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Abstract

OMNeT++is a discrete event simulation environment primarily des@jfor communication networks. In this paper we
present an approach to enal@®NeT++ to simulate complex hierarchical process chains. Prodesisi€ are a common
modeling paradigm in the logistics area for the analysis @ptimization of large process chains and have been intgnsel
used in many practical applications. Their evaluation gpsuted by theProC/Btoolset, a collection of software tools for
modeling, analysis, validation and optimization of pracelkains. Here we describe h@MNeT++ has been integrated as
a new simulation engine into the toolset. The integratiamtbhaget over some core problems to allow a smooth interaction
betweenOMNeT++ and the other tools: In particular, tf@VINeT++ model description of the logistics network should
be kept manageable, it should reflect the entire model simicnd non-standard performance figures, being relevant fo
an economic evaluation, should be ascertainable in ordsatiefy the specific needs of the application area. The paper
highlights the main steps of the automatic transformatioa lsierarchical process chain model into a hierarchical ehod
OMNeT++. Furthermore, we show how the transformation has beenatatidand how detailed performance figures can be

evaluated wittOMNeT++.

1 Introduction

For the development and operation of contemporary netwiorksgistics, model based analysis and in particular the use
of discrete event simulation is becoming an important fatdensure that the networks meet the requirements comgerni
technical measures like delivery times or service levets an the other hand, are also cost effective. In the pastreifit
workflows in a logistics network have been specified with pescchains as a poorly descriptive tool that does not all@i@n

derive simulation models from the description. This, hogreimplies that required simulation models have to be $igeladbn

*This research was supported by the Deutsche Forschungsgeimedt as part of the Collaborative Research Center “Niiogleof Large Logistics
Networks”(559).



their own without any formal relation to the process chairdeloOf course, this approach has the disadvantage thatetiftf
models have to be created for one system with all the knowhl@nas of additional modeling effort or inconsistencies
between the models. Thus, the use of the entire process efwalel as a base model for a detailed simulation model of a
logistics network is highly recommendable.

To realize this approach partially informal process chagueis have to be enhanced by formal information necessary to
build a simulation model and adequate software tools foukition have to be available. Of course, simulation of pssce
chains is not a new idea [1], but a general approach whichvallane to refine a high level process chain into a detailed
simulation model and which can cope with the complexity amd ef models of today’s logistics networks is still missing
Available simulation tools for this purpose are eitherniestd prototypes [2] or extensions of business processefimayl
tools [3]. In both cases the capabilities of representirthaamalyzing more complex models are limited. Available datian
tools for manufacturing systems [4, 5] that have been deeeldor large systems lack basic features which are negessar
model logistics networks and general simulation framewae too low level such that an adequate modeling of complex
process chain models requires too much effort.

In the past we developed a class of hierarchical process ai@dels which include the necessary information to map them
onto discrete event simulation models [6]. The model cldsapted a®roC/B, is based on a hierarchical description where
activities of a process chain are performed by some functiotwhich itself can be a complex process chain or some basic
unit describing the consumption of space or time. The regulhodels may include an arbitrary number of hierarchical
levels which form an acyclic graph. OriginalllgroC/B models have been mapped onto simulation models using the too
HIT [7] which has been developed in the mid eighties for modetomplex computer and communication systems. HIT
perfectly supports the hierarchical structurd”odC/B models and allows the analysis of results according toraryipaths
through the hierarchy which is an important feature, inipatar, if economic measures where cost drivers becomeritapb
should be evaluated via simulation. However, the use of H8® entroduces some serious limitations. Since HIT geresrat
a simulation model in the language SIMULA, a runtime envinamt for SIMULA has to be available to run a simulation.
Unfortunately, the number of available SIMULA compilersrather limited. Furthermore, HIT as a nearly 20 year old
tool does not support several modern features of an objemtted simulation environment like animation or interfate
software tools for post-processing of results or for the iaistration of models. For these reasons we decided torateg
a new simulation tool in our modeling environment and to supp mapping ofProC/B models onto the corresponding
models.

An adequate simulation platform has to observe the follgweguirements:

e The full ProC/Bmodel world has to be mapped to the simulation model.

e The hierarchy of the process chain models has to be adeguepeesented in the simulation model.

e Detailed measures that are definabl®mC/Bshould be analyzable in the resulting simulation models.

e The simulation tool has to be driven by tReoC/Binterface.



e Simulation should be easily made interoperable with otbelstof theProC/B environment like the optimization tool

OPEDoO [8] or the trace analyzer Traviando [9].

e The simulation environment should be stable, should alledefinition and simulation of large models and it should

support modern features of object oriented simulation.
e The simulation environment should be freely available &search according to some adequate open source license.

The last two points restricted the number of available tsiaificantly since most available open source simulatahst
where not adequate to really simulate, in an efficient andrdree way, large models as they result from large logsstic
networks. After a more detailed look on the remaining tools; choice waOMNeT++ [10, 11], a simulation environ-
ment generating simulations in C++. Althou@MNeT++ had been developed and used for communication systems, it is
well suited for the mapping of hierarchical process chairdet® and it also fulfills almost all of the above requirements
Nevertheless, the mapping BfoC/Bmodels ontdMNeT++ is far from being trivial since complex hierarchies have ¢o b
transferred from one view into the other.

This paper introduces the combinatiorRydbC/BandOMNeT++ to build a new and powerful simulation environment for
process models of logistics networks. First steps of th&wogsented here have been developedin [12, 13]. In thexfitp
section we briefly present tiroC/Bformalism, the corresponding toolset and the ©MNeT++. Afterwards, in section 3
it is shown how the hierarchical structurePioC/Bis mapped onto a module structure@MNeT++. Then we show how
the behavior oProC/Bprocesses is performed@MNeT++. Section 5 is devoted to the validation of the mapping, fedd

by a first comparison ddMNeT++andHIT by means of small examples. The paper ends with the conaolusio

2 Basic Software Tools

The approach we present in this paper UBgeC/B as input format, maps the models@MNeT++, simulates the resulting
model usingOMNeT++ and maps the results back RsoC/B. In this section we briefly present the main features of the
ProC/Bapproach including the available toolset and give afted&arbrief introduction int®MNeT++. For further details

about both tools we refer to the literature [6, 11].

2.1 Introduction to ProC/B

ProC/B[6] is a process chain-based modeling approach which isingbd collaborative research center “Modeling of Large
Logistics Networks” 559 (CRC 559;[14]) for modeling and faemance evaluation of logistics network®roC/B accounts
for the specifics of the application area by capturing thecstire in form of function units (FUs) and the behavior byqass
chains (PCs). IiProC/B, FUs might offer services, which can be used by activitiegrotess chains. Each service is again
described by a process chain.

Figs. 1-3 present an example oPeoC/B model representing a simplified freight village. A freiglitage is a node of a

logistics network which provides facilities for storingapts temporarily and transshipment between several typargécs.
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Figure 1:ProC/B Top level model “Freight Village”

The top level of the model (see Fig. 1) is specified byF&i ght _Vi | | age whose behavioral part is described by two
PCs:truck andt rai n. The structure part consists of a single (user defined) Fohedder m nal , which offers two
servicesit ruck_handl i ng andt r ai n_handl i ng. Services can be compared to functions in programming lages!

