
Proceedings of the 2009 Winter Simulation Conference
M. D. Rossetti, R. R. Hill, B. Johansson, A. Dunkin, and R. G. Ingalls, eds.

SIMULATION BASED VALIDATION OF QUANTITATIVE REQUIREMENTS
IN SERVICE ORIENTED ARCHITECTURES

Falko Bause
Peter Buchholz

Jan Kriege
Sebastian Vastag

Informatik IV,
TU Dortmund,

D-44221 Dortmund

ABSTRACT

Large Service Oriented Architectures (SOAs) have to fulfill qualitative and quantitative requirements. Usually Service Level
Agreements (SLAs) are defined to fix the maximal load the system can accept and the minimal performance and dependability
requirements the system has to provide. In a complex SOA where services use other services and thus performance and
dependability of a service depend on the performance and dependability of lower level services, it is hard to give reasonable
bounds for quantitative measures without performing experiments with the whole system. Since field experiments are too
costly, model based analysis, often using simulation is a reliable alternative. The paper presents an approach to model
complex SOAs and the corresponding SLAs hierarchically, map the model on a simulator and analyze the model to validate
or disprove the different SLAs.

1 INTRODUCTION

Service Oriented Architectures (SOAs) are a common paradigm to realize large distributed software systems. SOAs are
based on the loose coupling of different processes which interact via service calls. The combination of different services
is denoted as orchestration that enables a user to build complex distributed systems in an efficient and reliable way (Peltz
2003). Apart from functional correctness an adequate Quality of Service (QoS) is the key aspect in any SOA. The system
has to assure a predefined level of performance and availability to meet the requirements of the user. The quality of service
requirements are usually written down in a contract denoted as Service Level Agreement (SLA) which, however, considers
apart from the specification of quantitative aspects like performance and availability also many other aspects like financial
aspects, user expectations or hardware and software requirements (Trienekens, Bouman, and van der Zwan 2004). The focus
of this paper is on the parts of an SLA which specify the performance and availability of services. Our goal is to integrate
these parts of the SLA in the model specification and validate them using simulation. If we talk of an SLA in the sequel,
we mean the parts of the whole contract that consider quantitative aspects.

There are two challenges when dealing with SLAs, namely to specify them adequately and to validate them. Both are of
practical and theoretical interest and are, of course, dependent since validation requires a formal or semi formal specification.
We will use a restricted set of patterns to express SLAs. However, even if SLAs are formally specified, the validation can
be cumbersome. Often validation is done during runtime by monitoring the actual service calls (Skene et al. 2007). This
approach is necessary to assure that the contract which has been concluded is fulfilled from both sides. I.e., the provider
supplies an adequate QoS and the user brings an adequate load into the system. However, for a provider it is also interesting
to know which QoS he or she is able to guarantee for a given load. For a user it is interesting to know which QoS he
or she is going to expect from a service that is composed of different services from different providers each with its own
SLA. In general both problems can be analyzed using measurements of the running system with some benchmark workload.
However, it is often better to use model based analysis to validate SLAs in these cases.

The simulative validation of SLAs in a SOA requires an adequate model of the architecture and the integration of the
SLAs in the model. Modeling of SOAs has to consider both, the workflow of the services and also the communication
network. The complexity of the systems usually requires a rather high level model. Only very few simulation approaches
are currently available that allow a natural modeling of SOAs, (Sarjoughian et al. 2008) is one of the few examples. In this

1015978-1-4244-5771-7/09/$26.00 ©2009 IEEE

Bause, Buchholz, Kriege and Vastag

paper, we present an approach to integrate SLAs in a model of a SOA and validate them via simulation. The model class we
use is a specific class of hierarchical process chains that are mapped on simulation models (Bause et al. 2008b) and which
have already shown to be eligible for the modeling of SOAs (Bause et al. 2008a). In this paper we extend the approach of
(Bause et al. 2008a) by integrating SLAs in the model description and by developing methods to statistically evaluate the
SLAs using simulation experiments. This allows us to perform a statistically well founded validation of SLAs.

The paper is structured as follows. In the next section we briefly present the ProC/B approach to model SOAs. Then we
show how to specify SLAs in a model of a SOA using predefined patterns. Afterwards, in Sect. 4, the validation of SLAs
via simulation is introduced and an example is presented in Sect. 5. The paper ends with the conclusions.

2 MODELING OF SOA USING HIERARCHICAL PROCESS CHAINS

The approach presented in this paper uses hierarchical process chains, namely ProC/B models, to specify SOAs and the
corresponding SLAs. ProC/B (Bause et al. 2002) is a process chain based modeling approach which formalizes the process
chain paradigm introduced by (Kuhn 1995, Kuhn 1999). Originally ProC/B was developed and used for the description
and analysis of logistics networks within the collaborative research center ”Modelling of Large Logistics Networks” 559
(Collaborative Research Center 559). Only recently ProC/B has been extended to meet the requirements that are necessary
to describe components of SOAs (Bause et al. 2008a).

