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A B S T R A C T

This short note introduces different equivalence transformations for acyclic
phase type distributions. The goal of the first two transformations is to gen-
erate a representation of a phase type distribution which is more amenable for
subsequent analysis steps or for an expansion of the distribution into a stochas-
tic process. The third transformation is used to reduce the number of states of
an acyclic phase type distribution.
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1 Introduction

Phase type (PH) distributions are a powerful class of distributions which
describe a random variable by means the absorption time of an absorbing
Markov chain [5]. It is known [7] that every distribution with a continuous
and strictly positive density on (0,∞) can be represented by a PH distri-
bution. However, it is also known that the PH representation for a random
variable is non unique [6]. In fact, as shown in [10], a PH distribution of
order n has n2 − 1 free parameters but 2n are su�cient to characterize the
distribution. Canonical representations are only known for PH distributions
of order 2 or 3 [3], for larger dimensions one probably has to work with
di�erent representations. For this reason, often acyclic or triangular phase
type (APH) distributions [8] are used. Although this class is more restrictive
than general PH distributions since it can only be used to model distribution
where the poles of the Laplace transforms are real, it has some nice proper-
ties. In particular, a canonical representation with 2n− 1 parameters exists
[2]. Since a APH distribution of order n has (n2 +3n− 2)/2 parameters, the
representation is redundant but [2] provides an algorithm to transform every
APH in its canonical form.

In some situations the canonical representation of an APH distribution
is not the best choice. This is for example the case when the APH distribu-
tion has to be expanded into a Markovian arrival process (MAP) to capture
autocorrelations [1, 4]. In this case, the representation of the APH distribu-
tion determines the joint moments and lag k autocorrelation which can be
reached by the MAP. Thus, methods to perform equivalence transformations
for APH representations are important. In this note we present three di�er-
ent transformations. The �rst one has been proposed in [1] without giving
proofs which are presented in this note. The second one is from [4] and the
third is used in [9] to �nd APH representations with less states.

This report is structured as follows: Sec. 2 introduces (A)PH distribu-
tions, MAPs and some properties that will be used later. In Sec. 3 we give
an overview of di�erent equivalence transformations for APH distributions.
The transformations in Sec. 3.1 and 3.2 aim at increasing the number of
exit states of an APH and can be applied to prepare an APH distribution
for a subsequent expansion into a MAP. The transformation in Sec. 3.3 is
used for reducing the size of an APH representation. The paper ends with
conclusions.
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2 Phase Type distributions

A Phase type (PH) distribution of order n can be described by a CTMC
with n transient states (s1, ..., sn) and 1 absorbing state (sn+1). The vector
π = (π(1), π(1), ..., π(n)) describes the initial probabilities of the transient
states. The initial probability of the absorbing state π(n + 1) = 1 − πeT ,
where e is the unit row vector and eT is its transposed, is usually assumed
to be 0. Matrix D0 describes the transition rates between the transient states
in the o�-diagonal elements and has the negative sum of the transition rate
of the ith state in the diagonal, i.e. D0 has the following properties:

• D0(i, j) ≥ 0 for i 6= j

• D0(i, i) ≤ −
∑n

j=1,i 6=j D0(i, j)

The transition rates to the exit state are given by −D0eT . If D0(i, i) <
−
∑n

j=1,i 6=j D0(i, j) state i is an exit state. If π(i) > 0 state i is an entry
state. The distribution of the time to absorption in the CTMC de�nes the
PH distribution and we call (π,D0) a representation of the PH distribution.
The cumulative distribution function of a PH distribution is given by

F (x) = 1− πexp(D0x)eT for x ≥ 0 (1)

We will use the following notations for PH distributions: λi = −D0(i, i) is
the transition rate of the ith phase and q(i, j) is the transition rate from
phase i to j, i.e. q(i, j) = D0(i, j), i 6= j and q(i, i) = 0. For transitions to
the absorbing state we have q(i, n+ 1) = λi −

∑n
j=1 q(i, j).

