A Framework for Sl thon M odels of
Service-Orient Arc Itectures

Falko Bause, Peter Buchholz, Jan Kriege, and Sebastian Vastag
Informatik IV, TU Dortmund

D-44221 Dortmund, Germany

{f al ko. bause, pet er. buchhol z,

jan. kri ege, sebasti an. vast ag}@do. edu

Author prepared version of a paper published in

LNCS 5119. Performance Evaluation: Metrics, Models anddBemarks. Proc. of SPEC International Performance Evalua-
tion Workshop (SIPEW 2008), Darmstadt, 2008.

Copyright Springer-Verlag Berlin Heidelberg 2008

The original publication is available at www.springerliodm, LNCS online

http://dx. doi.org/10. 1007/ 978- 3-540- 69814- 214

A Framework for Simulation Models of Service-Oriented Atebtures$

Falko Bause, Peter Buchholz, Jan Kriege, and Sebastiaag/ast

Informatik 1V, TU Dortmund
D-44221 Dortmund, Germany

{f al ko. bause, pet er. buchhol z, j an. kri ege, sebasti an. vast ag}@udo. edu

Abstract

Service-Oriented Architectures (SOA) are one of the managtigms for future software systems. Since these software
systems are composed of a large number of different comp®iiteis non trivial to assure an adequate Quality of Service
(QoS) of the overall system and performance analysis bes@mémportant issue. To consider performance issues early
in the development process, a model based approach beceressary which has to be embedded into the development
process of SOA to avoid overhead and assure consistencyarticydar the specification of the software system should be
used as a base for the resulting performance model. Howswee common specification techniques for SOA are very
high level, many details have to be added to come to an exsleusamulation model which is often needed for a detailed
analysis of performance or dependability. This paper ptssa&n approach which combines an extended version of oces
chains to describe the SOA components and some quantisg@afications at the higher levels. For the modelling of the
detailed architecture and protocols the simulation @bINeT++is used. Both modelling levels are combined resulting in
an executable simulation model for the whole architecture.

Keywords: Service-Oriented Architectures, Simulation, ProcesSiGh®@MNeT++

1 Introduction

Service-Oriented Architectures (SOA) are one of the magwagigms to describe and realize complex software systems a
they are required in todays IT-infrastructure. The desicniplevel of SOA is very high such that several details adgbn

in the description and a loose coupling between different@sses is assumed for a functioning system. Nevertheless,
guantitative aspects like performance or dependabilaynaajor issues of SOA which are only partially addressed upta

In general Service Level Agreements (SLAS) are negotiagdaiden service provider (i.e. the SOA component) and the use
which could be some business process or another componartiigrarchical SOA. This implies that the non-functional

properties of SOA components are known and are considenmgagdorchestration [11]. Both tasks are non trivial. Since

*This research was supported by the Deutsche Forschungsehedt as part of the Collaborative Research Center “Miadeof Large Logistics

Networks”(559).

performance and dependability issues should be considier@ty the whole software design process [9], modeling tisrof
the method of choice. However, the common description leV8IOA is too high to allow a direct derivation of performance
models. Thus, a common way is to manually derive an abstexfdnance model from a SOA specification and solve this
model analytically [10, 13]. Although the use of simple amighlly tractable models is often a good choice, in patticin

the early design phases, these models reach their limita déiled design decisions have to be made. In those sitisati
simulation models are more adequate. However, it is knoattlte realization of simulation models is cumbersome arat er
prone. To obtain more reliable simulation models, the dp8on language has to consider the specifics of the apitat
domain [14] and predefined standard components have to lobewlsenever possible. For SOA this is a problem, if apart
from the high level orchestration of services also detdithe communication between services have to be describibein
model. At the higher level, processes have to be describird tiee same graphical notation like process chains or ottesof
description languages like BPEL. Lower levels consistifithe protocols and resources required by the differentatjmrs
cannot be adequately specified with these approaches. Mpre@iate at this level is the model world of some network
simulator which on the other hand cannot be applied for tleeifipation of SOA.

In this paper we propose a hybrid specification approachctirabines the best of both worlds. On the one hand we use
ProC/B [2] for the specification of SOAProC/Bis a modeling paradigm to specify process chain models agla leivel
using a graphical interface. On the other hand we agiWyNeT++ [12] for the specification of network resources used
by the components of SOA for communication. The resultinglehdgs mapped onto a C++ simulation model using the
simulation kernel oOMNeT++. The approach has several advantages since it allows orsettha high level graphical
description format oProC/B and the predefined network componentsOMNeT++ Furthermore, it results in relatively
efficient simulation models (see also [3]) based on the stion functionality ofOMNeT++. Despite from an in principle
very efficient simulator, the problem of large models andedént time scales in large models remains and can only be
resolved by choosing an appropriate abstraction level.

The combination of the high level view 8roC/Band the low level view 0OMNeT++ is not straightforward, especially
if the models at the different levels should be kept as theylarthis paper, we propose an approach to combine both model
by assigning remote service callsRnoC/Bto message transfers@MNeT++. This can be done extending existing models
only slightly. One part of the extension involves annotasiof the ProC/B model, similar to annotations of UML models f
performance analysis [1, 16]. The other part of the extenstmcerns the network resources which are adapted to accoun
for the annotations of the ProC/B model.

The paper is structured as follows. In the next two sectidreC/B and OMNeT++ are briefly introduced. Section 4
presents the new concepts and constructs to combine bottisivdihen, in section 5, the approach is clarified by means of

an example. The paper ends with the conclusions.

