
Lightweight Policy-Based Management of Quality-Assured, Device-Based

Service Systems

Oliver Dohndorf, Jan Krüger

and Heiko Krumm

TU Dortmund University

(dohndorf,krueger,krumm)@ls4.cs.tu-dortmund.de

Christoph Fiehe, Anna Litvina, Ingo Lück

and Franz-Josef Stewing

MATERNA Information & Communications

(cfiehe,alitvina,ilueck,fstewing)@materna.de

Abstract

Intelligent connected devices become a more vital part

of our lives. In contrast to prior years, today embedded

systems and devices are loosely coupled and cooperate with

each other according to changing objectives. Following

the service-oriented architectural style, the approach of so-

called device-based service systems emerges. The challenge

is to build and manage these systems in a reliable, secure,

and efficient manner. New and innovative solutions are

needed regarding the problems of interoperability, maintain-

ability, as well as automated configuration and management.

In our work, these requirements are met by means of poli-

cies which are modeled at different levels of abstraction

in a design phase and efficiently enforced at runtime by a

lightweight management system.

1 Introduction

Transferring the conception of service orientation to em-

bedded systems and devices leads to device-based service

systems which advantageously can be applied in various do-

mains, for example home entertainment, logistics or health-

care. But due to the usage of heterogeneous hard- and soft-

ware the realization of flexible distributed service systems

is a major challenge. In the device world a variety of differ-

ent communication protocols and interfaces are used, while

upcoming applications demand for openness and flexible co-

operation capabilities. Thus, standards gain in significance.

The systems are in mutual interaction with each other and

with their environment. On the one hand, a flexible and

adaptive system configuration is needed. On the other hand,

a predictable and reliable system behavior is required. There-

fore, the systems have to adapt to changing conditions and

requirements and have to correct malfunctions and failures at

runtime. In the healthcare domain, for example, the patient’s

medical needs and preferences as well as his health state

change over time. Accordingly, a comprising management

system is needed to provide the necessary adaptation and

fault tolerance mechanisms. Nevertheless, the management

system needs to be light-weighted, since many devices have

only limited resources and computational power.

We present an appropriate approach for the management

of device-based service systems. Technically, we refer to

the OSGi Framework [9] defined by the OSGi Alliance. The

OSGi Framework provides the desired modularity through

software components, called bundles, that offer their func-

tionality to other bundles in the form of services. Conception-

ally, our approach relies on the model-based management

paradigm which combines management policies and policy

hierarchies with a layered system model [4]. Management

policies build an additional control level above the program-

ming code. Policies ”govern the choices in behaviour of a

system” [2], thus, performing configuration, adaptation and

correction functions. According to the approach of policy

hierarchies [12], a distinction is made between abstract high-

level policies and technical low-level policies. At runtime,

only the low-level policies are present within the system

and can be enforced efficiently. At design time, the high-

level policies are defined with comprehensive tool support.

The policy tool allows the interactive graphical modeling of

systems and abstract policies, the policy analysis and the au-

tomated refinement of the abstract policies into the technical

low-level policies. Moreover, it deploys the low-level poli-

cies. They are translated to and deployed as executable Java

bytecode which directly checks status conditions, computes

appropriate configuration changes, and performs them. This

paper concentrates on the new application domain ”device-

based medical systems” and the newly developed lightweight

runtime management system.

In the sequel, Section 2 gives a short overview of exist-

ing system management concepts. Section 3 introduces the

related work. The system structure forming the basis of our

approach is described in Section 4. Sections 5 and 6 depict

the policy-based management during the design and runtime

phase. We demonstrate the applicability of our solution in

Section 7. Finally, Section 8 concludes the paper.



2 Technical Management

The technical management of systems and networks is

mainly influenced by the following standards.

Open System Interconnection Management The

first standardizations were undertaken by the International

Organization for Standardization (ISO) during the definition

of the OSI Reference Model [5]. It specifies five functional

areas for the system management: fault, configuration, ac-

counting, performance and security management. Manage-

ment objects provide an OSI management view of a managed

resource. They have attributes and corresponding manage-

ment operations. The management objects of a managed

resource are part of its Management Information Base (MIB)

which structures the objects and provides a uniform view of

the management-relevant information.

Web-Based Enterprise Management WBEM [1] is

a platform and resource independent standard of the Dis-

tributed Management Task Force (DMTF) which defines a

common model for the management of distributed systems.

A part of WBEM is the Common Information Model (CIM),

an object-oriented information model for a uniform descrip-

tion of management information and functions. It allows

the representation of physical and logical objects. WBEM

follows the object-oriented approach and represents all man-

ageable resources by objects which are aggregated to classes.