ProC/B models consist of function units (FUs) that capture the structure of a system and process chains (PCs) that
model the behavior. PCs are composed of process chain elements (PCEs) which specify the load at one level. FUs might
offer services that can be used by activities of PCs. Those services are again described by PCs. Furthermore, they can use
other services, which are offered by internal or imported FUs, thus introducing a hierarchy. ProC/B offers two kinds of
standard FUs that have predefined services and are used at the lowest level of the hierarchy: servers act as traditional queues
and describe the consumption of time, while so-called counters support the manipulation of passive resources and describe
the consumption of space. User defined FUs are used in the higher levels of the hierarchy. They offer services to their
environment that are internally realized by process chains which may use some services of lower level FUs. The hierarchy
of ProC/B has to form an acyclic graph and is based on a calling semantics of services. A service is called from a process
chain element of an upper level and the upper level process is blocked until the service call returns.

Figures 1-3 present an example of a ProC/B model. The top level of the model is shown in Figure 1 where the behavior
of a process type called caller is defined by a PC. Process chain caller contains two PCEs named count callers
and call service. Those names are arbitrarily assigned by the user. PCE count callers is a so-called CODE element
which allows for the specification of code blocks in ProC/B syntax which are executed during simulation. More complex
examples of code blocks are shown in Listings 1 and 2. PCE call service calls a service of the FU Service Provider.
Each process of process chain caller contains a local variable success which is initially set to FALSE and might
have changed after finishing the service call. Access notations to parameters and variables of processes are prefixed with
keyword data for technical reasons in order to distinguish them from global variables. FU Model contains also a variable
no callers which is globally accessible for all processes within this FU. In this example the global variable is used to
count the number of callers. Processes of type caller are incarnated with exponentially distributed interarrival times as
specified by the source element of Figure 1. The service service of the Service Provider is specified by a process
chain as shown in Figure 2.

The first activity in FU Service Provider is again a service call, now using service start trans of FU
Transaction. This FU manages the amount of parallel active service requests to FU Processor which executes the
requests of the caller processes. FU Processor is a standard FU which acts as a traditional queue. Access to the
Processor is granted by setting variable data.success to true and using this variable in a boolean OR-connector
selecting the upper branch, in case data.success is true or the lower (empty) branch otherwise. The upper branch
specifies the call of service request of FU Processor followed by a call to service commit of FU Transaction.

Service calls of the caller processes compete with processes of process chain maintenance which are incarnated in
batches of size 2 with an exponentially distributed batch interarrival time and also terminate within FU Service Provider.
Their behavior is similar to the one of the processes of type caller.

The internals of FU Transaction are shown in Figure 3. FU Pool is a counter modeling the use of passive resources
which is here a “token pool” used for managing the concurrent access to FU Processor. In this example the pool is
represented by an integer value initially set to the default value 0 and is only allowed to take a value within the interval
[0,16]. Service change requests for a change of the counter’s value. A change to the counter is immediately granted iff its
result respects the specified upper and lower bounds; otherwise the requesting process gets blocked until the change becomes
possible. The predefined service alter or skip has a more sophisticated semantics. In this example the requesting

1016

Bause, Buchholz, Kriege and Vastag

EVERY negexp(5.0)

1
caller

(success:BOOL=FALSE)
Service_Provider.

service

call_service
-->(data.success)

Service_Provider

service
-->(success:BOOL)

no_callers:INT=0

CODE

count_callers
(no_callers := no_callers + 1;)

Model

Figure 1: Example of a ProC/B model

EVERY negexp(0.1)

2
maintenance

(success:BOOL=FALSE) Processor.
request

use_processor
(3)

service
-->

(success:BOOL)

()

Processor.
request

use_processor
(2)

Transaction.
start_trans

user_transaction_start
-->(data.success)

Transaction.
commit

user_transaction_commit

Processor

DIS=PS,
CAP=8

request
(amount:REAL)

Transaction.
start_trans

system_transaction_start
-->(data.success) Transaction.

commit

system_transaction_commit

Transaction

commit

start_trans
-->(allocated:BOOL)

data.success

data.success

ELSE

ELSE

Service_Provider

Figure 2: FU Service Provider

process tries to increase the counter value by 1 or, if not possible, the counter value is not increased (increase by 0). The
actual increase value is returned and stored in variable data.my amount, such that data.allocated is set to true if
the integer value of the pool has been increased by 1. In the model of Figures 1-3 no process will be blocked when calling
service commit, since a decrease of the pool value will only happen after a corresponding increase.

ProC/B allows for the specification of measures in an elaborate way. Standard measures like for example throughputs
or response times can be measured at any FU. Additionally, user-defined measures (called rewards in ProC/B) can be used
for serially collecting values, for estimating rates and for the description of trajectories. While the user-defined rewards have
to be updated manually using a model element designed for those updates, the standard measures are updated automatically
whenever a process enters or leaves a FU. Moreover ProC/B supports the itemization of the measurement streams, i.e. when
measuring at an FU it is possible to consider only processes that moved along a specific path through the model hierarchy
before using a service of that FU and to ignore all other processes for the measure.

