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This documents collects a few relevant information of each distribution supported
by node DistFit of ProFiDo (Processes Fitting Toolkit Dortmund).

1 Basic Definitions and Notation

In the following sections we summarize properties and fitting methods for distribu-
tions supported by ProFiDo. Starting from a trace T = (x1, · · · , xn) the fitting meth-
ods adjust the parameters of the distributions such that the distributions approximate
characteristics of the trace.

We define the following measures from the trace. Estimators for the mean and
variance are given by

X(n) =
1

n

n∑
i=1

xi

and

S2(n) =
1

n− 1

n∑
i=1

(
xi −X(n)

)2
,

respectively. Furthermore the skewness and kurtosis are used in some of the presented
estimators. We use the following estimators for the skewness

v(n) =
1

n

n∑
i=1

(
xi −X(n)

S(n)

)3

and for the kurtosis

w(n) =
1

n

n∑
i=1

(
xi −X(n)

S(n)

)4

respectively.
From the above estimators one can derive estimators for the parameters of a distri-

bution. If a parameter is denoted by λ we will denote its estimator by λ̂.
A measure for the quality of the estimated parameter is the likelihood. The likeli-
hood is defined for a trace T and a distribution. Using the probability density function
f(x|Θ) with parameters Θ it is computed as

L(Θ, T ) =
n∏
i=1

f(xi|Θ).
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For computational reasons often the log-likelihood is used instead:

logL(Θ, T ) =
n∑
i=1

log f(xi|Θ).

2 Exponential distribution

2.1 Properties

Property Value
Parameter λ

pdf f(x) = 1/λe−x/λ

CDF F (x) = 1− e−x/λ
Mean E[X] = λ

Variance V AR[X] = λ2

MLE λ̂ = X(n)

Further details can be found in [3, p. 300].

2.2 Fitting Approach

MLE1 can be used directly.

2.2.1 Fitting Approach supported by node DistFit

DistFit uses the MLE approach.

3 Normal distribution

3.1 Properties

Property Value
Parameter µ, σ

pdf f(x) = 1
σ
√

2π
e−

(x−µ)2

2σ2

CDF F (x) = 1
2

[
1 + erf

(
x−µ√

2σ2

)]
Mean E[X] = µ

Variance V AR[X] = σ2

MLE µ̂ = X(n), σ̂ =
[
n−1
n S2(n)

]1/2
erf(x) =

1√
π

∫ x

−x
e−t

2
dt (1)

Further details can be found in [3, p. 305].
1MLE = Maximum Likelihood Estimator
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3.2 Fitting Approach

MLE can be used directly.

3.2.1 Fitting Approach supported by node DistFit

DistFit uses the MLE approach.

4 Lognormal distribution

4.1 Properties

Property Value
Parameter µ, σ

pdf f(x) = 1
x
√

2πσ
e−

(ln x−µ)2

2σ2

CDF F (x) = 1
2 + 1

2 erf
[

lnx−µ√
2σ

]
Mean E[X] = eµ+σ2/2

Variance V AR[X] = (eσ
2− 1)e2µ+σ2

MLE µ̂ = (
∑n

i=1 lnxi) /n,

σ̂ =
[(∑n

i=1(lnxi − µ̂)2
)
/n
]1/2

erf(x) =
1√
π

∫ x

−x
e−t

2
dt (2)

Further details can be found in [3, p. 307].

4.2 Fitting Approach

MLE can be used directly.

4.2.1 Fitting Approach supported by node DistFit

DistFit uses the MLE approach.

5 Johnson Family of Distributions

The Johnson Translation System defines a family of distributions related to the nor-
mal distribution. The family consists of four classes: lognormal SL, unbounded SU ,
bounded SB and normal SN .

5.1 Properties

Property Value
Parameter γ, δ, ξ, λ

CDF F (x) = Φ
(
γ + δf

(
x−ξ
λ

))
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where Φ() is the standard normal cdf and f() is defined as follows

f(y) =


log(y) lognormal SL
log(y +

√
y2 + 1) unbounded SU

log
(

y
1−y

)
bounded SB

y normal SN

5.2 Fitting Approach

Fitting is possible according to moments [1], using least squares [5] or according to
quantile estimators [7] or likelihood [6]. For a comparison of fitting methods see [4].

