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Abstract

This paper describes the latest version of the software
package DSPNexpress, a tool for modeling with
deterministic and stochastic Petri nets (DSPNs). Novel
innovative features of DSPNexpress 2.000 constitute an
efficient numerical method for transient analysis of
DSPNs with and without concurrent deterministic
transitions. In particular, DSPNexpress 2.000 can
perform transient analysis of DSPNs without concurrent
deterministic transitions in three orders of magnitude less
computational effort than the previously known method.
Furthermore, DSPNexpress 2.000 contains an effective
numerical method for steady-state analysis of DSPNs with
concurrent deterministic transitions.

1. Innovative Features of DSPNexpress
To effectively employ model-based evaluation of
computer and communication systems, software
environments are needed that simplify model
specification, modification, as well as automate
quantitative analysis. Due to the complexity of practical
modeling applications requiring sophisticated solution
methods, the development of effective software tool
support for stochastic Petri nets is an active research area.
Software packages for stochastic Petri nets include
GreatSPN [4], QPN-tool [2], SPNP [6], SURF-2 [3], and
UltraSAN [12].

This paper describes the latest version of one such
software package, the DSPNexpress 2.000 modeling
environment. The previous version of DSPNexpress,
DSPNexpress1.5 is known for its highly efficient
numerical method for steady state analysis of
deterministic and stochastic Petri nets (DSPNs, [1])
without concurrent deterministic transitions [8], [9]. This
numerical method analyzes complex DSPNs with four
orders of magnitude less computational effort that the
previously known method implemented in the version 1.4
of the package GreatSPN. Novel innovative features of
the DSPNexpress 2.000 include:

(1) Efficient numerical method for transient analysis of
DSPNs without concurrent deterministic transitions
based on an iterative numerical solution of one-
dimensional Volterra integral equations [10]. As
shown in Section 4, this method can perform
numerical transient analysis of complex DSPNs in
some minutes CPU on a modern workstation.

(2) An implementation of an effective numerical
method for transient and steady-state analysis of
DSPNs with two deterministic transitions
concurrently enabled. These tasks require numerical
solution of two-dimensional Volterra equations by
an iterative scheme and direct quadrature,
respectively. On a modern workstation, transient
analysis of quite complex DSPNs (i.e., with 10
thousand tangible markings with moderate stiffness
in the parameter settings) requires about 40 minutes
of CPU time [11], steady-state analysis less than 10
minutes of CPU time.

(3) Orthogonal software architecture especially tailored
to numerical analysis of the stochastic process
underlying a discrete-event stochastic system with
exponential and deterministic events (i.e., a Markov
regenerative process [5] or a generalized semi-
Markov process [10]) based on interprocess
communication with UNIX sockets rather than
writing intermediate results in files.

(4) Plug-and-play interface such that numerical solvers
can easily be utilized to quantitative evaluation of
arbitrary discrete-event stochastic systems with
exponential and deterministic events specified in
other modeling formalisms than just DSPNs (e.g.,
hardware systems represented as finite state
machines).

In previous work, transient analysis of DSPNs was
always based on the restriction that deterministic
transitions are not concurrently enabled. Choi, Kulkarni,
and Trivedi observed that the marking process underlying
a DSPN with this restriction is a Markov regenerative
stochastic process [5]. They introduced a numerical
method for transient analysis of such DSPNs based on



numerical inversion of Laplace-Stieltjes transforms. More
recently, German et al. developed a numerical method for
transient analysis of DSPNs based on the approach of
supplementary variables [7]. While these methods are
certainly of theoretical interest, they are both not suitable
for application in practical dependability modeling
projects.

The remainder of this paper is organized as follows.
Section 2 describes the software architecture of
DSPNexpress 2.000. The graphical interface of the
package is briefly recalled in Section 3. To illustrate the
applicability of DSPNexpress 2.000 for practical
dependability modeling projects, we present performance
curves of the newly implemented transient solver in
Section 4. Finally, concluding remarks are given.

2. The Software Architecture of the
Numerical Solvers

The core of the package DSPNexpress constitutes the
solution engine for discrete-event stochastic systems with
exponential and deterministic events. The software
architecture of this solution engine and its software
modules are shown in Figure 1. The solution engine is
drawn as the big white rectangular box. The six software
modules are drawn as rectangles. These software modules
are invoked from the solution engine as UNIX processes.
Interprocess communication with sockets drawn as
broken ellipses is employed for passing intermediate
results from one module to the next.