A subclass of PH distributions are acyclic Phase type (APH) distribu-
tions that have an upper triangular matrix D0, which implies that q(i, j) = 0
for i > j. APH distributions are interesting for �tting approaches because
canonical forms exist for them [2]. Every APH distribution can be trans-
formed into bidiagonal form with only 2n − 1 parameters (assuming that
π(n + 1) = 0), eliminating the redundancy in matrix D0. We will denote a
bidiagonal matrix D0 as Bi(λ1, λ2, · · · , λn), i.e.

Bi(λ1, λ2, · · · , λn) =


−λ1 λ1 0 · · · 0
0 −λ2 λ2 · · · 0
0 0 −λ3 · · · 0
...

...
...

. . .
...

0 0 0 · · · −λn

 (2)

The canonical representation will be summarized in more detail in Sec. 2.1.

Markovian Arrival Processes (MAPs) are a generalization of PH distri-
butions that introduce autocorrelations. Usually they are de�ned by the two
n× n matrices D0 and D1 with the following properties:
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• D0(i, j) ≥ 0 for i 6= j

• D0(i, i) ≤ −
∑n

j=1,i 6=j D0(i, j)

• D1(i, j) ≥ 0 and D0eT = −D1eT

• D0 is nonsingular and D0 + D1 is an irreducible generator matrix

Transitions in D0 are silent, while transitions in D1 generate an event. Ev-
ery MAP describes an embedded PH distribution characterized by the pair
(π,D0) where the stationary distribution at arrival instants π is given by
πP = π, P = −D−1

0 D1 and πeT = 1.0. Moreover every PH distribution
can be expanded into an equivalent MAP by de�ning D1 = (−D0eT )π.
The resulting MAP permits no autocorrelation since the initial probability
distribution after an arrival is independent of the state from where the ar-
rival occurred. However, by modifying matrix P, it is possible to keep the
distribution and introduce autocorrelation. We come back to this point in
subsection 2.2.

2.1 Canonical Representation of APH Distributions

In [2] an algorithm is presented that transforms any APH representation
into canonical form. The structure of the canonical representation of APH
distributions with n phases is shown in Fig. 1. The canonical representation

λ 1 λ 2 λ n

π(2) π(n)π(1)

...

Figure 1: Canonical representation of APH distributions.

has a bidiagonal matrix D0 (cf. Eq. 2). It has 1 exit and up to n entry
states. Furthermore, for the transition rates λn ≥ λn−1 ≥ . . . ≥ λ1 holds. The
transformation of an APH representation into the canonical form is based on
equivalent representations of the exponential distribution as shown in Fig. 2
and the fact that an APH can be represented by a set of elementary series as
shown in Fig. 3. Each elementary series has a probability proportional to the
product of the transition rates along the corresponding path and to the initial
probability of the �rst state of the path [2]. Using the relation from Eq. 2
an elementary series containing a state with rate λ can be substituted by a
mixture of two series, one containing a state with rate λ and one containing
states with the rates λ and µ ≥ λ. Repeated application of this substitution
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Figure 2: Equivalent representations of an exponential distribution.
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Figure 3: Example for an APH distribution an its elementary series.

results in a mixture of basic series, where a basic series is de�ned as BSi =
(λn, λn−1, · · · , λi). Together with appropriate initial probabilities this �nally
yields the canonical representation as shown in Fig. 1.

