Simulating Process Chain M odelswith
OMNeT ++

Falko Bause, Peter Buchholz, Jan Kriege, Sebastian Vastag
Technische Universit Dortmund, Informatik IV

D-44221 Dortmund, Germany

{f al ko. bause, pet er. buchhol z,

jan. kri ege, sebasti an. vast ag}@do. edu

Author prepared version of a paper published in

Proc. of 1st International Conference on Simulation Toald &echniques for Communications, Networks and Systems
(SIMUTools 2008), Marseille, 2008.

Copyright 2008 ICST

http://doi.acm org/10.1145/1416222. 1416246

Simulating Process Chain Models with OMNeT++

Falko Bause, Peter Buchholz, Jan Kriege, Sebastian Vastag

Technische Universitat Dortmund, Informatik 1V
D-44221 Dortmund, Germany

{f al ko. bause, pet er. buchhol z, j an. kri ege, sebasti an. vast ag}@udo. edu

Abstract

This paper presents an approach to simulate complex higcat@rocess chains resulting from large logistics neksor
in OMNeT++, a discrete event simulation environment designed for comication networks. For this purpo&MVNeT++
has been integrated as a new simulation engine intBith@/B toolset which is designed for the analysis and optimizabion
large logistics networks. The paper highlights the maipste the automatic transformation of a hierarchical preasin
model into a hierarchical model ®MNeT++. Furthermore it shows how the transformation has beenatalitiand how

detailed performance figures can be evaluated @NHNeT++.

1 Introduction

For the development and operation of contemporary netwiorksgistics, model based analysis and in particular the use
of discrete event simulation is becoming an important fatdensure that the networks meet the requirements comgerni
technical measures like delivery times or service levets an the other hand, are also cost effective. In the pastitfezaht
workflows in a logistics network have been specified with pescchains as a poorly descriptive tool that does not all@t@n
derive simulation models from the description. This, hogreimplies that required simulation models have to be $igeldn
their own without any formal relation to the process chairdeloOf course, this approach has the disadvantage thatetiff
models have to be created for one system with all the knowhlgnes of additional modeling effort or inconsistencies
between the models. Thus, the use of the entire process efwalel as a base model for a detailed simulation model of a
logistics network is highly recommendable.

To realize this approach partially informal process chagueis have to be enhanced by formal information necessary to
build a simulation model and adequate software tools foukition have to be available. Of course, simulation of pssce
chains is not a new idea [18], but a general approach whiclvalbne to refine a high level process chain into a detailed
simulation model and which can cope with the complexity amd ef models of today’s logistics networks is still missing
Available simulation tools for this purpose are eitherniettd prototypes [17] or extensions of business procesietimg

tools [11]. In both cases the capabilities of representimanalyzing more complex models is limited. Available diation

tools for manufacturing systems [15, 16] that have beenldpee for large systems lack basic features which are nagess
to model logistics networks and general simulation frant&ware too low level such that an adequate modeling of comple
process chain models requires too much effort.

In the past we developed a class of hierarchical process of@dels which include the necessary information to map them
onto discrete event simulation models [1]. The model cldsapted a®roC/B, is based on a hierarchical description where
activities of a process chain are performed by some funectiviwhich itself can be a complex process chain or some basic
unit describing the consumption of space or time. The regulhodels may include an arbitrary number of hierarchical
levels which form an acyclic graph. OriginalllgroC/B models have been mapped onto simulation models using the too
HIT [3] which has been developed in the mid eighties for modetomplex computer and communication systems. HIT
perfectly supports the hierarchical structurd”o6C/B models and allows the analysis of results according toraryipaths
through the hierarchy which is an important feature, inipatr, if economic measures where cost drivers becomeritapo
should be evaluated via simulation. However, the use of H8® emtroduces some serious limitations. Since HIT gemsrat
a simulation model in the language SIMULA, a runtime envinemt for SIMULA has to be available to run a simulation.
Unfortunately, the number of available SIMULA compilersraher limited. Furthermore, HIT as a nearly 20 year old
tool does not support several modern features of an objemtted simulation environment like animation or interfate
software tools for post-processing of results or for the iaistration of models. For these reasons we decided torateg
a new simulation tool in our modeling environment and to supp mapping ofProC/B models onto the corresponding
models.

An adequate simulation platform has to observe the follgweguirements:

e The full ProC/B model world has to be mapped in the simulation model.

e The hierarchy of the process chain models has to be adeguepeesented in the simulation model.

e Detailed measures that are definabl®iC/B should be analyzable in the resulting simulation models.
e The simulation tool has to be driven by tReoC/B interface.

e Simulation should be easily made interoperable with otbelstof theProC/B environment like the optimization tool

OPEDo [5] or the trace analyzer Traviando [13].

e The simulation environment should be stable, should alledefinition and simulation of large models and it should

support modern features of object oriented simulation.
e The simulation environment should be freely available é&search according to some adequate open source license.

The last two points restricted the number of available ts@aificantly since most available open source simulatahst
where not adequate to really simulate, in an efficient andréree way, large models as they result from large logsstic
networks. After a more detailed look on the remaining tools,choice wa®©MNeT++ [14], a simulation environment gen-

erating simulations in C++. AlthougBMNeT++ had been developed and used for communication systemsyétlisuited

for the mapping of hierarchical process chain models anidat falfills almost all of the above requirements. Nevertiss|
the mapping ofProC/B models ontdOMNeT++ is far from being trivial since complex hierarchies have éotiansferred
from one view into the other.