As already mentioned the ProC/B formalism was extended in (Bause et al. 2008a) for the modeling of SOAs. These
extensions include a timeout mechanism that can be used to specify an upper limit for the amount of time a process will
wait for the return from a call to a service. In SOAs such a behavior is important since in a complex system it cannot
be assured that a service call always returns in time or even returns at all. If the service call is not finished in time, the
calling process has to proceed, of course, the subsequent activities may depend on whether the call timed out or not. For the

1017

Bause, Buchholz, Kriege and Vastag

Pool

MAX=[16]

change
(amount:INT[])

alter
(position:INT,by_value:INT)

alter_or_skip
(position:INT,from_value:INT,
to_value:INT)->(achieved:INT)

content
(position:INT)->(content_value:INT)

Pool.
alter_or_skip

allocate
(1,1,0)-->(data.my_amount)

Pool.
change

release
([-1])

commit

()

CODE

evaluate
(data.executed := data.my_amount = 1;)

start_trans
-->

(executed:BOOL)

(my_amount:INT)

Transaction

Figure 3: FU Transaction

modeling and analysis of ProC/B models a toolset exists which provides a graphical user interface for model specification
and tools that transform a ProC/B model into the input language of different analysis tools, allowing for an automated
analysis of the models. Currently available are transformers for two simulators, a queueing network solver and a tool for
the analysis of stochastic Petri nets. The transformers for the simulators are able to handle any ProC/B model whereas the
latter two transformers assume some restrictions. For more details on ProC/B and the corresponding toolset we refer the
reader to (Bause et al. 2002, Bause et al. 2008b, Bause et al. 2008a). One analysis option of the toolset is the simulation
of ProC/B models by using OMNeT++. OMNeT++ is a public-source simulation environment that has been developed for
the modeling of communication protocols and several model frameworks are available for OMNeT++ with an emphasis on
network models. Using this analysis option of the toolset ProC/B models may contain FUs that are realized by OMNeT++
models, such that the process flow of the Web services is described in ProC/B at a higher level and the underlying network
structure is specified by an OMNeT++ model. The amount of data for communication over the network can be stated in
the ProC/B model and is passed to the OMNeT++ model where the transfer of the data over the network is simulated.
Since also the process chain elements can be translated to OMNeT++, the whole model accounts for both, a high-level SOA
description and the description of the underlying network structure at a lower level. The complete model can be simulated
with the OMNeT++ simulation engine.

3 INTEGRATION OF SLAs

Before we present the integration of SLAs in the process oriented model view, some approaches for the specification of
SLAs are reviewed. Specification of a quantitative requirement has to be done in such a way that it can be validated which
means that it can be measured at the running system (Raimondi, Skene, and Emmerich 2008, Skene et al. 2007) or it can be
analyzed with some model (Menascé, Ruan, and Gomaa 2007). This implies that the specification has to include a precise
description of the service and of the requirements (Trienekens, Bouman, and van der Zwan 2004). In general an SLA has

1018

Bause, Buchholz, Kriege and Vastag

to include two components, the specification of the maximal load and the minimal service level. Without a bound on the
load, every service can be overloaded such that the required service level cannot be reached.

Quantitative aspects of SLAs have to be specified in a formal or at least semi formal way. Various approaches exist
to specify SLAs like the XML based specification language WSLA (Ludwig et al. 2003) or extensions to UML (Skene,
Lamanna, and Emmerich 2004, Teyssié 2006) to mention only two examples. To validate SLAs a precise semantics is
necessary. Thus, SLAs may be described using logical formulas (Teyssié 2006) or by transferring them into a timed automaton
(Raimondi, Skene, and Emmerich 2008) which may be used to verify that a trace resulting from a measurement or simulation
of the system observes the requirements given in the SLA. However, usually the behavior of a complex system like a SOA
is stochastic such that some violations of the SLA will occur and it has to be analyzed how often such violations occur.
This requires some statistical evaluation which is, to the best of our knowledge, not considered in the literature on SLA
validation yet. We will come back to this point in the following section after introducing our approach to specify SLAs in
process models.

For a user it is usually very hard to specify an SLA formally from scratch using some logic or a timed automaton or even
using some XML or UML based specification language. One approach to bypass the low level definition of properties is to
use patterns that allow one to describe common properties at a higher level. This high level description is then transformed
into a low level specification amenable for the used validation or verification technique. Patterns for functional properties in
finite state systems can be found in (Dwyer, Avrunin, and Corbett 1999). These patterns are mapped onto logical formulas in
some temporal logics like CTL or LTL which can be used as input for some model checker. However, this approach cannot
be applied to express quantitative aspects since the logics have no notion of time or probability. Consequently, extended
patterns for real time verification have been defined in (Konrad and Cheng 2005) and are based on the real time logics MTL
or TCTL. This set of patterns includes patterns to express the maximal or minimal duration or the maximal and minimal
response time and may be used to express some requirements included in SLAs. However, the patterns are developed for
hard real time systems such that they can only be used to prove or disprove that a property always holds. This is, as already
argued above, not adequate for SLAs of SOAs where we usually will have some, hopefully small, probability to miss a
requirement. We extend the idea of patterns to express SLAs. In contrast to the mentioned approach our patterns are not
translated into logical formulas, instead they define measurement streams in a simulation which are validated and statistically
evaluated by simulation experiments.

As shown in section 2 services are specified by PCs and are offered by FUs. Thus, access points of services are
represented by the service entry points at the FUs. SLAs are assigned to the entry points and allow one to express properties
that are measurable at the entry and exit level of a service. This includes the times between initiation and termination of
the service call and the status of the returning service call. We assume that the status of a service call is a Boolean variable
success which is TRUE for a successful call and FALSE otherwise. Of course, success can be defined by some Boolean
expression over the return parameters of the service call. If a service call has no parameters, then we assume that success
is always TRUE. For some service call scall, scall.success is the value of the success variable, scall.at is the
arrival time and scall.st is the sojourn time which is the time between start and termination of the service call.