2.2 Expansion of APH Distributions into MAPs

Assume that an APH distribution (π,D0) should be expanded into a MAP.
This means that we have to �nd a matrix D1 such that πD−1

0 D1 = π and
−D0eT = D1eT . One then may choose a matrix D1 that observes the pre-
conditions and approximate some quantities that capture the autocorrelation
structure of the process. E.g., the joint moments are given by

E(Xi, Xj) = i!j!D−i0

(
D−1

0 D1

)
D−j0 eT . (3)

The �tting approach proposed in [1] then tries to �nd a matrix D1 that
observes the preconditions and approximates some joint moments as good
as possible which results in a non negative lest squares problem.
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However, the solution space depends on the initial representation (π,D0)
and since this representation is non-unique, di�erent representation may re-
sult in di�erent MAPs. If state i is not an exit state, then the corresponding
row in D1 is zero and, similarly, if state i is not an entry state, then the corre-
sponding column of D1 is zero. Since the row sums of D1 are determined by
the row sums of D0, there are at most number of entry states minus one de-
grees of freedom to select the entries in one row of D1. However, this implies
also that representations with one exit or one entry state allow no �exibility
such that the resulting MAP is always identical to the APH distribution.
Thus, equivalence transformations are necessary to increase the number of
entry and exit states.

3 Equivalence Transformations

In the following we present three equivalence transformations for APH dis-
tributions. All three transformations use an APH in canonical form as input.
The �rst and second transformations modify the APH representation such
that it has more exit states and can be used as an intermediate step when
expanding an APH into a MAP. The third transformation reduces the size
of the APH representation by removing unnecessary states.

3.1 Increasing the Number of Exit States (1)

The transformation presented in this section has been proposed in [1] to
transform the canonical form to a general APH representation with more
than one exit state. As already mentioned, this is important when expand-
ing an APH into a MAP, since an increase in the number of exit states allows
for a higher �exibility for Matrix D1, i.e. the possible range for the joint mo-
ments is increased. The key idea of this transformation is to invert the steps
described in [2] that lead to the canonical form. However, the transforma-
tion steps can be applied to APHs that are not in canonical form as well.
The inversion is not unique and unfortunately, it is not clear yet how to �nd
the most �exible APH representation for a distribution. In the following we
will summarize the transformation steps and present proofs that have been
omitted in [1] to show that the distribution is not altered by the approach.

The transformation consists of a sequence of steps and in each step two
states i and j, i < j, that are connected by a transition, i.e. q(i, j) > 0, are
chosen. For a transformation step only the incoming and outgoing transitions
of i, the incoming transitions of j, and the probabilities π(i) and π(j) are con-
sidered. Hence, the PH distribution remains acyclic and the transition rates
λ1, . . . , λn are not changed by the transformation, i.e. λi ≤ λj holds for i < j.
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Let i and j, i < j, be two states of the APH with transition rate q(i, j) > 0
and initial probabilities π(i) and π(j) and de�ne δ ≤ δ∗ where

δ∗ = min
(
π(j), π(i)q(i,j)

λj−λi
,mink<i,q(k,i)>0

(
π(i) q(k,j)q(k,i)

))
. (4)

for λj > λi. If λi = λj , then the second term in the minimum of Eq. (4) be-
comes ∞ and does not count such that the minimum is computed according
to the remaining two conditions.

If δ∗ > 0, we can choose δ > 0 and compute new transition rates q′(., .)
and initial probabilities π′(.) for a di�erent representation of the same dis-
tribution according to

π′(k) =


π(i) + δ for k = i
π(j)− δ for k = j
π(k) otherwise

(5)

q′(k, l) =



q(i, j) π(i)
π(i)+δ −

(λj−λi)δ
π(i)+δ for k = i and l = j

q(i, l) π(i)
π(i)+δ + q(j, l) δ

π(i)+δ for k = i and l 6= j

q(k, i)π(i)+δ
π(i) for k < i and l = i

q(k, j)− q(k, i) δ
π(i) for k < j and l = j

q(k, l) otherwise

(6)

For the transformation the following properties hold:

Theorem 1. If Eq. (5) and Eq. (6) are applied to an APH representation,

then the resulting representation is still an APH representation and describes

the same distribution.