5.2.1 Fitting Approach supported by node DistFit

DistFit performs a moment fitting approach as described in [2] and uses the given code
translated to C/C++ by the unix tool f2c (Fortran to C/C++).

6 Uniform distribution

6.1 Properties

Property Value
Parameter a, b

pdf f(x) =

{
1
b−a for x ∈ [a, b]

0 otherwise

CDF F (x) =


0 for x < a
x−a
b−a for x ∈ [a, b)

1 for x ≥ b
Mean E[X] = 1

2(a+ b)

Variance V AR[X] = 1
12(b− a)2

MLE â = min
1≤i≤n

xi, b̂ = max
1≤i≤n

xi

Further details can be found in [3, p. 299].

6.2 Fitting Approach

MLE can be used directly.

6.2.1 Fitting Approach supported by node DistFit

DistFit uses the MLE approach.

4



7 Triangular distribution

7.1 Properties

Property Value
Parameter a, b, c

pdf f(x) =



0 for x < a,
2(x−a)

(b−a)(c−a) for a ≤ x ≤ c,
2(b−x)

(b−a)(b−c) for c < x ≤ b,

0 for b < x.

CDF F (x) =



0 for x < a,
(x−a)2

(b−a)(c−a) for a ≤ x ≤ c,

1− (b−x)2

(b−a)(b−c) for c < x ≤ b,

1 for b < x.

Mean E[X] = a+b+c
3

Variance V AR[X] = a2+b2+c2−ab−ac−bc
18

Further details can be found in [3, p. 317].

7.2 Fitting Approach

Set â = min
1≤i≤n

Xi and b̂ = max
1≤i≤n

Xi. c is the mode of the distribution, i.e. the

point with the largest density. This can be estimated from a histogram of the trace by
choosing the largest bin. A further possibility is to equate the mean with the mean of
the trace giving ĉ = 3X(n)− (â+ b̂).

7.2.1 Fitting Approach supported by node DistFit

DistFit uses the described fitting approach, i.e. the parameters are determined by
â = min

1≤i≤n
Xi, b̂ = max

1≤i≤n
Xi and ĉ = 3X(n) − (â + b̂). In order to avoid zero

probability for the minimum and maximum values of the trace, a small relative margin
is applied to the estimators leading to the final parameter estimate as â = â − |â−b̂|100

and b̂ = b̂+ |â−b̂|
100

8 Erlang distribution

8.1 Properties

Property Value
Parameter k, λ

pdf f(x) =λkxk−1e−λx
(k−1)!

CDF F (x) = γ(k, λx)
(k− 1)!

= 1−
∑k−1
n=0

1
n!
e−λx(λx)n

Mean E[X] = k
λ

Variance V AR[X] = k
λ2
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Further details can be found in [3].

8.2 Fitting Approach

Fitting can be performed using the relationship between Gamma and Erlang distribu-
tions.

8.2.1 Fitting Approach supported by node DistFit

DistFit uses a moment fitting approach for the Gamma dstribution and adjusts the
parameters in order to determine a valid Erlang distribution.

Let α̂ and β̂ be the parameters obtained from fitting a gamma distribution from the
given trace data (cf. Sect. 9). Then the parameters λ̂ and k̂ are determined as follows:

k̂ = max(1, round(α̂)) (3)

λ̂ =
k̂

X(n)
(4)

9 Gamma distribution

9.1 Properties

Property Value
Parameter α, β

pdf f(x) =


β−αxα−1e−x/β

Γ(α) if x > 0,

0 otherwise

CDF F (x) =

1− e−x/β
∑α−1

j=0
(x/β)j

j! if x > 0,

0 otherwise

Mean E[X] = αβ

Variance V AR[X] = αβ2

MLE Equation 5 and Equation 6 must be satisfied.

Further details can be found in [3, p. 302].

9.2 Fitting Approach

The following equations must be satisfied for MLE estimation [3, p. 303]:

ln β̂ + Ψ(α̂) =

n∑
i=1

lnxi

n
, (5)

α̂β̂ = X(n), (6)

with
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Ψ(x) =
d

dx
ln Γ(x) =

Γ′(x)

Γ(x)
. (7)

Both equations can be solved numerically.

9.2.1 Fitting Approach supported by node DistFit

DistFit uses a different approach based on moment fitting:

β̂ =
S2(n)

X(n)
(8)

α̂ =
X(n)

β̂
(9)
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