In the example both services have an input parametead) and an output parametaréw.| oad). Behavior and structure
part of a FU specification are interrelated by expressingkbkervice of which FU performs an activity. In Fig. 1 the twosP

t ruck andt r ai n consist of three process chain elements (PCEs) each, anthitéses the second activity calls a service
of FU Ter mi nal . The inner view of FUTer ni nal is shown in Fig. 2. The offered services are specified by PGsame

of their activities use the services of two function unitsaedf them, FUst or age, is a so-called standard function unit
which offers predefined services (ecdhange). ProC/Boffers two kinds of standard FUs: servers and storages e8efsee
e.g.pool 1 forkliftsinFig. 3) capture the familiar behavior of traditional qeswlescribing the consumption of time
and storages describe the consumption of spacesfseeage in Fig. 2) and support the manipulation of passive resources
A simplified version of a storage is a so called counter, whsch standard FU often used for modeling synchronization
aspects. A change to a counter or a storage is immediatahyegtdf the result respects specified upper and lower bound
vectors; otherwise the requesting process gets blockddhmthange becomes possible.

As indicated by the exampkroC/Ballows for the description of hierarchical models thus Iredfto cope with complexity.
Fig. 4 shows the static structure of tReoC/B model of Figs. 1-3 exhibiting the relation of all FUs. Usefided FUs are
displayed by squares and standard (pre-defined) FUs bgsircl

Process chains directly visualize behavior. The freigltage model of Figs. 1-3 reads as follows: Incarnations otpss
chaint r ai n are generated according to a Poisson distribution (with aneé60 time units). Each train has a load which
is initially chosen by random according to an uniform dkatition (betweer30 and50). After incarnation, the train “drives”
to the terminal which is modeled here by a delay of the profss uniformly distributed duration. Afterwards the trdis
handled” by service r ai n_handl i ng of Ter mi nal . This might result in a change of the train’s load. Finallg thain
“leaves” the freight village and the process terminateBasink. Considering Fig. 2 we see that handling a train migasho

unload the train, which is possible if tls¢ or age’s capacity of300 units is not exceeded, otherwise the train has to wait until



Terminal

truck_handling
(load:INT)

>
(new_load:INT)

0

unload
([data.load])

storage.

change

use_forklifts
(2 * data.load)
forklifts.
load_unload_request

drive_to_load_position
(uniform(1,3))

DELAY

determine_load
(data.new_load := randint(1,3);) (i dotanew Inad]

use_forklifts
(2* datanew_load)

train_handling
(load:INT)

>
(new_load:INT)

0

CODE

storage
change

forklifts.
load_unload_request

unload
([data.load])

storage.

change

use_forklifts
(2 * data.load)
forklifts.
load_unload_request

shunt
(uniform(4,6))

—_—®

use_forklifts

(1-data.new | Ioad 0) —>(data.new_load)
storage.
alter_or_skip

(-2 * data.new_load)
forklifts.
load_unload_request

determine_load
(data.new_load := randint(30,50);)
CODE

MAX=[300]

forklifts

Dad unluad re uest
mount:

storage
change
(amountINT))
alter
(position:INT,by_value:INT)
alter_or_skip

(position:INT,from_value:INT,
to_value:INT)->(achieved:INT)

content
(position:INT)->(content_value:INT)

Figure 2: Function Unit “Terminal”

unloading is possible. Afterwards Fbr kl i ft s is called with the formal parametanount of FUforklifts setto

2 » dat a. | oad®. Afterwards the train “shunts” to a new position (which isagmodeled by a delay of the process) and
determines the new load. The new load is removed from thagtaf possible, otherwise the available number of units are
removed from the storage (which is the semantics of seadideer _or _ski p). Finally servicd oad_unl oad_r equest

of FUf orkl i ft s is called again before the process “leaves” the terminat @&havior specification of Flor kl i ft s

is a bit more complex (cf. Fig. 3). After calling servit®@ad_unl oad_r equest a train equiprobably selects one of two
pools of forklifts for service. This choice is modeled by @lpabilistic OR-connector specifying alternative behewioy
different branches. After selection of a branch a train iggdor service by incrementing one of the global variableg1

or r eq2 and waits for the availability of a worker who is needed torape a forklift. Waiting is modeled by a so-called
process chain connector which synchronizes processefferfedit process chains. In the example a train can only gi@ce
to PCEuse_pool 1 or use_pool 2 if a worker has arrived or is waiting at the correspondingcess chain connector.
After synchronization the train calls servicequest of the standard Fool 1 forklifts orpool 2forklifts
resp. and parallel to this activity the worker decremengésvidriabler eql or r eq2 resp. in that way recording service of
the train. In the shown model we do not distinguish betwedividual workers, and thus the worker waits for the end of

the service of some train, which is again modeled by a prodesis connector. Once the train has finished service at FU

LAccess notations to parameters and variables of processpsedixed with keywordiatafor technical reasons in order to distinguish them from glob

variables of an FU. Fig. 3, e.g., shows two global variabtesq1 andr eq2.
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Figure 3: Function Unit “forklifts”

pool 1 forkliftsorpool 2 forkliftsitleaves FUf orklifts. The behavior of workers within Fbor kl i fts
is modeled by PGwr ker . The source generatdsvorkers at time) and each worker infinitely often repeats the behavior
pattern described between the two loop constructs. Thevimhaattern implements a simple control logic Bydifferent
branches which are selected according to a so-called bo@Raconnector. E.g., if trains (or trucks) have appliedstnvice
atpool 1_forklifts byincrementing variableeql the upper branch is selected by a worker provided the nuntber o
requests fopool 1 is at least as much as fpool 2. If no trains (or trucks) are requesting service (ireeql= 0 and
r eq2= 0) a worker is engaged in some other work which is modeled bylaydd the process.

The behavior of trucks and corresponding service callsysadilar to the described behavior of trains. In the sequel w

will use the term process for the process description aridgernations.

2.2 Software Support for ProC/B

In the course of the CRC 559 a toolset has been developed whistides a graphical user interface to spedipC/B
models and transformer modules which nizpC/B models to the input languages of existing tools, so BraC/B models
can be analyzed automatically (cf. [6] and Fig. 5). Since efiod and analysis is intended to be used during the whole

development cycle and also during the operation of a systeipolset contains apart from modules to specify and sitaul
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Figure 4: Hierarchy of model “Freight Village”

ProC/B models also modules for several non simulative aisabteps and for optimization. TH¥oC/B toolset has been
successfully applied to different areas of logistics nekspsuch as for the modeling and analysis of freight villagér cargo
centers and supply chains [15]. We give a brief overview efdifferent parts of the toolset (cf. Fig. 5) with a partiqula

focus on simulation.

ProC/B GUI
- Modeling
- Measure Specification
- Result Visualization

ProC/B Mode
& Measures
Transforme
Simulation Model QN Model GSPN Mode
& Measures & Measure: & Measures

|

\

Oliet HIT. : APNN Toolbox
~men - Simulation. - CTMC Analysis
- Animation ~ QN Analysi - Invariant Analysi
- Model Checking
Traviando OPEDo
- Trace - Response Surface
Visualization Generation
- Optimization

Figure 5:ProC/Btoolset

2.2.1 Graphical User Interface

The graphical user interface (GUI) which resides on top efuiinole toolset (cf. Fig. 5) allows the user to spedtipC/B
models hierarchically by using a separate window for evemy-standard functional unit. Standard functional units ar

described by their parameters. The hierarchical structfiRroC/B models supports the specification of huge and complex



process chains in a user friendly way by considering only allsportion of the model in a single window. Additionally,
the hierarchical and modular structure supports the retissdules by using standardized processes in logisticsar&sy
Apart from the model, the user can specify measures in exgatidescriptions. Experiments belong to a model spedditat
and allow the definition of detailed measurements desgitgnhnical results like throughputs, sojourn times oiz#tions
as well as economical measures related to cd3tsC/B models and experiments are stored in a proprietary inteated
format which needs to be transformed to be used as input tdonather tools. Currently, an alternative format froC/B
models based on the standardized process descriptiordga@®PEL [16] is under development [17].

