), slower (speed< 1) or an average resource (speed= 1).
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capacity number of resources offered by the server

discipline the resource scheduling the server uses.

By offering a single service, ServerFU only needs one pair ofgates. As stated before, messages are delivered to these gates

by direct send calls, making it unnecessary to connect this module with other elements in the model.

The parameter discipline plays an important role inProC/B models, as the behavior of function units are matched to

the way resources are shared in the real system. Currently three scheduling disciplines can be mapped fromProC/B to

OMNeT++:

FCFS queues serve requests for resources by the rule ”first come, first served”. Processes which obtained a resource, allocate

it according to the amount defined by the constant or distribution of the service call and parameterspeed.

IS ”Infinite Server”, every request is immediately granted andtakes the time specified by the service call and parameter

speed.

PS ”Processor Sharing”, all requests are immediately granted. Every process makes use of the full set of resources (accel-

erating service time by the number of resources), but has to share resources with other processes using the server at

the same time. Capacity is distributed uniformly among all processes (slowing down execution time by the reciprocal

value of the number of processes).

It is possible to interpret these three types of scheduling as different kinds of servers, yet their implementation inOM-

NeT++ uses only one module to simplify the structure mapping byprocb2ned. Internally ServerFU makes use of the strategy

pattern [26] to vary it’s behavior according to parameterdiscipline.

An excerpt of ServerFU’s source is shown in Listing 6. ThehandleMessage()method is divided into two parts by an

if clause, newly arriving process messages withselfMessage set to false are served in the lower part.

At the beginning,welcomeMessage computes some basic statistics of arriving processes as described in section 4 and

incrementsnumberMsgInSystem. Additionally, the ServerFU pushes its name inwriteNameInPath on the stack

keeping track of every process chain element the message passed through. The next line is part of the strategy pattern,

discipline holds objects of typeServerFU::Discipline encapsulating FCFS, Infinite Server or Processor Sharing

as described above. Those strategies are instantiated depending on parameterdiscipline in Listing 5 on the module’s

initialization. Their behavior on newly arriving processes is specified inhandleProcess(). Here we present the methods

FCFS and IS as examples: In FCFS, time is granted to processesas long as the servers capacity is not exceeded. Otherwise

the process is enqueued until resources become available. The Infinite Server is even more simple, it just accepts every

process.

In both examples, time consumption is modeled by schedulingprocess messages to the function unit itself, adding the

amount of time the service will take before sending. When themessage returns,selfMessage is true and the upper part

of handleMessage() is executed. Again, an object of typeServerFU::Discipline handles processes a second

time. In FCFS, the first process message waiting for free resources is removed from the queue and immediately scheduled

for completion of the service. For Infinite Server no furtheraction after service completion is necessary.
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4.1 Translation of Result Measures

The main focus when analyzing a simulation model is on determining quantitative results for the model, like for example

throughputs or response times.ProC/B offers the possibility to measure properties at every FU, though depending on the

type of the FU the available properties may differ: Throughput, response time and population can be measured at any FU.

Additionally, for every server the utilization and for every storage the state can be examined. For composed FUs the modeler

may define further measures (called rewards inProC/B). ProC/Ballows for three different types of rewards:count, eventand

state. Rewards of the typeeventcan be used for serially collecting values, rewards of the typecountfor estimating rates and

rewards of the typestatefor the description of trajectories. Those types are used for the realization of standard measures

like throughput or response time as well. While the user-defined measures have to be updated manually (ProC/Bprovides a

model element for updating those rewards), the standard measures are updated automatically whenever a process enters or

leaves a FU.

As already mentionedProC/Ballows for streams to be itemized in detailed ways. This enables for example the measure-

ment of the train population at the terminal in Fig. 2 withoutcounting trucks. To achieve this, the modeler can specify a path

consisting of elements in theProC/Bmodel. Only processes, that have moved through all of the specified elements will be

considered when updating the stream. Most of the described features available inProC/Bare derived from the measures that

HIT offers, thus allowing an easy transformation fromProC/B to HIT.

Currently when analyzing the model withHIT, streams of data are generated during simulation, which arebasically lists of

pairs consisting of a time stamp and some associated value. This data is used to calculate the usual characteristics likemean,

standard deviation and confidence intervals for the different measures. TheProC/B toolset contains a tool, that generates

plots and visualizes the simulation results.

