
Simulating Process Chain Models with
OMNeT++

Falko Bause, Peter Buchholz, Jan Kriege, Sebastian Vastag
Technische Universität Dortmund, Informatik IV
D-44221 Dortmund, Germany
{falko.bause,peter.buchholz,
jan.kriege,sebastian.vastag}@udo.edu

Author prepared version of a paper published in

Proc. of 1st International Conference on Simulation Tools and Techniques for Communications, Networks and Systems

(SIMUTools 2008), Marseille, 2008.

Copyright 2008 ICST

http://doi.acm.org/10.1145/1416222.1416246



Simulating Process Chain Models with OMNeT++

Falko Bause, Peter Buchholz, Jan Kriege, Sebastian Vastag

Technische Universität Dortmund, Informatik IV

D-44221 Dortmund, Germany

{falko.bause,peter.buchholz,jan.kriege,sebastian.vastag}@udo.edu

Abstract

This paper presents an approach to simulate complex hierarchical process chains resulting from large logistics networks

in OMNeT++, a discrete event simulation environment designed for communication networks. For this purposeOMNeT++

has been integrated as a new simulation engine into theProC/B toolset which is designed for the analysis and optimizationof

large logistics networks. The paper highlights the main steps of the automatic transformation of a hierarchical process chain

model into a hierarchical model inOMNeT++. Furthermore it shows how the transformation has been validated and how

detailed performance figures can be evaluated withOMNeT++.

1 Introduction

For the development and operation of contemporary networksin logistics, model based analysis and in particular the use

of discrete event simulation is becoming an important factor to ensure that the networks meet the requirements concerning

technical measures like delivery times or service levels and, on the other hand, are also cost effective. In the past the different

workflows in a logistics network have been specified with process chains as a poorly descriptive tool that does not allow one to

derive simulation models from the description. This, however, implies that required simulation models have to be specified on

their own without any formal relation to the process chain model. Of course, this approach has the disadvantage that different

models have to be created for one system with all the known problems of additional modeling effort or inconsistencies

between the models. Thus, the use of the entire process chainmodel as a base model for a detailed simulation model of a

logistics network is highly recommendable.

To realize this approach partially informal process chain models have to be enhanced by formal information necessary to

build a simulation model and adequate software tools for simulation have to be available. Of course, simulation of process

chains is not a new idea [18], but a general approach which allows one to refine a high level process chain into a detailed

simulation model and which can cope with the complexity and size of models of today’s logistics networks is still missing.

Available simulation tools for this purpose are either restricted prototypes [17] or extensions of business process modeling

tools [11]. In both cases the capabilities of representing and analyzing more complex models is limited. Available simulation

2



tools for manufacturing systems [15, 16] that have been developed for large systems lack basic features which are necessary

to model logistics networks and general simulation frameworks are too low level such that an adequate modeling of complex

process chain models requires too much effort.

In the past we developed a class of hierarchical process chain models which include the necessary information to map them

onto discrete event simulation models [1]. The model class,denoted asProC/B, is based on a hierarchical description where

activities of a process chain are performed by some functionunit which itself can be a complex process chain or some basic

unit describing the consumption of space or time. The resulting models may include an arbitrary number of hierarchical

levels which form an acyclic graph. Originally,ProC/B models have been mapped onto simulation models using the tool

HIT [3] which has been developed in the mid eighties for modeling complex computer and communication systems. HIT

perfectly supports the hierarchical structure ofProC/B models and allows the analysis of results according to arbitrary paths

through the hierarchy which is an important feature, in particular, if economic measures where cost drivers become important

should be evaluated via simulation. However, the use of HIT also introduces some serious limitations. Since HIT generates

a simulation model in the language SIMULA, a runtime environment for SIMULA has to be available to run a simulation.

Unfortunately, the number of available SIMULA compilers israther limited. Furthermore, HIT as a nearly 20 year old

tool does not support several modern features of an object oriented simulation environment like animation or interfaces to

software tools for post-processing of results or for the administration of models. For these reasons we decided to integrate

a new simulation tool in our modeling environment and to support a mapping ofProC/B models onto the corresponding

models.

An adequate simulation platform has to observe the following requirements:

• The full ProC/B model world has to be mapped in the simulation model.

• The hierarchy of the process chain models has to be adequately represented in the simulation model.

• Detailed measures that are definable inProC/B should be analyzable in the resulting simulation models.

• The simulation tool has to be driven by theProC/B interface.

• Simulation should be easily made interoperable with other tools of theProC/B environment like the optimization tool

OPEDo [5] or the trace analyzer Traviando [13].

• The simulation environment should be stable, should allow the definition and simulation of large models and it should

support modern features of object oriented simulation.

• The simulation environment should be freely available for research according to some adequate open source license.

The last two points restricted the number of available toolssignificantly since most available open source simulation tools

where not adequate to really simulate, in an efficient and error-free way, large models as they result from large logistics

networks. After a more detailed look on the remaining tools,our choice wasOMNeT++ [14], a simulation environment gen-

erating simulations in C++. AlthoughOMNeT++ had been developed and used for communication systems, it iswell suited

3



for the mapping of hierarchical process chain models and it also fulfills almost all of the above requirements. Nevertheless,

the mapping ofProC/B models ontoOMNeT++ is far from being trivial since complex hierarchies have to be transferred

from one view into the other.

This paper introduces the combination ofProC/B andOMNeT++ to build a new and powerful simulation environment

for process models of logistics networks. The work presented is partly based on [10, 20]. In the following section we briefly

present the basic toolsProC/B andOMNeT++. Afterwards, in section 3 it is shown how the hierarchical structure ofProC/B

is mapped onto a module structure ofOMNeT++. Then we show how the behavior ofProC/B processes is performed in

OMNeT++. Section 5 is devoted to the validation of the mapping, followed by a first comparison ofOMNeT++ andHIT by

means of small examples. The paper ends with the conclusions.

