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Abstract

With the increased availability of wireless networks, performance evaluation of these networks has become more im-

portant in recent years. Adequate models of wireless networks have to account for the user mobility as the movements of

the users can have a large in�uence on the network performance. In many cases data recorded from real networks serves

as basis to model the user mobility. �erefore, appropriate distributions have to be found to model characteristics like

dwelltimes from the real world data and di�erent general distributions like Lognormal, Weibull or Pareto have been used

in the past. In this paper we present an extensive comparison for the ��ing quality of those general distributions with

Phase-type distributions (PHDs). Our results suggest that in most cases even small PHDs with four or �ve states yield a

be�er approximation of the real data than the general distributions.

Keywords: Phase-type distributions, Markovian Arrival Processes, Mobility traces

1 Introduction

�e adequate and realistic modeling of the tra�c load is a crucial step when building stochastic models of computer and

communication networks. With the increased availability of mobile devices and the widespread deployment of wireless

networks on campuses and public areas as airports or shopping malls the performance evaluation of wireless networks

has become more important in recent years [10]. In contrast to the classic wired networks, models of wireless networks

have to account for the user mobility, since changing locations of the mobile users can of course have a large in�uence

on the network performance [18]. It is well known that synthetically generated movement pa�erns, as e.g. generated by

Random Waypoint models, of users are unrealistic in many cases [29] and, thus, may lead to wrong assumptions on the

performance of the system that is analyzed [22, 28]. Hence, there is a need for traces with real data from wireless networks

and a need to identify and model the characteristic properties from those traces. In recent years various mobility traces

have been made public [19] and used for the construction of mobility models [16, 21, 28]. However, these models di�er

largely in what characteristics from the trace they use and in what distributions are applied to model the data. For e.g. the

dwelltimes of the users at an access point of the network di�erent distributions have been used in the literature: [29] uses

average values, [28] Pareto and [16] Lognormal distributions. Phase-type distributions (PHDs) [23], that have been widely
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used in di�erent application areas [7, 6] and have proven to be very �exible and versatile, have not gained much a�ention

in modeling mobility data.

In this paper we systematically model various characteristics from four di�erent mobility traces with Phase-type distri-

bution, assess the quality of the models and compare it with general distributions used in the literature. Since Phase-type

distribution can be easily extended into processes that can capture autocorrelation we also investigate the e�ect of the

incorporation of correlation on the models.

�e outline of the paper is as follows. Sect. 2 gives an overview of the related work. In Sect. 3 we introduce the basic

de�nitions and notations used later in the paper. Sect. 4 contains the comparison of the di�erent distributions that model

characteristics from the mobility traces. �e paper ends with the conclusions in Sect. 5.

2 Related Work

�e construction of valid mobility and tra�c models for wireless networks can be divided into three steps, i.e. the collection

of data from a real network, the analysis of this data to identify important characteristics and phenomena and the modeling

of this data by mobility or tra�c models. �ese mobility and tra�c models require the parametrization of di�erent distri-

butions for values like dwelltimes or interarrival times of packets. In this paper we aim at constructing those distributions

for various characteristics obtained from the real data, that can later serve as a basis for mobility and tra�c models. �ere

is a huge amount of literature on all the steps mentioned above and therefore the overview presented here can by no means

be complete.

In general real data recorded in wireless environments can be divided into coarse-grained and �ne-grained data. Coarse-

grained data is usually recorded at network components like routers or access points (APs) and therefore does not contain

the exact positions of users in the network but only their associations with the access points. In contrast, �ne-grained data

contains exact locations of the users and therefore has to be recorded on the users’ devices. Consequently, it is much easier

to record large coarse-grained traces as they can be obtained from the central network components while �ne-grained data

requires the cooperation of the users. �e CRAWDAD archive [19] is probably the largest source for publicly available

traces.

One of the �rst collection of data from a wireless network is presented in [26]. �e authors recorded 12 weeks of tra�c

data at a computer science building at Stanford University and analyzed the active number of users at di�erent APs and

sizes of data packets.