When usingOMNeT++ for simulation the key features like itemizing streams as well as the output data of the simulation

should be preserved, so that this new simulation environment fits into our existing toolset. WhileOMNeT++ offers basic

facilities for measurement in e.g. communication protocols, it needs to be extended to meet the demands for the simulation

of logistics networks.

In the remainder of this section it is shown how the measurement is implemented for Standard-FUs like servers or storages.

Measuring properties at composed FUs requires some additional effort and is presented afterwards. Finally the itemizing of

streams is explained.

For Standard-FUs the measurement streams have to be updatedwhen a process enters (which means a service of the FU

has been requested by a process) or leaves the FU. In theOMNeT++ representation of the model a service request is indicated

by a message sent to the FU. The population is updated whenever a process enters or leaves the FU, throughput and response

time are updated when a process leaves the FU. For Standard-FUs (like server or storage) the data collection and evaluation

is implemented as C++-Code within the corresponding simplemodules. This brings up problems for composed FUs: When

theProC/Bmodel is translated to anOMNeT++ representation, composed FUs are represented as compound modules, thus

only a *.neddescription exists that lacks the ability to implement codefor measurements. Therefore the module of every

composed FU contains a specific simple module calledFUMeasures (see Fig. 13) to realize measurements in composed
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FUs.

Figure 13: Message flow for the measurement in composed FUs

Fig. 13 shows the message flow that is necessary for measurements in composed FUs. Starting at the source a message is

sent to the Process-ID (Process-IDs are used for the identification of a process chain and the declaration of local variables and

are always connected with the source of a process chain). From there a message is sent to the special moduleFUMeasures.

This module has no counterpart inProC/B and its sole purpose is to enable the measurement in composedFUs. After the

message is returned to the Process-ID, further elements of the process chain are processed (denoted by three dots in Fig.13).

When the process has reached the sink, the message is sent to the moduleFUMeasures and back to the sink again. All

update operations of streams for a FU are performed withinFUMeasures. The first message (sent by the Process-ID) means

that a process has entered the FU (and thus the population is updated for example), the second message (sent by the sink)

means that a process is leaving the FU again. AlthoughFUMeasures is not an element of theProC/B language it is part

of the inheritance hierarchy of function units (cf. Fig. 9) in theOsimulibrary. The superclassBaseFU adds the ability to

return incoming process messages to the sending Process-IDor sink. Similar to calls of other FUs a stack of senders inside

PCMessage is used to find the originator.

As already mentioned,ProC/Ballows one to specify a path consisting of elements, so that only processes, that moved along

that path through the model will be considered when updatingmeasures. Those paths are part of theProC/B experiment

description and need to be translated to theOMNeT++ model and taken into account during the update of measurement

streams. When mapping toOMNeT++ the ProC/B experiment description is saved in an*.ini -file, that is loaded when

the simulation starts. Additionally, a parameter is set foreach element appearing in one of the paths in the corresponding

*.ned-file when the model structure is mapped. During simulation the path a message takes through the model is saved and

compared with the paths that have been specified in theProC/Bexperiment. To store this information a new message class

is used, that can carry the path information. Updates of the measurement streams are only performed when the path of the

message matches one of those paths from theProC/Bexperiment.

OMNeT++ provides several classes for the collection of data and the generation of statistical measures like mean or

standard deviation which are derived from the abstract classCStatistic. Because the calculation of means does not match

the specification of the streams inProC/B, ourProC/B to OMNeT++ implementation provides its own classes (derived from

CStatistic) to generate statistics (one for each of the stream typesevent, stateandcountmentioned before). For the

24



estimation of confidence intervals the batch means-method [27] is used. The generated output is saved in the same format as

the output ofHIT, so that our existing tools can parse the data for result presentation.

5 Validation of the Transformation

If different tools are used to simulate a model, then it is necessary that the semantics of the model is the same in every

simulation tool. Ideally, identity of semantics should be proved formally. A formal proof would require a formal semantics

such that formal analysis techniques are applicable to check equivalence. Unfortunately, simulation models are much too

complex to be described in simple languages that allow a formal analysis. This implies that identical behavior of models

cannot be strictly verified, it can only be validated.