2 Process Chain Models

Various versions of process chains exist in the literat@ner work is based on a variant introduced by Kuhn ([7, 8]) vahic

is used within the collaborative research center “Modgllf Large Logistics Networks” 559 (CRC 559;[5]) for modgdii

and performance evaluation of logistics networks. SinaE@ss chains are a descriptive tool they do not allow one to
derive simulation models automatically. In former timawnugiation models had to be build on their own without any forma
relation to the process chain model, implying well-knowalgems of additional modelling effort or inconsistenciesieen

the models.ProC/B [2] is an approach to diminish these problems by enhancimgstating the informal process chain
description more precisely (cf. [4])ProC/B captures the structure of a system in form of function urfidg) and the
behaviour by process chains (PCs).PioC/B, FUs might offer services, which can be used by activitiegrotess chains.
Each service is again described by a process chain and casensgees of internal or imported FUs, thus resulting in a
hierarchical model description.

Fig. 1 shows the top level of an example d?@C/Bmodel. The model consists of a single PC, namesdt oner and a
single user-defined FOr avel _agency, which offers several services. In this example all sesjiegcepsubni t _f or m
require no input parameters and give no result values. Agz®chain element (PCE) of a PC might call a service of a
FU by specifying the name of FU and service together with theessary parameters. The mechanism is similar to most
programming languages, e.g. the activdtybni t _f or mcalls servicesubni t _f or mof FU Tr avel _agency setting the
formal parametetrr avel _i nf o todat a. t r avel _i nf o’.

The ProC/B model of Fig. 1 represents a use case of the “Web Servicestéctiire Usage Scenarios”[15] where cus-
tomers contact a travel agency’s Web site and ask for infooman flights and hotel rooms, select a specific combination
which is then booked by the travel agency. P@st oner in Fig. 1 directly visualises a customer’s behaviour: Fingt
customer requests a Web form, completes it and submits teé fdrm to the agency’s Web site. The travel agent sends
back a list of available flights from which the customer ma&eshoice. After submitting the option, the travel agent re-
sponds with a list of available accommodations, so that tlsoener again can make his choice. The travel agent finalises
the transaction by booking flight and hotel room and chargliregcustomer’s credit card, which all is done by service
subm t _acconmodat i on_choi ce within FU Tr avel _agency. The shown model describes the customer’s activities
at an abstract level and we only specified those parametbishwe thought of being relevant for performance evalumatio
E.g., responses of the travel agent are not modelled, sircsaume that replies are of similar size; the customerisestq
is classified int® categories (attributer avel _i nf 0) and initially set by random (see &ndi nt (1, 3) : | NT”) and the
customer activities at her local PC (filling out the form, obimg a flight etc.) are modelled by delays with a randomlyseimo
duration. Customers determine the load of the model spdcifieording to exponentially distributed inter-arrivahés with
a mean of3000 time units and might arrive single or in bulks of at m8gisee t andi nt (1, 3) ”). We consider a time
unit to be equal td ms in our example.

The internals of FUTr avel _.agency are shown in Fig. 2. Each service is described by a PC andaetber FUs
offer services being used in activities of the travel agen&yl FUs except FUTr avel _‘Agency_Ser ver are user-
defined FUs and their internals can be specified analogoastytTr avel _agency (cf. Fig. 6). It is a matter of choice
whether these FUs are modelled within or on the same levella3rRavel _agency using ProC/Bs capability of im-

porting services (cf. [2]). The hierarchical model desioip ends at standard FUs which have a pre-defined behaviour,

1Access notations to parameters and variables of processpsafixed with keywordlatafor technical reasons in order to distinguish them from glob

variables. Global variables are not shown in Fig. 1.

[opow g/D0I@ Jo ajdwex3 T ainbi4

USE_CASE_EXP

{request availabilities about some travel dates}

randint(1,3)

(randint(1,3):INT) Customer

{user chooses flight and looks for hotels}

{user books hotel room and flight}

(travel_info:INT)

choose_flight

_7submit_accommodation_choice>

EVERY negexp(1/3000.0)

DELAY Travel_agency.

submit_form

Travel_agency.
request_form

{here: time unit = 1 ms}

DELAY

DELAY

Travel_agency.
submit_flight

submit_flight) choose_hotel
(normal(40000,15000))

° request_form V) fill_out_form submit_form
0 (normal(30000,10000)) (data.travel_info) (normal(20000,5000))

Travel_agency.
submit_accommodation_choice

-~

Travel_agency

>— request_form g

ﬁubmitﬁaccommodalionichoic%

> submit_flight —

submit_form
>— (ravelimo:INT) ¢

Travel_agency

request_form

generate_web_page
0

(100.0)

Travel_Agency_Server.
request
request_flight_list \—,.
submit_form data.travel_info}
(travel_info:INT) -

search_for_airlines > > Airlinel.

