
A Framework for Simulation Models of
Service-Oriented Architectures

Falko Bause, Peter Buchholz, Jan Kriege, and Sebastian Vastag
Informatik IV, TU Dortmund
D-44221 Dortmund, Germany
{falko.bause,peter.buchholz,
jan.kriege,sebastian.vastag}@udo.edu

Author prepared version of a paper published in

LNCS 5119. Performance Evaluation: Metrics, Models and Benchmarks. Proc. of SPEC International Performance Evalua-

tion Workshop (SIPEW 2008), Darmstadt, 2008.

Copyright Springer-Verlag Berlin Heidelberg 2008

The original publication is available at www.springerlink.com, LNCS online

http://dx.doi.org/10.1007/978-3-540-69814-2 14

A Framework for Simulation Models of Service-Oriented Architectures∗

Falko Bause, Peter Buchholz, Jan Kriege, and Sebastian Vastag

Informatik IV, TU Dortmund

D-44221 Dortmund, Germany

{falko.bause,peter.buchholz,jan.kriege,sebastian.vastag}@udo.edu

Abstract

Service-Oriented Architectures (SOA) are one of the main paradigms for future software systems. Since these software

systems are composed of a large number of different components it is non trivial to assure an adequate Quality of Service

(QoS) of the overall system and performance analysis becomes an important issue. To consider performance issues early

in the development process, a model based approach becomes necessary which has to be embedded into the development

process of SOA to avoid overhead and assure consistency. In particular the specification of the software system should be

used as a base for the resulting performance model. However,since common specification techniques for SOA are very

high level, many details have to be added to come to an executable simulation model which is often needed for a detailed

analysis of performance or dependability. This paper presents an approach which combines an extended version of process

chains to describe the SOA components and some quantitativespecifications at the higher levels. For the modelling of the

detailed architecture and protocols the simulation toolOMNeT++ is used. Both modelling levels are combined resulting in

an executable simulation model for the whole architecture.

Keywords: Service-Oriented Architectures, Simulation, Process Chains,OMNeT++

1 Introduction

Service-Oriented Architectures (SOA) are one of the major paradigms to describe and realize complex software systems as

they are required in todays IT-infrastructure. The description level of SOA is very high such that several details are hidden

in the description and a loose coupling between different processes is assumed for a functioning system. Nevertheless,

quantitative aspects like performance or dependability are major issues of SOA which are only partially addressed up tonow.

In general Service Level Agreements (SLAs) are negotiated between service provider (i.e. the SOA component) and the user

which could be some business process or another component ina hierarchical SOA. This implies that the non-functional

properties of SOA components are known and are considered during orchestration [11]. Both tasks are non trivial. Since

∗This research was supported by the Deutsche Forschungsgemeinschaft as part of the Collaborative Research Center “Modelling of Large Logistics

Networks”(559).

performance and dependability issues should be consideredduring the whole software design process [9], modeling is often

the method of choice. However, the common description levelof SOA is too high to allow a direct derivation of performance

models. Thus, a common way is to manually derive an abstract performance model from a SOA specification and solve this

model analytically [10, 13]. Although the use of simple analytically tractable models is often a good choice, in particular in

the early design phases, these models reach their limits when detailed design decisions have to be made. In those situations

simulation models are more adequate. However, it is known that the realization of simulation models is cumbersome and error

prone. To obtain more reliable simulation models, the description language has to consider the specifics of the application

domain [14] and predefined standard components have to be used whenever possible. For SOA this is a problem, if apart

from the high level orchestration of services also details of the communication between services have to be described inthe

model. At the higher level, processes have to be described using the same graphical notation like process chains or one ofthe

description languages like BPEL. Lower levels consisting of the protocols and resources required by the different operations

cannot be adequately specified with these approaches. More appropriate at this level is the model world of some network

simulator which on the other hand cannot be applied for the specification of SOA.

In this paper we propose a hybrid specification approach thatcombines the best of both worlds. On the one hand we use

ProC/B [2] for the specification of SOA.ProC/B is a modeling paradigm to specify process chain models at a high level

using a graphical interface. On the other hand we applyOMNeT++ [12] for the specification of network resources used

by the components of SOA for communication. The resulting model is mapped onto a C++ simulation model using the

simulation kernel ofOMNeT++. The approach has several advantages since it allows one to use the high level graphical

description format ofProC/B and the predefined network components ofOMNeT++. Furthermore, it results in relatively

efficient simulation models (see also [3]) based on the simulation functionality ofOMNeT++. Despite from an in principle

very efficient simulator, the problem of large models and different time scales in large models remains and can only be

resolved by choosing an appropriate abstraction level.

The combination of the high level view ofProC/Band the low level view ofOMNeT++ is not straightforward, especially

if the models at the different levels should be kept as they are. In this paper, we propose an approach to combine both models

by assigning remote service calls inProC/Bto message transfers inOMNeT++. This can be done extending existing models

only slightly. One part of the extension involves annotations of the ProC/B model, similar to annotations of UML models for

performance analysis [1, 16]. The other part of the extension concerns the network resources which are adapted to account

for the annotations of the ProC/B model.