ProC/Bwas designed to introduce a well defined semantics and an automated analysis to hierarchical process chain mod-

els. A specification was laid down in [23], describing the semantics of PCEs and FUs in an operational form. Many aspects

of the operational semantics are implicitly defined by the HIT runtime environment. Thus, the behavior of the HIT simulation

model is the behavior which should be observed whenOMNeT++ executes the model. However, the operational semantics

depends on several aspects like execution order of simultaneous events, the order of initialization which are generally not

well defined in discrete event simulation and, additionally, the realization of random processes that depend on the random

number generator.

We distinguish between validation of models with and without random numbers. The former will be named deterministic

models, although this is not strictly correct since simultaneous events may yield a non deterministic behavior. For deter-

ministic models behavior can be compared using traces. Although,HIT andOMNeT++ both have a trace function it is not

recommended to use these functions for comparisons since the format differs and cannot be easily transformed from one to

another. Instead models are augmented with code PCEs including output statements. Such PCEs can be added to every PC.

Thus,HIT andOMNeT++ generate the same trace output which can be easily compared.

To prove equality of traces we developed an automated testing environment to compare output ofProC/Bmodels analyzed

with HIT andOMNeT++. It is based on a set of simple and deterministicProC/Bmodels, designed to test the behavior of

exactly one element ofProC/B’s language. Driven by our batch testing environment, identically formatted output ofHIT and

OMNeT++ is compared by an awk script, highlighting differences in measurement results and event traces. Additionally,

a selection of deterministic models taken from former projects is also subject to comparison, making sure that ourProC/B

language elements implemented in modules interact correctly.

Testing nondeterministic models is limited since different random number generators are used inHIT (actually implemen-

tations of SIMULA) andOMNeT++. So, even starting with same seeds, results and event orderswill differ. Consequently,

we can only check in a statistical sense whether the implementation is correct, i.e., the different language elements behave

identically. For this purpose, animations can be compared,traces can be visualized and results can be compared using statisti-

cal test. A typical approach is to estimate the same measure with both simulators,HIT andOMNeT++, and then statistically

evaluate a random variable describing the difference between both measures. This can be done by comparing confidence

intervals or using statistical tests (for details see e.g. [24][chap. 10]).
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Table 1 shows simulation results of an M/M/1 system (ρ = 0.5) as an example of a simple nondeterministic system included

in our testing environment. Results are sufficiently close to assume an equivalent behavior for this model with a high signif-

icance probability. The second example are values taken from a central server system [28], also a nondeterministic system.

Comparisons of simulation results in table 2 also indicate equivalence. A detailed analysis of the central server system with

ProC/B is available in [29].

We additionally compared several simulation results of larger models and obtained similar minor differences (cf. Sect. 6).

Table 1: M/M/1 system simulation results (90% confidence interval)

Population Throughput Response time

HIT 1.00202 1.00023 1.001789

±0.18% ±0.05% ±0.16%

OMNeT++ 1.00126 0.99964 1.000905

±0.33% ±0.14% ±0.22%

Table 2: Comparison of simulation results for Central Server (90% confidence interval)

Population Throughput Response time

HIT 1.1559 0.7491 1.5429

±0.16% ±0.15% ±0.23%

OMNeT++ 1.1548 0.7499 1.5398

±0.15% ±0.15% ±0.23%

6 Comparison of performance and simulation results

Though our implementation ofProC/Bon OMNeT++ is not as mature as the one onHIT, we achieved promising runtime

results. Times in table 3 were taken for analyzing a model over 1.000.000 time units omitting model initialization and output.

Table 3: Runtime comparison

Model HIT OMNeT++

M/M/1 0 min. 57 sec. 0 min. 22 sec.

Central Server 0 min. 35 sec. 0 min. 24 sec.

Freight Village 8 min. 36 sec. 2 min. 33 sec.
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Our examples indicate thatOMNeT++ is in most cases about 2 to 3 times faster thanHIT.

The runtime comparison in table 3 features the M/M/1 system mentioned before as well as the execution time of the freight

village model introduced in Sect. 2.1. The measurements forthe central server system show an improvement in runtime of

only approx. 30% forOMNeT++. Since the model is based on a closed loop with only two activeprocesses, less CPU time

for process incarnations and queuing is used such that the difference between the two tools shrinks [29]. Still, a significant

speed up can be noticed.