0 (500.0) request_flight_list
Travel_Agency_Server.
[

|———) generate_web_page

(100.0)

Travel_Agency_Server.
request

. request_flight_list
(data.travel_info)

Ai
request_flight_list

request_accommodation_options

put_flight_on_hold
Hotel_Company1.
request_accommodation_options

Airlinel.
put_flight_on_hold
submit_flight

0 0.3 200.0;
Airline2. Travel_Agency_Server.
put_flight_on_hold request

—»)request_: ion_options search_payment_services generate_web_page
(300.0) (200.0)

put_flight_on_hold Hotel_Company2. Travel_Agency_Server. Travel_Agency_Server.
ELSE - - request_accommodation_options est est
request_accommodation_options
Hotel_Company3.
request_accommodation_options
book_room
confirm_reservation
Hotel_Company1.
bool ne:
confirm_reservation
submit_ 1_choice
request_payment ___, | book_room —> |
0 0.3

CreditCard_Service.
request_payment

confirm_r ion charge_fee generate_web_page
‘ Hotel_Company2. ‘ 0.3 (10.0)
book_room

book_room Airline2. CreditCard_Service. Travel_Agency_Server.
confirm_reservation charge_fee request

Hot ompany3.
book_room ELSE
Airline!
confirm_reservation

confirm_reservation

Airlinel Airline3 DIS=PS
iponfirm_reservationg ~ Jconfirm_reservationg CreditCard_Service
[charge tee |
)Mjhghlionih(&c)Mjlighlionihcﬂq ® request &
)ﬁquest_paymeLlQ (amount:REAL)
el IR ® O e s
Airline2
ﬂfirm,vesewaliﬂb Hotel_Companyl Hotel_Company2 Hotel_Company3
)M Hight_on_hold >— book_room — g >— book_room — g > book_room —
B R ﬂuesl,accommodauonfoptim% mestﬁaccommodaﬁonﬁcpt% ﬂuestﬁaccommodanoniopmgn%
)_re(quesullghtillsl

fravel_info:IN

Figure 2: FUTr avel _agency

like Tr avel _Agency_Ser ver . ProC/Boffers two kinds of standard FUs: servers act as traditiqnalies, and so-called
counters support the manipulation of passive resources.

It is possible to specifyProC/B models precisely enough to obtain a simulation model forrfopmance analysis. In
the course of the CRC 559 we developed a toolset which prexadgraphical user interface to spedfyoC/B models and
transformer modules which mé&roC/Bmodels to the input languages of existing analysis toolthatProC/Bmodels can
be analysed automatically (cf. [2] and Fig. 3). Fig. 4 shoy®ssible result from a simulation run. The diagram shows the
average response time of a customer request tgiFd el _agency. TheProC/Btoolset also offers the possibility to get
similar results for each specific activity of Rilist oner . We do not want to go into those details of the model now and
refer the reader to [2]. Instead we consider refinemenBoC/Band the model in order to capture the system’s behaviour

more accurately.

ProC/B GUI

- Modelling

- Measure Specificatio
— Result Visualisation

ProC/B Mode
& Measures
Transformer

Simulation Mode QN Model GSPN Mode
& Measures & Measure & Measures

>

OMNeT++ HIT . APNN Toolbox
— Simulation — Simulation’ — CTMC Analysis
— Model Checking
Traviando>< OPEDo
— trace - numerical analysis
visualisation of CTMCs
— optimisation

Figure 3:ProC/Btoolset

In many practically relevant applications timers and tinscare used, e.g. in operating systems or network protocols
Timers can also be used to model system characteristicsgirehlevels, like e.g. for the behaviour specification of a
customer. Up to now timeouts were not considered in prockasanodels. Recently we extendBdC/B by a timer

construct as follows.

response time

16000

14000

12000

10000

8000

6000

4000

2000

0

Avg. response time per customer request

seed : INITEGER = 13; | | |

' responseI time: mean in [O,t]I
90% confidence
interval in [0,t]

0 le+08 2e+08 3e+08 4e+08 5e+08 6e+08 7e+08 8e+08 9e+08 1e+09

model time

Figure 4: A possible simulation result

In Fig. 5 we use the specification of timeouts for modelling impatience of Web customers. When requesting a form
calling servicer equest _f or mof FU Tr avel _agency, a customer sets his individual timer with a timeout value of
3000 time units. At latest after 3000 time units he will receive@lean value stored here in varialdat a. i n_ti me
as the answer. The (informal) semantics of this syntactioabtruct is that at the same time as the timer has been set the
specified service is called. If the service call returns oretithe timer is deleted and the process proceeds with adaledn
value for the specified variable, i.e. withat a. i n_ti me = TRUE in the example. If the timer expires before the service
call returns, the specified variable is set to FALSE and tloegss proceeds immediately. Other possibly user-defirsedt re
values are set to default values. A service call returningrdahe timer has elapsed will be ignored. In the example, the
behaviour of a customer depends on the value of the variiila. i n_t i me and possible other result values of the service
call. In Fig. 5 an expired timer implies counting this inaidén the user-defined result measlm@st _cust oner s and it
implies the termination of the customer process.

Normally, an initiated service call will be executed untiends, as specified by the PC. The user can have influence on
this behaviour by setting the pre-defined process locahlsdgCANCEL _ALL OVED, see Fig. 6. After executing the activity
specified by a PCE, a process checks whether the corresppotiatier, if available, has expired and whether its boolean
variableCANCEL _ALLOWED is true. If both conditions are met, the process terminatesediately. This construct allows
also the modelling of lower level network mechanisms at atrabt level including the saving of resource capacities.

In Sect. 5 we will revisit this example and show some moreildeta

As indicated by Fig. 3 we also integrated a mappin@tNeT++ [3] into the ProC/Btoolset. This does not only allow
us to benefit from the features of a modern object-orientadlsitor but also offers the possibility to use existlyINeT++
frameworks for modelling communication aspects. Sect.stidees the use of the INET framework for considering nekwor

aspects in performance models of service-oriented aathites.