The paper is structured as follows. In the next two sectionsProC/B andOMNeT++ are briefly introduced. Section 4

presents the new concepts and constructs to combine both worlds. Then, in section 5, the approach is clarified by means of

an example. The paper ends with the conclusions.

2 Process Chain Models

Various versions of process chains exist in the literature.Our work is based on a variant introduced by Kuhn ([7, 8]) which

is used within the collaborative research center “Modelling of Large Logistics Networks” 559 (CRC 559;[5]) for modelling

and performance evaluation of logistics networks. Since process chains are a descriptive tool they do not allow one to

derive simulation models automatically. In former times simulation models had to be build on their own without any formal

relation to the process chain model, implying well-known problems of additional modelling effort or inconsistencies between

the models.ProC/B [2] is an approach to diminish these problems by enhancing and stating the informal process chain

description more precisely (cf. [4]).ProC/B captures the structure of a system in form of function units (FUs) and the

behaviour by process chains (PCs). InProC/B, FUs might offer services, which can be used by activities ofprocess chains.

Each service is again described by a process chain and can useservices of internal or imported FUs, thus resulting in a

hierarchical model description.

Fig. 1 shows the top level of an example of aProC/Bmodel. The model consists of a single PC, namedcustomer and a

single user-defined FUTravel agency, which offers several services. In this example all services, exceptsubmit form,

require no input parameters and give no result values. A process chain element (PCE) of a PC might call a service of a

FU by specifying the name of FU and service together with the necessary parameters. The mechanism is similar to most

programming languages, e.g. the activitysubmit form calls servicesubmit form of FU Travel agency setting the

formal parametertravel info to data.travel info1.

TheProC/B model of Fig. 1 represents a use case of the “Web Services Architecture Usage Scenarios”[15] where cus-

tomers contact a travel agency’s Web site and ask for information on flights and hotel rooms, select a specific combination,

which is then booked by the travel agency. PCcustomer in Fig. 1 directly visualises a customer’s behaviour: Firstthe

customer requests a Web form, completes it and submits the filled form to the agency’s Web site. The travel agent sends

back a list of available flights from which the customer makesa choice. After submitting the option, the travel agent re-

sponds with a list of available accommodations, so that the customer again can make his choice. The travel agent finalises

the transaction by booking flight and hotel room and chargingthe customer’s credit card, which all is done by service

submit accommodation choice within FU Travel agency. The shown model describes the customer’s activities

at an abstract level and we only specified those parameters, which we thought of being relevant for performance evaluation.

E.g., responses of the travel agent are not modelled, since we assume that replies are of similar size; the customer’s request

is classified into3 categories (attributetravel info) and initially set by random (see “randint(1,3):INT”) and the

customer activities at her local PC (filling out the form, choosing a flight etc.) are modelled by delays with a randomly chosen

duration. Customers determine the load of the model specified according to exponentially distributed inter-arrival times with

a mean of3000 time units and might arrive single or in bulks of at most3 (see “randint(1,3)”). We consider a time

unit to be equal to1 ms in our example.

The internals of FUTravel agency are shown in Fig. 2. Each service is described by a PC and several other FUs

offer services being used in activities of the travel agency. All FUs except FUTravel Agency Server are user-

defined FUs and their internals can be specified analogously to FU Travel agency (cf. Fig. 6). It is a matter of choice

whether these FUs are modelled within or on the same level as FU Travel agency usingProC/B’s capability of im-

porting services (cf. [2]). The hierarchical model description ends at standard FUs which have a pre-defined behaviour,

1Access notations to parameters and variables of processes are prefixed with keyworddata for technical reasons in order to distinguish them from global

variables. Global variables are not shown in Fig. 1.

EVERY negexp(1/3000.0)

randint(1,3)
(randint(1,3):INT) Customer

(travel_info:INT)

()

{request availabilities about some travel dates}

Travel_agency.
request_form

request_form

DELAY

fill_out_form
(normal(30000,10000))

Travel_agency.
submit_form

submit_form
(data.travel_info)

Travel_agency

request_form

submit_accommodation_choice

submit_flight

submit_form
(travel_info:INT)

DELAY

choose_flight
(normal(20000,5000))

{user chooses flight and looks for hotels}

Travel_agency.
submit_flight

submit_flight

{user books hotel room and flight}

DELAY

choose_hotel
(normal(40000,15000))

Travel_agency.
submit_accommodation_choice

submit_accommodation_choice

{here: time unit = 1 ms}

USE_CASE_EXP

F
ig

u
re

1
:

E
xam

p
le

o
faP

ro
C

/B
m

o
d

el

request_form

()

submit_form
(travel_info:INT)

()

Travel_Agency_Server.
request

generate_web_page
(100.0)