From the interface different tools and operations can brtesta lt is possible to invoke the simulation and the transfo
mation ofProC/Bmodels into queueing networks or generalized stochasticri®gds as briefly outlined below. Furthermore,
one can use tools for result visualization and trace araliZs0C/B models may as well be used as black box functions for
optimization. The tool OPEDo [8] provides several differeptimization techniques also being able to deal with sisth

functions.

2.2.2 Non Simulative Analysis

Simulation is the major analysis technique RoC/B models, but also other techniques can be applied for asalysiry
prominent are queueing network analysis approaches whimh the very efficient analytical computation of perforncan
measures like mean throughputs or sojourn times. UsualNya@alysis is applied in the early design stages when albstrac
models are used to obtain rough estimates for performanesumes. In order to apply these analysis technigRexC/B
models have to be mapped onto queueing networks which magontdin process synchronizations, simultaneous resource
possession or general probability distributions. Thusy @noC/Bmodels without elements like storages, code elements and
synchronization constructs can be used as an input for QN sisaA transformer module maps tReoC/B description to
the input language of a tool for QN analysis (cf. Fig. 5). Attee QN analysis has been performed, results are mapped back
to ProC/Band can be interpreted at the level of the process chain.

Another application area for non simulative techniquelsés/falidation of simulation models. Complex simulation ralsd
like any other complex computer program, may contain déffiekind of errors or bugs. Even if the hierarchical and madul
description ofProC/B supports the specification of structured models, a user tilhgEecify undesired or even wrong
behavior. There are two classes of validation techniquamety static techniques which use formal techniques toyaeal
the model structure and operational techniques which debsgme sense the output of the simulator. We briefly outhiee t
use of static techniques here and introduce operatiorntatigges in the following paragraph in conjunction with slation.

Different approaches exist to validate simulation modeisrdy the whole life cycle [18]. In th@roC/B toolset Petri
net (PN) techniques [19] are used to analyze functional amdfunctional properties. Classical PN techniques allow on
to analyze properties like deadlocks or liveness of a systedrecently we developed an additional PN-based techmique
detect non-ergodic models [20]. All these, usually undssproperties of a model are often difficult to detect withigittion.

In order to apply PN techniquéaoC/B models are mapped onto colored Petri nets with finite colonalns. This class

of Petri nets can be efficiently analyzed but cannot desalideehaviors oProC/Bmodels. In particular data dependencies



are often difficult to describe or cannot even be modeled iN @R thus are substituted by non deterministic choicess Thi
implies that the PN includes some behaviors that cannot Bereed in the simulation model and the user has to decide
whether an undesired behavior in the PN is a valid behaviahi®simulation model. Despite of this need for user support

PN techniques are a powerful tool to detect specificatioorein ProC/Bmodels [21].

2.2.3 Simulation Techniques

Simulation is the basic analysis approach applicable t®@C/B models. In the past, simulation was only supported by
HIT [7, 22]. HIT is a modeling environment which does not only provide a satau] but also offers efficient non-simulative
analysis algorithms being based on product-form QNs aniddsised as a QN solver in the toolsdtT is basically tailored

to steady-state analysis, based on a single replicatioroapp. Time Series Analysis techniques are applied to icidal
streams of data produced by the simulation. A key featuridfand thus oProC/Bis that these streams may be itemized in
detailed ways. E.g., in Fig. 2 it might be of interest to measeparately the number of service calls forgilbr age caused
by trucks and traingHIT provides facilities to describe and to evaluate measuresiich activities at a lower level which are
caused by some higher level originator and to itemize cpmeging results with respect to the originators. As mermtihn
HIT is nearly 20 years old and needs a SIMULA compiler for ex@cutiTherefore we recently integrat€MNeT++ into

the ProC/B toolset trying to benefit from the features of a modern obgented simulation environment. In both cases,
theProC/Bmodel is transformed into the specification language of gezlisimulation tool, the simulation run is performed
and results are mapped backR®C/B. The mapping ont®@MNeT++ is introduced in the following sections after a brief
overview ofOMNeT++ has been given in the next subsection.

Simulation results can be presented in different forms. Jihglest way is to present the raw numbers including con-
fidence intervals in the graphical interface in conjunctigth the corresponding model elements. Additionally, sgf
results can be defined to plot curves, e.g. to represent tilaation of a measure over time. Apart from result measures,
simulations can be used to generate detailed traces of tdelrhehavior. Such traces are the base of animations and they
can also be used to validate the simulation model or the mystéeProC/Btoolset contains a specific tool Traviando [9] to
represent and evaluate traces. Based on the idea of messpgmese charts in UML, simulation traces of process oriente
models are presented graphically and can be analyzed u$fegedt analysis approaches for functional analysis tecte
properties like repetitive behavior, overloaded resosigreunused communication relations between processese Tea-
tures help to validate a model and to get a better understgradipossible sequences of activities. As an example Fig. 6
shows the visualization of a trace generated by the moddiefreight village. To keep the presentation compact only a

small trace is used here, which contains the activities aiektbetween its arrival at the freight village and its deyia.

23 OMNeT++

OMNeT++is a public-source simulation environment that has beerldped for the modeling of communication protocols
and has been extensively used in this area. Although it igioread on the web page [11] th@MNeT++ has been used

for the analysis of business processes there is nothinfabl@about this application and it does not seem that a catepl
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Figure 6: Sequence chart of a trace

mapping of hierarchical business processes @iNeT++ models has been done before. The whole tool environment
includes a graphical front end and several other tools thgiert the modeling and simulative analysis of complexesyst

Of particular interest is the simulation kernel which istien in C++ and offers several classes to support the spetidiic

of complex hierarchical models. Furthermore, the resglsimulation models are known to be rather efficient.

The basic entities of a@MNeT++ simulation are modules. Modules can be simple, which mdzatsthey are imple-
mented as C++ classes, or compound modules which impliethéiyaare composed of other simple or compound modules.
In this way OMNeT++ models are hierarchical. The complete model containingotregall hierarchy is denoted as the
system module. Modules communicate via gates using mess&gges can be input or output and a module may have an
arbitrary number of gates. Messages are sent either girtlectl gate or along a path. Basically paths are used to describ
the transfer of messages over some medium. Therefore tfaypairameters to specify e.g. the bandwidth or loss rate. Th
connection of modules via paths is specified intheed file which includes the structure of the model and can be défine
with the help of a graphical interface. The graphical irdeef can also be used for the animation of the running model by
visualizing messages that are sent along a path from onelsntwdanother. In this way, adMNeT++model consists of two

parts, the module descriptions in C++ and tieeldescriptions which specify the model structure given bycthenection of

11



modules.