3 Modelling Networ ks and Protocol Stacks

OMNeT++ [6] is a public-source discrete event simulation environmthat has been developed and used extensively for
the modelling of communication protocols. Additionalliyhias been proved suitable in other application areas ag(e@fell
[3]). OMNeT++ models are composed of modules which can be simple or contpotine module interfaces and their
relationships are described wi@MNeT++s NED language. While simple modules are implemented asreawation of
NED files and C++ classes, compound modules, that may caisiiter simple and compound modules, are only described
by NED files. Modules are connected via gates and can comiatienily messages either sent along connections or sent
directly to the destination module.

There are several simulation model frameworks availableOfdNeT++ especially for building network models. One
of these frameworks is the INET Framework including (amotigeos) protocol implementations of IPv4, IPv6, TCP, UDP,
Ethernet and 802.11. These protocols are represented Ipjesimodules and can be combined to compound modules to
form network hosts. Several assembled compound modulésntipdement routers, switches etc. are already included.

Additionally, modules for network interfaces, routing le®or the auto-configuration of a network are provided. Sofme

G ainBi4

SUOHUYBP NS YIIM [9POLL §/D01d

USE_CASE_EXP

randint(1,3)

(randint(1,3):INT) Customer

(travel_info:INT)

O
(OK:BOOL,

EVERY negep(13000.0) 1, o0 BOOL)

fhere: time unit = 1 ms}

{request availabilties about some travel dates}

TEouT Tatain_time]

submit_form
(data travel_info)-->(data.OK) (data.OK AND data.in_time)

Travel_agency.

submit_f
512, 12 randint(110,150)

{user chooses flight and looks for hotels}

meou > Gt
choose_flight submit_fiight
5000) —>(data.OK)
DELAY. Travel_agency.
submit_flight

53, 1 randini(110, 150)

ELSE

count_lost_customer

count_lost_customer

—|
(data.OK AND data.in_time)

{user books hotel room and flight}

suhmufaccommedamn,cno\ce>ﬂ

Travel_agenc)
submit_accommodation_choice
53,1100

choose_hotel
(normal(40000.15000
DELAY

count_lost_customer
(lost_customers BY 1),
UPDATE

ELSE

(lost_customers BY 1)
UPDATE

et
request_form fill_out_form
data.in_time / (normal(30000,10000)
Travel_agency. DELAY
request_form
ELSE

(lost_customers BY 1)

UPDATE

Travel_agency
request_form

>— —

L,_submit_accommodation_choice 4

submit flight

®— _.>(SUCCESS:BOOL)

—a

submit form
Rtravel_info:INT)->(SUCCESS:BOOLY

REWARD lost_customers: COUNT

sassaoold palidxs, Jo uone|@oued Bunioddns :9 ainbi4

Airlinel

request_flight_list
(travel_info:INT)

search_for_flights

select_three_cheapest

generate_result_list

0

()

® Set CANCEL_ALLOWED H
(CANCEL_ALLOWED:BOOL=FALSE) (data.CANCEL_ALLOWED := TRUE;) (data.travel_info*10) 2) 3
| CODE | IT_Equipment_of_Airline. IT_Equipment_of_Airline. IT_Equipment_of_Airline.
do_task do_task do_task
put_flight_on_hold \

® process_request

0 ()

IT_Equipment_of_Airline.
do_task
confirm_reservation \ - - - \

® do_final_reservation_and_confirm

IT_Equipment_of_Airline.
do_task

IT_Equipment_of_Airline

do_task
(task_fype:INT) —¢

Ky

those modules are part of almost every host RautingTablewhich can be used for querying, adding or deleting routes, o
InterfaceTablewhich contains a list of all interfaces of a host. Other medware only instantiated once, like for example
the FlatNetworkConfiguratarthat can be used to assign IP addresses to hosts.

The communication between network layers is realized bysagss between the modules representing those layers. An
upper layer protocol may send a message representing a algtato the next lower layer (linked with some additional
information to determine the destination of the packet bikelP address), which will encapsulate and forward the data.
Receiving packets works in a similar way.

In the next section we describe hdwoC/B and the INET Framework can be combined to simulate serviested
architectures. This approach uses an INET model of the mkttepology, while aProC/B model is used to specify the

activities and the process flow.

4 Combining Both Worlds

In ProC/B calls from PCEs to FUs are instantaneous. No model time iswroed between the start of a service call and the
start of its execution. In thBroC/B paradigm this is a reasonable assumption, since processdaral function units are
used to separate behaviour from structure descriptiong @ighplicitly assumed that services run on the same harewa
communication needs negligible time. In the Web servicesrgple of Sect. 2 some PCEs represent access to some remote
component, e.g., the query of airline databases for avhijabf passenger tickets. Typically, a service call to ancte
component requires apart from the processing time at theteecomponent also time for communication which, depending
on the communication medium and the distance, might takega |gercentage of the overall time and in particular can have
some jitter. In Fig. 2 all calls to remote sites are indicatedlue.