2 Basic Software Tools

The approach we present in this paper usesProC/B as input format, maps the models toOMNeT++ and simulates the resulting

model usingOMNeT++. In this section we briefly present the main features of theProC/B approach and give afterwards a

very brief introduction intoOMNeT++. For further details about both tools we refer to the literature [1, 14].

2.1 Introduction to ProC/B

ProC/B [1] is a process chain-based modeling approach which is usedin the collaborative research center “Modelling of Large

Logistics Networks” 559 (CRC 559;[7]) for modeling and performance evaluation of logistics networks.ProC/B accounts

for the specifics of the application area by capturing the structure in form of function units (FUs) and the behavior by process

chains (PCs). InProC/B, FUs might offer services, which can be used by activities ofprocess chains. Each service is again

described by a process chain.

EVERY negexp(1.0/6)

1
(randint(0,2):INT) truck

(load:INT)

()

EVERY negexp(1.0/60)

1
(randint(30,50):INT) train

(load:INT)

()

Terminal.
truck_handling

handle_truck
(data.load)-->(data.load)

DELAY

drive_to_terminal
(uniform(4,6))

Terminal.
train_handling

handle_train
(data.load)-->(data.load)

Terminal

train_handling
(load:INT)-->(new_load:INT)

truck_handling
(load:INT)-->(new_load:INT)

DELAY

leave_freight_village
(uniform(4,6))

DELAY

drive_to_terminal
(uniform(4,6))

DELAY

leave_freight_village
(uniform(4,6))

Freight_Village

Figure 1:ProC/B top level model “Freight Village”

Figs. 1 and 2 present an example of aProC/B model representing a simplified freight village. A freight village is a node of

a logistics network which provides facilities for storing goods temporarily and transshipment between several type ofcarriers.

4



train_handling
(load:INT)

-->
(new_load:INT)

()

storage.
change

unload
([data.load])

forklifts.
request

use_forklifts
(2 * data.load)

DELAY

drive_to_load_position
(uniform(1,3))

forklifts.
request

use_forklifts
(2 * data.new_load)

CODE

determine_load
(data.new_load := randint(1,3);)

storage.
change

load
([-data.new_load])

storage.
change

unload
([data.load])

storage.
alter_or_skip

load
(1,-data.new_load,0)-->(data.new_load)

forklifts.
request

use_forklifts
(2 * data.load)

DELAY

shunt
(uniform(4,6))

forklifts.
request

use_forklifts
(2 * data.new_load)

CODE

determine_load
(data.new_load := randint(30,50);)

forklifts

CAP=25

request
(amount:REAL)

truck_handling
(load:INT)

-->
(new_load:INT)

()

storage

MAX=[300]

change
(amount:INT[])

alter
(position:INT,by_value:INT)

alter_or_skip
(position:INT,from_value:INT,
to_value:INT)->(achieved:INT)

content
(position:INT)->(content_value:INT)

Terminal

Figure 2: Function Unit “Terminal”

The top level of the model (see Fig. 1) is specified by FUFreight Village whose behavioral part is described by two

PCs:truck andtrain. The structure part consists of a single (user defined) FU, namedTerminal, which offers two

services:truck handling andtrain handling. Services can be compared to functions in programming languages.

In the example both services have an input parameter (load) and an output parameter (new load). Behavior and structure

part of a FU specification are interrelated by expressing which service of which FU performs an activity. In Fig. 1 the two

PCstruck andtrain consist of three process chain elements (PCEs) each, and in both cases the second activity calls

a service of FUTerminal. The inner view of FUTerminal is shown in Fig. 2. The offered services are specified by

PCs and some of their activities use the services of two so-called standard function units which offer predefined services

(e.g.request andchange). ProC/B offers two kinds of standard FUs: servers and storages. Servers (seeforklifts

in Fig. 2) capture the familiar behavior of traditional queues describing the consumption of time and storages describethe

consumption of space (seestorage in Fig. 2) and support the manipulation of passive resources. A simplified version of a

storage is a so called counter, which is a standard FU often used for modelling synchronization aspects. A change to a counter

or a storage is immediately granted iff the result respects specified upper and lower bound vectors; otherwise the requesting

process gets blocked until the change becomes possible.

Process chains directly visualize behavior. The freight village model of Figs. 1 and 2 reads as follows: Incarnations of

process chaintrain are generated according to a Poisson distribution (with a mean of60 time units). Each train has a load

which is initially chosen by random according to an uniform distribution (between30 and50). After incarnation, the train

5



“drives” to the terminal which is modeled here by a delay of the process for a uniformly distributed duration. Afterwardsthe

train “is handled” by servicetrain handling of Terminal. This might result in a change of the train’s load. Finally

the train “leaves” the freight village and the process terminates at the sink. Considering Fig. 2 we see that handling a train

means first to unload the train, which is possible if thestorage’s capacity of300 units is not exceeded, otherwise the train

has to wait until unloading is possible. Afterwards the serverforklifts is called, which is a multi-server queue with25

servers and a (default) FIFO service strategy. The service time for the requesting process is determined by the expression2 *

data.load thus modeling the time for unloading a loaded train1. Afterwards the train “shunts” to a new position (which is

again modeled by a delay of the process) and determines the new load. The new load is removed from the storage if possible,

otherwise the available number of units are removed from thestorage (which is the semantics of servicealter or skip).

Finally servicerequest of the serverforklifts is called again before the process “leaves” the terminal. The behavior

of PCtruck and servicetruck handling reads similarly. In the sequel we will use the term process for the process

description and its incarnations.