This paper introduces the combinationRC/B and OMNeT++ to build a new and powerful simulation environment
for process models of logistics networks. The work presbist@artly based on [10, 20]. In the following section we fiyie
present the basic tooroC/B andOMNeT++. Afterwards, in section 3 it is shown how the hierarchicelsture ofProC/B
is mapped onto a module structure@MNeT++. Then we show how the behavior BfoC/B processes is performed in
OMNEeT++. Section 5 is devoted to the validation of the mapping, fe#ld by a first comparison @MNeT++ andHIT by

means of small examples. The paper ends with the conclusions

2 Basic Software Tools

The approach we presentin this paper ie€/B as input format, maps the modelS@NeT++ and simulates the resulting
model usingOMNeT++. In this section we briefly present the main features ofRf@C/B approach and give afterwards a

very brief introduction intdDMNeT++. For further details about both tools we refer to the literaf1, 14].

2.1 Introduction to ProC/B

ProC/B[1]is a process chain-based modeling approach which isingbd collaborative research center “Modelling of Large
Logistics Networks” 559 (CRC 559;[7]) for modeling and perhance evaluation of logistics networkroC/B accounts
for the specifics of the application area by capturing thecstire in form of function units (FUs) and the behavior byqess
chains (PCs). IiiProC/B, FUs might offer services, which can be used by activitiegrotess chains. Each service is again

described by a process chain.

Freight_Village

1
dint(0,2):INT) truck
(randinO2YINT) N
drive_to_terminal handle_truck leave_freight_village
> (uniform(4,6)) (data load)-->(data Joad) (uniform(4,6))
ELAY

EVERY négexp(1.0/6) (DELA Terminal I DELAY

1
(randint(30,50):INT)

train
(IoadkINT)
(: Yo dive._to_terminal handle_train leave_freight_village
(uniform(4,6)) (dataload)-->(data.load) (uniform(4,6)) _’®
DELAY T
rain_handiin

EVERY negexp(1.0/60) 0 DELAY

Terminal

train_handling
Gad:INT)-->(new_load:INTS

truck_handiing
"oad:INT)-->(new_load:INTf3

Figure 1:ProC/B top level model “Freight Village”

Figs. 1 and 2 present an example ¢fraC/B model representing a simplified freight village. A freiglitage is a node of

a logistics network which provides facilities for storingagls temporarily and transshipment between several typaraérs.

Terminal

truck_handling
(load:INT)

>
(new_load:INT)

0

unload
([data.load])

storage.

change

use_forklifts

(2 * data.load)
forklifts.
request

drive_to_load_position
(uniform(1,3))

DELAY

determine_load
(data.new_load := randint(1,3

S VS
)) ([-data.new_load])

use_forklifts
(2 * data.new_load)

—— @

CODE

train_handling
(load:INT)

storage
change

forklifts.
request

>
(new_load:INT)

0

unload
([data.load])

storage.

change

use_forklifts
(2 * data.load)
forklifts.
request

shunt
(uniform(4,6))

determine_load

5

(1-data.new_load

load
,0)-->(data.new_load)/ / (2*

use_forklifts
data.new_load)

(data.new_load := randint(30,50);)
CODE

storage.
alter_or_skip

forklifts.
request

CAP=25

MAX={300]

14 forklifts \

storage
change

request

(@mountINT[)

%moum; RI EA&’

alter
(position:INT,by_value:INT)
alter_or_skip

(position:INT,from_value:INT,
to_value:INT)->(achieved:INT)

content
(position:INT)->(content_value:INT)

Figure 2: Function Unit “Terminal”

The top level of the model (see Fig. 1) is specified byF¢i ght _Vi | | age whose behavioral part is described by two
PCs:truck andt rai n. The structure part consists of a single (user defined) Fohedder ni nal , which offers two
servicest r uck_handl i ng andt r ai n_handl i ng. Services can be compared to functions in programming lages!

In the example both services have an input parametaad) and an output parametar¢w.| oad). Behavior and structure
part of a FU specification are interrelated by expressingkbkervice of which FU performs an activity. In Fig. 1 the two
PCst ruck andt r ai n consist of three process chain elements (PCESs) each, aratlirchses the second activity calls
a service of FUTer mi nal . The inner view of FUTer i nal is shown in Fig. 2. The offered services are specified by
PCs and some of their activities use the services of two Beecatandard function units which offer predefined sersice
(e.g.r equest andchange). ProC/B offers two kinds of standard FUs: servers and storages.eBe(sed orkl i fts

in Fig. 2) capture the familiar behavior of traditional qgeswlescribing the consumption of time and storages dedtrbe
consumption of space (se¢ or age in Fig. 2) and support the manipulation of passive resouresmplified version of a
storage is a so called counter, which is a standard FU ofteshfas modelling synchronization aspects. A change to atesun
or a storage is immediately granted iff the result respgmsiied upper and lower bound vectors; otherwise the réimges
process gets blocked until the change becomes possible.

Process chains directly visualize behavior. The freighagé model of Figs. 1 and 2 reads as follows: Incarnations of
process chaibr ai n are generated according to a Poisson distribution (with @aneé60 time units). Each train has a load

which is initially chosen by random according to an uniforistidbution (betweer30 and50). After incarnation, the train

“drives” to the terminal which is modeled here by a delay &f finocess for a uniformly distributed duration. Afterwaitoks
train “is handled” by servicér ai n_handl i ng of Ter i nal . This might result in a change of the train’s load. Finally
the train “leaves” the freight village and the process teates at the sink. Considering Fig. 2 we see that handlingjim tr
means first to unload the train, which is possible if $her age’s capacity 0f300 units is not exceeded, otherwise the train
has to wait until unloading is possible. Afterwards the sefwor kil i f t s is called, which is a multi-server queue with
servers and a (default) FIFO service strategy. The senvieefor the requesting process is determined by the exjmre8six

dat a. | oad thus modeling the time for unloading a loaded traidfterwards the train “shunts” to a new position (which is
again modeled by a delay of the process) and determinesthiad. The new load is removed from the storage if possible,
otherwise the available number of units are removed fronstbeage (which is the semantics of servéde er _or _ski p).
Finally servicer equest of the servef or kl i f t s is called again before the process “leaves” the terminak Béhavior
of PCtruck and servicd r uck_handl i ng reads similarly. In the sequel we will use the term processhe process
description and its incarnations.