Let sla be an SLA specification for some service, then sla.load describes the condition on the load (i.e., an upper
bound for the calling instance), sla.perf describes the requirement on the duration of the service (i.e., a lower bound for
the executing instance) and sla.avail describes the requirement on the availability of the service (i.e., a lower bound on the
percentage of successful calls for the executing instance). We assume that each SLA has a load part and it has a perf or an
avail part but not necessarily both.

We now introduce the syntax and semantics of the different parts of the SLA specification.

sla.load := λavg | tmin | (∆t,m) | (tmin∧ (∆t,m))

where λavg, tmin,∆t ∈ R>0 and m ∈ N. The terms have the following semantics:

λavg The average number of service calls per time unit is at most λavg which implies that the mean interarrival
time of service calls is at least (λavg)−1. This measure is defined without a time interval for which the
average values are computed such that additional assumptions are necessary to validate the SLA. These
assumptions will be introduced in the following section.

tmin The time between two successive service calls is at least tmin.
(∆t,m) In an interval of length ∆t at most m calls arrive.
(tmin∧ (∆t,m)) This requirement combines the two previous requirements. It is fulfilled by a call that arrives at time t,

if for the arrival time of the previous call ≤ t− tmin holds and in [t−∆t, t] ≤ m calls arrived.

1019

Bause, Buchholz, Kriege and Vastag

Similarly, the performance part can be specified as

sla.perf := tavg | tmax | (tmax,n,m)

where tavg, tmax ∈ R>0, n,m ∈ N, n≤ m with the following semantics:

tavg The average duration of a service call is at most tavg. Like λavg this is an average value defined without any
interval such that additional requirements are necessary for its validation.

tmax The maximal duration of a service call is tmax.
(tmax,n,m) n out of the last m service calls have a duration of at most tmax.

The performance part only considers service calls that terminated successfully.
Finally, we consider the availability requirements.

sla.avail := pavg | (n,m)

where 0 < pavg ≤ 1, n,m ∈ N, n≤ m with the following semantics:

pavg The average success probability of a call is at least pavg. Again this an average measure without time interval.
(n,m) At least n out of the last m service calls had been successful.

The different requirements can be verified per service call or for all calls of a simulation run. The corresponding methods
will be proposed in the following section.

4 SIMULATIVE VALIDATION OF SLAs

Three different parts of an SLA consider different measures of a service call. sla.load is based on scall.at, whereas
sla.perf considers scall.st of all terminating service calls where scall.success is TRUE. Finally, sla.avail is based
on the evaluation of scall.success. We have to distinguish between the average measures λavg, tavg, pavg and the
remaining measures.

We start with the average measures which consider the long run behavior of the system. Without additional assumptions
these measures cannot be validated or disproved on a finite run since the system can always run for a longer time and may then
possibly reach the required service level. Therefore, we assume for the analysis of average values that the system has reached
its steady state which is a common assumption for simulative analysis of stochastic systems. The steady state assumption has
to be validated using available methods from stochastic simulation (Law and Kelton 2000, chap. 9). Let X be the random
variable describing the required quantity (i.e., the interarrival or sojourn time or the success probability). Then it has to be
validated that E(X)≤ xavg holds. For availability analysis usually a lower bound for the success probability is defined but
1− pavg can be used as upper bound for the miss probability. For statistical analysis it has to be taken into account that the
observation of consecutive service calls results in correlated samples such that analysis methods for dependent sequences
have to be applied (see (Law and Kelton 2000)). We use a batch means method with b batches of size k each (i.e., h = bk
equals the number of observed service calls) and assume that the batch means are independent and identically distributed. In
steady state the required measures from the service calls (i.e., the interarrival times, sojourn times or success probabilities)
are collected and mean values can be computed. Let xi be the corresponding value of the ith service call, then

x̄ =
1
h

h

∑
i=1

xi =
1
b

b−1

∑
i=0

(
1
k

k

∑
j=1

xik+ j

)
(1)

is the estimated mean for n observed service calls and

Ŝ2(x) =
1

b−1

b−1

∑
i=0

((
1
k

k

∑
j=1

xik+ j

)
− x̄

)2

(2)

is an estimate for the variance of the xi. With known estimators for mean and variance, confidence intervals can be computed
using standard means. However, for the validation of SLAs, the estimated mean has to be compared with a standard defined

1020

Bause, Buchholz, Kriege and Vastag

by xavg. This implies that one-sided confidence intervals are required. For some significance probability α , the requirement
E(X)≤ xavg is validated if

x̄+ tb−1,1−α

√
Ŝ2(x)

b
≤ xavg (3)

where tb−1,1−α is the 1−α quantile of the t-distribution with b−1 degrees of freedom. If (3) holds, then the requirement
is met with a probability of at least 1−α . In summary, validation of average values uses standard measures of steady state
simulation which use one sided confidence intervals.