Widely used is the coarse-grained trace recorded at Dartmouth college that contains data from more than 550 APs and

several thousand users. [18] presents an analysis of the tra�c and its hourly or daily distribution. Moreover, the amount

of active users is analyzed, but no modeling of the data is performed. In [10] an older trace from the Dartmouth campus

is compared with newer data from the same site and changes in the behavior of the users are pointed out. �e Dartmouth

traces served as basis for several mobility models. In [29] the authors extract average dwelltimes for the buildings and des-

tination probabilities from the trace data and combine it with a map of the real area. In [16] the authors derive information

like speed, pause times and transition probabilities from the trace data and use Lognormal distributions to model the pause
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times. [21] proposes a model that can capture the interdependence between space and time in the data. �e distributions

used in this approach are mostly Weibull. A smaller trace with only a few APs recorded at SIGCOMM conference is pre-

sented in [2]. �e authors analyze the number of users at APs, the session durations and the throughput at the APs. Further

traces have been recorded at ETH Zurich [28] and the University of Southern California [13]. In [28] the dwelltimes are

modeled using Pareto distributions.

Fine-grained data is in most cases only available for smaller number of users or periods. For example, [14] recorded the

contacts between Bluetooth devices handed out to the participants of IEEE Infocom. In [25] �ne-grained traces have been

collected from �ve di�erent sites. �e authors use a Levy-walk model to capture the mobility. �ese traces are also used in

[9] where mobility from �ne-grained data is characterized using a Hidden-Markov-Model.

In summary, for most modeling approaches the authors either used measures directly derived from the data like the

mean or general distributions like Weibull, Pareto etc. Phase-type distributions (PHDs) [23] that have been successfully

applied to model data from computer networks and other application areas [7] have not gained much a�ention so far in

modeling mobility data. In particular, there is no systematic analysis to assess the ability of PHDs to capture important

characteristic from real world mobility data. In contrast, PHDs proved to be superior to general distributions when modeling

(un)availability times from distributed systems [6]. A similar comparison for mobility data is performed in this paper.

3 Background and De�nitions

3.1 Trace De�nitions

As mentioned in Sect. 2 we can distinguish coarse-grained and �ne-grained data. �e de�nitions and the contents of the

traces di�er accordingly. We use the following notation for the trace data.

3.1.1 Mobility Traces

A mobility trace consists of waypoints that describe the movements of a user in a wireless environment. A mobility trace is

a sequence ofmwaypoints TM = (w1, w2, · · · , wm). We use T (c)
M and T (f)

M to distinguish coarse-grained and �ne-grained

traces if necessary. A waypoint is de�ned aswi = (ti, ui, li) where ti is a timestamp, ui is the node/user and li the location.

We assume in the following that the wi in TM are ordered according to their timestamps. �e interpretation of the location

li depends on whether we are dealing with �ne-grained or coarse-grained data. In the former case li is a tuple (xi, yi) with

coordinates, in the la�er case an identi�er of an access point. We use the special location OFF to indicate that a node le�

the area for a certain amount of time. For a mobility trace we de�ne the following sub-traces that only contain waypoints

associated with a speci�c user or access point.

• TM (u) = {wi|(wi ∈ TM ) ∧ (ui = u)}: waypoints of user u.

• T (c)
M (l) =

{
wi|(wi ∈ T (c)

M ) ∧ (li = l)
}

: waypoints at AP l.

• T (c)
M (u, l) =

{
wi|(wi ∈ T (c)

M ) ∧ (ui = u) ∧ (li = l)
}

: waypoints of user u at AP l.
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For our experiments we de�ne traces that only contain certain values associated with the waypoints. For the dwelltimes

occurring in coarse-grained data, i.e. the times a node stays at a location before moving to another location, we have

T (c)
Dwell(u, l) =

{
di = ti+1 − ti|(wi, wi+1 ∈ TM (c)(u))∧ (wi ∈ TM (c)(u, l))

}
T (c)
Dwell(l) = ∪uT (c)

Dwell(u, l)

T (c)
Dwell(u) = ∪lT (c)

Dwell(u, l)

T (c)
Dwell = ∪lT (c)

Dwell(l)

that contains the dwelltimes of user u at location l, the dwelltimes of all users at location l, the dwelltimes of a user at all

locations and all dwelltimes observed, respectively.

T (c)
Arr(l) =

{
ai = ti+1 − ti|(wi, wi+1 ∈ T (c)

M (l))
}

contains the interarrival times of nodes at AP l and T (c)
Arr denotes the

interarrival times of nodes for the whole area, i.e. the time between two waypoints (ordered in time) that indicate an arrival.

�ese waypoints are the �rst waypoint of each node and all waypoints of a node following a visit to the OFF location.