Web Services Distributed Management WSDM [6]

was developed by the Organization for Advancement of

Structured Information Standards (OASIS) for the manage-

ment of service-oriented architectures. WSDM is a plat-

form and manufacturer independent approach which allows

the definition of management interfaces for resources. The

WSDM specifications are based on Web services and address

primarily two domains: Management Using Web Services

(MUWS) specifies the management of resources by means

of Web services; Management of Web Services (MOWS)

defines a model for the management of Web services.

3 Related Work

The Service Component Architecture (SCA) [7] specifies

a framework for development of applications and systems

according to the SOA principles. The smallest unit in the

SCA is a component. A component implements a specific

business logic and provides access to its functions via exter-

nal interfaces. Their description depends on the technology

used for realizing the service. If a component depends on

services of other components, these services must be de-

fined explicitly by means of so-called references. Bindings

describe the protocols which are required for the data com-

munication between a reference and a service. The reference

is bound logically to the service through a wire. Furthermore,

component properties can be defined. They are read during

the initialization process and assigned correspondingly. A

set of components can be aggregated to a composite and a

set of composites to a domain. This allows the grouping of

components to logical units which are required in order to

provide a certain business-function.

The WS-Policy [11] specification defines how Web ser-

vices can advertise their requirements, capabilities, and gen-

eral characteristics concerning security, quality of service,

and other non-functional aspects. Any entity in a Web ser-

vices based system can expose a policy in order to convey

its operation conditions. Given the policy assertions of a

service, a client is able to decide whether to use the service

or not. Since a policy is an unordered collection of alter-

natives each providing a valid configuration for interaction

with the service, the client is free to choose any alternative.

The service, in contrast, is bound to a single configuration

for the interaction. Preferences between alternatives in a

given context as well as their value or suitability are beyond

the scope of the WS-Policy specification.

4 System Structure

A system consists of a set of components. In our approach,

software components are of particular interest. Furthermore,

associations of different types (e.g., ”located on”, ”consists

of”, ”depends on”, ”belongs to”) exist between components.

Dynamic associations between clients and services are called

bindings.

4.1 Software Components

A software component implements domain-specific ap-

plication logic and offers access to its functionality in the

form of services and is realized as an OSGi bundle. The

internal structure of a component is depicted in Figure 1.

The component developer implements the actual application

functions and provides (1) or uses (2) an unlimited number

of services according to the SOA principles. In order to

be manageable, the component must specify the state space

which is visible to the management. For this reason, the com-

ponent developer defines a MIB scheme and declares a cor-

responding set of management variables. The management

variables can be decomposed into two groups: status vari-

ables and configuration variables. Status variables describe

the management-relevant state of the component, whereas

configuration variables affect the component’s behavior. Sta-

tus variables are written by the application logic and read by

the management, configuration variables are written by the

management and read by the application logic.

The management variables of a component are only acces-

sible via services of its component manager. The component

manager itself is a component in the above sense, respon-

sible for the management of its corresponding components.

Each component is associated with exactly one component

manager, whereas a component manager can be responsible



for several components. The component manager provides

some management services which can be used within the

application logic: a configuration service offering access to

the management variables of the component, a policy service

allowing to make decisions based on policy evaluations with

respect to the current system state, and a binding service al-

lowing to establish and release bindings to other components.

Figure 1: Component Structure

4.2 Bindings

The association between two components, one acting

as service requester (client), the other as service provider

(server) is called binding. A binding has a status (e.g., re-

quested, established, broken). A binding is established be-

tween so-called endpoints. An endpoint has properties (e.g.,

the address, security requirements, protocol parameters).

The handling of bindings is unified and supported by the

binding service.

Bindings are dynamic. They are established at runtime

and allow, depending on their properties, a transparent sub-

stitution. That supports a flexible and fault tolerant config-

uration of systems. Applications, however, usually need

reliable operation phases. In such a phase, a client appli-

cation needs stable bindings with a set of services which

are used in combination in order to support the current task.

We manage the bindings of these services according to two

principles: ensemble [10] and lease [3]. The set of services

needed for one task is called ensemble. Ensembles support

the comfortable implementation of logical service groups.

The services of an ensemble are allocated as a whole. The

binding is performed atomically using a two-phase alloca-

tion protocol. The ensemble allocation is based on leases,

where a lease is a time-limited contract between a client and

service supporting stability as well as flexibility. During the

time period of a lease, the contract can only be released by a

client or due to exceptional conditions. After expiration of a

lease, services may be reconfigured and subjects of change.