In the course of the CRC 559 a toolset has been developed whichprovides a graphical user interface to specifyProC/B

models and transformer modules which mapProC/B models to the input languages of existing analysis tools, sothatProC/B

models can be analyzed automatically (cf. [1] and Fig. 3).

Simulation is often applied for a detailed analysis, since it is applicable to allProC/B models. In the past, simulation was

only supported byHIT [3, 4]. HIT is a modeling environment which does not only provide a simulator, but also offers efficient

non-simulative analysis algorithms being based on product-form queueing networks.HIT is basically tailored to steady-state

analysis, based on a single replication approach. Time Series Analysis techniques are applied to individual streams ofdata

produced by the simulation. A key feature ofHIT is that these streams may be itemized in detailed ways. E.g.,in Fig. 2

it might be of interest to measure separately the number of service calls of FUstorage caused by trucks and trains.HIT

provides facilities to describe and to evaluate measures for such activities at a lower level which are caused by some higher

level originator and to itemize corresponding results withrespect to the originators. As mentioned,HIT is nearly 20 years old

and needs a SIMULA compiler for execution. Therefore we recently integratedOMNeT++ into theProC/B toolset trying to

benefit from the features of a modern object-oriented simulation environment.

2.2 OMNeT++

OMNeT++ is a public-source simulation environment that has been developed for the modeling of communication protocols

and has been extensively used in this area. Although it is mentioned on the web page [14] thatOMNeT++ has also been used

for the analysis of business processes there is nothing available about this application and it does not seem that a complete

mapping of hierarchical business processes ontoOMNeT++ models has been done before. The whole tool environment

includes a graphical front end and several other tools that support the modeling and simulative analysis of complex systems.

Of particular interest is the simulation kernel which is written in C++ and offers several classes to support the specification

1Access notations to parameters and variables of processes are prefixed with keyworddata for technical reasons in order to distinguish them from global

variables. Global variables are not shown in Figs. 1 and 2.

6



HIT
− Simulation
− QN Analysis

− Modelling
− Measure Specification
− Result Visualisation

ProC/B GUI

 & Measures & Measures & Measures

ProC/B Model

− Simulation
− Animation

APNN Toolbox
− CTMC Analysis
− Invariant Analysis
− Model Checking

QN Model GSPN Model

OMNeT++

Simulation Model

Traviando OPEDo
− numerical analysis

− optimisation
of CTMCs

− trace
visualisation

 & Measures

Transformer 

Figure 3:ProC/B toolset

of complex hierarchical models. Furthermore, the resulting simulation models are known to be rather efficient.

The basic entities of anOMNeT++ simulation are modules. Modules can be simple, which means that they are imple-

mented as C++ classes, or compound modules which means that they are composed of other simple or compound modules. In

this wayOMNeT++ models are hierarchical. The complete model containing theoverall hierarchy is denoted as the system

module. Modules communicate via gates using messages. Gates can be input or output and a module may have an arbitrary

number of gates. Messages are sent either directly to a gate or along a path. Basically paths are used to describe the transfer

of messages over some medium. Therefore they offer parameters to specify e.g. the bandwidth or loss rate. The connection

of modules via paths is specified in the*.ned file which includes the structure of the model and can be defined with the

help of a graphical interface. The graphical interface can also be used for the animation of the running model by visualizing

messages that are sent along a path from one module to another.

An arriving message is interpreted in a module as an event andthe user has to specify a routinehandleMessage() for each

arriving message type. Messages themselves can be structured data types and may include information that is used in the

correspondinghandleMessage() routine. In the routines new messages may be generated immediately or after some delay

and already scheduled messages may be deleted. Thus, the basic event driven approach is realized by the processing and

sending of messages. Apart from this general mechanism, thesimulation kernel ofOMNeT++ offers a lot of support to

realize complex simulation models like up to date random number generators, support for statistical evaluation of results or

support for parallel replications.

From this very brief description it should become clear thatboth,ProC/B andOMNeT++ use a hierarchical structure to

describe models. However, at a second view it becomes clear that the model views differ in several yet important details.

7



OMNeT++ has been designed with communication systems in mind such that messages have a physical meaning whereas

in ProC/B hierarchy is introduced by calling services of FUs without explicit messaging. Another important aspect is, as

already mentioned, the definition of detailed and origin dependent measures which are not directly supported byOMNeT++

and therefore have to be implemented separately.

The challenge is to get a correct mapping fromProC/B onto OMNeT++. Since correctness of the mapping cannot be

formally defined because only a subset ofProC/B has a formal semantics in form of a Petri-net mapping [6], we define

correctness by comparing the simulation usingHIT andOMNeT++. The HIT simulation is usually taken as the correct

behavior, since we defined an operational semantics of the whole ProC/B paradigm viaHIT [2], and thus theOMNeT++

model has to show the same behavior. Of course, a detailed comparison implies that the model is completely deterministic

since otherwise different random number streams will necessarily result in different behaviors such that only statistical results

can be compared using adequate statistical methods [12]. Weused both, simple deterministic models to show that the basic

behavior is the same and more complex stochastic models to compare statistically the result measures.

In the following two section we first describe how the hierarchical structure of aProC/B model is mapped onto a corre-

sponding structure of anOMNeT++ model. In the subsequent section the mapping of the behavioris presented. Both steps

are accompanied by small examples showing the basic ideas.

3 Mapping of Structure

Our implementation of mappingProC/B to OMNeT++ consists of two main components: The converterprocb2ned and a

library namedOsimu containing implementations ofProC/B’s behavior as modules forOMNeT++.