For the �ne-grained traces we assume that the current position is measured in �xed time intervals, i.e. ti− ti−1 = ∆ for

all i. �en, a measure of interest is the distance covered between two consecutive time points. Note, that this is equivalent

to the average speed between two time points. Let,

• T (f)
Dist(u) =

{√
(xi+1 − xi)2(yi+1 − yi)2|wi, wi+1 ∈ T (f)

M (u)
}

be the distances covered by user u and

• T (f)
Dist = ∪uT (f)

Dist(u) be the distances of all users.

3.1.2 Tra�c Traces

In addition to mobility data one can obtain tra�c traces from a (wireless) network. Let TT = (v1, v2, · · · , vo) be a tra�c

trace with o tuples vi = (t′i, u
′
i, l
′
i, si) where t′i is a timestamp of a data packet, u′i is the node/user associated with the

packet, l′i the access point that processed the data packet and si the packet size. We de�ne the following subtraces.

• TT (u) = {vi|(vi ∈ TT ) ∧ (u′i = u)}: packet data of user u.

• T (c)
T (l) = {vi|(vi ∈ TT ) ∧ (l′i = l)}: packets from AP l.

• TT ([tstart, tend]) = {vi|(vi ∈ TT ) ∧ (t′i ∈ [tstart, tend])}: packets from the time interval [tstart, tend].

Combinations of the subtraces like TT (u, l) with packets of user u at access point l can easily be de�ned in a similar way.

For the experiments we use traces with the interevent time between packets (TPEv) and with the tra�c amounts asso-

ciated with waypoints (TAmt), i.e. we de�ne

• TPEv =
{
bi = t′i+1 − t′i|vi, vi+1 ∈ TT

}
: all interevent times.

• TPEv(u) =
{
bi = t′i+1 − t′i|vi, vi+1 ∈ TT (u)

}
: interevent times between packets of user u.

• T (c)
PEv(l) =

{
bi = t′i+1 − t′i|vi, vi+1 ∈ T (c)

T (l)
}

: interevent times between packets at AP l.

5



• T (c)
Amt(u) =

{
pwi
|wi ∈ T (c)

M (u)
}

: tra�c amounts of user u.

• T (c)
Amt(l) =

{
pwi
|wi ∈ T (c)

M (l)
}

: tra�c amounts at AP l.

• T (c)
Amt =

{
pwi |wi ∈ T (c)

M

}
: all tra�c amounts,

where

pwi
=

∑
vj∈TT (ui,li,[ti,ti+di])

sj

is the tra�c amount associated with waypoint wi, i.e. the amount of tra�c generated by user ui during his stay at location

li starting at ti and lasting for the dwelltime di.

3.2 Phase-type distributions

Phase-type distributions (PHDs), originally introduced in [23], describe independent and identically distributed random

variables as absorption times of a continuous-time Markov chain. A PHD of order n consists of n transient and one

absorbing state [7]. It is described by a n × n subgenerator matrix D that contains the transition rates between the

transient states and an initial distribution vector π. We have that π1 = 1, D(i, i) < 0, D(i, j) ≥ 0, i 6= j and D1 ≤ 0.

Furthermore, we denote by d = −D1 the transition rates to the absorbing state.

�e behavior of a PHD is as follows: It starts in a transient state according to π, moves between the states according to

D and �nally generates an event when the absorbing state is reached.

Properties of the distribution can be expressed in terms (π,D), i.e. for the moments, probability density function and

cumulative distribution function we have

µi = E(Xi) = i!πM i1 (1)

f(x) = πeDxd, F (x) = 1− πeDx1 x ≥ 0 (2)

whereM = −(D)−1 and eDx is the matrix exponential.

Depending on the structure of (π,D) several sub-classes can be de�ned. Well known are the Exponential and Erlang

distributions. In this paper Hyper-Erlang distributions (HErDs) [27] are used, that are a mixture of Erlang distributions, i.e.

Erlang distribution Ei is taken with probability τi.

3.2.1 Parameter Estimation of Phase-type distributions

Parameter estimation or ��ing of PHDs denotes the determination of the entries in (π,D) according to trace data T . Since

PHDs are univariate distributions all the derived univariate traces de�ned above like dwelltimes T (c)
Dwell or time between

packets TPEv are applicable for ��ing. Traces like TM consisting of tuples can of course not be estimated by a single PHD.