Airline1.
request_flight_list

request_flight_list
(data.travel_info)

Travel_Agency_Server.
request

generate_web_page
(100.0)

submit_flight

()

Travel_Agency_Server.
request

search_for_airlines
(500.0)

Airline1.
put_flight_on_hold

put_flight_on_hold

Airline2.
put_flight_on_hold

put_flight_on_hold

Airline3.
put_flight_on_hold

put_flight_on_hold

Travel_Agency_Server.
request

search_for_hotels
(200.0)

Hotel_Company1.
request_accommodation_options

request_accommodation_options

Travel_Agency_Server.
request

search_payment_services
(300.0)

Travel_Agency_Server.
request

generate_web_page
(200.0)

submit_accommodation_choice

()
CreditCard_Service.

request_payment

request_payment

Hotel_Company1.
book_room

book_room

Hotel_Company2.
book_room

book_room

Hotel_Company3.
book_room

book_room

Airline1.
confirm_reservation

confirm_reservation

Airline2.
confirm_reservation

confirm_reservation

Airline3.
confirm_reservation

confirm_reservation

CreditCard_Service.
charge_fee

charge_fee

Travel_Agency_Server.
request

generate_web_page
(10.0)

Airline1

confirm_reservation

put_flight_on_hold

request_flight_list
(travel_info:INT)

CreditCard_Service

charge_fee

request_payment

Hotel_Company1

book_room

request_accommodation_options

Airline3

confirm_reservation

put_flight_on_hold

request_flight_list
(travel_info:INT)

Airline2

confirm_reservation

put_flight_on_hold

request_flight_list
(travel_info:INT)

Hotel_Company3

book_room

request_accommodation_options

Hotel_Company2

book_room

request_accommodation_options

Travel_Agency_Server

DIS=PS

request
(amount:REAL)

Airline2.
request_flight_list

request_flight_list
(data.travel_info)

Airline3.
request_flight_list

request_flight_list
(data.travel_info)

Hotel_Company2.
request_accommodation_options

request_accommodation_options

Hotel_Company3.
request_accommodation_options

request_accommodation_options

0.3

0.3

ELSE

0.3

0.3

ELSE

0.3

0.3

ELSE

Travel_agency

Figure 2: FUTravel agency

like Travel Agency Server. ProC/Boffers two kinds of standard FUs: servers act as traditionalqueues, and so-called

counters support the manipulation of passive resources.

It is possible to specifyProC/B models precisely enough to obtain a simulation model for a performance analysis. In

the course of the CRC 559 we developed a toolset which provides a graphical user interface to specifyProC/Bmodels and

transformer modules which mapProC/Bmodels to the input languages of existing analysis tools, sothatProC/Bmodels can

be analysed automatically (cf. [2] and Fig. 3). Fig. 4 shows apossible result from a simulation run. The diagram shows the

average response time of a customer request to FUTravel agency. TheProC/B toolset also offers the possibility to get

similar results for each specific activity of PCcustomer. We do not want to go into those details of the model now and

refer the reader to [2]. Instead we consider refinements ofProC/Band the model in order to capture the system’s behaviour

more accurately.

HIT
− Simulation
− QN Analysis

− Modelling
− Measure Specification
− Result Visualisation

ProC/B GUI

 & Measures & Measures & Measures

ProC/B Model

− Simulation
− Animation

APNN Toolbox
− CTMC Analysis
− Invariant Analysis
− Model Checking

QN Model GSPN Model

OMNeT++

Simulation Model

Traviando OPEDo
− numerical analysis

− optimisation
of CTMCs

− trace
visualisation

 & Measures

Transformer

Figure 3:ProC/B toolset

In many practically relevant applications timers and timeouts are used, e.g. in operating systems or network protocols.

Timers can also be used to model system characteristics on higher levels, like e.g. for the behaviour specification of a

customer. Up to now timeouts were not considered in process chain models. Recently we extendedProC/B by a timer

construct as follows.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 1e+08 2e+08 3e+08 4e+08 5e+08 6e+08 7e+08 8e+08 9e+08 1e+09

re
sp

on
se

 ti
m

e

model time

Avg. response time per customer request

seed : INTEGER = 13;

 response time: mean in [0,t]
90% confidence

 interval in [0,t]

Figure 4: A possible simulation result

In Fig. 5 we use the specification of timeouts for modelling the impatience of Web customers. When requesting a form

calling servicerequest form of FU Travel agency, a customer sets his individual timer with a timeout value of

3000 time units. At latest after 3000 time units he will receive a boolean value stored here in variabledata.in time

as the answer. The (informal) semantics of this syntacticalconstruct is that at the same time as the timer has been set the

specified service is called. If the service call returns on time, the timer is deleted and the process proceeds with a true boolean

value for the specified variable, i.e. withdata.in time = TRUE in the example. If the timer expires before the service

call returns, the specified variable is set to FALSE and the process proceeds immediately. Other possibly user-defined result

values are set to default values. A service call returning after the timer has elapsed will be ignored. In the example, the

behaviour of a customer depends on the value of the variabledata.in time and possible other result values of the service

call. In Fig. 5 an expired timer implies counting this incident in the user-defined result measurelost customers and it

implies the termination of the customer process.