Communication between remote sides is usually realizedef@ork components that can be adequately modelled using
the modules from the INET framework. Typical INET modelsnesgent some network and specify the load generation in
host modules employing different pre-defined modules ofRH€T framework. The main idea to combiReoC/Band INET
is to define a mapping between all FUs and some hosts of an IN&emMPCEs are implicitly related to the hosts of their
surrounding constructed FU. The mapping need neither leetiag nor surjective. Whenever a PCE specified within an
FU A calls a service of an FU B mapped to a different host, niesshetween the two hosts associated with A and B are
exchanged in the INET model. E.g., one can define that allitie§ of FUTr avel _agency are performed on host 1, those
of FUAI rlinel on host 2, those of F@r edi t Car d_Ser vi ce on host 3 etc. (cf. Fig. 7) or one can define a mapping
onto 3 hosts as we have done in Sect. 5. Surely, the INET maedeichbe prepared appropriately in order to be simulated
in conjunction with theProC/B model. In principle this means that we keep two models RteeC/B model and the INET
model. Both are enhanced by some constructs to realize thbination into a single simulation model.

In order to account for network traffic, we enhancedmneC/B description by some information on the amount of data,
which needs to be sent. Fig. 8 shows a part of Flavel _agency with additional attributes for PCEs doing a remote
service call. Since a service callitoC/Bhas two directions, calling the service and receiving tiseltealso two attributes

are specified, one for the send directisn) indicating the amount of data being sent to the FU/host aedfor the receive

direction ¢ :) indicating the amount of data being sent back from the Fkt/hAs mentioned, whenever a remote service
call is initiated a message from tiReoC/B part is sent to the INET part of tteMNeT++ model and received by modified
host modules. They replace similar host models in the INETehto interface with thé>roC/B model part and lack the
random traffic generators for TCP and UDP. Instead they declunew module on application layer calferdo CBApp which
interfaces the process model and the INET network part mglating messages with set orr : parameters into TCP data
transmissions with requested bytelength.

The TCP transmission delay foPaoC/Bremote service call is determined as follows: The infiEd C/B-message indicating

a PCE— FU call is suspended at the PCE, instead a message is semt ¢ortlesponding modified host module (see red
arrows in Fig. 9). The host will initiate a TCP connection daraghsmit the amount of data specified for the request. The
called peer will close the connection after the transmissM/hen the connection reset packet arrives at the first Huest,
simulation clock has progressed for the amount of time a glatemission including connection handling would take. A
signal message is directly sent back to the PCE and the waitil is released to continue to the target FU in zero time.
Similarly the result of a service call is returned: After thst activity of a service call has been performed, a messasgnt

to the host module of the corresponding FU and the messagmisfeérred to the INET part of tHteMNeT++ model. Once
the message arrived back at the originally sending hostsiént to the calling PCE, so that activities within BreC/B part

of the model can proceed.

Holding the service call message back and using a replademessage in the INET model has two important advantages:
First, the INET does not transmit information, it transntlits bytelength of the information. Transmitting the orajiservice
call with INET’s simulated IP stack would require more compinput or output parameters at the service call. Secordgth
is no interference with process statistics, sin€a@C/B process is still either in the PCE or in the called FU. By susligg
process messages in the domain &raC/Belement for the time of transmission statistics are kepsisbant.

By including the INET framework irProC/B models service calls can be delayed by realistic valuedtimguirom
connection speed and network topology given by the INET rhobltore than that, even network bottlenecks or message
losses due to overload conditions become relevant for FIiS i€dhere are many calls at the same time. As described above
each FU is bound to a network host. In contrast to network eigs) FUs are organised hierarchically and can include each
other as components. A call in FU A to an included FU B thus @edua network communication between host X and Y
of the INET model, provided the FUs have been mapped to thts xoand Y. Rather than sending messages from PCEs
to FUs as service calls, a TCP transmission is prepared inhaad given to the INET part of the model. The simulated
IP-Stack will resolve the target address, establish a adioreto the target host Y and transmit the message. All netwo
activities consume some time, typically in range of milliseds. When the called Function Unit has finished the sepatte
the network is used again to signal the end of service anchagane network latency occurs.

Following this approach, the use of INET models as netwqgpklkogy forProC/Bis supported. This allows the modeller to
work with a fine-grained network description to evaluateet$ of network hardware and bottlenecks to applicationgsses
specified a$roC/B activities. Currently the INET model has to be adjusted bychim order to be used together with the
OMNeT++translation of thé°>roC/Bmodel. But we intend to automate the combinatioRPafC/Band INET in such a form

that for INET models with appropriate host definitions orfig tapping of FUs to hosts has to be specified.

5 Application Example

In the following we present the model from Sect. 2 in more iflatad show some additional modelling constructs that emabl
the use oOMNeT++and the INET framework foProC/Bmodels.

As already mentioned, our model addresses a Web service ssagario described informally in [15]. It consists of
several FUs representing servers that offer Web serviak®@s that are used to model the behaviour of those Web sgrvice
and the behaviour of customers accessing the travel ageabysévice.

To reduce complexity we did not include some directory smrdike UDDI in our model and assume that the Web
service discovery has already taken place beforehand. ¥oyfeom a modelling point of view also those services cdéd
integrated.