�ere are basically two classes of approaches to estimate or �t the parameters of a PHD to trace data. Moment based

��ing techniques [4, 11, 12] try to �nd a PHD (π,D) such that the lower order moments of the PHD (Eq.1) approximate or

match the empirical moments of the trace. While methods of this type are very e�cient in most cases, maximum likelihood
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based approaches are usually slower but provide be�er results. For a PHD (π,D) and a trace T the likelihood is de�ned

as

L(π,D)(T ) =
∏
x∈T

f(π,D)(x) =
∏
x∈T

πeDxd. (3)

Since the likelihood only requires the density f(x) it can be de�ned similarly for any other distribution with given density.

�en, we get the maximization problem

L∗(T ) = max
(π,D)

(
L(π,D)(T )

)
. (4)

O�en the logarithm of the likelihood (log-likelihood) is used, since it does not change the maximum but avoids computation

of the product in Eq. 3. Maximum likelihood estimation is done by expectation maximization (EM) algorithms [1, 27] where

newer approaches can be applied to large traces and are still quite e�cient.

In recent years several tools have been developed that make ��ing approaches for PHDs readily available (e.g. [3, 24]).

3.2.2 Measuring the Fitting�ality

For measuring the ��ing quality we use analogue measures as in [17, 15, 6] where a similar comparison was performed

for availability and unavailability data from distributed systems. In particular, we compare the quality according to the

likelihood that uses the density function and according to the the Kolmogorov-Smirnov (KS) test that uses the distribution

function.

�e likelihood is a relative measure of the ��ing quality, i.e. a single value for a distribution and a trace does not provide

any information about the quality of the ��ing. But it can be used to compare the quality of two distributions ��ed to a

trace as the distribution with the larger likelihood value provides a be�er quality. �us, we can use likelihood values to

compare PHDs of di�erent sizes and to compare PHDs with general distributions like Weibull or Lognormal.

Another measure for the quality of the parameter estimation are statistical tests like KS and Anderson-Darling (AD)

test that are for example used in [17, 15] to compare the ��ing quality for failure traces. �e AD test is, to the best of

the author’s knowledge, not available for PHDs and therefore we are limited to the KS test in this work that requires the

distribution function from Eq. 2.

�e KS test returns a p-value and for a p-value below the signi�cance level the hypothesis that the trace is drawn from

the distribution should be rejected. For long traces the test will usually result in a low p-value, which is known to be a

general problem of goodness-of- �t tests. �erefore, as proposed in [17, 15] we draw 30 samples from the trace randomly

and compute the corresponding p-values. �is is repeated 1000 times and the average p-value is used as p-value for the

distribution.

4 Modeling Wireless Trace Data with Phase-Type Distributions

4.1 Experiment Setup

For our experimental comparison four di�erent data sets from the CRAWDAD archive [19] were used, three of these data

sets contained coarse-grained data, one set �ne-grained data. Details on the data sets are summarized in Sect. 4.2.
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From the data we generated traces de�ned in Sect. 3.1 and ��ed them with �ve general distributions o�en used in

stochastic modeling (Exponential, Lognormal, Weibull, Gamma and Pareto) using the �tdistrplus package for the so�ware

R [8] and the SSJ library [20]. For comparison we ��ed HErDs with di�erent number of states using the approach from [27].

�e ��ing quality is measured as described in Sect. 3.2.2.

We ignored very small traces with 5 or less entries. �us, the number of traces for locations or users reported below

might be slightly less in this paper than the numbers reported by the authors that collected these traces. For ��ing we

scaled all traces to have mean 1.0 to avoid numerical di�culties with very large values when ��ing. �is is not a real

restriction as the matrices of PHDs can be scaled reversely to match the original trace.

4.2 Traces and Trace Preparation

In the following we brie�y introduce the data sets from the CRAWDAD archive [19] used in our experiments and explain

how they were preprocessed to obtain the trace formats described in Sect. 3.1.

4.2.1 Dartmouth Trace

�e coarse-grained data recorded at Dartmouth campus [10, 18] covers user mobility for over three years. �e data is

divided into several data sets. �e movement data contains timestamp and access point associations of all nodes present

during the time period. �e special access point OFF is already included in the data and was used when an access point

deauthenticated a node due to inactivity (which happens when the node showed no activity for 30 minutes). �us, the

waypoints wi = (ti, ni, li) for T (c)
M can be easily obtained from the raw data. Additionally, tcpdump data is available from

the campus that includes all packets processed by the access points. �e tra�c trace TT with its tuples vi = (t′i, n
′
i, l
′
i, si) is

generated from this data. Unfortunately the tcpdump data is not available for all access points and, furthermore, the time

span for movement and tcpdump data is not identical, such that we do not have tra�c information for all waypoints in the

trace.