Normally, an initiated service call will be executed until it ends, as specified by the PC. The user can have influence on

this behaviour by setting the pre-defined process local variableCANCEL ALLOWED, see Fig. 6. After executing the activity

specified by a PCE, a process checks whether the corresponding timer, if available, has expired and whether its boolean

variableCANCEL ALLOWED is true. If both conditions are met, the process terminates immediately. This construct allows

also the modelling of lower level network mechanisms at an abstract level including the saving of resource capacities.

In Sect. 5 we will revisit this example and show some more details.

As indicated by Fig. 3 we also integrated a mapping toOMNeT++ [3] into theProC/B toolset. This does not only allow

us to benefit from the features of a modern object-oriented simulator but also offers the possibility to use existingOMNeT++

frameworks for modelling communication aspects. Sect. 4 describes the use of the INET framework for considering network

aspects in performance models of service-oriented architectures.

3 Modelling Networks and Protocol Stacks

OMNeT++ [6] is a public-source discrete event simulation environment, that has been developed and used extensively for

the modelling of communication protocols. Additionally, it has been proved suitable in other application areas as well(cf.

[3]). OMNeT++ models are composed of modules which can be simple or compound. The module interfaces and their

relationships are described withOMNeT++’s NED language. While simple modules are implemented as a combination of

NED files and C++ classes, compound modules, that may consistof other simple and compound modules, are only described

by NED files. Modules are connected via gates and can communicate by messages either sent along connections or sent

directly to the destination module.

There are several simulation model frameworks available for OMNeT++ especially for building network models. One

of these frameworks is the INET Framework including (among others) protocol implementations of IPv4, IPv6, TCP, UDP,

Ethernet and 802.11. These protocols are represented by simple modules and can be combined to compound modules to

form network hosts. Several assembled compound modules that implement routers, switches etc. are already included.

Additionally, modules for network interfaces, routing tables or the auto-configuration of a network are provided. Someof

EVERY negexp(1/3000.0)

randint(1,3)
(randint(1,3):INT) Customer

(travel_info:INT)

(OK:BOOL,
in_time:BOOL)

{request availabilities about some travel dates}

Travel_agency.
request_form

s: 1, r: 150

timeout: 3000 --> data.in_time

request_form

DELAY

fill_out_form
(normal(30000,10000))

Travel_agency.
submit_form

s: 2, r: randint(110,150)

timeout: 6000 --> data.in_time

submit_form
(data.travel_info)-->(data.OK)

Travel_agency

request_form

submit_accommodation_choice

submit_flight
-->(SUCCESS:BOOL)

submit_form
(travel_info:INT)-->(SUCCESS:BOOL)

DELAY

choose_flight
(normal(20000,5000))

{user chooses flight and looks for hotels}

Travel_agency.
submit_flight

s: 3, r: randint(110, 150)

timeout: 10000 --> data.in_time

submit_flight
-->(data.OK)

{user books hotel room and flight}

DELAY

choose_hotel
(normal(40000,15000))

Travel_agency.
submit_accommodation_choice

s: 3, r: 100

submit_accommodation_choice

{here: time unit = 1 ms}

UPDATE

count_lost_customer
(lost_customers BY 1)

REWARD lost_customers: COUNT

UPDATE

count_lost_customer
(lost_customers BY 1)

UPDATE

count_lost_customer
(lost_customers BY 1)

data.in_time

ELSE

ELSE

(data.OK AND data.in_time)

ELSE

(data.OK AND data.in_time)

USE_CASE_EXPF
ig

u
re

5
:P

ro
C

/B
m

o
d

elw
ith

tim
eo

u
td

efin
itio

n
s

request_flight_list
(travel_info:INT)

(CANCEL_ALLOWED:BOOL=FALSE)

put_flight_on_hold

()

confirm_reservation

()

IT_Equipment_of_Airline.
do_task

process_request
(4)

IT_Equipment_of_Airline.
do_task

do_final_reservation_and_confirm
(5)

IT_Equipment_of_Airline.
do_task

search_for_flights
(data.travel_info*10)

CODE

Set CANCEL_ALLOWED
(data.CANCEL_ALLOWED := TRUE;)

IT_Equipment_of_Airline.
do_task

select_three_cheapest
(2)

IT_Equipment_of_Airline.
do_task

generate_result_list
(3)

IT_Equipment_of_Airline

do_task
(task_type:INT)

Airline1

F
ig

u
re

6
:

S
u

p
p

o
rtin

g
can

cellatio
n

o
f“exp

ired
”p

ro
cesses

those modules are part of almost every host likeRoutingTable, which can be used for querying, adding or deleting routes, or

InterfaceTable, which contains a list of all interfaces of a host. Other modules are only instantiated once, like for example

theFlatNetworkConfigurator, that can be used to assign IP addresses to hosts.