The values given forOMNeT++are preliminary as we focussed on correct mapping of behavior and ignored performance

issues for the time being. Performance bottlenecks still exist in statistical methods and dynamic search of matching function

units to PCEs.

Table 4 shows some simulation results for the model of the freight village from Sect. 2.1. The table contains population,

throughput and response time for the FUforklifts (see Figs. 2 and 3) estimated withHIT andOMNeT++. As one can

see the results are similar.

Table 4: Comparison of simulation results for the server forklifts (95% confidence interval)

Population Throughput Response time

HIT 4.988794 0.366475 13.612308

±0.30521% ±0.312747% ±0.633167%

OMNeT++ 5.02047 0.36527 13.744485

±0.752181% ±0.353753% ±0.895352%

7 Conclusions

OMNeT++ is an environment which has been mainly designed for the simulation of communication networks. In this paper

we demonstrated how to enableOMNeT++ for being used in other areas. We described the automated transformation of

hierarchical process chains specified byProC/Bmodels to corresponding hierarchicalOMNeT++ models.

Since the world views ofProC/BandOMNeT++ differ, the transformation is not straightforward and has to respect several

special features ofProC/B. For example: Elements of the behavior description, like process chain elements (PCEs), are

mapped to nodes, i.e. structural components, in theOMNeT++ description in order to exploitOMNeT++’s animation

capabilities. Furthermore additional elements for measurements are created asOMNeT++ elements which do not have a

direct correspondence in the originalProC/Bmodel.

The “correctness” of the transformation has been validatedby several test models where we inserted special output com-

mands, so that discrepancies from the execution viaOMNeT++ and the reference simulatorHIT can be detected automati-

cally.

The current implementation is a prototype and future work will concentrate on further improvements of the simulation
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efficiency and the connection to existingProC/B tools andOMNeT++ modeling features. One of the next steps will be the

utilization of Akaroa parallel simulation libraries to reduce runtimes by using multiple computers in parallel. Furthermore

we are continuing recent work [25] using theOMNeT++ framework INET for the combination of high-level service-oriented

architecture (SOA) components and detailed lower level network architecture and protocols. In this approach SOA compo-

nents and their orchestration are described inProC/B, and the network architecture is specified inOMNeT++. By means of

the automated transformation ofProC/Bmodels toOMNeT++ described in this paper, both models can be combined into a

single executable simulation model of the overall system.
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[7] H. Beilner, J. Mäter, and N. Weißenberg. Towards a performance modelling environment: News on HIT. In R. Puigjaner
and D. Potier, editors,Modeling techniques and tools for computer performance evaluation, pages 57–75, 1989.
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Listing 6: Excerpt from ServerFU.cc

void ServerFU::handleProcessService(cMessage* msg) {

PCMessage* message = (PCMessage*) msg;

if (message->isSelfMessage()) {

// message was scheduled by handleProcess()

discipline->handleSelfMessage(message);

finishService(message);

dismissMessage(message);

return;

}

welcomeMessage(message);

writeNameInPath(message);

discipline->handleProcess(message);

}

void ServerFU::FCFSDiscipline::handleProcess(PCMessage* message) {

if (parent->numberMsgInSystem <= parent->serverCapacity) {

parent->scheduleAt(simulation.simTime() + serviceTime(message), message);

}

else fcfsQueue.insert(message);

}

void ServerFU::FCFSDiscipline::handleSelfMessage(PCMessage* message) {

if (fcfsQueue.empty()) return;

PCMessage* msgFromQueue = (PKMessage*) fcfsQueue.pop();

parent->scheduleAt(simulation.simTime() + serviceTime(msgFromQueue), msgFromQueue);

}

double ServerFU::FCFSDiscipline::serviceTime(PKMessage* message) {

return parent->getTaskTime(message) / parent->stdSpeed;

}

void ServerFU::ISDiscipline::handleProcess(PCMessage* message) {

parent->scheduleAt(simulation.simTime() + serviceTime(message), message);

}

[...]

void ServerFU::PSDiscipline::handleProcess(PCMessage* message) {

// implementation of processor sharing discipline

}
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