An arriving message is interpreted in a module as an eventhenaser has to specify a routihandleMessager each
arriving message type. Messages themselves can be sedictata types and may include information that is used in the
correspondindnandleMessage(putine. In the routines new messages may be generated iietielgcor after some delay
and already scheduled messages may be deleted. Thus, tbeas driven approach is realized by the processing and
sending of messages. Apart from this general mechanisnsitingation kernel ofOMNeT++ offers a lot of support to
realize complex simulation models like up to date random Imemgenerators, support for statistical evaluation ofltesu
support for parallel replications.

From this very brief description it should become clear thath, ProC/BandOMNeT++ use a hierarchical structure to
describe models. However, at a second view it becomes d¢iaathie model views differ in several yet important details.
OMNeT++ has been designed with communication systems in mind sathhtbssages have a physical meaning whereas
in ProC/B hierarchy is introduced by calling services of FUs withoxpleit messaging. Another important aspect is, as
already mentioned, the definition of detailed and originetefent measures which are not directly supporte@liWNeT++
and therefore have to be implemented separately.

The challenge is to get a correct mapping frémoC/B onto OMNeT++. Since correctness of the mapping cannot be
formally defined because only a subsetrsbC/B has a formal semantics in form of a Petri-net mapping [21],defne
correctness by comparing the simulation usiiy’ and OMNeT++. TheHIT simulation is usually taken as the correct
behavior, since we defined an operational semantics of tlede#roC/B paradigm viaHIT [23], and thus th@©OMNeT++
model has to show the same behavior. Of course, a detailedarisun implies that the model is completely deterministic
since otherwise different random number streams will rearély result in different behaviors such that only statatresults
can be compared using adequate statistical methods [24l1ség both, simple deterministic models to show that thecbasi
behavior is the same and more complex stochastic modelsipar@ statistically the result measures.

Of course, ifOMNeT++is used as simulation kernel feroC/B models, then one may as well UNeT++ modules
in ProC/Bmodels by including them in code elements. In this way it isgilole to realize communication in process chains
in a very detailed way. E.g., two different processes dbedrin ProC/B communicate via a computer network specified
in OMNeT++ using predefined protocol models. In [25] this approach ésented to model service oriented architectures
where the services are describedPrpC/B models and communication among the Internet is realizedi@EINeT++
model. Thus, the presented mappingafC/BontoOMNeT++enables the definition of very large heterogeneous sinamati
models. However, the completely automatic specificationukation and evaluation of those models is still a subjdct o
ongoing research.

In the following two section we first describe how the hietacal structure of &roC/B model is mapped onto a corre-
sponding structure of a@MNeT++ model. Then the mapping of the behavior is presented. Befissire accompanied by

small examples showing the basic ideas.
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3 Mapping of Structure

ProC/Bmodels are specified graphically in tReoC/Beditor and are stored in files. Next to the model itself théoedillows
for saving experiment descriptions in separate files. Agdtabove, these general model/experiment descriptiandie be
used in different analyzers, either numeric or simulatiieus, the generic model descriptions generated by therduhie
to be translated to specific input formats.

Our implementation of mappingroC/Bto OMNeT++ consists of two main components: The convept@cb2nedand
a library nameddsimucontaining generic implementations BfoC/Bs behavior as simple modules f@MNeT++. OM-
NeT++ requires behavior to be located in simple modules, that aiteew in C++ and handle arriving messages in order
to trigger specific reactions. The C++ sources of simple rfesdare combined with.ned-files using an identical naming
scheme, describing module interface<adMNeT++s simulation system. Th@®simulibrary contains a predefined simple
module for each type of element ofRFaoC/B-model, except user defined FUs, capturing the behavioraxfettelements.
These simple modules, like sources, PCEs, OR-connectaysegs chain connectors etc. are configured by parameters
specified in the correspondirighed-files. The library will be treated in Sect. 4 in a more dethieanner.

The converteprocb2nedeads process chain models and out@NeT++ network descriptionst(ned-files) as a direct
input format for theOMNeT++ simulation system. AOMNeT++ supports hierarchical modeling of modules thesed
files describe the hierarchy of the model as compound modute®roC/B-models the hierarchy is represented by user
defined FUs usually including at least one process chaimeuffas a service by the Figrocb2nedcreates &.nedile, i.e.
a compound module, for every FU preserving the structurb@PtoC/B-model. As already mentioned for every language
element inProC/B exists a corresponding implementation as a basic moduiMiNeT++. For model design these basic
modules are instantiated and related by connectionstinea file, forming a compound module. Non-basic modules can
be used similar to basic modules, making it easy to builddnidrical models. PCEs only form linear structures at theesam
model level, sproch2nedsimply inserts them as basic modules into its outpoed files. Of course, synchronization and
event driven generation of new processes are also possiBl®eC/B using available language elements (see [6]) which are
realized as C++-implementations@MNeT++. Following the rule of one module p&roC/Blanguage element, Standard-
FUs like ServerFU, StorageFU and CounterFU are also irgséitectly into the model. If the converter reads a consedct
FU oninput, it goes one level down in the recursion, applyiregabove mapping rules to a n&wedfile named after its FU
in ProC/B. After returning from recursion, the compound module rgpreing a constructed function unit can be used like
any basic module. The subsequent step is to map process flougtha process chain by establishing connections between
modules. The acting entities &oC/B are all processes within a module. While processes are ruifispabject-types in
HIT, it was a natural choice to map exactly one process typxéztly one message type @MNeT++ Hence,ProC/Bs
connections between process chain elements are mappeditdenconnections iIOMNeT++.

As shown in Fig. 1, connections RroC/B only exist within a PC specification, there are no explicihigections from
PCEs to FUs or the other way round. Only implicit relationsAmen PCEs and FUs exist by specifying parameters in PCEs
denoting which FU and offered service they call.

We transferred this idea ©OMNeT++ by using traditional message passing through gatewaysieert thessage sending
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as two separate forms of connections. The first task is daamktforwardly byprocb2ned Basic modules act as PCEs
(excluding sinks) and obtain one connection to their sisme$orming a structure similar to process chainBiaC/B. For
this purpose, every PCE module has at least one set of inpptfogateways acting as a socket@vINeT++s connections.

Again, relationships between modules of PCEs and FUs enigtimplicitly in OMNeT++ Two parameters are given in
the*.nedfile for every instance of a PCE using a function unit: The tdfim of the FU and the name of the offered service
(keeping in mind that FUs can offer multiple services). Tihfermation is used in the PCE initialization phase to find th
reference to their loosely bound function unit. Requestiisgrvice in the simulation phase is done by transferringatges
directly usingOMNeT++s sendDi r ect () method to the function unit bound to the service. Finishirkgs service is
also signalized by returning the message.

Using OMNeT++'s alternative way to transfer messages has some advartaggrred to the traditional way of using

module connections:

1. As FUs can be used by possibly infinitely many PCEs, ongjtéirplicit connections helps to keep models concise.
The target to which direct messages are sent to is deterrdiméng the initialization phase b MNeT++ and saved

as a reference, so no extra time is consumed when analyangadtel.

2. Messages sent directly keep track of their senders orclk, sa returning a process message to its sender after per-

forming a service is a simple task in the FU’s implementation
3. The visual appearance in tReoC/Beditor andOMNeT++TKenv is kept similar.

Function units need one input gate per offered service. @yjgptes are redundant here, as the virtual sink termin#tig
service’s process chain will return the message via diraaster to the calling PCE. The ability to send and receiveadi
messages requires some preconditions for modul@MnheT++: Direct messages can only be delivered to dedicated input
gates without any other incoming connection. Therefords R@dules calling FUs need an additional input gate resdored
callbacks of their associated FUs. By convention, new mee arrive at the first, status messages from FUs at thedsecon
input gateway.