The situation is different for the remaining measures. In these cases it has to be decided at a per service call level whether
the call meets the SLA or not. As already argued, it is unrealistic that in a complex SOA all requirements will always be
met. Thus, the question is how many calls violate an SLA. Under stochastic assumption the probability of violating an SLA
is a random variable and for the expectation of this random variable (i.e., the probability of SLA violation) an estimate and
confidence intervals can be computed if we assume again that the model is in steady state.

We denote by scalli the ith service call and begin with the requirements (scalli.at−scalli−1.at)≥ tmin and scalli.st ≤ tmax.
In both cases, we can define a variable xi which becomes 1 if the requirement is met and 0 otherwise. The estimator for
mean (1) and variance (2) can then be used and

x̄± tb−1,1−α/2

√
Ŝ2(x)

b
(4)

is the two sided confidence interval for the probability that a call fulfills the SLA. Again the result is computed using standard
means for simulation output analysis and the variables xi.

The remaining measures require access to the last m service calls for their evaluation. (∆t,m) is observed if scalli.at−
scalli−m−1.at > ∆t, for i < m+1 the SLA is always true. (tmin∧ (∆t,m)) holds if both conditions hold. Similarly, (tmax,n,m)
holds if

m−1

∑
j=0

δ (scalli− j.st ≤ tmax)≥ n

where δ (x) is 1 for x = true and 0 otherwise. Again scalli.st ≤ tmax is true for i≤ 0. Finally, (n,m) holds for the ith service
call if

m−1

∑
j=0

δ (scalli− j.success)≥ n .

where scalli.success is true for i≤ 0.
For each measure and service call a variable xi is defined which becomes 1 if the SLA holds and 0 otherwise. With

(1), (2) and (4) an estimate and confidence intervals for the probability that the SLA is fulfilled can be computed. If the
user defines lower bounds for the probability that an SLA is fulfilled, then one sided confidence intervals (3) can be used
to validate these bounds similar to the steady state case. Let x̄ and Ŝ2(n) be the estimated mean and variance of measure X .
Let xup be the upper bound of the measure that can be tolerated according to the SLA. Assume that x̄ < xup since otherwise
the SLA holds with a probability of less than 50%. For x̄ < xup the SLA holds for the system with probability 1−α where
α is given by

α = arg min
0<β<0.5

x̄+ tb−1,1−β

√
Ŝ2(n)

n
≤ xup


In a large SOA usually different SLAs have to be validated and for each SLA the load and performance/reliability parts

have to be evaluated separately. If K is the number of measures that are evaluated and αk is the significance probability
for the kth measure, then the probability that all confidence intervals contain the correct results can be computed from the

1021

Bause, Buchholz, Kriege and Vastag

Bonferroni inequality (Law and Kelton 2000) and is given by

1−
K

∑
k=1

αk .

This shows that for a large number of measures αk has to be small to give meaningful results.

5 MODELING OF SLAs USING HIERARCHICAL PROCESS CHAINS

The general approach for the integration of SLAs into an existing ProC/B model is shown in Figure 4. Parts of the original
model are marked in black in Figure 4 and the new parts that are necessary for analyzing the SLAs are marked in red.

FU Service_Provider

service_1

service_n

. . .

(param1, param2, ...)

(param1, param2, ...)

.
. . .

.

service_1.sla.load
service_1.sla.perf
service_1.sla.avail
...
service_n.sla.load
service_n.sla.perf
service_n.sla.avail

UPDATE

update rewards
sla.perf, sla.avail

compute values for update
of rewards

CODEService_Provider.
service_1

call_service
(param1, param2, ...)

encapsulated_service_1

encapsulated_service_n

(at, st, success)

(at, st, success)

UPDATECODEService_Provider.
service_n

call_service
(param1, param2, ...)

Encapsulated_Service_Provider

Encapsulated_Service_Provider.
encapsulated_service_1

call_service
(param1, param2, ...)

(param1, param2, ...)

(param1, param2, ...)

Encapsulated_Service_Provider.
encapsulated_service_n

call_service
(param1, param2, ...)

compute values for update
of rewards

UPDATE

update reward
sla.load

UPDATE

compute values for update
of rewards

CODE

compute values for update
of rewards

CODE

update reward
sla.load

update rewards
sla.perf, sla.avail

Figure 4: Integration of SLAs into ProC/B models

Assume that the upper process chain in Figure 4 calls services of the FU Service Provider in the original
model and we want to analyze the SLAs of Service Provider. For the specification of the SLA variables and
for updating the corresponding measures described in Sect. 3 and 4 we introduce a new layer in the model hierarchy
(FU Encapsulated Service Provider) that encapsulates the FU Service Provider. For each service of FU
Service Provider a service with the same set of parameters is provided by Encapsulated Service Provider.
Those new services forward a call to the corresponding service of FU Service Provider and compute all the values
necessary for updating the rewards. Therefore each of the services has three local variables for storing the arrival time (at),
the sojourn time (st) and whether the service call was successful (success). Additionally, three types of rewards are
defined for each SLA (sla.load, sla.perf and sla.avail).

The process chains that try to call a service of the FU Service Provider do not call this service directly anymore,
instead they use the corresponding service of Encapsulated Service Provider as shown in Figure 4. The service
of Encapsulated Service Provider computes values to update the rewards and performs those updates before and
after the call to the service of Service Provider. When a service of Encapsulated Service Provider is called
it stores the arrival time and updates sla.load. After the forwarded call to Service Provider returns sla.perf and
sla.avail are updated. The actual operations for the computation of update values and the updates of the rewards are only
indicated by the CODE and UPDATE PCEs in Figure 4.