ProC/B models are specified graphically in theProC/B editor and are stored in files. Next to the model itself the editor

allows for saving experiment descriptions in separate files. As stated above, these general model/experiment description

files can be used in different analyzers, either numeric or simulative. Thus, the generic model descriptions generated by

the editor have to be translated to specific input formats. For our simulative analyzer based onOMNeT++ the converter

procb2ned reads process chain models and outputsOMNeT++ network descriptions (*.ned-files) as a direct input format

for the OMNeT++ simulation system. AsOMNeT++ supports hierarchical modeling of modules,ProC/B’s structure is

preserved and included in*.ned-files byprocb2ned.

OMNeT++ requires behavior to be located in atomic entities called ”simple modules”. They are written in C++ and

handle arriving messages in order to trigger specific reactions. The sources are combined with*.ned-files with an identical

naming scheme, describing module interfaces toOMNeT++’s simulation system. For model design these basic modules are

instantiated and related by connections in another*.ned file, forming a ”compound module”. Non-basic models can be used

similar to basic modules, making it easy to form hierarchical models.

As ProC/B also supports hierarchical modeling,procb2ned’s primary task is to map given hierarchies. For every language

element inProC/B exists a corresponding implementation as a basic module inOMNeT++. PCEs only form linear structures

at the same model level, soprocb2ned simply inserts them as basic modules into its output*.ned files. Of course, synchro-

nization and event driven generation of new processes are also possible inProC/B using available language elements (see [1])

8



which are realized as C++-implementations inOMNeT++. Following the rule of one module perProC/B language element,

Standard-FUs like ServerFU, StorageFU and CounterFU are also inserted directly into the model.

Hierarchies inProC/B are the domain of constructed FUs, usually including at least one process chain offered as a service

by the FU. To model these FUs inOMNeT++, compound modules are formed by*.ned files, one for each constructed

function unit. If the converter reads a constructed FU on input, it goes one level down in the recursion, applying the above

mapping rules to a new*.ned file named after its FU inProC/B. After returning from recursion, the compound module

representing a constructed function unit can be used like any other basic module.

The subsequent step is to map process flow through a process chain by establishing connections between modules. The

acting entities ofProC/B are all processes within a module. While processes are no specific object-types in HIT, it was a

natural choice to map exactly one process type to exactly onemessage type inOMNeT++. Hence,ProC/B’s connections

between process chain elements are mapped to module connections inOMNeT++.

As shown in Fig. 1, connections inProC/B only exist within a PC specification, there are no explicit connections from

PCEs to FUs or the other way round. Only implicit relations between PCEs and FUs exist by specifying parameters in PCEs

denoting which FU and offered service they call.

We transferred this idea toOMNeT++ by using traditional message passing through gateways and direct message sending

as two separate forms of connections. The first task is done straightforwardly byprocb2ned. Basic modules act as PCEs

(excluding sinks) and obtain one connection to their successor, forming a structure similar to process chains inProC/B. For

this purpose, every PCE module has at least one set of input/output gateways acting as a socket forOMNeT++’s connections.

Again, relationships between modules of PCEs and FUs exist only implicitly in OMNeT++. Two parameters are given in

the*.ned file for every instance of a PCE using a function unit: The identifier of the FU and the name of the offered service

(keeping in mind that FUs can offer multiple services). Thisinformation is used in the PCE initialization phase to find the

reference to their loosely bound function unit. Requestinga service in the simulation phase is done by transferring messages

directly usingOMNeT++’s sendDirect() method to the function unit bound to the service. Finishing aFU’s service is

also signalized by returning the message.

Using OMNeT++’s alternative way to transfer messages has some advantagescompared to the traditional way of using

module connections:

1. As FUs can be used by possibly infinitely many PCEs, omitting explicit connections helps to keep models concise.

The target to which direct messages are sent to is determinedduring the initialization phase byOMNeT++ and saved

as a reference, so no extra time is consumed when analyzing the model.

2. Messages sent directly keep track of their senders on a stack, so returning a process message to its sender after per-

forming a service is a simple task in the FU’s implementation.

3. The visual appearance in theProC/B editor andOMNeT++/TKenv is kept similar.

Function units need one input gate per offered service. Output gates are redundant here, as the virtual sink terminatingthe

service’s process chain will return the message via direct transfer to the calling PCE. The ability to send and receive direct

9



messages requires some preconditions for modules inOMNeT++: Direct messages can only be delivered to dedicated input

gates without any other incoming connection. Therefore, PCE modules calling FUs need an additional input gate reservedfor

callbacks of their associated FUs. By convention, new processes arrive at the first, status messages from FUs at the second

input gateway.

3.1 Animation

An important additional benefit of usingOMNeT++ for simulatingProC/B models is the animation capability ofOMNeT++’s

graphical workbenchOMNeT++/Tkenv. ExistingProC/B analyzers are tuned according to efficiency and performanceof the

solution and are consequently batch processing systems, making it difficult to explain the dynamic behavior of processes

from the model. However, such an explanation is often important in teaching and also in real projects as we noticed when

modeling large systems in cooperation with real users. Using OMNeT++/Tkenv, messages moving between modules can be

animated by a moving red dot as an adequate visualization forprocesses moving through process chains and making use of

FUs. In this way, the dynamics of a system is clearly visible.

ProC/B’s graphical representation was carried toOMNeT++, usingOMNeT++’s feature to define pictograms for modules.

procb2ned assigns bitmaps to every instance of the basic module matching its type inProC/B.