An example of the output generated pysocb2nedcan be found in Listing4 The Listing contains an excerpt of the
compound module generated for the top level FU of Fig. 1 doimg the simple modules corresponding to a source, a
Delay-PCE and a PCE calling a service of the contained &t nal . The simple modules are configured by parameters,
e.g. describing the interarrival times for the source ordéky of the PCE. More information about simple modules can b

found in Sect. 4. Furthermore, thaed-file contains a section specifying the connections betweese simple modules.

3.1 Animation

Animportant additional benefit of usif@MNeT++for simulatingProC/Bmodels is the animation capability OMNeT++'s
graphical workbenc®MNeT++Tkenv. ExistingProC/Banalyzers are tuned according to efficiency and performaitte

solution and are consequently batch processing systemangnid difficult to explain the dynamic behavior of processe

2For a unique naming schen®oC/B variables and names are prefixed.
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Listing 1: Source of the .ned-file for FU Freigktllage

nodul e F1Frei ght_Vill age
[-..1]

subnodul es:
QL20Sour cel: EverySource;

par anet ers:
Interarrivaltime = "poisson(6)",
Bat chsize = "1",
Paraneter = "randint(0,2)";

[-..1]
L527drive_to_term nal: Del ayPCE;
par anet ers:
Del aytinme = "uniform(4,6)";
[-..1]
L509handl e_t ruck: Servi cePCE;
par anet ers:
FUName = "F729Terminal ",
Servi cename = "P892truck_handling",
Par aneter = "data.l oad",
gat esi zes:
inf2],
out[2];
[...1]
connections:
[-..]
L527drive_to_termnal.out --> L509handl e_truck.in[0];
[...1]

endnodul e
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from the model. However, such an explanation is often ingrin teaching and also in real projects as we noticed when
modeling large systems in cooperation with real users. ¢JSikINeT++Tkenv, messages moving between modules can be
animated by a moving red dot as an adequate visualizatigorémesses moving through process chains and making use of
FUs. In this way, the dynamics of a system is clearly visible.

ProC/Bs graphical representation was carrie@bINeT++, usingOMNeT++'s feature to define pictograms for modules.

procb2nedassigns bitmaps to every instance of the basic module nmatdtsitype inProC/B.

ProcessID
@—«“—»O—» CallPCE ."
PCMessage ‘

Source Sink

Function Unit
®—

Figure 7: Animation of PCMessages

When settingDMNeT++to a "slow” running mode irOMNeT++/Tkenv, the user can trace processes created by a source
as a red dot moving along the process chain element’s ogfgoimection (see Fig. 7). Arriving at a PCE, the dot is dedaye
until the PCE ends its call to an FU. Since no permanent cdiameexists between PCEs and FUs, a temporary connection
is drawn acting as a path for messages performing a requésiby sent directly to the module of the FU (Fig. 8). When
the request is served, a message can be seen moving backwheddalling PCE on a reverse connection. Furthermore,

different windows can be opened to view the animation siamdbusly at different levels, i.e. in different FUs.

ProcessID
@ O CallPCE ."‘

Source - Sink

PCMessage

Functic}n Unit
\
®@— —

Figure 8: PCMessage moving over temporary connection

4 Mapping of Behavior

The second component of our framework is the mapping of ttenber of ProC/B language elements onto modules in

OMNeT++. These modules are completely configurable by passing gdeasn so we were able to compile a libr&@gimu
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containing generic implementations for PCEs and standdsd F

OMNeT++ offers two different programming styles, lightweight pesses and a transaction based programming para-
digm. We decided to follow the latter as it matches the ba#a@s of process chain models and it scales much better for
large models. Since process chains are characterized bgtémeal of time consumed by a process between entering and
leaving a chain, a transaction based discrete event agpnoakes it natural to map these intervals to arrivals andrtiees
of messages to/from modules@MNeT++.

The dynamic part oProC/Bmodels are processes following the route defined by pro¢esss Analogously, processes
are represented by message©iMNeT++ The mapping tdMNeT++ is done by subclassingMessage only once to
PCMessage (short for "process chain message”). Processes are maiikead wnique identification number to trace their
movement inside the model for debugging and statisticBrdiC/B, transitions of processes between PCEs are instantaneous,
time is consumed by requesting services at function unityaledicated delay PCEs. This idea is reproducedNiNeT++
by messages of tydeCMVessage that use connections in zero time, leaving progress of maodelto the modules.

Implementation oProC/Bs behavior is completely located in basidMNeT++ modules, the leaves of the model tree.
Compound modules used @MNeT++ to group simple modules to complex model elements are nowatl to define own
behaviorin C++ code next to théimed-file. For this reason the behavior of higher level FUs hacetthie union of semantics
defined by lower level PCEs, FUs and the way they are connedtbdeach other. In syntactic terms we had to flatten the
model hierarchy to basieroC/B elements and connections.

This is an important difference to the former wyC/Bwas implemented. Several functions regarding time pragres
message routing and measurement are located in every ntiie miodel tree oHIT. In the following we will describe our
solution for the implementation ¢froC/Bs behavior withOMNeT++. Section 4.1 will also focus on an alternative to add
measurements to specific constructed FUs.

The ProC/B-mapping toOMNeT++ is conducted with an inheritance hierarchy. Each impleatént of a basi®roC/B
element inherits froniPr oCBEIl enent . Pr oCBEl enent itself is a direct successor @MNeT++s modeling interface
¢Si npl eMbdul e. Pr oCBEl enent encapsulates several common functiondHm@C/B elements. On initialization, each
ancestor oPr oCBEIl enent will register itself to the system. This allows faster laoatof ProC/Belements by name or by
their position in the model hierarchy. Sending process agess direct or via connection is also implemented at thisepla
Keeping such basic functions at a high level in the inheciaierarchy helps to keep a model wide consistent numbering
of input and output gates f@MNeT++ modules. An important group of functions is related to thetadized creation and
destruction of processes with unique identification nurebdihe hierarchy tree splits into common base classes fdr eac
general type oProC/B-element. There are basic classes for sources, PCEs, Flds,asid connection elements. Figure 9
shows an extract of the inheritance hierarchy for all tyddsasic function units available iRroC/Bs modeling library. The
base class for function units namals e FU provides consistent handling of arriving and leaving psses including updates
of statistic functions. For this reason, theandl eMessage() method required b@MNeT++being implemented in every
module is forked into specialized handlers inside the bksses. PCEs must implemdrandl ePr ocessActi vity()
and FUhandl ePr ocessSer vi ce() as shown later in Listings 3 and 4. Sources and sinks havéasioonstructs.

Assessing the way messages are handled in moduléxd@/B elements also helps to realize timeouts for the activity
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Figure 9:ProC/Bs class hierarchy

duration of process chain elements. Each time a process element derived from typBas e PCE performs a service call
to a function unit, the process message is held back anccezpigith a copy. The only difference between both messages is
a new unique ID for the copy. Both ID numbers are stored in @oaative collection. The copy will be sent to the called
function unit while the original message still waits at thegess chain element. When the service call is finished and th
copy returns, the original message is deleted and the IRisterred to the copy rendering it as the original message fr
now on. Recently we enhanc@iloC/B by the option to set a timer before the copy is sent to the fanatnit (essentially
this timer option makes copying of processes necessaryhel§ervice call duration exceeds the time limit (i.e. thpyco
does not arrive in time) the original message is releasedsantto the next process chain element. The ID of the copy is
blacklisted and the copy is deleted when it arrives back.|dieneouts are a new feature realized in BreC/B mapping to
OMNeT++ and are not supported by thHT simulation environment. An extensive description inchglexamples can be
found in [25].