Proof. We have to show that the transformations made in Eqs. (5) and (6)
do not alter the distribution. This will be done by showing that Laplace
transform remains the same.
According to [2] (cf. Sec. 2.1) an APH distribution can be represented by a
set of elementary series. An elementary series contains a subset of the phases
of the APH distribution. Let E = (λi1 , . . . , λim) be one series and denote by
p(E) the probability of E. For notational convenience we de�ne im+1 = n+1.
The Laplace transform of E is given by

f∗E(s) =
m∏
k=1

λik
λik + s

and

p(E) = π(i1)
m∏
k=1

q(ik, ik+1)
λik

.
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We denote by E the set of elementary series that are de�ned by the APH
distribution. The Laplace transform of the APH distribution is given by

f∗APH(s) =
∏
E∈E

p(E)f∗E(s) .

Fig. 3 shows an example APH distribution and its elementary series. Out-
going arcs without a destination describe exit rates and incoming arrows
describe the initial probabilities.

The equivalence shown in Fig. 2 can be easily seen in the Laplace domain
since

λ

λ+ s
=

λ

µ+ s
+

λ(µ− λ)
(λ+ s)(µ+ s)

(7)

for µ > λ. It follows easily that an elementary series E = (λ1, . . . , λr, λ, λr+1,
. . . , λr+s) with probability p can be substituted by two seriesE1 = (λ1, . . . , λr,
µ, λr+1, . . . , λr+s) with probability pλ/µ andE2 = (λ1, . . . , λr, λ, µ, λr+1, . . . ,
λr+s) with probability p(1−λ/µ). The equivalence follows by comparison of
the Laplace transforms.
We now show that the transformations used in theorem 1 are all based on the
above equivalence. Only elementary series that contain λi or start with λj
are a�ected by the transformations. The remaining series remain unmodi�ed
and need not be considered here. We have to distinguish the following cases.

1. Series that do not contain i and do not start in j.

2. Series that start in i or j.

3. Series that start in k < i and contain i or j.

The �rst series are not a�ected by the transformation and need not be con-
sidered.

For the second set of series we consider Es as some elementary series
starting in j. Then there exists some series Er which starts in i and results
from Es by adding λi at the beginning. Furthermore, there exists some series
Et which is identical to Es when the �rst state j is substituted by i. Let k
be the second state of Es.

Let ps be the probability of series Es, then

pr = ps
π(i)q(i,j)
π(j)λi

and pt = ps
π(i)q(i,k)λj

π(j)λiq(j,k)

Observe that pt is zero if q(i, k) = 0, i.e. Et is not available before the
transformation. Furthermore, pr = 0 if q(i, j) = 0, i.e., a transition from i
to j does not exist. Now consider the di�erence between the probabilities
before and after the transformation step.

ps − p′s = ps

(
1− π(j)−δ

π(j)

)
= ps

δ
π(j)

pr − p′r = ps

(
π(i)q(i,j)
π(j)λi

− (π(j)−δ)(q(i,j)π(i)−δ(λj−λi))
π(j)(π(j)−δ)λi

)
= ps

(λj−λi)δ
λiπ(j)

p′t − pt = ps

(
λj(q(i,k)π(i)+δq(j,k))

π(j)q(j,k)λi
− π(i)q(i,k)λj

π(j)q(j,k)λi

)
= ps

(
λjδ
λiπ(j)

)
7



Observe that (λi/λj)−1(ps−p′s) = (1−λi/λj)−1(pr−p′r) and (ps−p′s)+(pr−
p′r) = (p′t−pt). Since Er, Es and Et di�er only at the beginning and λj > λi,
we can substitute (ps − p′s) of Es and (pr − p′r) of Er by (p′t − pt) of Et (cf.
Eq. (7)) which is done by the transformation. The transformation implies
δ ≤ π(j) and π(i)q(i, j)/(λj−λi) > δ otherwise negative values would result
from the transformation.