The communication between network layers is realized by messages between the modules representing those layers. An

upper layer protocol may send a message representing a data packet to the next lower layer (linked with some additional

information to determine the destination of the packet likean IP address), which will encapsulate and forward the data.

Receiving packets works in a similar way.

In the next section we describe howProC/B and the INET Framework can be combined to simulate service-oriented

architectures. This approach uses an INET model of the network topology, while aProC/B model is used to specify the

activities and the process flow.

4 Combining Both Worlds

In ProC/B calls from PCEs to FUs are instantaneous. No model time is consumed between the start of a service call and the

start of its execution. In theProC/B paradigm this is a reasonable assumption, since process chains and function units are

used to separate behaviour from structure descriptions andit is implicitly assumed that services run on the same hardware or

communication needs negligible time. In the Web services example of Sect. 2 some PCEs represent access to some remote

component, e.g., the query of airline databases for availability of passenger tickets. Typically, a service call to a remote

component requires apart from the processing time at the remote component also time for communication which, depending

on the communication medium and the distance, might take a large percentage of the overall time and in particular can have

some jitter. In Fig. 2 all calls to remote sites are indicatedin blue.

Communication between remote sides is usually realized vianetwork components that can be adequately modelled using

the modules from the INET framework. Typical INET models represent some network and specify the load generation in

host modules employing different pre-defined modules of theINET framework. The main idea to combineProC/Band INET

is to define a mapping between all FUs and some hosts of an INET model. PCEs are implicitly related to the hosts of their

surrounding constructed FU. The mapping need neither be injective nor surjective. Whenever a PCE specified within an

FU A calls a service of an FU B mapped to a different host, messages between the two hosts associated with A and B are

exchanged in the INET model. E.g., one can define that all activities of FUTravel agency are performed on host 1, those

of FU Airline1 on host 2, those of FUCreditCard Service on host 3 etc. (cf. Fig. 7) or one can define a mapping

onto 3 hosts as we have done in Sect. 5. Surely, the INET model has to be prepared appropriately in order to be simulated

in conjunction with theProC/Bmodel. In principle this means that we keep two models, theProC/Bmodel and the INET

model. Both are enhanced by some constructs to realize the combination into a single simulation model.

In order to account for network traffic, we enhanced theProC/Bdescription by some information on the amount of data,

which needs to be sent. Fig. 8 shows a part of FUTravel agency with additional attributes for PCEs doing a remote

service call. Since a service call inProC/Bhas two directions, calling the service and receiving the result, also two attributes

are specified, one for the send direction (s:) indicating the amount of data being sent to the FU/host and one for the receive

direction (r:) indicating the amount of data being sent back from the FU/host. As mentioned, whenever a remote service

call is initiated a message from theProC/Bpart is sent to the INET part of theOMNeT++ model and received by modified

host modules. They replace similar host models in the INET model to interface with theProC/B model part and lack the

random traffic generators for TCP and UDP. Instead they include a new module on application layer calledProCBAppwhich

interfaces the process model and the INET network part by translating messages with sets: orr: parameters into TCP data

transmissions with requested bytelength.

The TCP transmission delay for aProC/Bremote service call is determined as follows: The initialProC/B-message indicating

a PCE→ FU call is suspended at the PCE, instead a message is sent to the corresponding modified host module (see red

arrows in Fig. 9). The host will initiate a TCP connection andtransmit the amount of data specified for the request. The

called peer will close the connection after the transmission. When the connection reset packet arrives at the first host,the

simulation clock has progressed for the amount of time a datatransmission including connection handling would take. A

signal message is directly sent back to the PCE and the waiting call is released to continue to the target FU in zero time.

Similarly the result of a service call is returned: After thelast activity of a service call has been performed, a messageis sent

to the host module of the corresponding FU and the message is transferred to the INET part of theOMNeT++ model. Once

the message arrived back at the originally sending host, it is sent to the calling PCE, so that activities within theProC/Bpart

of the model can proceed.

Holding the service call message back and using a replacement message in the INET model has two important advantages:

First, the INET does not transmit information, it transmitsthe bytelength of the information. Transmitting the original service

call with INET’s simulated IP stack would require more complex input or output parameters at the service call. Second, there

is no interference with process statistics, since aProC/Bprocess is still either in the PCE or in the called FU. By suspending

process messages in the domain of aProC/Belement for the time of transmission statistics are kept consistent.