5 Model-Based Management

We adopt the concept of model-based management, de-

veloped in [4]. It allows the automated step-by-step policy

refinement based on a model which consists of three hierar-

chically organized layers. Each layer models the system at a

different level of abstraction. The policies attached to each

layer apply to the system elements on this layer.

Model-based management can be divided into two phases.

In the runtime phase technical low-level policies are en-

forced efficiently by the runtime management system. In the

design phase, the policy tool is used. The system is modeled

interactively on the three layers. The highest layer is comple-

mented by the definition of the abstract high-level policies.

The tool checks consistency criteria and automatically re-

fines the abstract policies to technical low-level policies.

The additional information needed for policy refinement is

supplied by the layered system model.

5.1 Model and Abstraction Layers

The system is modeled on the three layers by self-

contained and independent models, i.e., there are three mod-

els of the same system differing in the degree of abstraction.

Moreover, refinement relations exist associating elements of

adjacent models. The three layers are:

• Use Cases & Aspects: On the top layer, the technical de-

tails are in the background. The existing use cases with

their aspects relating to non-functional requirements

and quality criteria of the system are modeled.

• Services & Domains: On the middle layer, the system

is represented from a service-oriented point of view

comprising clients, services and dependency relations.

The elements are assigned to so-called domains.

• Components & Devices: On the bottom layer, the ac-

tual software components and devices of the system

are represented. These are the elements which exist

at runtime and are subject to the enforcement of the

technical low-level policies.

5.2 Policy Refinement

The policy refinement is a step-by-step derivation of tech-

nical low-level policies from abstract high-level policies.

The derivation is carried out according to the given refine-

ment relations. A refinement relation associates a model

element with the corresponding elements of the next lower

layer. For example, an abstract function modeled on the

”Use Case & Aspects” level has a refinement relation to

those services of the ”Services & Domains” level that are

necessary to provide this abstract function. The level of ab-

straction decreases with each of the two refinement steps, so

that finally the low-level policies refer only to management

variables. For instance, an abstract security requirement for

high confidentiality is mapped to the protection requirements

of the corresponding services resulting in the specific bind-

ing requirements for cryptographic methods and minimal

key length in the low-level policies. The relation between



the model layers and the refinement from declarative to im-

perative policies is depicted in Figure 2. Formally, policy

refinement is defined as a function from the domain of ”Use

Cases & Aspects” to the range of ”Services & Domains” and

from ”Services & Domains” to ”Components & Devices”,

respectively. The function has homomorphic properties and

preserves the refinement relations.

Figure 2: Levels of Abstraction and Policy Refinement

The policy tool used for modeling and refinement is called

MoBaSeC (Model Based Service Configuration) [4]. It is

developed in cooperation between TU Dortmund University

and MATERNA.

6 Policy-Based Runtime Management

The runtime management is carried out by the component

managers which enforce the derived low-level policies. The

component managers are in charge of monitoring, control-

ling, and configuring their corresponding components. The

allocation of the components to their manager as well as the

assignment of configurations and low-level policies to the

components is planned in the design phase by MoBaSeC.

6.1 Policy Types

Low-level policies are defined on management variables,

event parameters, operations, and constants and have the

form of conditions, expressions and variable assignments. At

runtime, they exist as efficiently executable byte code. The

corresponding classes are generated by MoBaSeC through

a backend function. We distinguish between the following

policy types:

Policy Expression A policy expression is an expression

on management variables, constants, and operations. It is

evaluated on demand and allows to estimate the current

system state. According to the result, a component can react

by adapting its program flow. For instance, an application

requests the evaluation of the system stability which depends

on the current state of its components.

Policy Condition A policy condition is a special case

of a policy expression. The return data type is restricted to

Boolean. For example, an application requests the decision,

whether to stop the operation or not in dependence of the

current system state.

Policy Rule A policy rule represents a simple event-

condition-action rule specifying the actions to be performed

when a certain event occurs. The actions are restricted to

variable assignments. Thus, the reactive management can

be performed in order to achieve a reliable and adaptive

system behavior. For example, the operating mode of a

component can be adjusted as a reaction to an increasing

resource consumption.

Binding Requirements A binding requirement defines

a non-functional requirement for a client-server connection.

It is defined as a Boolean expression on management vari-

ables. For its establishment, the binding requirements of the

client’s and server’s endpoints are intersected. The result

specifies the configuration space of this connection. For

instance, the binding requirements of the client’s endpoint

determine that outgoing communication channels must be

encrypted with a key length of 128 or 256 bit. The binding re-

quirements of the server’s endpoint prescribe the encryption

with a key length of 256 bit. According to the intersection re-

sult the encryption key length of the communication channel

is 256 bit.