The described approach can be used for the integration of SLAs in any FU of a ProC/B model and furthermore it
can be applied automatically. Of course, some of the reward and variable declarations can be omitted in cases where not
all measures for the SLA are of interest. In the following we will clarify the technique by applying it to the model from

1022

Bause, Buchholz, Kriege and Vastag

Service_Provider

service
-->(success:BOOL)

encapsulated_service
-->

(success:BOOL)

(sla_at:REAL,
sla_st:REAL,

result_load:INT=0,
result_avail:INT=0,
result_perf:INT=0)

Service_Provider.
service

call_service
-->(data.success)

CODE

code_sla_avail

REWARD sla_load: EVENT
REWARD sla_avail_nm: EVENT
REWARD sla_perf_tmax_nm: EVENT

avail_m:INT=100
avail_n:INT=60
perf_m:INT=100
perf_n:INT=80
perf_tmax:REAL=3.8
load_m:INT=60
load_delta:REAL=10.0

CODE

code_sla_perf

field_avail:INT[1..100]
sum_avail:INT=0
i_avail:INT=1
counter_avail:INT=0

field_perf:INT[1..100]
sum_perf:INT=0
i_perf:INT=1
counter_perf:INT=0

CODE

mark
(data.sla_at := time;)

UPDATE

sla_avail_stats
(sla_avail_nm BY data.result_avail)

UPDATE

sla_perf_stats
(sla_perf_tmax_nm BY data.result_perf)

field_load:REAL[1..60]
counter_load:INT=0

CODE

code_sla_load

UPDATE

sla_load_stats
(sla_load BY data.result_load)

Encapsulated_Service_Provider

Figure 5: Encapsulated version of FU Service Provider

Sect. 2. We extended the Service Provider example of Figure 1 with an additional layer to validate an SLA by
simulation. Figure 5 shows FU Encapsulated Service Provider added into the model hierarchy to validate the
SLAs for service in FU Service Provider. Additional elements are marked in red similar to Figure 4. It contains
one process chain, the FU Service Provider, global variables and a set of rewards. A possible SLA for the example
is given by sla.load := (∆t = 10,m = 60), sla.perf := (tmax = 3.8,n = 80,m = 100) and sla.avail := (60,100) which should
be satisfied for at least 90% of the service calls. In the following we show how the model can be enhanced to check these
specific SLA measures.

The first block of variables in the lower half of the FU expresses the SLA with constant values. They are prefixed with
the names of their respective SLA part. The process chain encapsulated service consists of eight PCEs with the
call of the evaluated service call service in the middle and it also defines six variables associated with each process.
Variables sla at, sla st and success hold arrival time, sojourn time and the success flag as defined in Sect. 3. Their
concrete values are set in code PCEs along the process chain. Code PCEs are used like normal PCEs but their behavior is
described by a segment of code which can be interpreted by the used analysis tool. PCE mark sets sla at of each process
to the current model time. The load part of the SLA is evaluated in PCE code sla load. It is located before the service
call to measure the arrival rate before the time intervals between processes are changed by the service. A corresponding
UPDATE PCE sla load stats will update the bit sequence in reward sla load with 1 when the time constraints hold
and with 0 otherwise. After the actual call of the service in call service the SLA parts sla.avail and sla.perf related
to the performance of the encapsulated service are evaluated and the results are used to update the rewards sla avail nm
and sla perf tmax nm.

The common principle in all code PCEs of this example is to retain the performance of the service over the last m
process arrivals in an array prefixed field of size m storing sufficient recent values of the matching indicator. The array
is used like a ring buffer, on each process arrival the cycling array position pointer is calculated with a process counter
counter modulo m and a new value is inserted replacing an old one. The decision whether the SLA specification is
met by a process is based on the array values after the update. The boolean result is stored in a process variable prefixed
result to feed the following update PCE.

Listing 1 shows the code placed into PCE code sla avail to evaluate sla.avail. The local process counter is
incremented at first. The conditional block updates one cell of the array field avail to 1 if the service call of the actual
process was successful and 0 otherwise.

The availability of the last m processes is based on two conditions. When there are less than m collected values in the
array the availability indicator result avail is 1 by definition. In every other case the array contents are summed up and
required to be greater than avail n. The same principle is used to determine values for sla.perf in PCE code sla perf

1023

Bause, Buchholz, Kriege and Vastag

Listing 1: Source of code sla avail in ProC/B syntax
counter_avail := counter_avail + 1;

IF data.success THEN
field_avail[(counter_avail MOD avail_m) + 1] := 1;

ELSE
field_avail[(counter_avail MOD avail_m) + 1] := 0;

END IF;

IF counter_avail < avail_m THEN
data.result_avail := 1;

ELSE
sum_avail := 0;
i_avail := 1;

WHILE i_avail <= avail_m
LOOP
sum_avail := sum_avail + field_avail[i_avail];
i_avail := i_avail +1;

END LOOP;

IF sum_avail < avail_n THEN
data.result_avail := 0;

ELSE
data.result_avail := 1;