Access points in the trace are denoted as BuildingType BuildingNumber AP APnumber, e.g. AcadBldg1AP1 for the �rst

access point in the �rst academical building. �erefore it is easy to aggregate all APs of the same building into a single

location and consider both, individual APs and buildings, as locations for the experiments. If the aggregation results in two

consecutive waypoints of a node to have the same location, the two waypoints are joined into a single one.

4.2.2 Stanford Trace

�e trace recorded at Stanford’s CS Department [26] is another coarse-grained trace that contains data for individual packets

from almost three month consisting of timestamp, packet size, corresponding node and the access point used for packet

transmission. �us, the tra�c trace TT can be obtained immediately from the recorded data. To generate the mobility trace

T (c)
M we aggregated all consecutive packets of a user associated with the same access point into a single waypoint, i.e. the

timestamp of the �rst packet is the arrival time at the access point and the dwelltime is the amount of time between the

arrival time and the �rst timestamp associated with another access point. If there was no activity (i.e. no packet sent or
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received) for at least 30 minutes, we assumed that the user logged o� (le� the area) and the dwelltime only covers the time

between arrival time and logo� time. Technically, we introduced an arti�cial access point denoted as OFF that a node visits

during long periods of inactivity. �is is similar to the Dartmouth trace where the OFF location is already included in the

original trace.

4.2.3 USC Trace

�e third coarse-grained trace was collected at University of Southern California [13]. It contains the AP associations from

more than a year of measurements and several thousand users. No tra�c data is available from the dataset, thus we only

have trace T (c)
M .

4.2.4 NCSU

�e NCSU data set [25] consists of �ve data sets with �ne-grained data recorded at two university campuses (NCSU and

KAIST), New York City, Disney World Orlando and the North Carolina state fair. Each data set contains the positions of

users recorded every 30 seconds via GPS resulting in a mobility trace T (f)
M . Tra�c information is not available for this data

set.

4.3 Interarrival Times and Dwelltimes

We present results for the interarrival and dwelltimes of the coarse-grained traces �rst. Modeling of the dwelltimes can be

done location-based or user-based. Fig. 1 shows the average dwelltimes for di�erent locations and di�erent users from the
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Figure 1: Stanford: Average dwelltimes

Stanford data. We distinguish mobile and stationary users in the plot. We required a mobile user to have visited at least 3

distinct locations during the recorded time (otherwise the user is a stationary user). As one can see there is a large variation

in the average dwelltimes at di�erent access points and for di�erent users. Similar behavior could be observed for the other

coarse-grained traces mentioned above.
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Due to the sheer amount of traces resulting from the data we can only present detailed results for a few representative

traces and aggregate the results for the remaining traces.

Tables 1 and 2 show the log-likelihood and p-values for three traces from the Dartmouth data. In particular, they show

Table 1: Dartmouth: Log-likelihood and p-values for dwelltimes

TDwell TDwell(AcadBldg16) TDwell(LibBldg2AP13)

log-likelihood p-value log-likelihood p-value log-likelihood p-value

Exponential -32475499.00 0.00 -68904.00 0.00 -27161.00 0.00

Lognormal 42346574.77 0.46 75082.29 0.21 20461.24 0.46

Weibull 37584020.77 0.29 73783.26 0.32 17588.63 0.33

Gamma 28744307.92 0.06 61581.64 0.25 13242.92 0.11

Pareto 42516187.45 0.25 66750.71 0.14 20367.85 0.22

HErD(2) 33716302.01 0.22 47797.89 0.06 17133.35 0.30

HErD(3) 40960624.28 0.43 80740.98 0.39 20509.20 0.51

HErD(4) 42860557.65 0.48 86304.10 0.49 21585.35 0.55

HErD(5) 43354838.92 0.51 87689.72 0.50 21934.33 0.55

HErD(7) 43605073.87 0.52 88082.13 0.50 21976.01 0.55

HErD(10) 43670471.93 0.51 88147.17 0.50 22276.96 0.54

HErD(15) 44653555.78 0.52 89851.92 0.50 22822.49 0.55
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Figure 2: Dartmouth: Results for the interarrival times TArr and a ��ed HErD(7) and a Pareto distribution.

the results for the interarrival times and dwelltimes from the complete data set, from a building and from an access point.