In this scenario Web services are offered by a travel agéim®g airlines, three hotel companies and a credit cardcgerv
The FUTr avel _agency offers four services that can be used by the @@t oner to request the availability of hotel
rooms and flights and to book them eventually. The@®Gt oner and the FUTr avel _agency are shown in Fig. 5.
The behaviour of the PC has already been described in Se€or2the use of the model witdbMNeT++ and the INET
framework additional attributes can be specified for sergalls that comprise messages sent over a network. We use the
timeout mechanism described in Sect. 2 to model the custbeteaviour. We assume that a customer will wait 3 seconds
for the input form of the travel agency to show up. In latepstef the process he or she accepts to wait 6 and 10 seconds
for the availability of his travel dates and the list of hetalespectively. Additionally, the modeller can specifg #imount
of data that has to be transmitted and that will be receiveenagending over a network. These amounts may be a fixed
number or drawn from a probability distribution. For examfidr the call of PQCust oner to the servicesubmi t f orm
of Tr avel _agency a fixed number of 2 KB has to be transmitted. The data returregdvary between 110 and 150 KB,
since in reality it will depend on the number of availablelilig that the travel agency has found. The amounts of data are
summarised in table 1. At this abstract level the modellesdmt have to specify the actual contents of the messadggs on
message size is required to model the delay for sending tksage over a network. In fact the messages sent in this model
may even be of different types: While the communication leetavthe customer and the travel agency is made up of simple
HTTP requests and responses for accessing several weltis@dsavel agency and the airlines exchange SOAP messages.
However, when calling a service additional parameters neagyassed, so that activities of that service may depend se the
parameters. While the network latency only depends on tlesage size and not on the actual content, additional delgy ma
be caused by processing the messages, e.g. marshallingaadshalling of XML-based messages may take up some CPU
resources. The latter delay has been omitted in our exatmolegh it can easily be modeled by additional servers, tteat a
accessed whenever a message needs to be processed.

The inner view of the FUT avel _agency is shown in Fig. 2. The FU has been extended by some additioo@élling
constructs for the simulation witbMNeT++ as one can see in Fig. 8 and as described in the following.

Each of the four services is modelled by a PC. Additionallgpintains further FUs for hotel companies, airlines and the
credit card service and a server that is accessed when ¢jegehe websites that are delivered to the customer.

The simplest service,equest _f or m will just generate the initial website for a customer by aoess to the server.

Servicesubmi t f or m(see Fig. 8) is invoked after a customer has entered date estihation of his travel and returns
a list of possible flights to the customer. It makes use of tngable CANCEL _ALLOWED that has already been explained
in Sect. 2, and thus the PC can be interrupted when a timesubdwurred. The service looks up eligible airlines in its
local directory, sends messages to the airlines and rec#light dates afterwards. We assume tAat | i nel is a large
airline and returns a longer list of flights than the othelira#is as one can see from table 1. All calls to the airlinesamak
use of the timeout mechanism again. If all three airlinektéadeliver any flight information within 3 seconds the trave
agency cannot serve the customer’s request and will reheridolean variablSUCCESS set tof al se finally resulting

in a loss of the customer. If at least one of the airlines retuhe flight options in time this variable is setttoue and
the PCCust onmer will continue with the next step. The servisetbmi t f | i ght is invoked after a customer has chosen
his flight. The service needs to contact an airline to put tightflon hold and request accommodation options from the
hotel companies. The former is done by sending a messagestofdhe airlines, while the latter is modelled in a similar
manner as the compilation of possible flights in the sergigbmi t _f or m First the hotel companies are looked up in a
local database and after that messages are sent to them (agej the timeout mechanism). For the final step in the bapki
process the serviceubmi t _accommodat i on_choi ce is invoked. This service first contacts the credit card sero
negotiate payment options. After that a hotel company isazied again to book a specific hotel, the reservation of et fl

is confirmed and finally the credit card service is contactedrato charge the fee. The booking process is completedaafte
website is generated for the customer summarising thel fpéase.

Modelling of the FUs for the airlines, hotel companies araldredit card service is less complex, since no further remot
services are invoked from there. Each of the FUs for thenaislicontains a server with discipline processor sharirag,ish
used for modelling the IT equipment of the airline. Most of tlasks like searching for flights, generating result lisis a
reserving flights are performed by an access to the servex.tirke airlines only differ in the capacity of the servereTh
inner view of one of the FUs for the airlines is shown in FigA6similar situation holds for the FUs that represent the hote
companies: Their services are modelled by one or more azxésprocessor sharing servers (that have a different speed
for each of the hotel companies) as well. Finally requesthécservices of the credit card company are only delayedrfor a
uniformly distributed duration.

As already mentioned, customers might leave the websiteeotravel agency when the time they are willing to wait for
a response is exceeded. Additionally, the results from dootel companies and airlines might be ignored when the ltrave
agency service assembles the result list, if those resudta@ delivered before a timeout has occurrBdbC/B offers the
possibility to specify measurements [2], called rewardssrgy FU. When simulatin@MNeT++ will estimate results for
those rewards [3]. Apart from standard rewards like thrgughresponse time or the populatidProC/B allows for the
specification of user-defined rewards. As one can see in Fggreward has been defined to estimate the mean number of
lost customers. Further rewards are used to estimate the mugaber of hotel companies and airlines that did not respond
in time (see Fig. 8).

For simulation theProC/B model has been combined with the FlatNet model (cf. Fig. ®ictvis one of the standard
models that are part of the INET Framework. Next to the hast@istomers, travel agencies and airlines share a servarin o

mapping. Hotel companies where separated from the bookimgeps to a dedicated server. Locating services to differen

machines in the INET network model requires data commuisicébr each service call between PCEs and distant FUs.

Results of some simulation runs are shown in table 2. Two imalameters are varied here: inter-arrival times of new
customers and the transmission delay on cable lines bettmeerouters of the INET model. Remember that customers
might arrive in bulks.