Now we will describe two examples to explain our mapping dfdgor more explicitly.

Figure 10 shows the symbol of a Delay PCE as a simple languagest of ProC/B. It has the task to delay arriving
processes by some amount of time, either deterministic arfaypdom number from some predefined distribution. Listing 2
shows the correspondirighed-file used byOMNeT++ to pass parameters to modules and define gateways wheregeessa

arrive and leave.
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Identifier
(TIME : real)

DELAY

Figure 10:ProC/Bs symbol for a delaying PCE

Listing 2: Source of DelayPCE.ned

si npl e Del ayPCE
paraneters:
delay : string
gates:
in:in;
out: out;

endsi npl e

A process chain element DelayPCE is defined with just onegbgiates because it is connected to only two other process
chain elements. Paramete| ay is set by the'.ned-file instantiating this module as specified in the origired C/Bmodel.
Implementations of DelayPCE subclassofg npl eMbdul e have to respect the fact that a second or third or an arbitrary
number of processes can arrive while the first process Igdsiiiyed. The concrete implementation in Listing 3 is short
overloading the functiohandl ePr ocessActivity (PCMessage* nsg) and implementing the specific reaction on
arriving messages. The delay time is generated from thesfinedi distribution, the following line in the code delays th
incoming message by the amount of time usdigNeT++s sendDel ayed() method. Please note that no messages are
stored inside the module, allowing the module to accept fimite@ number of processes. Methpdr an{) reassembles the
well known methodpar () to fetch parameters stored imed files. The new method parses expressions uséttac/B
models, which can be either arithmetic expressionstno&/B specific naming of random distributions.

All elements ofProC/Bs process flow control had to be implemented as modulesAsadescribed before, process chain
connectors (Fig. 11) are used to synchronize processes.iffipdementation a©MNeT++ module is shown in Listing 4.

Process messages arrive at the input gates of the modulgaféstored immediately in queues, one queue for each input
gate. ProC/B allows us to specify a number of processes per gate that quéred to start a transition which realizes the
synchronization. Such semantics similar to token consiampi Petri Nets can for example be used to model usage ofgood

in production processes. The exact numbering is read fremribicess parameters of the arriving message in the firstlbop

Listing 3: Source of DelayPCE.cc

#i ncl ude "Del ayPCE. h"

voi d Del ayPCE: : handl eProcessActi vi t y(PCVessage* nsg) {
doubl e del ay = (double) paran("delay");
sendDel ayed(nsg, delay, "out");
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Listing 4: Source of PCConnector.cc

voi d PCConnector:: handl eProcess(cMessage *nsg) {
PCMessage* nessage = (PCMessage*) mnsg;

int megArrivallndex = nsg->arrival Gate()->i ndex();
i ncom ngQueues[ nsgArrival I ndex] . i nsert(nsg);

ProcessPar & p= nessage- >get ProcessPar();
for (int nFO; nxnunber O | nput Gates; m++) {

requi redProcessesPerGate[n] = p->requiredProcesses(nanme(), m;

if (! transitionEnabled()) return;

for (int gate=0; gate<nunber OflnputGates; gate++) {
for (int nFO; nxrequiredProcessesPerGate[gate]-1; mt+) {
(-1
/1 consunme enough nessages for transition

del ete i ncom ngQueues[ gate]. pop();

/1 forward original nessage
PCMVessage* | ast Ori gi nal Message = (PCMessage*) incom ngQueues[gate].pop();
(-1

send(l ast Ori gi nal Message, “"out", gate);

bool PCConnector::transitionEnabled() {
for (int i=0; i<nunmberO QutputGates; i++) {
if (incom ngQueues[i].length() < requiredProcessesPerGate[i]) return false;

}

return true;
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Figure 11: PCConnector iaroC/Bfor synchronization of three chains

a sufficient number of processes arrived (at least one pej the sentinel conditionr ansi t i onEnabl ed() will allow
the transition to fire. Otherwise the transition has to waitddditional processes. After synchronization all preesswill
arrive at the next element in their process chain at the sanee t

SPEED : number

DIS : string
CAP : number

/ Identifier \

request
(amount:REAL)

Figure 12: Server Function Unit iaroC/B

As an advanced example ServerFU is shown in Fig. 12. It reptesa set of limited and identical resources which
processes can request and use. ServerFU offers the serggueest” to PCEs, a parameter for the requested amount of

service has to be passed with the calling message.

Listing 5: ServerFU.ned

sinpl e ServerFU
paraneters:
i nPat h: bool,
speed: nuneric,
capacity: nuneric,
di scipline: string;
gates:
in: in;
out: out;

endsi npl e

Listing 5 contains the definition of ServerFUs@MNeT++s modeling language. Three parameters are passed to the

module byOMNeT++ at runtime:

speed of a resource to execute service calls. This means thahngdlCEs request an amount of service according to some

average resource. The concrete FU can be faster (spégdslower (speee: 1) or an average resource (speed).
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capacity number of resources offered by the server

discipline the resource scheduling the server uses.

By offering a single service, ServerFU only needs one pajabés. As stated before, messages are delivered to these gat
by direct send calls, making it unnecessary to connect tbidule with other elements in the model.

The parameter discipline plays an important rolePiwC/B models, as the behavior of function units are matched to
the way resources are shared in the real system. Curremélg gtheduling disciplines can be mapped fieraC/B to

OMNeT++

FCFS queues serve requests for resources by the rule "first canstesdrved”. Processes which obtained a resource, allocate

it according to the amount defined by the constant or digiohwf the service call and paramesgreed.

IS "Infinite Server”, every request is immediately granted aakes the time specified by the service call and parameter

speed.

PS "Processor Sharing”, all requests are immediately grareery process makes use of the full set of resources (accel-
erating service time by the number of resources), but hakdmesesources with other processes using the server at
the same time. Capacity is distributed uniformly among edlcgsses (slowing down execution time by the reciprocal

value of the number of processes).

It is possible to interpret these three types of schedulgdifierent kinds of servers, yet their implementatiorOM-
NeT++ uses only one module to simplify the structure mappingtmgb2ned Internally ServerFU makes use of the strategy
pattern [26] to vary it's behavior according to parametiesci pl i ne.

An excerpt of ServerFU’s source is shown in Listing 6. Tlaandl eMessage() method is divided into two parts by an
if clause, newly arriving process messages wigth f Message set to false are served in the lower part.

At the beginningywel comeMessage computes some basic statistics of arriving processes asiloled in section 4 and
incrementsnunber Msgl nSyst em Additionally, the ServerFU pushes its namewini t eNanel nPat h on the stack
keeping track of every process chain element the messaged#wough. The next line is part of the strategy pattern,
di sci pl i ne holds objects of typ&er ver FU: : Di sci pl i ne encapsulating FCFS, Infinite Server or Processor Sharing
as described above. Those strategies are instantiateddlegen parameteati sci pl i ne in Listing 5 on the module’s
initialization. Their behavior on newly arriving processs specified immandl ePr ocess() . Here we present the methods
FCFS and IS as examples: In FCFS, time is granted to procasdesg as the servers capacity is not exceeded. Otherwise
the process is enqueued until resources become available.Infinite Server is even more simple, it just accepts every
process.