�e smallest HErD that yields a be�er result than all general distributions is printed in bold. As we can see from the results

a PHD with three or four states usually yields a be�er ��ing quality than the general distributions. An exception that needs

some further explanation is the trace with interarrival times for the whole area where the Pareto distribution has the best

likelihood but a very poor p-value. Fig. 2 shows the density functions and a Q-Q plot of the trace, a HErD and the Pareto
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Table 2: Dartmouth: Log-likelihood and p-values for interarrival times

TArr TArr(AcadBldg16) TArr(LibBldg2AP13)

log-likelihood p-value log-likelihood p-value log-likelihood p-value

Exponential -7731048.00 0.03 -68777.00 0.19 -26867.00 0.00

Lognormal -4306176.80 0.34 -57242.57 0.35 21101.88 0.52

Weibull -5768921.22 0.12 -54748.07 0.44 18083.53 0.41

Gamma -6682602.32 0.12 -58208.07 0.41 10366.29 0.07

Pareto -2264729.30 0.06 -115150.76 0.00 10070.49 0.02

HErD(2) -4872580.20 0.29 -55327.98 0.30 15055.50 0.23

HErD(3) -4654346.94 0.26 -50780.78 0.48 19374.40 0.44

HErD(4) -4205057.92 0.34 -50681.08 0.48 20753.41 0.51

HErD(5) -4170095.17 0.35 -50530.02 0.48 20914.91 0.52

HErD(7) -4067847.37 0.35 -50058.19 0.49 20918.20 0.52

HErD(10) -3871630.79 0.33 -49747.91 0.49 21290.73 0.52

HErD(15) -3755418.86 0.32 -49247.77 0.49 21525.73 0.52

distribution. As one can see, the Pareto distribution has a very high density for the smaller trace values resulting in a large

likelihood value, though the long tail of the distribution overestimates the larger trace values dramatically as shown by the

Q-Q plot, resulting in the poor p-value as the KS test compares the distribution function.

�is behavior could also be observed for other traces where the Pareto distribution resulted in a high likelihood value

but a low p-value.

Tables 3 and 4 show results for the complete Stanford data and two APs from the data set that con�rm our observations

from the Dartmouth traces that in most cases 4 states are su�cient to yield be�er results than with general distributions.

�e results for the third coarse-grained trace are shown in Table 5 and �t into the pa�ern observed so far.

Fig. 3 shows aggregated results for all locations from the Dartmouth data set. We ��ed all traces with dwelltimes and

interarrival times for APs and buildings with the �ve general distributions and HErDs with di�erent numbers of states. For

each HErD we counted the number of traces where the ��ing quality according to log-likelihood and p-value was be�er

than the quality of all general distributions. As we can see from Fig. 3 the HErDs performed be�er according to the p-values

than the likelihood values. �is is again due to the Pareto distribution and the phenomenon described above. In general, a

HErD(5) was su�cient to obtain the best results for most traces.

Fig. 4 shows the results for a user-based modeling where we generated traces with dwelltimes for every user. Due to

the sheer amount of traces we omi�ed the computation of the p-values here and only present the likelihood values that

con�rm our observations from the location-based modeling.

Fig. 5 presents the aggregated results for the Stanford data set. Figs. 5a and 5d show the number of traces where the

��ing quality of the HErDs according to log-likelihood and p-value was be�er than the quality of all general distributions.
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Table 3: Stanford: Log-likelihood and p-values for dwelltimes

TDwell TDwell(basement) TDwell(library)

log-likelihood p-value log-likelihood p-value log-likelihood p-value

Exponential -14135.00 0.00 -304.00 0.00 -1295.00 0.00

Lognormal 5596.64 0.35 124.32 0.44 -388.36 0.44

Weibull 5910.92 0.46 97.49 0.39 -524.84 0.25

Gamma 4066.01 0.32 53.22 0.16 -722.00 0.11

Pareto 3076.15 0.06 162.93 0.10 -1535.03 0.00

HErD(2) -579.32 0.14 47.75 0.16 -415.10 0.37

HErD(3) 5481.36 0.31 138.36 0.48 -370.63 0.46

HErD(4) 6966.15 0.49 141.73 0.49 -369.55 0.46

HErD(5) 7260.97 0.49 142.64 0.49 -340.95 0.46

HErD(7) 7371.55 0.49 158.89 0.49 -310.63 0.49

HErD(10) 7411.44 0.49 161.12 0.49 -286.46 0.49

HErD(15) 7903.60 0.49 169.08 0.48 -282.84 0.49

Table 4: Stanford: Log-likelihood and p-values for interarrival times

TArr TArr(basement) TArr(library)