For the third set of series the proof is similar to the previous proof. Let
Es be some series that starts in some state m < i and contains the sequence
k → j → l. Let ps be the probability of Es. Let Er be the sequence that
results from Es by adding state i between k and j such that it contains the
sequence k → i → j → l. Finally, Et is the series that results from Es by
substituting j by i, i.e. the series contains the sequence k → i→ l. We have

pr = ps
q(k, i)q(i, j)
q(k, j)λi

and pt = ps
q(k, i)q(i, l)λj
q(k, j)λiq(j, l)

.

Again consider the probabilities for the di�erent series before and after the
transformation.

ps − p′s = ps
q(k,i)δ

q(k,j)π(i)

pr − p′r = ps
q(k,i)δ(λj−λi)
π(i)λiq(k,j)

p′t − pt = ps
q(k,i)δλj

π(i)q(k,j)λi

Now we have (λi/λj)−1(ps − p′s) = −(1 − λi/λj)−1(pr − p′r)and (p′s − ps) −
(p′r − pr) = (p′t − pt) such that Er is substituted by Es and Et in the right
proportion.

The following theorem implies that if j is an exit state, then also i be-
comes an exit state:

Theorem 2. If Eq. (5) and (6) are applied to an APH representation, then∑n
l=k+1 q

′(k, l) =
∑n

l=k+1 q(k, l) for k 6= i and

n∑
l=i+1

q′(i, l) =
n∑

l=i+1

q(i, l) +
δ

π(i) + δ
(q(i, n+ 1)− q(j, n+ 1))

where q(k, n+ 1) = λk −
∑n

l=k+1 q(k, l) (k = i, j).

Proof. First consider some state k 6= i. If k > i, then no transition rates are
changed such that the sum of outgoing transition rates remains the same.
For k < i transition rates q′(k, l) = q(k, l) for l 6= i, j such that we have to
show q′(k, i) + q′(k, j) = q(k, i) + q(k, j). We have

q′(k, i) + q′(k, j) = q(k, i)
π(i) + δ

π(i)
+ q(k, j)− q(k, i) δ

π(i)
= q(k, i) + q(k, j) .
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For state i we obtain

n∑
k=i+1

q′(i, k) = π(i)
π(i)+δ

n∑
k=i+1

q(i, k) + δ
π(i)+δ

(
n∑

k=i+1,k 6=j
q(j, k)− λj + λi

)
=

n∑
k=i+1

q(i, k) + δ
π(i)+δ (q(i, n+ 1)− q(j, n+ 1))

where q(k, n+ 1) = λk −
∑n

l=k+1 q(k, l).

Under certain conditions repeated application of the transformation re-
sults in an APH representation with n exit states:

Theorem 3. If we apply the transformation rules from Eqs. (5) and (6) with

δ∗ > δ > 0 consecutively to states i = 1, 2, . . . , n and j = i + 1, . . . , n of an

APH representation in canonical form with π(i) > 0 for all i = 1, . . . , n, we
obtain an APH representation of the same distribution where all states are

exit states.

Proof. Transitions in the matrix are transformed in the order (1, 2), . . . , (1, n),
(2, 3), . . . , (n − 1, n). We assume that we choose in each step δ such that
δ∗ > δ > 0. This implies that δ∗ > 0 which will be �rst assumed and proved
later. Since the APH is in canonical form we have initially q(i, i+ 1) > 0 for
(i = 1, . . . , n− 1) and by assumption π(i) > 0 holds for i = 1, . . . , n.

Now assume that transition (i, j) with q(i, j) is handled. The transfor-
mations according to Eq. (6) result in non zero transition rates q′(i, k) for
all k with q(j, k) > 0. Since we choose δ < δ∗ all non zero transition rates
before the transformation remain non zero after the transformation.

Thus, starting with (1, 2) the transformation generates a non-zero tran-
sition rate (1, 3) since q(2, 3) > 0, π(1) > 0 and π(3) > 0. With similar
arguments transition rates q′(1, 4), . . . , q′(1, n) > 0 are generated. The same
argument can then be repeated for the rows 2 through n− 1.