In both examples, time consumption is modeled by schedyingess messages to the function unit itself, adding the
amount of time the service will take before sending. Whemtiessage returnsel f Message is true and the upper part
of handl eMessage() is executed. Again, an object of ty[@er ver FU: : Di sci pl i ne handles processes a second
time. In FCFS, the first process message waiting for freeuress is removed from the queue and immediately scheduled

for completion of the service. For Infinite Server no furthetion after service completion is necessary.
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4.1 Trandslation of Result M easures

The main focus when analyzing a simulation model is on dateng quantitative results for the model, like for example
throughputs or response timeBroC/B offers the possibility to measure properties at every FOugi depending on the
type of the FU the available properties may differ: Througthpesponse time and population can be measured at any FU.
Additionally, for every server the utilization and for eyestorage the state can be examined. For composed FUs thdamode
may define further measures (called rewardBrimC/B). ProC/Ballows for three different types of rewardsount eventand
state Rewards of the typeventcan be used for serially collecting values, rewards of tpe tpuntfor estimating rates and
rewards of the typastatefor the description of trajectories. Those types are usedh® realization of standard measures
like throughput or response time as well. While the usemgefimeasures have to be updated manuRHg@/B provides a
model element for updating those rewards), the standardunesiare updated automatically whenever a process emters o
leaves a FU.

As already mentioneBroC/B allows for streams to be itemized in detailed ways. This &sator example the measure-
ment of the train population at the terminal in Fig. 2 withoatinting trucks. To achieve this, the modeler can specifgth p
consisting of elements in tHeroC/B model. Only processes, that have moved through all of theifsge elements will be
considered when updating the stream. Most of the descrdmdries available iRroC/Bare derived from the measures that
HIT offers, thus allowing an easy transformation fremoC/Bto HIT.

Currently when analyzing the model withH T, streams of data are generated during simulation, whicbhasieally lists of
pairs consisting of a time stamp and some associated vahigedata is used to calculate the usual characteristicsrigan,
standard deviation and confidence intervals for the diffeneeasures. ThEroC/B toolset contains a tool, that generates
plots and visualizes the simulation results.

When usingOMNeT++ for simulation the key features like itemizing streams a#i asthe output data of the simulation
should be preserved, so that this new simulation enviromifitsrinto our existing toolset. Whil©®MNeT++ offers basic
facilities for measurement in e.g. communication protecitlneeds to be extended to meet the demands for the siomlati
of logistics networks.

In the remainder of this section it is shown how the measuréimémplemented for Standard-FUs like servers or storages
Measuring properties at composed FUs requires some aaaligffort and is presented afterwards. Finally the itengzf
streams is explained.

For Standard-FUs the measurement streams have to be updsad process enters (which means a service of the FU
has been requested by a process) or leaves the FU. OMiNe T++ representation of the model a service request is indicated
by a message sent to the FU. The population is updated whesmevecess enters or leaves the FU, throughput and response
time are updated when a process leaves the FU. For Stantlsr{like server or storage) the data collection and evalunati
is implemented as C++-Code within the corresponding simpdules. This brings up problems for composed FUs: When
the ProC/Bmodel is translated to aBMNeT++ representation, composed FUs are represented as compaguts, thus
only a*.neddescription exists that lacks the ability to implement céatemeasurements. Therefore the module of every

composed FU contains a specific simple module cdlleileasur es (see Fig. 13) to realize measurements in composed
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Figure 13: Message flow for the measurement in composed FUs

Fig. 13 shows the message flow that is necessary for measuteimeomposed FUs. Starting at the source a message is
sent to the Process-ID (Process-IDs are used for the idmiitifn of a process chain and the declaration of local ver$ednd
are always connected with the source of a process chainmh ffrere a message is sent to the special mdéluieasur es.

This module has no counterpartitoC/B and its sole purpose is to enable the measurement in comptiedAfter the
message is returned to the Process-ID, further elemente @girbcess chain are processed (denoted by three dots it3fig.
When the process has reached the sink, the message is skatnmduleFUMeasur es and back to the sink again. All
update operations of streams for a FU are performed witbiveasur es. The first message (sent by the Process-ID) means
that a process has entered the FU (and thus the populatigu&éead for example), the second message (sent by the sink)
means that a process is leaving the FU again. AlthdudWeasur es is not an element of thBroC/Blanguage it is part

of the inheritance hierarchy of function units (cf. Fig. B)theOsimulibrary. The superclasBaseFU adds the ability to
return incoming process messages to the sending Processsibk. Similar to calls of other FUs a stack of senders imsid
PCMessage is used to find the originator.

As already mentioned’roC/Ballows one to specify a path consisting of elements, so thiggyocesses, that moved along
that path through the model will be considered when updatiegsures. Those paths are part of FneC/B experiment
description and need to be translated to @dNeT++ model and taken into account during the update of measuitemen
streams. When mapping ©MNeT++ the ProC/B experiment description is saved in &ini-file, that is loaded when
the simulation starts. Additionally, a parameter is setdach element appearing in one of the paths in the correspgndi
*.ned-file when the model structure is mapped. During simulatf@gath a message takes through the model is saved and
compared with the paths that have been specified ifPtb€/B experiment. To store this information a new message class
is used, that can carry the path information. Updates of taasurement streams are only performed when the path of the
message matches one of those paths fronPth€/B experiment.

OMNeT++ provides several classes for the collection of data and #@memtion of statistical measures like mean or
standard deviation which are derived from the abstracs€@8tat i st i c. Because the calculation of means does not match
the specification of the streamskmoC/B, our ProC/Bto OMNeT++ implementation provides its own classes (derived from

CSt ati sti c) to generate statistics (one for each of the stream tgpes} stateandcountmentioned before). For the
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estimation of confidence intervals the batch means-metigdg used. The generated output is saved in the same foemat a

the output oHIT, so that our existing tools can parse the data for resuleptaton.

5 Validation of the Transfor mation

If different tools are used to simulate a model, then it isessary that the semantics of the model is the same in every
simulation tool. Ideally, identity of semantics should veed formally. A formal proof would require a formal semiast
such that formal analysis techniques are applicable tokchguivalence. Unfortunately, simulation models are mwach t
complex to be described in simple languages that allow adbamnalysis. This implies that identical behavior of models
cannot be strictly verified, it can only be validated.

ProC/Bwas designed to introduce a well defined semantics and amated analysis to hierarchical process chain mod-
els. A specification was laid down in [23], describing the aatits of PCEs and FUs in an operational form. Many aspects
of the operational semantics are implicitly defined by th& Hintime environment. Thus, the behavior of the HIT simiolat
model is the behavior which should be observed wOdtNeT++ executes the model. However, the operational semantics
depends on several aspects like execution order of sinedtemevents, the order of initialization which are gengnadit
well defined in discrete event simulation and, additiondhg realization of random processes that depend on themand
number generator.

We distinguish between validation of models with and wittrandom numbers. The former will be named deterministic
models, although this is not strictly correct since simm#taus events may yield a non deterministic behavior. Fardet
ministic models behavior can be compared using traces.oagh,HIT andOMNeT++ both have a trace function it is not
recommended to use these functions for comparisons siedetimat differs and cannot be easily transformed from one to
another. Instead models are augmented with code PCEs ingladtput statements. Such PCEs can be added to every PC.
Thus,HIT andOMNeT++ generate the same trace output which can be easily compared.