log-likelihood p-value log-likelihood p-value log-likelihood p-value

Exponential -4028.00 0.11 -302.00 0.00 -1287.00 0.01

Lognormal -2761.10 0.15 1092.28 0.46 -538.95 0.26

Weibull -2181.52 0.30 1021.68 0.12 -430.47 0.39

Gamma -2026.95 0.39 888.91 0.00 -537.11 0.26

Pareto -3951.14 0.02 1140.19 0.18 -1293.18 0.00

HErD(2) -1718.74 0.45 984.55 0.06 -603.92 0.41

HErD(3) -1572.03 0.48 1089.12 0.47 -546.11 0.43

HErD(4) -1481.75 0.51 1122.09 0.48 -324.08 0.53

HErD(5) -1461.31 0.53 1129.27 0.54 -324.08 0.53

HErD(7) -1458.61 0.53 1130.62 0.54 -322.14 0.53

HErD(10) -1377.26 0.51 1141.35 0.51 -304.03 0.53

HErD(15) -1307.52 0.52 1146.94 0.51 -278.91 0.53
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Table 5: USC: Log-likelihood values for dwelltimes and interarrival times from two APs and a user

TArr(172.16.8.245) TDwell(172.16.8.245) TArr(172.16.8.241) TDwell(172.16.8.241) TDwell(u10100)

Exponential -33883.00 -34317.00 -4918.00 -4936.00 -1093.00

Lognormal -7279.12 11344.06 -1221.28 1820.70 -741.38

Weibull -11811.81 12097.72 -1631.84 1800.11 -939.48

Gamma -19248.51 6247.43 -2328.15 325.32 -1030.94

Pareto -23098.90 -894.58 -4472.71 -1718.86 -1919.40

HErD(2) -9846.89 -2471.69 -1740.76 1254.86 -773.91

HErD(3) -7428.95 14821.07 -1256.96 2031.57 -764.86

HErD(4) -7136.56 16301.54 -1193.57 2627.21 -716.32

HErD(5) -7107.49 16502.23 -1193.30 2627.37 -707.99

HErD(7) -7106.46 16603.97 -1192.45 2723.08 -704.69

HErD(10) -6966.59 16980.80 -1190.97 2774.99 -689.19

HErD(15) -6862.18 17139.23 -1174.57 2784.59 -679.39

(a) Access points (598 traces)

(b) Buildings (176 traces)

Figure 3: Dartmouth: Results for dwelltimes (traces T (c)
Dwell(l)) and interarrival times (traces T (c)

Arr(l)). Number of traces

where the HErD(n) is be�er than general distributions according to log-likelihood and p-values.

Figure 4: Dartmouth: Results for dwelltimes of users (traces T (c)
Dwell(u), u = 1, . . . , 11766). Number of traces where the

HErD(n) is be�er than general distributions according to log-likelihood.
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(a) Interarrival and dwelltimes for APs (13 traces)

(b) Interarrival times for APs (13 traces)

(c) Dwelltimes for APs (13 traces)

(d) Dwelltimes for users (74 traces)

Figure 5: Stanford: Results for dwelltimes and interarrival times. (5a), (5d) Number of traces where a PHD with n states is

superior according to log-likelihood and p-values. (5b), (5c) Log-likelihood values (a�er Min-Max-scaling)
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Again, we can conclude that for the traces from the APs in most cases HErDs with 4 states were su�cient. �e dwelltimes

of the users were more di�cult to �t with the HErDs, though for a large majority of the traces they still yielded the best

results. For the plots in Figs. 5b and 5c we applied Min-Max scaling to the likelihood values of the distributions for the

interarrival and dwelltimes, i.e. we normalized the likelihood values to the interval [0, 1]. On the x-axis the diagrams show

the 13 APs from the trace and on the y-axis the scaled likelihood values for the best general distribution and four HErDs.

With the exception of the APs 1b and basement four states were su�cient for the best results.

Finally, the results for the USC data set is shown in Fig. 6. Again, we omi�ed the computation of the p-values for the

large amount of traces from the dwelltimes for users.

(a) Interarrival and dwelltimes for APs (137 traces)

(b) Dwelltimes for users (17078 traces)

Figure 6: USC: Results for dwelltimes and interarrival times. Number of traces where a PHD with n states is superior

according to log-likelihood (and p-values).