By including the INET framework inProC/B models service calls can be delayed by realistic values resulting from

connection speed and network topology given by the INET model. More than that, even network bottlenecks or message

losses due to overload conditions become relevant for FU calls if there are many calls at the same time. As described above,

each FU is bound to a network host. In contrast to network elements, FUs are organised hierarchically and can include each

other as components. A call in FU A to an included FU B thus induces a network communication between host X and Y

of the INET model, provided the FUs have been mapped to the hosts X and Y. Rather than sending messages from PCEs

to FUs as service calls, a TCP transmission is prepared in host X and given to the INET part of the model. The simulated

IP-Stack will resolve the target address, establish a connection to the target host Y and transmit the message. All network

activities consume some time, typically in range of milliseconds. When the called Function Unit has finished the servicecall,

the network is used again to signal the end of service and again some network latency occurs.

Following this approach, the use of INET models as network topology forProC/Bis supported. This allows the modeller to

work with a fine-grained network description to evaluate effects of network hardware and bottlenecks to application processes

specified asProC/B activities. Currently the INET model has to be adjusted by hand in order to be used together with the

OMNeT++ translation of theProC/Bmodel. But we intend to automate the combination ofProC/Band INET in such a form

that for INET models with appropriate host definitions only the mapping of FUs to hosts has to be specified.

5 Application Example

In the following we present the model from Sect. 2 in more detail and show some additional modelling constructs that enable

the use ofOMNeT++ and the INET framework forProC/Bmodels.

As already mentioned, our model addresses a Web service usage scenario described informally in [15]. It consists of

several FUs representing servers that offer Web services and PCs that are used to model the behaviour of those Web services

and the behaviour of customers accessing the travel agency Web service.

To reduce complexity we did not include some directory service like UDDI in our model and assume that the Web

service discovery has already taken place beforehand. However, from a modelling point of view also those services couldbe

integrated.

In this scenario Web services are offered by a travel agency,three airlines, three hotel companies and a credit card service.

The FUTravel agency offers four services that can be used by the PCCustomer to request the availability of hotel

rooms and flights and to book them eventually. The PCCustomer and the FUTravel agency are shown in Fig. 5.

The behaviour of the PC has already been described in Sect. 2.For the use of the model withOMNeT++ and the INET

framework additional attributes can be specified for service calls that comprise messages sent over a network. We use the

timeout mechanism described in Sect. 2 to model the customerbehaviour. We assume that a customer will wait 3 seconds

for the input form of the travel agency to show up. In later steps of the process he or she accepts to wait 6 and 10 seconds

for the availability of his travel dates and the list of hotels, respectively. Additionally, the modeller can specify the amount

of data that has to be transmitted and that will be received when sending over a network. These amounts may be a fixed

number or drawn from a probability distribution. For example for the call of PCCustomer to the servicesubmit form

of Travel agency a fixed number of 2 KB has to be transmitted. The data returned may vary between 110 and 150 KB,

since in reality it will depend on the number of available flights that the travel agency has found. The amounts of data are

summarised in table 1. At this abstract level the modeller does not have to specify the actual contents of the messages, only a

message size is required to model the delay for sending the message over a network. In fact the messages sent in this model

may even be of different types: While the communication between the customer and the travel agency is made up of simple

HTTP requests and responses for accessing several websites, the travel agency and the airlines exchange SOAP messages.

However, when calling a service additional parameters may be passed, so that activities of that service may depend on these

parameters. While the network latency only depends on the message size and not on the actual content, additional delay may

be caused by processing the messages, e.g. marshalling and unmarshalling of XML-based messages may take up some CPU

resources. The latter delay has been omitted in our example,though it can easily be modeled by additional servers, that are

accessed whenever a message needs to be processed.

The inner view of the FUTravel agency is shown in Fig. 2. The FU has been extended by some additionalmodelling

constructs for the simulation withOMNeT++ as one can see in Fig. 8 and as described in the following.

Each of the four services is modelled by a PC. Additionally, it contains further FUs for hotel companies, airlines and the

credit card service and a server that is accessed when generating the websites that are delivered to the customer.

The simplest service,request form, will just generate the initial website for a customer by an access to the server.

Servicesubmit form (see Fig. 8) is invoked after a customer has entered date and destination of his travel and returns

a list of possible flights to the customer. It makes use of the variableCANCEL ALLOWED that has already been explained

in Sect. 2, and thus the PC can be interrupted when a timeout has occurred. The service looks up eligible airlines in its

local directory, sends messages to the airlines and receives flight dates afterwards. We assume thatAirline1 is a large

airline and returns a longer list of flights than the other airlines as one can see from table 1. All calls to the airlines make

use of the timeout mechanism again. If all three airlines fail to deliver any flight information within 3 seconds the travel

agency cannot serve the customer’s request and will return the boolean variableSUCCESS set tofalse finally resulting

in a loss of the customer. If at least one of the airlines returns the flight options in time this variable is set totrue and

the PCCustomer will continue with the next step. The servicesubmit flight is invoked after a customer has chosen

his flight. The service needs to contact an airline to put the flight on hold and request accommodation options from the

hotel companies. The former is done by sending a message to one of the airlines, while the latter is modelled in a similar

manner as the compilation of possible flights in the servicesubmit form. First the hotel companies are looked up in a

local database and after that messages are sent to them (again using the timeout mechanism). For the final step in the booking

process the servicesubmit accommodation choice is invoked. This service first contacts the credit card service to

negotiate payment options. After that a hotel company is contacted again to book a specific hotel, the reservation of the flight

is confirmed and finally the credit card service is contacted again to charge the fee. The booking process is completed after a

website is generated for the customer summarising the travel plan.