In the course of the CRC 559 a toolset has been developed whiefides a graphical user interface to speéfpC/B
models and transformer modules which nfRxpC/B models to the input languages of existing analysis toolthadProC/B
models can be analyzed automatically (cf. [1] and Fig. 3).

Simulation is often applied for a detailed analysis, siniég applicable to alProC/B models. In the past, simulation was
only supported bHIT [3, 4]. HIT is a modeling environment which does not only provide a satau| but also offers efficient
non-simulative analysis algorithms being based on proethrat queueing networksHIT is basically tailored to steady-state
analysis, based on a single replication approach. TimeSamalysis techniques are applied to individual streantatd
produced by the simulation. A key featureldfT is that these streams may be itemized in detailed ways. iB.§ig. 2
it might be of interest to measure separately the numberrofcgecalls of FUst or age caused by trucks and trainsll T
provides facilities to describe and to evaluate measuresuich activities at a lower level which are caused by somidrig
level originator and to itemize corresponding results wétspect to the originators. As mentionétdT is nearly 20 years old
and needs a SIMULA compiler for execution. Therefore we mdgentegratedOMNeT++ into theProC/B toolset trying to

benefit from the features of a modern object-oriented sitimri@nvironment.

2.2 OMNeT++

OMNEeT++ is a public-source simulation environment that has beeeldped for the modeling of communication protocols
and has been extensively used in this area. Although it igioreed on the web page [14] th@MNeT++ has also been used
for the analysis of business processes there is nothinfabl@about this application and it does not seem that a cetepl
mapping of hierarchical business processes @#iNeT++ models has been done before. The whole tool environment
includes a graphical front end and several other tools thgiert the modeling and simulative analysis of complexesyst

Of particular interest is the simulation kernel which isttem in C++ and offers several classes to support the spesimific

1Access notations to parameters and variables of processpsefixed with keywordlata for technical reasons in order to distinguish them from glob

variables. Global variables are not shown in Figs. 1 and 2.

ProC/B GUI
- Modelling
— Measure Specification
- Result Visualisation

ProC/B Mode
& Measures

Transforme
Simulation Mode QN Model GSPN Model
& Measures & Measure & Measures

\ni

\

OlNe T+ T ; APNN Toolbox
i len - Simulation. ~'CTMC Analysis
- Animation ~ QN Analysi - Invariant Analysi
- Model Checking
Traviandox OPEDo
— trace - numerical analysis
visualisation of CTMCs
— optimisation

Figure 3:ProC/B toolset

of complex hierarchical models. Furthermore, the resgiéimulation models are known to be rather efficient.

The basic entities of a®@MNeT++ simulation are modules. Modules can be simple, which mdzatsthey are imple-
mented as C++ classes, or compound modules which meanbkélgatre composed of other simple or compound modules. In
this wayOMNEeT++ models are hierarchical. The complete model containin@teeall hierarchy is denoted as the system
module. Modules communicate via gates using messagess Gaiebe input or output and a module may have an arbitrary
number of gates. Messages are sent either directly to a gatergy a path. Basically paths are used to describe theférans
of messages over some medium. Therefore they offer paresretspecify e.g. the bandwidth or loss rate. The connection
of modules via paths is specified in thened file which includes the structure of the model and can be deéfi¢h the
help of a graphical interface. The graphical interface daa e used for the animation of the running model by visuadiz
messages that are sent along a path from one module to another

An arriving message is interpreted in a module as an eventhenaser has to specify a routihandleMessage() for each
arriving message type. Messages themselves can be stdictata types and may include information that is used in the
correspondindnandleMessage() routine. In the routines new messages may be generated iia@lgcbr after some delay
and already scheduled messages may be deleted. Thus, thes driven approach is realized by the processing and
sending of messages. Apart from this general mechanisnsitin@ation kernel ofOMNeT++ offers a lot of support to
realize complex simulation models like up to date random bemngenerators, support for statistical evaluation ofltesu
support for parallel replications.

From this very brief description it should become clear thath, ProC/B andOMNeT++ use a hierarchical structure to

describe models. However, at a second view it becomes diaathte model views differ in several yet important details.

OMNeT++ has been designed with communication systems in mind sathhtbssages have a physical meaning whereas
in ProC/B hierarchy is introduced by calling services of FUs withoxpleeit messaging. Another important aspect is, as
already mentioned, the definition of detailed and originetefent measures which are not directly supporte@liNeT++

and therefore have to be implemented separately.

The challenge is to get a correct mapping frénoC/B onto OMNeT++. Since correctness of the mapping cannot be
formally defined because only a subsetRobC/B has a formal semantics in form of a Petri-net mapping [6], wéne
correctness by comparing the simulation uskig and OMNeT++. TheHIT simulation is usually taken as the correct
behavior, since we defined an operational semantics of ttieviftoC/B paradigm viaHIT [2], and thus theOMNeT++
model has to show the same behavior. Of course, a detailedarison implies that the model is completely deterministic
since otherwise different random number streams will rearélyg result in different behaviors such that only statatresults
can be compared using adequate statistical methods [12lisé& both, simple deterministic models to show that thechasi
behavior is the same and more complex stochastic modelsipa@ statistically the result measures.

In the following two section we first describe how the hietacal structure of &roC/B model is mapped onto a corre-
sponding structure of a®@MNeT++ model. In the subsequent section the mapping of the behaviwesented. Both steps

are accompanied by small examples showing the basic ideas.

3 Mapping of Structure

Our implementation of mappingroC/B to OMNeT++ consists of two main components: The convepi@ch2ned and a
library namedOsimu containing implementations &roC/B's behavior as modules f@MNeT++.