6.2 Binding Management

The binding management is responsible for establishing,

monitoring, and releasing ensembles. The establishment of a

binding comprises four phases: in the first phase, functional

compatible binding partners are searched, in the second

phase, partners are calculated which are suitable in compli-

ance with the predefined binding requirements, in the third

phase, the quality criteria are compared and finally in the

fourth phase, the actual binding is established resulting in

the configuration of both endpoints.

For the reason of quality assurance, the binding man-

agement monitors all established bindings. If the agreed

quality criteria are violated, the binding management per-

forms corrective actions. Such an action can be a transparent

substitution of the communication partner. If a binding is

released, the binding management notifies the service, which

in turn can release allocated resources.

When a client requests an ensemble, the binding man-

agement establishes the necessary bindings to the ensem-

ble members. During operation, if any connection violates

the agreed quality criteria, the binding management tries

to reconfigure the ensemble. Failure of the reconfiguration

process results in an exceptional condition, leading to the

premature release of bindings.



Figure 3: Application Example

7 Application Example

We demonstrate the applicability of our approach by

means of a simple example taken from the home health-

care domain. In the scenario, a cardiac patient goes through

a rehabilitation training program using an ergometer at home.

For that purpose, the hospital supplies the patient with the

necessary equipment including an ergometer with a display,

medical sensors and a home gateway. It connects the home

equipment with the hospital servers. The home gateway and

intelligent devices serve as execution platforms for the soft-

ware components. The training is controlled locally by the

home system. On demand the patient can be telemedically

monitored by a medical supervisor at the hospital.

The ergometer target load and the training parameters are

adjusted in accordance with the patient’s training plan. The

assistant software system monitors the patient’s vital signs,

provides him with auxiliary information, and controls the

training process. Besides the compliance with all functional

requirements, a set of non-functional requirements have to

be met in order to assure the predefined quality criteria of

the system. These criteria relate to different aspects of the

systems: costs, energy, security, reliability, and application

domain’s specifics. For instance, because the system handles

sensible information like the patient’s medical and personal

data, it must be guaranteed that all protection objectives

like confidentiality and integrity are met. It has also to be

considered that the user of the system is a person with spe-

cial needs: elderly and diseased. For this reason, specific

usability requirements for the user interface exist concern-

ing ergonomics and user friendliness. Moreover, the costs

caused by the system have to be kept under control. The

user’s preferences about the expenses he is willing to bear

have to be taken into account.

Figure 3 shows an excerpt from the system as it is planned

and modeled during the design phase. The left column com-

prises the system itself, the policies are depicted in the right

column. According to the scenario, the main use case is the

Ergometer Training which is presented on the top layer ”Use

Cases & Aspects” and conducted according to the Training

Plan. The layer also includes the central actor of the use

case, the Cardiac Patient. The primary functions that are car-

ried out within this use case are Ergometer Controlling and

Training Controlling. Furthermore, some additional func-

tions like Pulse Rate Analysis and Pulse Rate Measurement

are involved. Among the high-level constraints which are

provided for this self-contained model, there are abstract re-

quirements concerning aspects like security, availability, and

application domain. For example, the system must ensure

high integrity, confidentiality, and availability. Regarding

the application domain issue, there are also some medical

specific use case requirements, for instance, the training plan

provided by the supervisor. Besides the patient’s personal

profile indicating whether the patient belongs to a certain

risk group or not, the training plan includes all parameter

settings for conducting the training.

On the layer ”Services & Domains”, all services and

client applications are modeled which are necessary to pro-

vide the functions defined in the upper layer. The Train-

ing Control Application controls the training’s process by

using an ensemble of the services Ergometer Control and

Pulse Rate Analysis as well as the abstract resource Train-

ing Configuration Data. The availability issue is addressed

by introducing two services for carrying out the pulse mea-

surement. The patient’s identity is represented in the model

by his subject. It is used by the Authentication Service

and the Authorization Service which are required in order

to meet the security and confidentiality requirements. The



domain-specific requirements are reflected in the training

and monitoring parameter settings which are used to con-

figure the application and the corresponding services. The

management-specific services are represented by the Config-

uration Service, the Binding Service, and the Policy Service.

The bottom layer ”Components & Domains” contains all

software components, resources, and devices that exist at

runtime. The devices are the Ergometer Device, the ECG

Device, and the Home Gateway. The software components

in the form of OSGi bundles are the Ergometer Bundle,

the Application Bundle, the Pulse Rate Analysis Bundle,

and the ECG Bundle all running on their corresponding

devices. The ECG bundle encapsulates the ECG device

and provides a pulse measurement service. Another pulse

measurement service is hosted by the Ergometer bundle

encapsulating the ergometer. If one of the services fails,

it can be substituted by the other one. The subject-related

credential is stored on the home gateway and is used by

the Access Control Bundle. The runtime management is

performed by the Component Manager Bundle which hosts

the management-specific services and is executed on the

home gateway.