Figure 4: Animation of PCMessages

When settingOMNeT++ to a ”slow” running mode inOMNeT++/Tkenv, the user can trace processes created by a source

as a red dot moving along the process chain element’s outgoing connection (see Fig. 4). Arriving at a PCE, the dot is delayed

until the PCE ends its call to an FU. Since no permanent connection exists between PCEs and FUs, a temporary connection

is drawn acting as a path for messages performing a request bybeing sent directly to the module of the FU (Fig. 5). When

the request is served, a message can be seen moving backward to the calling PCE on a reverse connection. Furthermore,

different windows can be opened to view the animation simultaneously at different levels, i.e. in different FUs.

4 Mapping of Behavior

The second component of our framework is the mapping of the behavior of ProC/B language elements onto modules in

OMNeT++. These modules are completely configurable by passing parameters, so we were able to compile a libraryOsimu

10



Figure 5: PCMessage moving over temporary connection

containing generic implementations for PCEs and FUs. Everyelement ofProC/B’s language is mapped onto exactly one

module implementation, inheriting intoOMNeT++’s modeling interface by subclassingcSimpleModule directly.

OMNeT++ offers two different programming styles, lightweight processes and a transaction based programming para-

digm. We decided to follow the latter as it matches the basic ideas of process chain models and it scales much better for

large models. Since process chains are characterized by theinterval of time consumed by a process between entering and

leaving a chain, a transaction based discrete event approach makes it natural to map these intervals to arrivals and departures

of messages to/from modules inOMNeT++.

The dynamic part ofProC/B models are processes following the route defined by process chains. Analogously, processes

are represented by messages inOMNeT++. The mapping toOMNeT++ is done by subclassingcMessage only once to

PCMessage (short for ”process chain message”). InProC/B, transitions of processes between PCEs are instantaneous,time

is consumed by requesting services at function units or by dedicated delay PCEs. This idea is reproduced inOMNeT++ by

messages of typePCMessage that use connections in zero time, leaving progress of modeltime to the modules.

Now we will describe two examples to explain our mapping of behavior more explicitly.

Figure 6:ProC/B’s symbol for a delaying PCE

Figure 6 shows the symbol of a Delay PCE as a simple language element ofProC/B. It has the task to delay arriving

processes by some amount of time, either deterministic or bya random number from some predefined distribution. Listing

1 is the according*.ned-file used byOMNeT++ to pass parameters to modules and define gateways where messages arrive

and leave.

A process chain element DelayPCE is defined with just one pairof gates because it is connected to only two other process

chain elements. Parameter delay is set by the*.ned-file instantiating this module as specified in the originalProC/B model.

Implementations of DelayPCE subclassingcSimpleModule have to respect the fact that a second or third or an arbitrary

number of processes can arrive while the first process is still delayed.

11



Listing 1: Source of DelayPCE.ned

simple DelayPCE

parameters:

delay : string

gates:

in: in;

out: out;

endsimple

Listing 2: Source of DelayPCE.cc

#include "DelayPCE.h"

void DelayPCE::handleMessage(cMessage* msg) {

double delay = (double) param("delay");

sendDelayed(msg, delay, "out");

}

The concrete implementation in listing 2 is short, overloading the functionhandleMessage(cMessage* msg) and

implementing the specific reaction on an arrival of messages.

The delay time is generated from the predefined distribution, the following line in the code delays the incoming message

by the amount of time usingOMNeT++’s sendDelayed() method. Please note that no messages are stored inside the

module, allowing the module to accept an infinite number of processes. Methodparam() reassembles the well known

methodpar() to fetch parameters stored in*.ned files. The new method parses expressions used inProC/B models, which

can be either arithmetic expressions or aProC/B specific naming of random distributions.

Figure 7: Server Function Unit inProC/B

As an advanced example ServerFU is shown in Fig. 7. It represents a set of limited and identical resources which processes

can request and use. ServerFU offers the service ”request” to PCEs, a parameter for the requested amount of service has to

be passed with the calling message.

Listing 3 contains the definition of ServerFUs inOMNeT++’s modeling language. Three parameters are passed to the

module byOMNeT++ at runtime:

capacity number of resources offered by the server

12



Listing 3: ServerFU.ned

simple ServerFU

parameters:

inPath: bool,

speed: numeric,

capacity: numeric,

discipline: string;

gates:

in: in;

out: out;

endsimple

speed of a resource to execute service calls. This means that calling PCEs request an amount of service according to some

average resource. The concrete FU can be faster (speed> 1), slower (speed< 1) or an average resource (speed= 1).

discipline the resource scheduling the server uses.

By offering a single service, ServerFU only needs one pair ofgates. As stated before, messages are delivered to these gates

by direct send calls, making it unnecessary to connect this module with other elements in the model.

The parameter discipline plays an important role inProC/B models, as the behavior of function units are matched to

the way resources are shared in the real system. Currently three scheduling disciplines can be mapped fromProC/B to

OMNeT++:

FCFS queues serve requests for resources by the rule ”first come, first served”. Processes which obtained a resource, allocate

it according to the amount defined by the constant or distribution of the service call and parameter ”speed”.

IS ”Infinite Server”, every request is immediately granted andtakes the time specified by the service call and parameter

”speed”.

PS ”Processor Sharing”, all requests are immediately granted. Every process makes use of the full set of resources (ac-

celerating service time by the number of resources), but hasto share resources with other process using the server at

the same time. Capacity is distributed uniformly among all processes (slowing down execution time by the reciprocal

value of the number of processes).

It is possible to interpret these three types of scheduling as different kinds of servers, yet their implementation inOM-

NeT++ uses only one module to simplify the structure mapping byprocb2ned. Internally ServerFU makes use of the strategy

pattern [9] to vary it’s behavior according to parameter ”discipline”.

An excerpt of ServerFU’s source is shown in listing 4. ThehandleMessage() method is divided into two parts by an

if clause, newly arriving process messages with selfMessage set to false are served in the lower part.