ProC/B models are specified graphically in tReoC/B editor and are stored in files. Next to the model itself thecedi
allows for saving experiment descriptions in separate.files stated above, these general model/experiment desoript
files can be used in different analyzers, either numeric mukitive. Thus, the generic model descriptions generayed b
the editor have to be translated to specific input formatgs. deo simulative analyzer based @MNeT++ the converter
procb2ned reads process chain models and outgdit4NeT++ network descriptions*(ned-files) as a direct input format
for the OMNeT++ simulation system. A©OMNeT++ supports hierarchical modeling of moduléspC/B's structure is
preserved and included inned-files by procb2ned.

OMNeT++ requires behavior to be located in atomic entities callechpte modules”. They are written in C++ and
handle arriving messages in order to trigger specific reasti The sources are combined withed-files with an identical
naming scheme, describing module interface®MNeT++’s simulation system. For model design these basic modudes a
instantiated and related by connections in anothmad file, forming a "compound module”. Non-basic models can bedus
similar to basic modules, making it easy to form hierarchicadels.

As ProC/B also supports hierarchical modelimmocb2ned’s primary task is to map given hierarchies. For every laggua
element inProC/B exists a corresponding implementation as a basic mod@&iNeT++. PCEs only form linear structures
at the same model level, gwocb2ned simply inserts them as basic modules into its outpogd files. Of course, synchro-

nization and event driven generation of new processessogaksible ifProC/B using available language elements (see [1])

which are realized as C++-implementation©RNNeT++. Following the rule of one module p@roC/B language element,
Standard-FUs like ServerFU, StorageFU and CounterFU aodrderted directly into the model.

Hierarchies irProC/B are the domain of constructed FUs, usually including attleas process chain offered as a service
by the FU. To model these FUs m@MNeT++, compound modules are formed byned files, one for each constructed
function unit. If the converter reads a constructed FU omiinjp goes one level down in the recursion, applying the abov
mapping rules to a new.ned file named after its FU irProC/B. After returning from recursion, the compound module
representing a constructed function unit can be used ligeo#iver basic module.

The subsequent step is to map process flow through a procaisslghestablishing connections between modules. The
acting entities oProC/B are all processes within a module. While processes are rafispgbject-types in HIT, it was a
natural choice to map exactly one process type to exactlynmemsage type i©OMNeT++. Hence,ProC/B’s connections
between process chain elements are mapped to module ciomsantOMNET++.

As shown in Fig. 1, connections iProC/B only exist within a PC specification, there are no explicihicections from
PCEs to FUs or the other way round. Only implicit relationsi@en PCEs and FUs exist by specifying parameters in PCEs
denoting which FU and offered service they call.

We transferred this idea OMNeT++ by using traditional message passing through gatewaysieeat thessage sending
as two separate forms of connections. The first task is daamktforwardly byproch2ned. Basic modules act as PCEs
(excluding sinks) and obtain one connection to their sisme$orming a structure similar to process chainBiaC/B. For
this purpose, every PCE module has at least one set of inpptfogateways acting as a socket@vINeT++’s connections.

Again, relationships between modules of PCEs and FUs emigtimplicitly in OMNeT++. Two parameters are given in
the*.ned file for every instance of a PCE using a function unit: The tdim of the FU and the name of the offered service
(keeping in mind that FUs can offer multiple services). Tihfermation is used in the PCE initialization phase to find th
reference to their loosely bound function unit. Requestiisgrvice in the simulation phase is done by transferringatgEs
directly usingOMNeT++'s sendDi r ect () method to the function unit bound to the service. Finishirkgss service is
also signalized by returning the message.

Using OMNeT++'s alternative way to transfer messages has some advardaggrred to the traditional way of using

module connections:

1. As FUs can be used by possibly infinitely many PCEs, ongjtéirplicit connections helps to keep models concise.
The target to which direct messages are sent to is deterrdiméng the initialization phase bMNeT++ and saved

as a reference, so no extra time is consumed when analyzngatel.

2. Messages sent directly keep track of their senders orclk, sa returning a process message to its sender after per-

forming a service is a simple task in the FU’s implementation
3. The visual appearance in tReoC/B editor andOMNeT++/TKenv is kept similar.

Function units need one input gate per offered service. @gjates are redundant here, as the virtual sink terminttang

service’s process chain will return the message via diraaster to the calling PCE. The ability to send and receiveati

messages requires some preconditions for modul@siNeT++: Direct messages can only be delivered to dedicated input
gates without any other incoming connection. Therefords R©dules calling FUs need an additional input gate resdored
callbacks of their associated FUs. By convention, new mee arrive at the first, status messages from FUs at thedsecon

input gateway.

3.1 Animation

Animportant additional benefit of usif@VINeT++ for simulatingProC/B models is the animation capability OMNeT++’s
graphical workbenc®MNeT++/Tkenv. ExistingProC/B analyzers are tuned according to efficiency and performafite
solution and are consequently batch processing systenm@ngnia difficult to explain the dynamic behavior of processe
from the model. However, such an explanation is often ingrin teaching and also in real projects as we noticed when
modeling large systems in cooperation with real users. JOMNeT++/Tkenv, messages moving between modules can be
animated by a moving red dot as an adequate visualizatigorémesses moving through process chains and making use of
FUs. In this way, the dynamics of a system is clearly visible.

ProC/B’s graphical representation was carrie@@NeT++, usingOMNeT++'s feature to define pictograms for modules.

procb2ned assigns bitmaps to every instance of the basic module nmatdtsitype inProC/B.

ProcessID
@—«“—»O—» CallPCE ."
PeMessage (] &

Source Sink

Function Unit
®—

Figure 4: Animation of PCMessages

When settindDMNeT++ to a "slow” running mode irOMNeT++/Tkenv, the user can trace processes created by a source
as a red dot moving along the process chain element’s ogfgoimection (see Fig. 4). Arriving at a PCE, the dot is dedaye
until the PCE ends its call to an FU. Since no permanent cdiameexists between PCEs and FUs, a temporary connection
is drawn acting as a path for messages performing a requésibyg sent directly to the module of the FU (Fig. 5). When
the request is served, a message can be seen moving backwheddalling PCE on a reverse connection. Furthermore,

different windows can be opened to view the animation siamdbusly at different levels, i.e. in different FUs.