To prove equality of traces we developed an automated tpstivironment to compare output®foC/Bmodels analyzed
with HIT andOMNeT++. It is based on a set of simple and determinigioC/B models, designed to test the behavior of
exactly one element ¢¥roC/Bs language. Driven by our batch testing environment, idafy formatted output oHIT and
OMNeT++ is compared by an awk script, highlighting differences inam@ement results and event traces. Additionally,
a selection of deterministic models taken from former poisiés also subject to comparison, making sure thatRvaC/B
language elements implemented in modules interact ctyrect

Testing nondeterministic models is limited since difféan@mdom number generators are usedim (actually implemen-
tations of SIMULA) andOMNeT++. So, even starting with same seeds, results and event avdkedifer. Consequently,
we can only check in a statistical sense whether the impléatien is correct, i.e., the different language elementsabe
identically. For this purpose, animations can be comparaces can be visualized and results can be compared uatiggist
cal test. A typical approach is to estimate the same measthduth simulatorsHIT andOMNeT++, and then statistically
evaluate a random variable describing the difference bervisth measures. This can be done by comparing confidence

intervals or using statistical tests (for details see &4jj[¢€hap. 10]).
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Table 1 shows simulation results of an M/M/1 system=0.5) as an example of a simple nondeterministic system included
in our testing environment. Results are sufficiently clasagsume an equivalent behavior for this model with a highifsig
icance probability. The second example are values taken &acentral server system [28], also a nondeterministiegyst
Comparisons of simulation results in table 2 also indicatgvalence. A detailed analysis of the central server systith
ProC/Bis available in [29].

We additionally compared several simulation results gféamodels and obtained similar minor differences (cf. Sgct

Table 1: M/M/1 system simulation results (90% confidencerivl)

Population| Throughput| Response time
HIT 1.00202 1.00023 1.001789
+0.18% +0.05% +0.16%
OMNeT++ | 1.00126 0.99964 1.000905
+0.33% +0.14% +0.22%

Table 2: Comparison of simulation results for Central Se(96% confidence interval)

Population| Throughput| Response time
HIT 1.1559 0.7491 1.5429
+0.16% +0.15% +0.23%
OMNeT++ 1.1548 0.7499 1.5398
+0.15% +0.15% +0.23%

6 Comparison of performance and simulation results

Though our implementation dfroC/B on OMNeT++ is not as mature as the one BifiT, we achieved promising runtime

results. Times in table 3 were taken for analyzing a moded &y@0.000 time units omitting model initialization andput.

Table 3: Runtime comparison

Model HIT OMNeT++

M/M/1

0 min. 57 sec.

0 min. 22 sec.

Central Server

0 min. 35 sec.

0 min. 24 sec.

Freight Village

8 min. 36 sec.

2 min. 33 sec.
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Our examples indicate th@MNeT++is in most cases about 2 to 3 times faster thidih.

The runtime comparison in table 3 features the M/M/1 systeantioned before as well as the execution time of the freight
village model introduced in Sect. 2.1. The measurementth®central server system show an improvement in runtime of
only approx. 30% foOMNeT++. Since the model is based on a closed loop with only two agtiveesses, less CPU time
for process incarnations and queuing is used such that fieeetice between the two tools shrinks [29]. Still, a sigmifit
speed up can be noticed.

The values given foODMNeT++ are preliminary as we focussed on correct mapping of behawidignored performance
issues for the time being. Performance bottlenecks sislt @x statistical methods and dynamic search of matchingtfan
units to PCEs.

Table 4 shows some simulation results for the model of thgtitevillage from Sect. 2.1. The table contains population,
throughput and response time for the For kl i f t s (see Figs. 2 and 3) estimated wihT andOMNeT++. As one can

see the results are similar.

Table 4: Comparison of simulation results for the serveklitis (95% confidence interval)

Population | Throughput | Response time

HIT 4.988794 0.366475 13.612308
+0.30521% | +£0.312747% | +0.633167%
OMNeT++ 5.02047 0.36527 13.744485

+0.752181% | +0.353753% | +0.895352%

7 Conclusions

OMNeT++is an environment which has been mainly designed for thelaiion of communication networks. In this paper
we demonstrated how to enalldVINeT++ for being used in other areas. We described the automatesfaranation of
hierarchical process chains specifieddrgC/Bmodels to corresponding hierarchi€MNeT++ models.
Since the world views oProC/BandOMNeT++ differ, the transformation is not straightforward and hasdspect several
special features oProC/B. For example: Elements of the behavior description, likecpss chain elements (PCEs), are
mapped to nodes, i.e. structural components, in@NeT++ description in order to explo®©OMNeT++s animation
capabilities. Furthermore additional elements for mezments are created &MNeT++ elements which do not have a
direct correspondence in the origirRioC/Bmodel.

The “correctness” of the transformation has been validbyeskveral test models where we inserted special output com-
mands, so that discrepancies from the executiorON&NeT++ and the reference simulatbiT can be detected automati-
cally.

The current implementation is a prototype and future work eancentrate on further improvements of the simulation
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efficiency and the connection to existiRgoC/Btools andOMNeT++ modeling features. One of the next steps will be the
utilization of Akaroa parallel simulation libraries to neck runtimes by using multiple computers in parallel. Femthore

we are continuing recent work [25] using t&&INeT++framework INET for the combination of high-level serviceemted
architecture (SOA) components and detailed lower leveloet architecture and protocols. In this approach SOA compo
nents and their orchestration are describedErmC/B, and the network architecture is specifieddMNeT++ By means of

the automated transformation BfoC/B models toOMNeT++ described in this paper, both models can be combined into a

single executable simulation model of the overall system.
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Listing 6: Excerpt from ServerFU.cc

voi d ServerFU : handl eProcessServi ce(cMessage* nsg) {

PCMessage* nessage = (PCMessage*) nsg;

if (message->i sSel f Message()) {
/'l message was schedul ed by handl eProcess()
di sci pl i ne- >handl eSel f Message( message) ;
fini shService(nessage);
di sm ssMessage( message) ;
return;

wel coneMessage( nessage) ;
wr i t eNanel nPat h( message) ;

di sci pl i ne- >handl eProcess(nessage) ;

voi d Server FU: : FCFSDi sci pl i ne: : handl eProcess( PCMessage* nessage) {
if (parent->nunber Msgl nSyst em <= parent->server Capacity) {
par ent - >schedul eAt (si mul ati on. si nili ne() + serviceTi ne(nessage), nessage);

}

el se fcfsQueue.insert(nessage);

voi d Server FU: : FCFSDi sci pl i ne: : handl eSel f Message( PCMessage* nessage) {

if (fcfsQueue.enpty()) return;

PCMVessage* nsgFromQueue = (PKMessage*) fcfsQueue. pop();

par ent - >schedul eAt (si mul ati on. si nili ne() + serviceTi me(nsgFronQueue), nsgFronmueue);

doubl e Server FU: : FCFSDi sci pl i ne: : servi ceTi ne( PKMessage* nessage) {
return parent->get TaskTi ne(nessage) / parent->stdSpeed;

voi d ServerFU: : 1 SDi sci pline:: handl eProcess(PCMessage* nessage) {

par ent - >schedul eAt (si nul ation. sinli me() + serviceTi me(nessage), nessage);

voi d ServerFU : PSDi sci pl i ne: : handl ePr ocess(PCVessage* nessage) {
/1 inplenentation of processor sharing discipline
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