At the beginning,welcomeMessage computes some basic statistics of arriving processes as described in section 4 and

incrementsnumberMsgInSystem. Additionally, the ServerFU pushes its name inwriteNameInPath on the stack

keeping track of every process chain element the message passed through. The next line is part of the strategy pattern,

13



discipline holds objects of typeServerFU::Discipline encapsulating FCFS, Infinite Server or Processor Sharing

as described above. Those strategies are instantiated depending on parameterdiscipline in listing 3 on module’s initial-

ization. Their behavior on newly arrived processes is specified in handleProcess(). Here we present the methods of

FCFS and IS as examples: In FCFS, time is granted to processesas long as the servers capacity is not exceeded. Otherwise

the process is enqueued until more resources become available. The Infinite Server is even more simple, it just accepts every

process.

In both examples, time consumption is modeled by schedulingprocess messages to the function unit itself, adding the

amount of time the service will take before sending. When themessage returns,selfMessage is true and the upper part of

handleMessage() is executed. Again, an object of typeServerFU::Discipline handles processes a second time.

In FCFS, the first process message waiting for free resourcesis removed from the queue and immediately scheduled for com-

pletion of the service. The corresponding method for Infinite Server is not shown here, it equals to an empty implementation

since this discipline does not need any further action aftercompleting a service.

4.1 Translation of Result Measures

The main focus when analyzing a simulation model is on determining quantitative results for the model, like for example

throughputs or response times.ProC/B offers the possibility to measure properties at every FU, though depending on the

type of the FU the available properties may differ: Throughput, response time and population can be measured at any FU.

Additionally, for every server the utilization and for every storage the state can be examined. For composed FUs the modeler

may define further measures (called rewards inProC/B). ProC/B allows for three different types of rewards:Count, event and

state. Rewards of the typeevent can be used for serially collecting values, rewards of the typecount for estimating rates and

rewards of the typestate for the description of trajectories. Those types are used for the realization of the standard measures

like throughput or response time as well. While the user-defined measures have to be updated manually (ProC/B provides a

model element for updating those rewards), the standard measures are updated automatically whenever a process enters or

leaves a FU.

As already mentionedProC/B allows for streams to be itemized in detailed ways. This enables for example the measure-

ment of the train population at the terminal in Fig. 2 withoutcounting trucks. To achieve this, the modeler can specify a path

consisting of elements in theProC/B model. Only processes, that have moved through all of the specified elements will be

considered when updating the stream. Most of the described features available inProC/B are derived from the measures that

HIT offers, thus allowing an easy transformation fromProC/B to HIT.

Currently when analyzing the model withHIT, during simulation streams of data are generated, which arebasically lists of

pairs consisting of a time stamp and some associated value. This data is used to calculate the usual characteristics likemean,

standard deviation and confidence intervals for the different measures. TheProC/B toolset contains a tool, that generates

plots and visualizes the simulation results.

When usingOMNeT++ for simulation the key features like itemizing streams as well as the output data of the simulation

should be preserved, so that this new simulation environment fits into our existing toolset. WhileOMNeT++ offers basic

14



facilities for measurement in e.g. communication protocols, they need to be extended to meet the demands for the simulation

of logistics networks.

In the remainder of this section it is shown how the measurement is implemented for Standard-FUs like servers or storages.

Measuring properties at composed FUs requires some additional effort and is presented afterwards. Finally the itemizing of

streams is explained.

For Standard-FUs the measurement streams have to be updatedwhen a process enters (which means a service of the FU

has been requested by a process) or leaves the FU. In theOMNeT++ representation of the model a service request is indicated

by a message sent to the FU. The population is updated whenever a process enters or leaves the FU, throughput and response

time are updated when a process leaves the FU. For Standard-FUs (like server or storage) the data collection and evaluation

is implemented as C++-Code within the corresponding simplemodules. This brings up problems for composed FUs: When

theProC/B model is translated to anOMNeT++ representation, composed FUs are represented as compound modules, thus

only a NED description exists that lacks the ability to implement code for measurements. Therefore the module of every

composed FU contains a specific simple module calledFUMeasures (see Fig. 8) to realize measurements in composed FUs.

Figure 8: Message flow for the measurement in composed FUs

Fig. 8 shows the message flow that is necessary for measurements in composed FUs. Starting at the source a message is

sent to the Process-ID (Process-IDs are used for the identification of a process chain and the declaration of local variables and

are always connected with the source of a process chain). From there a message is sent to the special moduleFUMeasures.

This module has no counterpart inProC/B and its sole purpose is to enable the measurement in composedFUs. After the

message is returned to the Process-ID, further elements of the process chain are processed (denoted by three dots in Fig.8).

When the process has reached the sink, messages to the moduleFUMeasures and back to the sink are sent again. All update

operations of streams for a FU are performed withinFUMeasures. The first message (sent by the Process-ID) means that a

process has entered the FU (and thus the population is updated for example), the second message (sent by the sink) means

that a process is leaving the FU again.

As already mentioned before,ProC/B allows one to specify a path consisting of elements, so that only processes, that

moved along that path through the model will be considered when updating measures. Those paths are part of theProC/B

experiment description and need to be translated to theOMNeT++ model and taken into account when updating the measure-

ment streams. When mapping toOMNeT++ theProC/B experiment description is saved in an*.ini-file, that is loaded when

15



the simulation starts. Additionally, a parameter is set foreach element appearing in one of the paths in the corresponding

*.ned-file when the model structure is mapped. During the simulation run the path a message took through the model is saved

and compared with the paths, that have been specified in theProC/B experiment. To store this information a new message

class is used, that can carry the path information. Updates of the measurement streams are only performed when the path of

the message matches one of those paths from theProC/B experiment.