It remains to show that δ∗ > 0 holds in every step. By choosing δ < δ∗

π(k) > 0 ⇒ π′(k) > 0 and q(k, l) > 0 ⇒ q′(k, l) > 0. This implies δ∗ > 0
according to Eq. (4).

Theorem 3 implies that in the canonical representation all states are en-
try states. For representations where this is not the case, the transformation
may generate a representation with less exit states. An example for this is
the Erlang n distribution, where no transformation is possible. In [1] this
problem is solved by a slight modi�cation of the APH �tting approach, that
generated the canonical representation.

As one can see from the proofs the choice of δ in every step is important,
since it has impact on the resulting APH representation and consequently,
on the range of the joint moments that can be reached when expanding the
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Figure 4: Steps of the APH transformation from the canonical form into a
new representation with increased number of exit states

APH distribution into a MAP. [1] reports that δ = 0.9δ∗ is a good choice.

In the following we will give an example for the transformation: Consider
the upper APH in canonical form of Fig. 4 with π = (0.3, 0.5, 0.2) and
D0 = Bi(1.0, 2.0, 3.0). In the �rst transformation step states i = 1 and j = 2
with q(1, 2) = 1.0 are selected. From Eq. (4) we compute δ∗ = 0.3 and set
δ = 0.9δ∗ = 0.27. Application of Eq. (5) yields the new initial probability
vector π′ = (0.57, 0.23, 0.2). Using Eq. (6) we get a new transition rate q′(1, 2)
and generate a new non-zero transition rate q′(1, 3). The transition rate from
state 2 to 3 is unmodi�ed in this step. The resulting APH representation is
shown in Fig. 4 b). We set π = π′ and q(., .) = q′(., .) and continue with
the second transformation step, that treats states i = 1 and j = 3 since we
generated a transition rate q(1, 3) > 0 in the previous step. The step modi�es
the initial probabilities of states 1 and 3. Additionally, since state 3 is an exit
state, state 1 becomes an exit state as well. The resulting representation is
shown in Fig. 4 c). In the last step states 2 and 3 are handled and state 2
is transformed into an exit state. The �nal APH representation is shown in
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Fig. 4 d).

3.2 Increasing the Number of Exit States (2)

The transformation presented in the following has been proposed in [4] to
increase the number of exit states of an APH in canonical form for a later
expansion into a MAP.
Let (π,D0) be an APH representation de�ned by

π =
[
pn pn−1 · · · p1

]
, D0 =


−λn λn

−λn−1 λn−1

. . .
. . .

−λ2 λ2

−λ1


Then (π,D0) can be transformed into an equivalent representation (π′,D′0)
with

π′ =
[
xn xn−1 · · · x1

]
,

D′0 =


−λn (1− an)λn

−λn−1 (1− an−1)λn−1

. . .
. . .

−λ2 (1− a2)λ2

−λ1


that describes the same distribution.
The new initial probabilities π′ =

[
xn xn−1 · · · x1

]
can be computed by

solving the following system of equations:

pk =
m∑
n=k

xn

k−1∑
i=0

i−1∏
j=0

(1− an−j)an−idn(i, 0, k)

where dn(i, l, k) is de�ned in a recursive manner by

dn(i, l, k) =
λn−i
λl+1

dn(i− 1, l + 1, k) +
(

1− λn−i
λl+1

)
dn(i, l + 1, k)

dn(i, n− i, k) =

{
1 k = n,

0 k 6= n

dn(0, l, k) =


λn
λl+1

k = l + 1,(
1− λn

λl+1

)
dn(0, l + 1, k) k 6= l + 1

Fig. 5 visualizes the transformation. The upper Markov chain shows the
original APH (π,D0) in canonical form and the lower Markov chain shows
the result of the transformation with representation (π′,D′0).
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pn pn−1 pn−2