In this example, the high-level policies determining the

system behavior abstractly are the requirements for high

availability, high integrity, and high confidentiality. On the

next lower level, the availability requirements are met by

representing a service type through several service instances,

so that in case of any failure, for example, if the battery

charge is low, a service can be transparently substituted by

another one. This fact involves the usage of a watch dog

that detects these exceptional situations. On the lowest level,

the availability requirement corresponds directly to a set of

low-level policy rules determining that if the Pulse Mea-

surement Service A reports a low battery charge, the Pulse

Measurement Service B has to be activated immediately by

setting the appropriate configuration variables. In order to

meet the security requirements ”high integrity” and ”high

confidentiality”, credentials and specific encryption algo-

rithms with corresponding key lengths are configured. The

medical aspect is described by the patient’s training plan

which contains the training mode, the target ergometer load,

and other medical data. These specifications determine the

concrete values of the configuration variables for thresholds,

training settings, polling rates, and the level of monitoring.

The runtime management system comprises 46 kB bytecode

for the component management bundle, including 12 kB

bytecode representing the low-level policies.

8 Summary and Outlook

In this paper, we have introduced our approach of policy-

based management developed within the OSAmI1 project [8].

1Funded by the German Federal Ministry of Education and Research

It divides management into a design and a runtime phase.

The design phase utilizes a system model representing com-

ponents and their associations on three hierarchically orga-

nized abstraction layers. In order to achieve a reliable and

adaptive system behavior, the management resorts to poli-

cies. During design, they are specified as abstract high-level

policies and allow the concise definition of scopes, prefer-

ences, and weights. The policy tool MoBaSeC automatically

refines them to technical low-level policies which are de-

fined directly in the context of runtime management using

management variables, event parameters, operations, and

constants. The low-level policies can be divided into policy

expressions, conditions, rules, and binding requirements.

Within the OSAmI project, a more sophisticated e-Health

demonstrator is under development. The introduced manage-

ment approach will be validated on the basis of this demon-

strator, too. Moreover, it is planned to apply the management

approach to an industrial automation scenario.

References

[1] Distributed Management Task Force. Web-

Based Enterprise Management (WBEM), 2009.

http://www.dmtf.org/standards/wbem.
[2] N. Dulay, E. Lupu, M. Sloman, and N. Damianou. A Pol-

icy Deployment Model for the Ponder Language. In Proc.

IEEE/IFIP International Symposium on Integrated Network

Management (IM2001), pages 14–18, Seattle, May 2001.
[3] C. G. Gray and D. R. Cheriton. Leases: An efficient fault-

tolerant mechanism for distributed file cache consistency.

In Proc. of the 12th ACM Symposium on Operating System

Principles (SOSP ’89), pages 202–210. ACM Press, 1989.
[4] S. Illner, H. Krumm, I. Lück, et al. Model-based manage-

ment of embedded service systems – an applied approach.

In Proc. of the 20th Int. Conf. on Advanced Information Net-

working and Applications (AINA ’06), pages 519–523. IEEE

Computer Society, 2006.
[5] ISO. ISO/IEC 7498-4: Information Processing Systems –

Open Systems Interconnection – Basic Reference Model –

Part 4: Management Framework, 1989.
[6] OASIS Web Services Distributed Management (WSDM) TC.

WSDM 1.1 OASIS Standard Specifications, 2006.
[7] Open SOA Collaboration (OSOA). SCA Service Component

Architecture: Assembly Model Specification, 2007.
[8] OSAMI-D Consortium. OSAmI: Open Source AMbient

Intelligence. http://www.osami-commons.org, 2009.
[9] OSGi Alliance. OSGi Service Platform Core Specification –

Release 4, Version 4.1, 2007.
[10] A. Pohl, H. Krumm, F. Holland, et al. Service-orientation

and flexible service binding in distributed automation and

control systems. In Proc. of the 22nd Int. Conf. on Advanced

Information Networking and Applications (AINA’08), pages

1393–1398. IEEE Computer Society, 2008.
[11] A. S. Vedamuthu, D. Orchard, F. Hirsch, et al. Web Services

Policy 1.5 - Framework, September 2007.
[12] R. Wies. Policies in network and system management –

formal definition and architecture. Journal of Network and

System Management, 2(1):63–83, 1994.