OMNeT++ provides several classes for the collection of data and the generation of statistical measures like mean or

standard deviation which are derived from the abstract class CStatistic. Because the calculation of means does not match

the specification of the streams inProC/B, ourProC/B to OMNeT++ implementation provides its own classes (derived from

CStatistic) to generate statistics (one for each of the stream typesevent, state andcount mentioned before). For the estimation

of confidence intervals the batch means-method [8] is used. The generated output is saved in the same format as the output

of HIT, so that our existing tools can parse the data for result presentation.

5 Validation of the Transformation

If different tools are used to simulate a model, then it is necessary that the semantics of the model is the same in every

simulation tool. Ideally, identity of semantics should be proved formally. Such a formal proof would require a formal

semantics such that formal analysis techniques are applicable to check equivalence. Unfortunately, simulation models are

much too complex to be described in simple languages that allow a formal analysis. This implies that identical behavior of

models cannot be strictly verified, it can only be validated.

ProC/B was designed to introduce a well defined semantics and an automated analysis to hierarchical process chain

models. A specification was laid down in [2], describing the semantics of PCEs and FUs in an operational form. Many aspects

of the operational semantics are implicitly defined by the HIT runtime environment. Thus, the behavior of the HIT simulation

model is the behavior which should be observed whenOMNeT++ executes the model. However, the operational semantics

depends on several aspects like execution order of simultaneous events, the order of initialization which are generally not

well defined in discrete event simulation and, additionally, the realization of random processes that depend on the random

number generator.

We distinguish between the validation using models with andwithout random numbers. The former will be named deter-

ministic models, although this is not strictly correct since simultaneous events may yield a non deterministic behavior. For

the deterministic models behavior can be compared using traces. Although,HIT andOMNeT++ both have a trace function

it is not recommended to use these functions for comparisonssince the format differs and cannot be easily transformed from

one to another. Instead models are augmented with code PCEs including output statements. Such PCEs can be added to every

PC. Thus,HIT andOMNeT++ generate the same trace output which can be easily compared.

To prove equality of traces we developed an automated testing environment to compare output ofProC/B models analyzed

with HIT andOMNeT++. It is based on a set of simple and deterministicProC/B models, designed to test the behavior of

exactly one element ofProC/B’s language. Driven by our batch testing environment, identically formated output ofHIT and

OMNeT++ is compared by an awk script, highlighting differences in measurement results and event traces. Additionally,

16



a selection of deterministic models taken from former projects is also subject to comparison, making sure that ourProC/B

language elements implemented in modules interact correctly.

Testing nondeterministic models is limited since different random number generators are used inHIT (actually implemen-

tations of SIMULA) andOMNeT++. So, even starting with same seeds, results and event orderswill differ. Consequently,

we can only check in a statistical sense whether the implementation is correct, i.e., the different language elements behave

identically. For this purpose, animations can be compared,traces can be visualized and results can be compared using statisti-

cal test. A typical approach is to estimate the same measure with both simulators,HIT andOMNeT++, and then statistically

evaluate a random variable describing the difference between both measures. This can be done by comparing confidence

intervals or using statistical tests (for details see e.g. [12][chap. 10]).

Table 1 shows simulation results of an M/M/1 system (ρ = 0.5) as an example of simple nondeterministic system included in

our testing environment. Results are sufficiently close to assume an equivalent behavior for this model with a high significance

probability. We additionally compared several simulationresults of larger models and obtained similar minor differences (cf.

Sect. 6)

Table 1: M/M/1 system simulation results (90% confidence interval)

Population Throughput Response time

HIT 1.00202 1.00023 1.001789

±0.18% ±0.05% ±0.16%

OMNeT++ 1.00126 0.99964 1.000905

±0.33% ±0.14% ±0.22%

6 Comparison of performance and simulation results

Though our implementation ofProC/B on OMNeT++ is not as mature as the one onHIT, we achieved promising runtime

results. Times in table 2 were taken for analyzing a model over 10.000.000 time units omitting model initialization and

output.

Table 2: Runtime comparison

Model HIT OMNeT++

M/M/1 9min. 22sec. 3min. 30 sec.

Freight Village 7min. 01sec. 2min. 16sec.

OMNeT++ beatsHIT by saving approximately 50 to 60% execution time.

17



The values given forOMNeT++ are preliminary as we focussed on correct mapping of behavior and ignored performance

issues for the time being. Performance bottlenecks still exist in statistical methods and dynamic search of matching function

units to PCEs.

Table 3 shows some simulation results for the model of the freight village from section 2.1: The table contains population,

throughput and response time for the serverforklifts (see Fig. 2) estimated withHIT andOMNeT++. As one can see

the results are quite similar aside from minor differences caused by different random number generators used inHIT and

OMNeT++.

Table 3: Comparison of simulation results for the server forklifts (90% confidence interval)

Population Throughput Response time

HIT 3.33275 0.36656 9.09204

±0.2846% ±0.1257% ±0.2266%

OMNeT++ 3.32575 0.36667 9.07027

±0.3501% ±0.1251% ±0.3179%

7 Conclusions

AlthoughOMNeT++ has mainly been designed for the simulation of communication protocols, it can be used also in other

areas. In this paper we demonstrated how process chain descriptions specified byProC/B models can be simulated with

OMNeT++. Since the world views ofProC/B and OMNeT++ differ, the transformation is not straight-forward and has

to respect several special features ofProC/B. For example: Elements of the behavior description, like PCEs, are mapped

to nodes, i.e. structural components, in theOMNeT++ description in order to exploitOMNeT++’s animation capabilities.

Furthermore additional elements for measurements are created, like nodeFUMeasures.

The “correctness” of the transformation has been validatedby several test models where we inserted special output com-

mands, so that discrepancies from the execution viaOMNeT++ and the reference simulatorHIT can be detected automati-

cally.