4 Mapping of Behavior

The second component of our framework is the mapping of tliawer of ProC/B language elements onto modules in

OMNEeT++. These modules are completely configurable by passing deasn so we were able to compile a libr&simu

10

ProcessID '
(05 eoree)35
L e | >

Source Sink

PCMessage :

Functit#n Unit
\
@

Figure 5: PCMessage moving over temporary connection

containing generic implementations for PCEs and FUs. Ee@mnent ofProC/B's language is mapped onto exactly one
module implementation, inheriting inMNeT++’s modeling interface by subclassini nmpl eModul e directly.

OMNEeT++ offers two different programming styles, lightweight pesses and a transaction based programming para-
digm. We decided to follow the latter as it matches the ba#@s of process chain models and it scales much better for
large models. Since process chains are characterized bgtémeal of time consumed by a process between entering and
leaving a chain, a transaction based discrete event agpnoakes it natural to map these intervals to arrivals andrtiees
of messages to/from modules@MNeT++.

The dynamic part oProC/B models are processes following the route defined by pro¢esssx Analogously, processes
are represented by message©MNeT++. The mapping tdOMNeT++ is done by subclassingMessage only once to
PCMessage (short for "process chain message”).RroC/B, transitions of processes between PCEs are instantarigoes,
is consumed by requesting services at function units or lojcdéed delay PCEs. This idea is reproduce@®MNeT++ by
messages of typeCMessage that use connections in zero time, leaving progress of mtadelto the modules.

Now we will describe two examples to explain our mapping dfdgor more explicitly.

Identifier
(TIME : real)

DELAY

Figure 6:ProC/B's symbol for a delaying PCE

Figure 6 shows the symbol of a Delay PCE as a simple languageeelt ofProC/B. It has the task to delay arriving
processes by some amount of time, either deterministic @ tandom number from some predefined distribution. Listing
1 is the according.ned-file used byOMNeT++ to pass parameters to modules and define gateways wheregeessave
and leave.

A process chain element DelayPCE is defined with just onegbgiates because it is connected to only two other process
chain elements. Parameter delay is set by*thed-file instantiating this module as specified in the origiRedC/B model.
Implementations of DelayPCE subclassaofg npl eMbdul e have to respect the fact that a second or third or an arbitrary

number of processes can arrive while the first process lislstdyed.

11

Listing 1: Source of DelayPCE.ned

si npl e Del ayPCE
par anet er s:
delay : string
gates:
in:in;
out: out;
endsi npl e

Listing 2: Source of DelayPCE.cc

#i ncl ude "Del ayPCE. h"

voi d Del ayPCE: : handl eMessage(cMessage* nsg) {
doubl e del ay = (doubl e) paran("delay");
sendDel ayed(nsg, delay, "out");

The concrete implementation in listing 2 is short, overingdhe functionhandl eMessage(cMessage* nsg) and
implementing the specific reaction on an arrival of messages

The delay time is generated from the predefined distributimnfollowing line in the code delays the incoming message
by the amount of time usin@MNeT++’s sendDel ayed() method. Please note that no messages are stored inside the
module, allowing the module to accept an infinite number aicpsses. Methodar an{) reassembles the well known
methodpar () to fetch parameters stored’imed files. The new method parses expressions us@ia/B models, which

can be either arithmetic expressions éraC/B specific naming of random distributions.

SPEED : number
DIS : string
CAP : number

/ Identifier \

request
(amount:REAL)

Figure 7: Server Function Unit iRroC/B

As an advanced example ServerFU is shown in Fig. 7. It repteseset of limited and identical resources which processes
can request and use. ServerFU offers the service "requeBICESs, a parameter for the requested amount of service has to
be passed with the calling message.

Listing 3 contains the definition of ServerFUs@MNeT++’s modeling language. Three parameters are passed to the

module byOMNEeT++ at runtime:

capacity number of resources offered by the server

12

Listing 3: ServerFU.ned

sinpl e ServerFU
paraneters
i nPat h: bool
speed: nuneric,
capacity: nuneric,
di scipline: string
gat es:
in: in;
out: out;

endsi npl e

speed of a resource to execute service calls. This means thahgdlCEs request an amount of service according to some

average resource. The concrete FU can be faster (spégdslower (speee: 1) or an average resource (speed).
discipline the resource scheduling the server uses.

By offering a single service, ServerFU only needs one pajabés. As stated before, messages are delivered to these gat
by direct send calls, making it unnecessary to connect tbdute with other elements in the model.

The parameter discipline plays an important roléPioC/B models, as the behavior of function units are matched to
the way resources are shared in the real system. Curremélg $theduling disciplines can be mapped frieraC/B to
OMNeT++:

FCFS queues serve requests for resources by the rule "first carstesdrved”. Processes which obtained a resource, allocate

it according to the amount defined by the constant or digiohwf the service call and parameter "speed”.

IS "Infinite Server”, every request is immediately granted aakkes the time specified by the service call and parameter

"speed”.

PS "Processor Sharing”, all requests are immediately grantery process makes use of the full set of resources (ac-
celerating service time by the number of resources), butdakare resources with other process using the server at
the same time. Capacity is distributed uniformly among edlcgsses (slowing down execution time by the reciprocal

value of the number of processes).

It is possible to interpret these three types of schedulgdifferent kinds of servers, yet their implementatiorONI-
NeT++ uses only one module to simplify the structure mappingiogb2ned. Internally ServerFU makes use of the strategy
pattern [9] to vary it's behavior according to parametestipline”.

An excerpt of ServerFU’s source is shown in listing 4. Haandl eMessage() method is divided into two parts by an
if clause, newly arriving process messages with selfMessagto false are served in the lower part.