· · ·
p1

λn λn−1 λn−2 λ2 λ1

xn xn−1 xn−2

· · ·
x1

(1 − an)λn (1 − an−1)λn−1 (1 − an−2)λn−2 (1 − a2)λ2 λ1

anλn

an−1λn−1

an−2λn−2

a2λ2

Figure 5: APH transformation from the canonical form into a new represen-
tation with increased number of exit states

3.3 Reduction of Acyclic Phase Type Representations

In [9] another equivalence transformation for APHs is presented. In contrast
to the transformations summarized in Sec. 3.1 and 3.2 the approach from [9]
aims at reducing the size of the matrix representation of an APH by remov-
ing unnecessary states.

For the transformation it is assumed that the APH is given in the bidi-
agonal canonical form as described in Sec. 2.1, i.e. it has representation
(π,Bi(λ1, λ2, · · · , λn)). Then the Laplace-Stieltjes transform (LST) of the
APH can be written as

f(s) =
π(1)

L(λ1) · · ·L(λn)
+

π(2)
L(λ2) · · ·L(λn)

+
π(n)
L(λn)

=
π(1) + π(2)L(λ1) + · · ·+ π(n)L(λ1)L(λ2) · · ·L(λn−1)

L(λ1)L(λ2) · · ·L(λn)
(8)

where L(λ) = s+λ
λ is the reciprocal of the LST of an exponential distribution

with rate −λ called L-term in [9]. If both, numerator and denominator of
Eq. 8, have a common L-term L(λi), this term can be removed from the
equation and the corresponding state can be removed from representation.
If furthermore a new initial probability distribution π′ can be found, i.e. π′

is a sub-stochastic vector, then the two representations describe the same
distribution:

PH(π,Bi(λ1, λ2, · · · , λn)) = PH(π′, Bi(λ1, λ2, · · · , λi−1, λi+1, · · · , λn))
(9)
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Thus, for reducing the number of states a L-term that divides numerator and
denominator of Eq. 8 an a new valid initial probability have to be determined.
An applicable L-term can be found by checking if

R(s) = π(1) + π(2)L(λ1) + · · ·+ π(i)L(λ1)L(λ2) · · ·L(λi−1)

is divisible by L(λi) which holds if R(−λi) = 0.
The new initial probability vector π′ can be determined using the cdf of the
APH. Since the two representations describe the same distribution, their cdf
as given in Eq. 1 must be the same. To avoid computations of the matrix
exponential in the expression of the cdf the i-th derivative of the cdf is eval-
uated for x = 0 for the determination of vector π′ resulting in the following
system of equations:

πBi(λ1, λ2, · · · , λn)ieT = π′Bi(λ1, λ2, · · · , λi−1, λi+1, · · · , λn)ieT

for i = 0, · · · , n− 2. The n− 1 equations can be used to determine the n− 1
components of vector π′. Additionally one has to verify that the resulting
vector is indeed a sub-stochastic vector, i.e. 0 ≤ π′(i) ≤ 1 for i = 1, · · · , n−1
and π′eT ≤ 1.
[9] presents an algorithm for the reduction of APHs that checks for all states
of an APH if the corresponding L-term divides numerator and denominator
of Eq. 8 and if a new valid initial probability distribution can be found and
deletes the state if both conditions hold. However, [9] also reports about cases
where a reduction with the described approach is not possible, although a
smaller representation exists, because the algorithms ignores the interplay of
total outgoing rates and the initial probability distribution.

4 Conclusions

In this report we summarized di�erent approaches to perform equivalence
transformations of acyclic phase type distributions. These transformations
allow us to search for a representation which is more amenable for subse-
quent processing steps like the expansion of the distribution into a stochastic
process that captures the autocorrelation. Since the transformations usually
depend on free parameters, they provide some �exibility but it is usually not
clear yet how to set the parameters to come to the best representation for
subsequent processing.
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