The current implementation is a first prototype and future work will concentrate on further improvements of the simulation

efficiency and the connection to existingProC/B tools. As visual aspects, positioning ofProC/B language elements in

OMNeT++/TKenv will be enhanced to matchProC/B-editor layout and animation could include the number of requests to

function units.

One of the next steps will be the utilization of Akaroa parallel simulation libraries to reduce runtimes by using multiple

computers in parallel.

18



References

[1] F. Bause, H. Beilner, M. Fischer, P. Kemper, and M. Völker. The ProC/B Toolset for the Modelling and Analysis of
Process Chains. In T. Field, P. G. Harrison, J. T. Bradley, and U. Harder, editors,Computer Performance Evaluation /
TOOLS, volume 2324 ofLecture Notes in Computer Science, pages 51–70. Springer, 2002.

[2] F. Bause, H. Beilner, and M. Schwenke. Semantik des ProC/B-Paradigmas. Technical Report 03001, ISSN 1612-1376,
Sonderforschungsbereich 559 “Modellierung großer Netze in der Logistik”, 2003.

[3] H. Beilner, J. Mäter, and N. Weißenberg. Towards a performance modelling environment: News on HIT. In R. Puigjaner
and D. Potier, editors,Modeling techniques and tools for computer performance evaluation, pages 57–75, 1989.

[4] H. Beilner, J. Mäter, and C. Wysocki. The Hierarchical Evaluation Tool HIT. InShort Papers and Tool Descriptions of
the 7th InternationalConference on Modelling Techniques and Tools for Computer Performance Evaluation, 1994.

[5] P. Buchholz, D. Müller, P. Kemper, and A. Thümmler. OPEDo: a tool framework for modeling and optimization of
stochastic models. In L. Lenzini and R. L. Cruz, editors,VALUETOOLS, page 61. ACM, 2006.

[6] P. Buchholz and C. Tepper. Functional Analysis of Process Oriented Systems. In H. Fleuren, D. den Hertog, and P. Kort,
editors,Operations Research Proceedings, pages 127–135. Springer, 2005.

[7] Collaborative Research Center 559 “Modelling of Large Logistics Networks”. http://www.sfb559.uni-dortmund.de.

[8] G.S. Fishman.Discrete-Event Simulation Modeling, Programming and Analysis. Springer, 2001.

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design patterns: elements of reusable object-oriented software.
Addison-Wesley Professional, 1995.

[10] J. Huang. Simulative Bewertung von ProC/B-Modellen. Master’s thesis, Universität Dortmund, Fachbereich Informatik,
Lehrstuhl 4, Dortmund, 2006.

[11] ARIS business simulator, 2007. URL:http://www.ids-scheer.de/.

[12] W. D. Kelton and A. Law.Simulation Modeling and Analysis. McGraw Hill, 2000.

[13] P. Kemper and C. Tepper. Traviando - Debugging Simulation Traces with Message Sequence Charts. InQEST, pages
135–136. IEEE Computer Society, 2006.

[14] Omnet++ community side. URL:http//www.omnetpp.org/.

[15] J. Rathmell and D. T. Sturrock. Arena: the arena productfamily: enterprise modeling solutions. In Snowdon and
Charnes [19], pages 165–172.

[16] M. W. Rohrer and I. McGregor. AutoMod: simulating reality using AutoMod. In Snowdon and Charnes [19], pages
173–181.

[17] M. D. Rossetti and H.-T. Chan. Supply chain management simulation: a prototype object-oriented supply chain simu-
lation framework. In S. E. Chick, P. J. Sanchez, D. M. Ferrin,and D. J. Morrice, editors,Winter Simulation Conference,
pages 1612–1620. ACM, 2003.

[18] D. W. Schunk and B. M. Plott. Using simulation to analyzesupply chains. InWinter Simulation Conference, pages
1095–1100, 2000.

[19] J. L. Snowdon and J. M. Charnes, editors.Proceedings of the 34th Winter Simulation Conference: Exploring New
Frontiers, San Diego, California, USA, December 8-11, 2002. ACM, 2002.

[20] Q. Zhu. Beschreibung von ProC/B-Modellen zur simulativen Bewertung. Master’s thesis, Universität Dortmund,
Fachbereich Informatik, Lehrstuhl 4, Dortmund, 2006.

19



Listing 4: Excerpt from ServerFU.cc

void ServerFU::handleMessage(cMessage* msg) {

PCMessage* message = (PCMessage*) msg;

if (message->isSelfMessage()) {

// message was scheduled by handleProcess()

discipline->handleSelfMessage(message);

finishService(message);

dismissMessage(message);

return;

}

welcomeMessage(message);

writeNameInPath(message);

discipline->handleProcess(message);

}

void ServerFU::FCFSDiscipline::handleProcess(PCMessage* message) {

if (parent->numberMsgInSystem <= parent->serverCapacity) {

parent->scheduleAt(simulation.simTime() + serviceTime(message), message);

}

else fcfsQueue.insert(message);

}

void ServerFU::FCFSDiscipline::handleSelfMessage(PCMessage* message) {

if (fcfsQueue.empty()) return;

PCMessage* msgFromQueue = (PKMessage*) fcfsQueue.pop();

parent->scheduleAt(simulation.simTime() + serviceTime(msgFromQueue), msgFromQueue);

}

double ServerFU::FCFSDiscipline::serviceTime(PKMessage* message) {

return parent->getTaskTime(message) / parent->stdSpeed;

}

void ServerFU::ISDiscipline::handleProcess(PCMessage* message) {

parent->scheduleAt(simulation.simTime() + serviceTime(message), message);

}

20