At the beginningywel comeMessage computes some basic statistics of arriving processes asiloled in section 4 and
incrementsnunber Msgl nSyst em Additionally, the ServerFU pushes its namewini t eNanel nPat h on the stack

keeping track of every process chain element the messaged#wough. The next line is part of the strategy pattern,

13

di sci pl i ne holds objects of typ&er ver FU: : Di sci pl i ne encapsulating FCFS, Infinite Server or Processor Sharing
as described above. Those strategies are instantiateddieg®n parametati sci pl i ne in listing 3 on module’s initial-
ization. Their behavior on newly arrived processes is d$gecin handl ePr ocess() . Here we present the methods of
FCFS and IS as examples: In FCFS, time is granted to procassesg as the servers capacity is not exceeded. Otherwise
the process is enqueued until more resources become deaildie Infinite Server is even more simple, it just accepésyev
process.

In both examples, time consumption is modeled by schedyingess messages to the function unit itself, adding the
amount of time the service will take before sending. Whemtleesage returnsgl f Message is true and the upper part of
handl eMessage() is executed. Again, an object of tyger ver FU: : Di sci pl i ne handles processes a second time.
In FCFS, the first process message waiting for free resoigcemoved from the queue and immediately scheduled for com-
pletion of the service. The corresponding method for Indigierver is not shown here, it equals to an empty implementati

since this discipline does not need any further action aftenpleting a service.

4.1 Trandlation of Result Measures

The main focus when analyzing a simulation model is on deteéng quantitative results for the model, like for example
throughputs or response timeBroC/B offers the possibility to measure properties at every FOugt depending on the
type of the FU the available properties may differ: Througthpesponse time and population can be measured at any FU.
Additionally, for every server the utilization and for eyestorage the state can be examined. For composed FUs théamode
may define further measures (called reward?rinC/B). ProC/B allows for three different types of rewardSount, event and

state. Rewards of the typevent can be used for serially collecting values, rewards of tipe tpunt for estimating rates and
rewards of the typetate for the description of trajectories. Those types are usethforealization of the standard measures
like throughput or response time as well. While the usem@efineasures have to be updated manuBHgQ/B provides a
model element for updating those rewards), the standardunesiare updated automatically whenever a process enters o
leaves a FU.

As already mentioneBroC/B allows for streams to be itemized in detailed ways. This &sator example the measure-
ment of the train population at the terminal in Fig. 2 withoatinting trucks. To achieve this, the modeler can specifgth p
consisting of elements in tHeroC/B model. Only processes, that have moved through all of theifsga elements will be
considered when updating the stream. Most of the descrédmdries available iRroC/B are derived from the measures that
HIT offers, thus allowing an easy transformation frenoC/B to HIT.

Currently when analyzing the model withH T, during simulation streams of data are generated, whichasieally lists of
pairs consisting of a time stamp and some associated valhiedata is used to calculate the usual characteristicsriian,
standard deviation and confidence intervals for the diffeneeasures. ThEroC/B toolset contains a tool, that generates
plots and visualizes the simulation results.

When usingOMNeT++ for simulation the key features like itemizing streams al#f asthe output data of the simulation

should be preserved, so that this new simulation enviromifitsrinto our existing toolset. Whil©OMNeT++ offers basic

14

facilities for measurementin e.g. communication protecthley need to be extended to meet the demands for the sionulat
of logistics networks.

In the remainder of this section it is shown how the measuréimémplemented for Standard-FUs like servers or storages
Measuring properties at composed FUs requires some aaaligffort and is presented afterwards. Finally the itengzf
streams is explained.

For Standard-FUs the measurement streams have to be updsad process enters (which means a service of the FU
has been requested by a process) or leaves the FU. OMN&T++ representation of the model a service request is indicated
by a message sent to the FU. The population is updated whesmevecess enters or leaves the FU, throughput and response
time are updated when a process leaves the FU. For Stantir{like server or storage) the data collection and evaluati
is implemented as C++-Code within the corresponding simpdules. This brings up problems for composed FUs: When
the ProC/B model is translated to aDMNeT++ representation, composed FUs are represented as compaguts, thus
only a NED description exists that lacks the ability to impknt code for measurements. Therefore the module of every

composed FU contains a specific simple module calldeasures (see Fig. 8) to realize measurements in composed FUSs.

2 3 4; J

FUbiSasures 5

=

FunctionUnit

Figure 8: Message flow for the measurement in composed FUs

Fig. 8 shows the message flow that is necessary for measuremeomposed FUs. Starting at the source a message is
sent to the Process-ID (Process-IDs are used for the idmtiifh of a process chain and the declaration of local veesadmnd
are always connected with the source of a process chaini #rere a message is sent to the special moduleasures.
This module has no counterpartinoC/B and its sole purpose is to enable the measurement in comptsedAfter the
message is returned to the Process-ID, further elemenite gifrbcess chain are processed (denoted by three dots i) Fig.
When the process has reached the sink, messages to the rrbiMitasures and back to the sink are sent again. All update
operations of streams for a FU are performed withitMeasures. The first message (sent by the Process-ID) means that a
process has entered the FU (and thus the population is wupfitatexample), the second message (sent by the sink) means
that a process is leaving the FU again.

As already mentioned befor®roC/B allows one to specify a path consisting of elements, so thit processes, that
moved along that path through the model will be considerednampdating measures. Those paths are part dPtb€/B
experiment description and need to be translated tOMBeT++ model and taken into account when updating the measure-

ment streams. When mapping@/INeT++ the ProC/B experiment description is saved in ‘ami-file, that is loaded when

15

the simulation starts. Additionally, a parameter is setdach element appearing in one of the paths in the correspgndi

* ned-file when the model structure is mapped. During the simotettiin the path a message took through the model is saved
and compared with the paths, that have been specified iRrti&B experiment. To store this information a new message
class is used, that can carry the path information. Upddteaneasurement streams are only performed when the path of
the message matches one of those paths frorRth@/B experiment.