Modelling of the FUs for the airlines, hotel companies and the credit card service is less complex, since no further remote

services are invoked from there. Each of the FUs for the airlines contains a server with discipline processor sharing, that is

used for modelling the IT equipment of the airline. Most of the tasks like searching for flights, generating result lists and

reserving flights are performed by an access to the server. The three airlines only differ in the capacity of the server. The

inner view of one of the FUs for the airlines is shown in Fig. 6.A similar situation holds for the FUs that represent the hotel

companies: Their services are modelled by one or more accesses to processor sharing servers (that have a different speed

for each of the hotel companies) as well. Finally requests tothe services of the credit card company are only delayed for an

uniformly distributed duration.

As already mentioned, customers might leave the website of the travel agency when the time they are willing to wait for

a response is exceeded. Additionally, the results from somehotel companies and airlines might be ignored when the travel

agency service assembles the result list, if those results are not delivered before a timeout has occurred.ProC/Boffers the

possibility to specify measurements [2], called rewards, at any FU. When simulatingOMNeT++ will estimate results for

those rewards [3]. Apart from standard rewards like throughput, response time or the population,ProC/B allows for the

specification of user-defined rewards. As one can see in Fig. 5a reward has been defined to estimate the mean number of

lost customers. Further rewards are used to estimate the mean number of hotel companies and airlines that did not respond

in time (see Fig. 8).

For simulation theProC/B model has been combined with the FlatNet model (cf. Fig. 9), which is one of the standard

models that are part of the INET Framework. Next to the host for customers, travel agencies and airlines share a server in our

mapping. Hotel companies where separated from the booking process to a dedicated server. Locating services to different

machines in the INET network model requires data communication for each service call between PCEs and distant FUs.

Results of some simulation runs are shown in table 2. Two model parameters are varied here: inter-arrival times of new

customers and the transmission delay on cable lines betweentwo routers of the INET model. Remember that customers

might arrive in bulks.

The first value of each block is the number of lost customers per second from which we calculated the relative loss. The

effects of intense customer arrivals are clearly visible inincreased response times of the travel agencies booking system

resulting in higher customer losses. Surely, the reason is that the database systems inside the model are slowed down by the

increasing number of simultaneous requests. If communication network latencies are increased, many user requests that have

been in time before become late. The two rightmost columns indicate the line between significant loss of customers and the

complete failure of service.

6 Conclusions

In this paper we presented an approach supporting modellingof service-oriented architectures also accounting for lower

level network operations. Web services and their orchestration are described on a higher level using a process chain-like

description (ProC/B) and lower network activities are modelled using (possiblyavailable models of) the INET framework.

As a matter of course the combination ofProC/Bmodels for Web services and INET models for networks seems not always

appropriate due to the different time scales, but the presented approach gives at least the principal possibility to validate this

assumption.

Currently we have to adjust INET models by hand for being usedtogether withProC/B models, but we head for an

automated support for appropriate INET models.

So far only synchronous communication has been considered.Future research is directed to support also asynchronous

communication by extension ofProC/B.

References

[1] S. Balsamo and M. Marzolla. Performance evaluation of UML software architectures with multiclass Queueing Network

models. InWOSP ’05: Proceedings of the 5th international workshop on Software and performance, pages 37–42, New

York, NY, USA, 2005. ACM.

[2] F. Bause, H. Beilner, M. Fischer, P. Kemper, and M. Völker. The ProC/B Toolset for the Modelling and Analysis of

Process Chains. In T. Field, P. G. Harrison, J. T. Bradley, and U. Harder, editors,Computer Performance Evaluation /

TOOLS, volume 2324 ofLecture Notes in Computer Science, pages 51–70. Springer, 2002.

[3] F. Bause, P. Buchholz, J. Kriege, and S. Vastag. Simulating Process Chain Models with OMNeT++. InProc. of 1st In-

ternational Conference on Simulation Tools and Techniquesfor Communications, Networks and Systems (SIMUTools),

2008.

[4] F. Bause, P. Buchholz, and C. Tepper. The ProC/B-approach: From Informal Descriptions to Formal Models. InISoLA

- 1st International Symposium on Leveraging Applications of Formal Method, Paphos, Cyprus, 2004.

[5] Collaborative Research Center 559 “Modelling of Large Logistics Networks”. http://www.sfb559.uni-dortmund.de.

[6] R. Hornig and A. Varga. An Overview of the OMNeT++ Simulation Environment. InProc. of 1st International

Conference on Simulation Tools and Techniques for Communications, Networks and Systems (SIMUTools), 2008.