The first value of each block is the number of lost customerseeond from which we calculated the relative loss. The
effects of intense customer arrivals are clearly visiblénicreased response times of the travel agencies bookitgnsys
resulting in higher customer losses. Surely, the reasdraisthe database systems inside the model are slowed doviae by t
increasing number of simultaneous requests. If communitaetwork latencies are increased, many user requestsaba
been in time before become late. The two rightmost columdisate the line between significant loss of customers and the

complete failure of service.

6 Conclusions

In this paper we presented an approach supporting modedfirsgrvice-oriented architectures also accounting forelow
level network operations. Web services and their orchiistrare described on a higher level using a process chegn-li
description ProC/B) and lower network activities are modelled using (possigilable models of) the INET framework.
As a matter of course the combinationRrbC/B models for Web services and INET models for networks seerhalways
appropriate due to the different time scales, but the ptedeapproach gives at least the principal possibility tadedé this
assumption.

Currently we have to adjust INET models by hand for being usegther withProC/B models, but we head for an
automated support for appropriate INET models.

So far only synchronous communication has been considénettire research is directed to support also asynchronous

communication by extension &oC/B.

References

[1] S.Balsamo and M. Marzolla. Performance evaluation ofilBdftware architectures with multiclass Queueing Network
models. INWOSP '05: Proceedings of the 5th international workshop oftv@&re and performanc@ages 37-42, New
York, NY, USA, 2005. ACM.

[2] F. Bause, H. Beilner, M. Fischer, P. Kemper, and M. Valk&€he ProC/B Toolset for the Modelling and Analysis of
Process Chains. In T. Field, P. G. Harrison, J. T. Bradleg,dnHarder, editorsComputer Performance Evaluation /

TOOLS volume 2324 of_ecture Notes in Computer Scienpages 51-70. Springer, 2002.

[3] F. Bause, P. Buchholz, J. Kriege, and S. Vastag. Sirnga®@rocess Chain Models with OMNeT++. Pmoc. of 1st In-
ternational Conference on Simulation Tools and Technidoe€ommunications, Networks and Systems (SIMUTpols)
2008.

[4] F. Bause, P. Buchholz, and C. Tepper. The ProC/B-apprdaom Informal Descriptions to Formal Models. IBoLA
- 1st International Symposium on Leveraging Applicatiohsosmal Method Paphos, Cyprus, 2004.

[5] Collaborative Research Center 559 “Modelling of Largmgistics Networks”. http://www.sfb559.uni-dortmund.de

[6] R. Hornig and A. Varga. An Overview of the OMNeT++ Simutat Environment. InProc. of 1st International

Conference on Simulation Tools and Techniques for Commatiois, Networks and Systems (SIMUTod€)08.

[7]1 A. Kuhn. Prozessketten in der Logistik - Entwicklungstrends und éimmgsstrategienVerlag Praxiswissen, Dort-
mund, 1995.

[8] A. Kuhn. Prozesskettenmanagement - Erfolgsbeispiele aus derd?Matilag Praxiswissen, Dortmund, 1999.
[9] D.A. Menascé, V.A.F. Aimeida, and L.W. Dowderformance by DesigrPrentice Hall, 2004.

[10] D.A. Menascé, H. Ruan, and H. Gomaa. QoS Managemengiivick-oriented ArchitectureRerform. Eval, 64(7-
8):646—663, 2007.

[11] V. Muthusamy, H.A. Jacobsen, P. Coulthard, A. Chan, atétouse, and E. Litani. SLA-driven Business Process
Management in SOA. In Kelly A. Lyons and Christian Coutuyreatitors, CASCON pages 264—-267. IBM, 2007.

[12] OMNeT++ Community Side. URL:http//www.omnetpp.org/

[13] D. Rud, A. Schmietendorf, and R.R. Dumke. Performancel®ing of WS-BPEL-Based Web Service Compositions.
In SCW pages 140-147. IEEE Computer Society, 2006.

[14] W.T. Tsai, Z. Cao, X. Wei, R. Paul, Q. Huang, and X. Sun. ddiing and Simulation in Service-Oriented Software
DevelopmentSimulation 83(1):7-32, 2007.

[15] Web Services Architecture Usage Scenarios, 2004. bf®h://www.w3.0rg/TR/2004/NOTE-ws-arch-scenarios-
20040211/.

[16] C. M. Woodside. From Annotated Software Designs (UMLTB®ARTE) to Model Formalisms. In Marco Bernardo
and Jane Hillston, editor§FM, volume 4486 of ecture Notes in Computer Scienpages 429-467. Springer, 2007.

[]

USE_CASE_EXP

Travel_agency

oy
]