OMNeT++ provides several classes for the collection of data and #@memtion of statistical measures like mean or
standard deviation which are derived from the abstracsd&atistic. Because the calculation of means does not match
the specification of the streamsmnoC/B, our ProC/B to OMNeT++ implementation provides its own classes (derived from
Csatidtic) to generate statistics (one for each of the stream tgyees, state andcount mentioned before). For the estimation
of confidence intervals the batch means-method [8] is uskd.gEnerated output is saved in the same format as the output

of HIT, so that our existing tools can parse the data for resuleptaton.

5 Validation of the Transfor mation

If different tools are used to simulate a model, then it isessary that the semantics of the model is the same in every
simulation tool. Ideally, identity of semantics should b®yed formally. Such a formal proof would require a formal
semantics such that formal analysis techniques are apj#ita check equivalence. Unfortunately, simulation medek
much too complex to be described in simple languages thaw alformal analysis. This implies that identical behavibr o
models cannot be strictly verified, it can only be validated.

ProC/B was designed to introduce a well defined semantics and amated analysis to hierarchical process chain
models. A specification was laid down in [2], describing temantics of PCEs and FUs in an operational form. Many aspects
of the operational semantics are implicitly defined by th& Hintime environment. Thus, the behavior of the HIT simiolat
model is the behavior which should be observed wBNeT++ executes the model. However, the operational semantics
depends on several aspects like execution order of sinadtenevents, the order of initialization which are gengnadit
well defined in discrete event simulation and, additiondly realization of random processes that depend on themand
number generator.

We distinguish between the validation using models withwaitdout random numbers. The former will be named deter-
ministic models, although this is not strictly correct grgimultaneous events may yield a non deterministic behakiar
the deterministic models behavior can be compared usiegdraAlthoughHIT andOMNeT++ both have a trace function
it is not recommended to use these functions for comparisiogs the format differs and cannot be easily transformemh fr
one to another. Instead models are augmented with code REIEding output statements. Such PCEs can be added to every
PC. ThusHIT andOMNeT++ generate the same trace output which can be easily compared.

To prove equality of traces we developed an automated tpstinironment to compare output®foC/B models analyzed
with HIT andOMNeT++. It is based on a set of simple and determiniBtioC/B models, designed to test the behavior of
exactly one element dfroC/B'’s language. Driven by our batch testing environment, idafy formated output oHIT and

OMNEeT++ is compared by an awk script, highlighting differences inasw@ement results and event traces. Additionally,

16

a selection of deterministic models taken from former prtgjés also subject to comparison, making sure thatRva€C/B
language elements implemented in modules interact coyrect

Testing nondeterministic models is limited since difféan@mdom number generators are useHim (actually implemen-
tations of SIMULA) andOMNEeT++. So, even starting with same seeds, results and event avdkedifer. Consequently,
we can only check in a statistical sense whether the impléatien is correct, i.e., the different language elementsale
identically. For this purpose, animations can be comparades can be visualized and results can be compared uatiggist
cal test. A typical approach is to estimate the same measthidwoth simulatorsHIT andOMNeT++, and then statistically
evaluate a random variable describing the difference bavith measures. This can be done by comparing confidence
intervals or using statistical tests (for details see €.g}[€hap. 10]).
Table 1 shows simulation results of an M/M/1 system-~0.5) as an example of simple nondeterministic system included i
our testing environment. Results are sufficiently closessuee an equivalent behavior for this model with a high icarice
probability. We additionally compared several simulatiesults of larger models and obtained similar minor dififees (cf.
Sect. 6)

Table 1: M/M/1 system simulation results (90% confidencerivdl)

Population| Throughput| Response time
HIT 1.00202 1.00023 1.001789
+0.18% +0.05% +0.16%
OMNeT++ | 1.00126 0.99964 1.000905
+0.33% +0.14% +0.22%

6 Comparison of performance and simulation results

Though our implementation dfroC/B on OMNeT++ is not as mature as the one BT, we achieved promising runtime
results. Times in table 2 were taken for analyzing a modet @2000.000 time units omitting model initialization and

output.

Table 2: Runtime comparison

Model HIT OMNEeT+ +
M/M/1 9min. 22sec.| 3min. 30 sec.

Freight Village | 7min. Ol1sec.| 2min. 16sec.

OMNEeT++ beatsHIT by saving approximately 50 to 60% execution time.

17

The values given foDMNeT++ are preliminary as we focussed on correct mapping of behanidignored performance
issues for the time being. Performance bottlenecks sit é&x statistical methods and dynamic search of matchingtian
units to PCEs.

Table 3 shows some simulation results for the model of thglitevillage from section 2.1: The table contains populatio
throughput and response time for the seifver kl i f t s (see Fig. 2) estimated witHIT andOMNeT++. As one can see
the results are quite similar aside from minor differencassed by different random number generators usedl Thand

OMNeT++.

Table 3: Comparison of simulation results for the serveklitis (90% confidence interval)

Population| Throughput| Response timg
HIT 3.33275 0.36656 9.09204
+0.2846% | +£0.1257% +0.2266%
OMNeT++ 3.32575 0.36667 9.07027
+0.3501% | +0.1251% +0.3179%

7 Conclusions

AlthoughOMNEeT++ has mainly been designed for the simulation of communingii@tocols, it can be used also in other
areas. In this paper we demonstrated how process chainptests specified byProC/B models can be simulated with
OMNeT++. Since the world views oProC/B and OMNeT++ differ, the transformation is not straight-forward and has
to respect several special featuresPo6C/B. For example: Elements of the behavior description, lik&E®Gre mapped
to nodes, i.e. structural components, in @RINeT++ description in order to exploMNeT++’s animation capabilities.
Furthermore additional elements for measurements ar¢eckdike node=UMeasures.

The “correctness” of the transformation has been validbjeskveral test models where we inserted special output com-
mands, so that discrepancies from the executiorOliNeT++ and the reference simulatbli T can be detected automati-
cally.