END IF;
END IF;

Listing 2: Source of code sla perf in ProC/B syntax
data.sla_st := time - data.sla_at;

IF data.success THEN
counter_perf := counter_perf + 1;
IF data.sla_st <= perf_tmax THEN

field_perf[(counter_perf MOD perf_m) +1] := 1;
ELSE
field_perf[(counter_perf MOD perf_m) +1] := 0;

END IF;
IF counter_perf < perf_m THEN

data.result_perf := 1;
ELSE
sum_perf := 0;
i_perf := 1;
WHILE i_perf <= perf_m
LOOP
sum_perf := sum_perf + field_perf[i_perf];
i_perf := i_perf + 1;

END LOOP;
IF sum_perf < perf_n THEN

data.result_perf := 0;
ELSE
data.result_perf := 1;

END IF;
END IF;

END IF;

Figure 6: Measurements of the service running on 8 processors

(Listing 2). The first line sets the sojourn time of the process. A significant difference in sla.perf is that only successful
service calls are evaluated, so the process counter is only updated if data.success is true. The following condition will
mark the array depending on data.sla st and tmax. Again, when there are not enough collected values the performance
indicator result perf is set to 1, otherwise the sum of the array values is considered.

We analyzed the described model by simulation to validate the SLA as described above and made several experiments
with different arrival rates and simulated each setting for 100,000 units model time. The results are shown in Table 1 and are
also visualized in Figure 6. The row confidence 90% shows the width of the 90% confidence interval of the mean value.

At the relatively modest arrival rate of 3.5 all parts of the SLA are met for more than 95% of all processes. A slight
increase to 4.0 shows a first decline of sla.perf to 89.8% which violates the SLA. At an arrival rate of 5.0 the performance
part drops below 70% although sla.load is still within specification. Obviously the service offered in this model is unable
to fulfill the SLA specification.

Simulation models can also be used as a testbed to modify the service until it can provide the SLA. The original
service uses eight processors to execute calculations (cf. Figure 2). As there is a performance problem with the processors,
two additional cores are added to the system. Table 2 contains measurements of a 10 processor system taken under equal
conditions as before. The speed gain of additional processors removes the performance problems and helps the service to
meet all requirements set by the SLA. At an arrival rate of 5.0 the performance delivered by the service is accepted while

1024

Bause, Buchholz, Kriege and Vastag

Table 1: Service Levels with 8 processors

mean interarrival time 3.00−1 3.50−1 4.00−1 4.50−1 5.00−1 5.50−1 6.00−1

sla.avail mean 0.999894 0.999826 0.999868 0.999656 0.991132 0.942338 0.750041
standard deviation 0.010311 0.013172 0.011501 0.018545 0.093749 0.233103 0.432989
confidence 90% 0.02% 0.04% 0.03% 0.04% 0.18% 0.44% 1.14%

sla.load mean 1.000000 0.999949 0.998018 0.980323 0.901595 0.735159 0.479551
standard deviation 0.000000 0.007156 0.044472 0.138888 0.297862 0.441248 0.499582
confidence 90% 0.00% 0.00% 0.05% 0.18% 0.48% 0.93% 1.61%

sla.perf mean 0.987235 0.956688 0.898489 0.812611 0.696342 0.532435 0.341438
standard deviation 0.112259 0.203559 0.302004 0.390224 0.459837 0.498947 0.474192
confidence 90% 0.07% 0.13% 0.19% 0.29% 0.47% 0.84% 1.44%

Table 2: Service Levels with 10 processors

mean interarrival time 3.00−1 3.50−1 4.00−1 4.50−1 5.00−1 5.50−1 6.00−1

sla.avail mean 1.000000 1.000000 1.000000 1.000000 0.999892 0.999773 0.998509
standard deviation 0.000000 0.000000 0.000000 0.000000 0.010393 0.015055 0.038582
confidence 90% 0.00% 0.00% 0.00% 0.00% 0.02% 0.03% 0.05%

sla.load mean 1.000000 0.999937 0.997751 0.981663 0.907546 0.725280 0.486045
standard deviation 0.000000 0.007920 0.047367 0.134168 0.289666 0.446373 0.499805
confidence 90% 0.00% 0.01% 0.06% 0.17% 0.45% 0.94% 1.58%

sla.perf mean 0.999030 0.995105 0.983182 0.954922 0.909562 0.849661 0.792968
standard deviation 0.031131 0.069795 0.128589 0.207474 0.286808 0.357403 0.405179
confidence 90% 0.02% 0.04% 0.08% 0.12% 0.16% 0.20% 0.21%

sla.load matches the mark of 90% closely. sla.avail is also advanced as service requests are no longer blocked at the
processing unit and resources of FU Transaction are released earlier.

6 CONCLUSIONS

In this paper we presented an approach to model and validate service level agreements for service oriented architectures
using hierarchical process chain models. The validation is done by simulation giving the service provider an effective and
cost-efficient opportunity to consider different scenarios. E.g., as illustrated by the example of Sect. 5, the service provider
might concentrate on his equipment and possible investments or he might focus on negotiating customer demands.