4.4 Tra�c

We treated two types of traces regarding the tra�c generated by the users. Traces TPEv consider the times between

individual packets, while traces TAmt contain more abstract data and consider the amount of tra�c associated with a

waypoint. Tra�c data is only available for the Stanford and Dartmouth data sets with some additional limitations. �e

Dartmouth data only contains packets information for some buildings, thus we have less traces than for the dwelltimes.

Timestamps from the Stanford data are given in seconds only, which means that the traces with packet interevent times

contain only few distinct and discrete values, which makes them di�cult to �t for continuous distributions. Hence, we

omi�ed those traces.

Fig. 7 shows the results for the tra�c amounts associated with the di�erent waypoints for the Stanford data. For the

tra�c amounts at the di�erent APs shown in Fig. 7a we see that with 4 states HErDs yield be�er results than the general
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(a) Access points (13 traces)

(b) User (74 traces)

Figure 7: Stanford: Results for tra�c amounts TAmt during stay at a location. (7a) Log-likelihood values (a�er Min-Max-

scaling). (7b) Number of traces where a PHD with n states is superior according to log-likelihood and p-values.

distributions. If we consider traces for the users, ��ing was more di�cult, although with 4 states the majority of traces was

adequately captured by the HErDs. �e tra�c amounts from the buildings of the Dartmouth data set were more di�cult

to �t for HErDs as shown in Fig. 8a. It required 7 states to get be�er results than the general distributions for most of the

traces. Fig. 8b shows the scaled likelihood values for the interevent times of packets at di�erent APs. As we can see, 5 states

are su�cient for almost all traces here.

4.5 Distances

So far we only presented results for coarse-grained traces. For �ne-grained data we use the distances covered between

waypoints T (f)
Dist(u) as a measure for comparison. �e NCSU data set contains traces from �ve di�erent sites. Since the

number of users di�er, we show the percentage of traces where the HErDs resulted in a be�er approximation than the

general distribution in Fig. 9. With 4 states the HErDs are best for more than 80% of the traces from all sites with the

exception of one p-value.
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(a) Tra�c amounts for buildings (14 traces)

(b) Packet interevent times for buildings (14 traces)

Figure 8: Dartmouth: Results for tra�c traces from buildings. (8a) Number of traces with tra�c amounts (TAmt) where a

PHD with n states is superior according to log-likelihood and p-values. (8b) Log-likelihood values for traces with packet

interevent times (TPEv).

4.6 Adding Correlation

In the previous experiments we have only ��ed the empirical distribution of the trace. However, it is well known that data

from real networks might exhibit autocorrelation and dependencies. Fig. 10a shows the �rst 10 lags of autocorrelation for

some of the traces with interarrival times of users at APs. As one can see, the autocorrelation values are signi�cant and in the

following we demonstrate that the incorporation of these values will signi�cantly improve the ��ing quality. Phase-type

distributions can be easily extended into Markovian Arrival Processes (MAPs) [7] that can capture this autocorrelation. We

used the ��ed HErDs as input to the EM algorithm for MAPs from [5], which implies that the algorithm might change the

matrix parameters of the distribution but keeps the structure of the HErD, and performed 10 iterations of the algorithm.

Since MAP ��ing is much more time consuming and the required time depends on the number of states we only used

smaller HErDs with up to 5 states as input. Since the MAPs are also created with an EM algorithm, the likelihood of the

HErDs is always at least slightly improved by the MAPs. However, the comparison of the likelihood values in Fig. 10b

shows that by using a MAP with 4 or 5 states we obtain a be�er ��ing quality than the distributions with 15 states in most

cases.
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Figure 9: NCSU: Results for distances of users. Percentage of traces where theHErD(n) is be�er than general distributions

according to log-likelihood and p-value.

5 Conclusions

We have presented an extensive comparison for the ��ing quality of PHDs and general distribution for various di�erent

traces extracted from real world wireless data sets. It was shown, that in most cases even small PHDs with four or �ve

states are su�cient to obtain be�er results than general distributions widely used in the literature. �is could be observed

for coarse-grained and �ne-grained data. When the trace data exhibits autocorrelation the ��ing quality can be further

improved by expanding the PHDs into MAPs, although this of course increases the e�ort for ��ing.

For this paper we ��ed various characteristics of the traces with distributions. Future work will focus on combining

these distributions to obtain realistic mobility and tra�c models for wireless networks.
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