The currentimplementation is a first prototype and futureavall concentrate on furtherimprovements of the simulati
efficiency and the connection to existifyoC/B tools. As visual aspects, positioning BfoC/B language elements in
OMNEeT++/TKenv will be enhanced to matdProC/B-editor layout and animation could include the number ofuesgs to
function units.

One of the next steps will be the utilization of Akaroa parbdimulation libraries to reduce runtimes by using muétipl

computers in parallel.

18

References

[1] F. Bause, H. Beilner, M. Fischer, P. Kemper, and M. Valk&€he ProC/B Toolset for the Modelling and Analysis of
Process Chains. In T. Field, P. G. Harrison, J. T. Bradleg, @nHarder, editorsComputer Performance Evaluation /
TOOLS, volume 2324 of_ecture Notes in Computer Science, pages 51-70. Springer, 2002.

[2] F. Bause, H. Beilner, and M. Schwenke. Semantik des B-d®@radigmas. Technical Report 03001, ISSN 1612-1376,
Sonderforschungsbereich 559 “Modellierung groRer Netzier Logistik”, 2003.

[3] H. Beilner, J. Mater, and N. WeiRenberg. Towards a penfmce modelling environment: News on HIT. In R. Puigjaner
and D. Potier, editorsviodeling techniques and tools for computer performance evaluation, pages 5775, 1989.

[4] H. Beilner, J. Mater, and C. Wysocki. The Hierarchicabiiation Tool HIT. InShort Papers and Tool Descriptions of
the 7th International Conference on Modelling Techniques and Tools for Computer Performance Evaluation, 1994.

[5] P. Buchholz, D. Muller, P. Kemper, and A. Thimmler. ARE a tool framework for modeling and optimization of
stochastic models. In L. Lenzini and R. L. Cruz, editMal UETOOLS, page 61. ACM, 2006.

[6] P.Buchholz and C. Tepper. Functional Analysis of Preg@sented Systems. In H. Fleuren, D. den Hertog, and P. Kort,
editors,Operations Research Proceedings, pages 127-135. Springer, 2005.

[7] Collaborative Research Center 559 “Modelling of Largsgistics Networks”. http://www.sfb559.uni-dortmund.de
[8] G.S. FishmanDiscrete-Event Smulation Modeling, Programming and Analysis. Springer, 2001.

[9] E. Gamma, R. Helm, R. Johnson, and J. VlissidBesign patterns. elements of reusable object-oriented software.
Addison-Wesley Professional, 1995.

[10] J. Huang. Simulative Bewertung von ProC/B-Modelleradter’s thesis, Universitat Dortmund, Fachbereich imfatik,
Lehrstuhl 4, Dortmund, 2006.

[11] ARIS business simulator, 2007. URL:http://www.idsheer.de/.
[12] W. D. Kelton and A. Law.Smulation Modeling and Analysis. McGraw Hill, 2000.

[13] P. Kemper and C. Tepper. Traviando - Debugging Simattaliraces with Message Sequence ChartQHST, pages
135-136. IEEE Computer Society, 2006.

[14] Omnet++ community side. URL:http//www.omnetpp.org/

[15] J. Rathmell and D. T. Sturrock. Arena: the arena prodactily: enterprise modeling solutions. In Snowdon and
Charnes [19], pages 165-172.

[16] M. W. Rohrer and I. McGregor. AutoMod: simulating reglusing AutoMod. In Snowdon and Charnes [19], pages
173-181.

[17] M. D. Rossetti and H.-T. Chan. Supply chain managemiemilation: a prototype object-oriented supply chain simu-
lation framework. In S. E. Chick, P. J. Sanchez, D. M. Feaird D. J. Morrice, editor&Mnter Smulation Conference,
pages 1612-1620. ACM, 2003.

[18] D. W. Schunk and B. M. Plott. Using simulation to analy@gply chains. InMnter Smulation Conference, pages
1095-1100, 2000.

[19] J. L. Snowdon and J. M. Charnes, editoiRroceedings of the 34th Winter Smulation Conference: Exploring New
Frontiers, San Diego, California, USA, December 8-11, 2002. ACM, 2002.

[20] Q. Zhu. Beschreibung von ProC/B-Modellen zur simwiati Bewertung. Master’s thesis, Universitat Dortmund,
Fachbereich Informatik, Lehrstuhl 4, Dortmund, 2006.

19

Listing 4: Excerpt from ServerFU.cc

voi d Server FU: : handl eMessage(cMessage*x nsg) {

PCMessage* nessage = (PCMessage*) nsg;

if (message->i sSel f Message()) {
/1 nmessage was schedul ed by handl eProcess()
di sci pl i ne- >handl eSel f Message(message) ;
finishService(nmessage);
di sm ssMessage(nessage) ;

return;

wel coneMessage(nessage) ;
wr i t eNanel nPat h(message) ;

di sci pl i ne- >hand| eProcess(nessage) ;

voi d Server FU. : FCFSDi sci pl i ne: : handl ePr ocess(PCVessage* nessage) {
if (parent->nunberMsgl nSyst em <= parent->server Capacity) {
par ent - >schedul eAt (si mul ati on. si nili ne() + serviceTi ne(nessage), nessage);

}

el se fcfsQueue.insert(nessage);

voi d Server FU. : FCFSDi sci pl i ne: : handl eSel f Message(PCMessage* nessage) {

if (fcfsQueue.enmpty()) return;

PCMVessage* nsgFromQueue = (PKMessage*) fcfsQueue. pop();

par ent - >schedul eAt (si nul ati on. si nli me() + serviceTi me(nsgFronfueue), nsgFronQueue);

doubl e Server FU. : FCFSDi sci pl i ne: : servi ceTi me(PKMessage* nessage) {
return parent->get TaskTi ne(message) / parent->stdSpeed;

voi d ServerFU: : 1 SDi sci pline:: handl eProcess(PCMessage* nessage) {
par ent - >schedul eAt (si mul ati on. si nili ne() + serviceTi ne(nessage), nessage);

20