We showed how such scenarios can be validated using the ProC/B modeling environment. Currently the SLA specifications
and corresponding rewards have to be manually integrated into existing ProC/B models. Future work is intended to automate
this process. Furthermore, SLA enhanced simulation models can also be used to support monitorability (cf. (Skene et al.
2007, Raimondi, Skene, and Emmerich 2008)) helping to identify relevant points for measurements.

REFERENCES

Bause, F., H. Beilner, M. Fischer, P. Kemper, and M. Völker. 2002. The ProC/B toolset for the modelling and analysis of
process chains. In Computer Performance Evaluation / TOOLS, ed. T. Field, P. G. Harrison, J. T. Bradley, and U. Harder,
Volume 2324 of Lecture Notes in Computer Science, 51–70: Springer.

Bause, F., P. Buchholz, J. Kriege, and S. Vastag. 2008a. A framework for simulation models of service-oriented architectures.
In SIPEW, ed. S. Kounev, I. Gorton, and K. Sachs, Volume 5119 of Lecture Notes in Computer Science, 208–227:
Springer.

Bause, F., P. Buchholz, J. Kriege, and S. Vastag. 2008b. Simulating process chain models with OMNeT++. In Proc. of 1st
International Conference on Simulation Tools and Techniques for Communications, Networks and Systems (SIMUTools
2008). Marseille.

Collaborative Research Center 559. Modelling of large logistics networks. http://www.sfb559.uni-dortmund.de.

1025

Bause, Buchholz, Kriege and Vastag

Dwyer, M. B., G. S. Avrunin, and J. C. Corbett. 1999. Patterns in property specifications for finite-state verification. In ICSE,
411–420.

Konrad, S., and B. H. C. Cheng. 2005. Real-time specification patterns. In ICSE, ed. G.-C. Roman, W. G. Griswold, and
B. Nuseibeh, 372–381: ACM.

Kuhn, A. 1995. Prozessketten in der Logistik - Entwicklungstrends und Umsetzungsstrategien. Dortmund: Verlag Praxiswissen.
Kuhn, A. 1999. Prozesskettenmanagement - Erfolgsbeispiele aus der Praxis. Dortmund: Verlag Praxiswissen.
Law, A. M., and W. D. Kelton. 2000. Simulation modeling and analysis. Wiley.
Ludwig, H., A. Keller, A. Dan, R. P. King, and R. Franck. 2003. Web service level agreement (WSLA) language specification.

http://www.research.ibm.com/wsla.
Menascé, D. A., H. Ruan, and H. Gomaa. 2007. QoS management in service-oriented architectures. Perform. Eval. 64 (7-8):

646–663.
Peltz, C. 2003. Web services orchestration and choreography. IEEE Computer 36 (10): 46–52.
Raimondi, F., J. Skene, and W. Emmerich. 2008. Efficient online monitoring of web-service SLAs. In SIGSOFT FSE, ed.

M. J. Harrold and G. C. Murphy, 170–180: ACM.
Sarjoughian, H., S. Kim, M. Ramaswamy, and S. Yau. 2008. A simulation framework for service-oriented computing systems.

In Proceedings of the 2008 Winter Simulation Conference, ed. S. J. Mason, R. R. Hill, L. Mönch, O. Rose, T. Jefferson,
and J. W. Fowler, 845–853. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Skene, J., D. D. Lamanna, and W. Emmerich. 2004. Precise service level agreements. In ICSE, 179–188: IEEE Computer
Society.

Skene, J., A. Skene, J. Crampton, and W. Emmerich. 2007. The monitorability of service-level agreements for application-
service provision. In WOSP, ed. V. Cortellessa, S. Uchitel, and D. Yankelevich, 3–14: ACM.

Teyssié, C. 2006. UML-based specification of QoS contract negotiation and service level agreements. In ICN/ICONS/MCL,
12: IEEE Computer Society.

Trienekens, J. J. M., J. J. Bouman, and M. van der Zwan. 2004. Specification of service level agreements: Problems, principles
and practices. Software Quality Journal 12 (1): 43–57.

AUTHOR BIOGRAPHIES

FALKO BAUSE holds a Doctoral degree in computer science from the TU Dortmund. His main research interests are in
the area of system engineering with emphasis on Stochastic Petri Nets. He defined the Queueing Petri Net formalism, which
combines Queueing Networks with Stochastic Petri Nets and coauthored a book with the title “Stochastic Petri Nets – An
Introduction to the Theory”. His e-mail address is <falko.bause@udo.edu>.

PETER BUCHHOLZ received the Diploma degree (1987), the Doctoral degree (1991) and the Habilitation degree (1996)
all from the TU Dortmund, where he is currently a professor for modeling and simulation. His current research interests
are efficient techniques for the analysis of stochastic models, formal methods for the analysis of discrete event systems, the
development of modeling tools, as well as performance and dependability analysis of computer and communication systems.
His e-mail address is <peter.buchholz@udo.edu>.

JAN KRIEGE received the Diploma degree in computer science from the TU Dortmund in 2006. His research interests
include the modeling and analysis of logistics networks and computer and communication systems. His e-mail address is
<jan.kriege@udo.edu>.

SEBASTIAN VASTAG is a research assistant at the chair for quantitative techniques in computer science at the TU Dortmund,
Germany. He received the Diploma degree in computer science in 2006. His research topics are modeling, analysis and
validation of logistic process models. His e-mail address is <sebastian.vastag@udo.edu>.

1026