[7] A. Kuhn. Prozessketten in der Logistik - Entwicklungstrends und Umsetzungsstrategien. Verlag Praxiswissen, Dort-

mund, 1995.

[8] A. Kuhn. Prozesskettenmanagement - Erfolgsbeispiele aus der Praxis. Verlag Praxiswissen, Dortmund, 1999.

[9] D.A. Menascé, V.A.F. Almeida, and L.W. Dowdy.Performance by Design. Prentice Hall, 2004.

[10] D.A. Menascé, H. Ruan, and H. Gomaa. QoS Management in Service-oriented Architectures.Perform. Eval., 64(7-

8):646–663, 2007.

[11] V. Muthusamy, H.A. Jacobsen, P. Coulthard, A. Chan, J. Waterhouse, and E. Litani. SLA-driven Business Process

Management in SOA. In Kelly A. Lyons and Christian Couturier, editors,CASCON, pages 264–267. IBM, 2007.

[12] OMNeT++ Community Side. URL:http//www.omnetpp.org/.

[13] D. Rud, A. Schmietendorf, and R.R. Dumke. Performance Modeling of WS-BPEL-Based Web Service Compositions.

In SCW, pages 140–147. IEEE Computer Society, 2006.

[14] W.T. Tsai, Z. Cao, X. Wei, R. Paul, Q. Huang, and X. Sun. Modeling and Simulation in Service-Oriented Software

Development.Simulation, 83(1):7–32, 2007.

[15] Web Services Architecture Usage Scenarios, 2004. URL:http://www.w3.org/TR/2004/NOTE-ws-arch-scenarios-

20040211/.

[16] C. M. Woodside. From Annotated Software Designs (UML SPT/MARTE) to Model Formalisms. In Marco Bernardo

and Jane Hillston, editors,SFM, volume 4486 ofLecture Notes in Computer Science, pages 429–467. Springer, 2007.

host 1

host 3

host 2

USE_CASE_EXP

Travel_agency

Airline1

IT_Equipment_of_Airline

IT_equipment

CreditCard_Service

Hotel_Company1

Server_at_Hotel

Airline3

IT_Equipment_of_Airline

IT_equipment

Airline2

IT_Equipment_of_Airline

IT_equipment

Hotel_Company3

Server_at_Hotel

Hotel_Company2

Server_at_Hotel

Travel_Agency_Server

host 8

Figure 7: Mapping FUs to hosts

Figure 8: Part of FUTravel agency with send/receive attributes (here in KB) for INET

transformed ProC/B-model
OMNeT++-Representation of

INET model

host

Figure 9: Message flow to an FU when calling a service

Table 1: Amount of data sent between different hosts of the model

Source Destination Data (KB)

send receive

Customer

Travel agency.requestform 1 150

Travel agency.submitform 2 110-150

Travel agency.submitflight 3 110-150

Travel agency.

submitaccommodationchoice 3 100

Travel agency. Airline1.requestflight list 5 30-40

submit form Airline2.requestflight list 5 20-30

Airline3.requestflight list 5 10-20

Airline1.put flight on hold 2 1

Airline2.put flight on hold 2 1

Airline3.put flight on hold 2 1

Travel agency. Hotel Company1.

submitflight requestaccommodationoptions 5 10

Hotel Company2.

requestaccommodationoptions 5 10

Hotel Company3.

requestaccommodationoptions 5 10

CreditCardService.requestpayment 2 3

Hotel Company1.bookroom 2 2

Hotel Company2.bookroom 2 2

Travel agency. Hotel Company3.bookroom 2 2

submitaccommodationchoice Airline1.confirmreservation 2 2

Airline2.confirmreservation 2 2

Airline3.confirmreservation 2 2

CreditCardService.chargefee 2 2

Table 2: Lost customers per second (10000 seconds model time).

mean inter-arrival

time (sec.) network delay 0.001s 0.01s 0.05s 0.075s 0.1s

4

lost customers per sec.0.0650 0.0687 0.1318 0.1879 0.4976

standard deviation 0.3517 0.3560 0.4982 0.5538 0.7371

confidence 90% 20.00% 13.21% 16.63% 11,27% 9.76%

relative loss 13.0% 13.7% 26.4% 37.6% 99.5%

3

lost customers per sec.0.2007 0.1965 0.2768 0.3754 0.6708

standard deviation 0.6110 0.6040 0.7003 0.7922 0.8965

confidence 90% 10.25% 6.30% 10.27% 8.39% 4.47%

relative loss 30.1% 29.5% 41.5% 56.3% 100%

2

lost customers per sec.0.5903 0.6245 0.6795 0.7432 0.9856

standard deviation 1.0100 1.0693 1.1395 1.1632 1.2273

confidence 90% 10.00% 10.88% 5.19% 10.24% 3.69%

relative loss 59.0% 62.5% 68.0% 74.3% 98.6%