—_|

[0 ot

5&

—_|

3)5

]
e

e

e

Airlinel
IT_Equipment_of_Airti

IT_equipment

CreditCard_Service

Server_at™
Airline3
IT_Equipment_of_Airline

IT_equipment
Airline2
IT_Equipment_of_Airline

IT_equipment
Hotel_Company3

Server_at_Hotel

otel_Company2

Server_at_Hotel

Travel_Agency_Server

host 1

host 2

host 3

host 8

Figure 7: Mapping FUs to hosts

° . °
31lvadn (0Z‘01)puUE) 1 ‘G S
(1 Ag [eleulue sesso)) 3873 151 1YBIy 1senbas
“gauIly
ol [ereI BIER)
<« <« IS 1YByI}isanbal
‘INdL=85300NnSEIEP) / [gloons ejep joons elEp <-- “nosuw
< gauIlY
3.1vadn
{1 A9 [eleuiire sesso)) 3513
1
\ : (og'02huipues 1 ‘g s
« ISI By Isanbas
‘Zoully
|sanbay {3nyL=ss300nseep) / [zloons'elep (ojur"jone.| ejep)
“JoAIRS AouaBy [oABI) < couly [« 1sI1uBI 1senbay
(o001) ns'Blep <-- :Jnoau)
Q—t ° g
abed gom ajesouab Im 1vadn 1sanbau
1 Ag [HJouipresasso]; 1onag Kouaby jeAel] i 3000 i * 3009 i {1l 1008:99ns.
luswiaJoul {0"005) (3574 = SS300NS'EIEP) (3ndL = QIMOTIV T30NVOElEp) / 3STY4=1008:IMOTTY 130NYO)
SOUIUIE J0) Yoleas Hnsa1 asienul pajdnuajul aq ued ureyo ssaooid
(10089:55300NS)
3000 < P
{anyL1=ss300ns®eiEp) / _[Lloonselep (LNI:ojui joAR)
-« Lauly usof jjwgns
1senbal
‘JoAles AousbBy [aAel)
fooob) 0

abed gom ajesauab —
uwof jsenbal

Figure 8: Part of FUI'r avel _agency with send/receive attributes (here in KB) for INET

" (FIUSE_CASE EXP) F1USE CASE_EXP1

BT EEE D

[(F1USE_CASE_EXF) F1USE_CASE_EXP1 (id=1) (pr0xB372248)

Y
F1USE_CASE_EXP1

OMNeT++-Representation of
transformed ProC/B-model

Delay-PKE Aufruf-PKE

(DelayPKE) USﬂH_uut_fmm:E

Delay-PKE > Autrt-PKE Delay-PKE

—

L4355choose_h

.-~
C
PCustomer -

Lidreguest_form

L13fill_out_form

L24submit_form L192choose_flight L217submit_flight

K21650Konnektor! Kzzz0oKonnektorz Lzz45e1

KZ244okannektors

Lz221count.lost customer

Funklionseinheit KonsUFEMesg]
—6
LZ170count_lost_customer
F30TravelNagency F‘\USEJZAS7E><PMESS
S J

T (FlatNeD F1USE _CASE EXP1.hostNet

T RN D

[] tFlatiet F1USE_CASE_EXP1.hostiet (id=23) (pr0xB3cches)

E_CASE_EXP1 hosthlet

notificationBoard

2 ipterfaces

interfaceTable tcp
240 routes \ "Em\,\ BB
pingApp nK?[aT:' Sl ndio] repa) n"ml it
rautingTable @.,_/ T .
. ZDIna[zs]

el
AEVY\J 1T

@ [14] nefzz) ™
jﬁe[&] el 2
|
e

clift] He[15]

namTrace

€
P
He(2g] @49‘[37]

refa1] ref33]

INET model

Figure 9: Message flow to an FU when calling a service

Table 1: Amount of data sent between different hosts of thdeho

Source Destination Data (KB)
send receive
Travelagency.requesbrm 1 150
Travelagency.submitorm 2 110-150
Customer Travelagency.submiflight 3 110-150
Travelagency.
submitaccommodatiorhoice 3 100
Travelagency. Airlinel.requesfflight_list 5 30-40
submitform Airline2.requesfflight_list 5 20-30
Airline3.requesfflight_list 5 10-20
Airlinel.putflight_on_hold 2 1
Airline2.putflight_on_hold 2 1
Airline3.putflight_on_hold 2 1
Travelagency. HoteLCompanyl.
submitflight requestaccommodatiomptions| 5 10
HotelL Company?2.
requestaccommodatiomptions| 5 10
HoteLCompanya3.
requestaccommodatiomptions| 5 10
CreditCardService.requeghayment 2 3
HotelLCompanyl.bookoom 2 2
HotelL. Company2.bookoom 2 2
Travelagency. HoteLCompany3.bookoom 2 2
submitaccommodatiorchoice | Airlinel.confirmreservation 2 2
Airline2.confirmreservation 2 2
Airline3.confirmreservation 2 2
CreditCardService.chargéee 2 2

Table 2: Lost customers per second (10000 seconds mode¢l time

mean inter-arrival

time (sec.) network delay 0.001s | 0.01s | 0.05s | 0.075s | 0.1s

lost customers per se¢.0.0650 | 0.0687 | 0.1318 | 0.1879 | 0.4976

4 standard deviation 0.3517 | 0.3560 | 0.4982 | 0.5538 | 0.7371
confidence 90% 20.00%| 13.21%| 16.63%| 11,27%| 9.76%
relative loss 13.0% | 13.7% | 26.4% | 37.6% | 99.5%
lost customers per se¢.0.2007 | 0.1965 | 0.2768 | 0.3754 | 0.6708

3 standard deviation 0.6110 | 0.6040 | 0.7003 | 0.7922 | 0.8965
confidence 90% 10.25% | 6.30% | 10.27%]| 8.39% | 4.47%
relative loss 30.1% | 29.5% | 41.5% | 56.3% | 100%
lost customers per se¢.0.5903 | 0.6245 | 0.6795 | 0.7432 | 0.9856

) standard deviation 1.0100 | 1.0693 | 1.1395 | 1.1632 | 1.2273
confidence 90% 10.00%| 10.88%| 5.19% | 10.24%| 3.69%
relative loss 59.0% | 62.5% | 68.0% | 74.3% | 98.6%