Steady state analysis of DSPNs without concurrent
deterministic transitions relies on analysis of an
embedded Markov chain (EMC) underlying such DSPNs
[1]. To efficiently derive the probability matrix of this
EMC, the concept of a subordinated Markov chain (SMC)
was introduced. Recall that a SMC associated with a state
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Figure 1. The solver architecture for DSPNs

si is a CTMC whose states are given by the transitive
closure of all states reachable from si via the occurrence
of exponential events [9]. After generating the
reachability graph comprising of tangible markings
(states) of the DSPN, for each state the generator matrix
of its SMC is derived. These tasks are performed in the
modules Derive Tangible Reachability Graph and Derive
Subordinated Markov Chains, respectively. Entries of this
probability matrix are computed by transient analysis of
the SMCs. Subsequently, a linear system corresponding to
the stationary equations of the EMC is solved. These task
are performed in the submodules Derive EMC and Solve
Linear System.

Transient analysis of DSPNs is based on the analysis
of a general state space Markov chain (GSSMC)
embedded at equidistant time points nD (n = 0,1,2,...) of
the continuous-time marking process. The Chapman
Kolmogorov equations of the GSSMC constitute a system
of Volterra integral equations [11]. Steady state analysis
of DSPNs with concurrent deterministic transitions relies
on the same approach [10]. The transition kernel of the
GSSMC specifies one-step jump probabilities from a
given state at instant of time nD to all reachable new
states at instant of time (n+1)D. Key drivers for the
computational efficiency of the GSSMC approach
constitute the separability and piece-wise continuity of the
transition kernel [11]. Furthermore, the elements of the
transition kernel can effectively be determined by an
extension of the concept of subordinated Markov chains.
Numerical computation of kernel elements relies also on
transient analysis of these CTMCs. This task is performed
in submodule Derive GSSMC. Subsequently, for transient
analysis a number of iterations corresponding to the
mission time are performed on the system of Volterra
equations [11] whereas for steady state analysis a linear
system is solved for each mesh point [9], [10]. This task is
performed in the submodule Solve Volterra Equations.

We would like to point out that only the front end and
the back end of the solution engine is tailored to DSPNs.
That is instead of a DSPN specification file provided by
the graphical interface of DSPNexpress, a specification
file of an arbitrary discrete-event stochastic system with
exponential and deterministic events (e.g., finite state
machines) could be quantitatively evaluated by the
solution engine of DSPNexpress using an appropriate
filter.

3. The Graphical User Interface

Of course, the package DSPNexpress also provides a
user-friendly graphical interface running under X11. To
illustrate the features of this graphical interface, consider
the snapshot shown in Figure 2. The first line displays the
name of the package DSPNexpress and the actual version
2.000, the affiliation of the authors, University of
Dortmund, Computer Systems and Performance



Figure 2. The graphical user interface

Evaluation Group, and the year of release 1998. A DSPN
of a single-server, finite- capacity queue with failure and
repair is displayed. The model is named MMPPqueue
because customers arrive according to a Markov
modulated Poisson process. Recall that in DSPNs three
types of transitions exist: immediate transitions drawn as
thin bars fire without delay, exponential transitions drawn
as empty bars fire after an exponentially distributed delay
whereas deterministic transitions drawn as black bars fire
after a constant delay.

At any time, DSPNexpress provides on-line
helpmessages displayed in the third line of the interface.
The command line and the object line are located on the
left side of the interface. The buttons are located in a
vertical line between the on-line help line and the working
area. The working area constitutes the remaining big
rectangle which contains the graphical representation of
the DSPN MMPPqueue. This DSPN is displayed with the
options tags on. Thus, each place and each transition of
this DSPN is labeled (e.g., Source, Arrive, Decision,
Service, etc.). A detailed description of the features of the
graphical interface is given in [9].

4. Application Example

To illustrate the applicability of the transient solver of
DSPNexpress 2.000 for practical dependability modeling
projects, we consider a DSPN for an MMPP/D/1/K queue
with breakdown and repair. The DSPN is shown in the
working area of the graphical interface in Figure 2. The K
tokens residing in place FreeBuffers in the initial marking
represent the finite number of buffers of the single-server
queueing system. The number tokens residing the place
LOW control the mean firing time of the exponential
transition Arrive. That is, the Markov modulated Poisson
arrival stream is represented by defining the firing delay
of the exponential transition Arrive dependent on the
number of tokens in the place LOW. The number of
tangible markings of this DSPN is given by
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2 (K 1) (N 1)⋅ + ⋅ + . The constant service requirement is
assumed as D = 1.0. We assume that after a failure the
partly completed service is lost and is restarted after
repair. In all experiments, model parameters of the
Markov modulated arrival process are set such that the
effective arrival rate λeff = 0.9. At time t = 0, zero
customers reside in the queue and the system is UP.
Failures of the system are assumed to be exponentially
distributed. Repair times are assumed to be constant The
experiments have been performed on a Sun Sparc
Enterprise station with 1 GByte main memory running the
operating system SunOS5.6. For the performance tests the
CPU time has been measured by the UNIX system call
clock. Figure 3 plots the CPU time required for computing
the transient solution at instant of time t = 100 for
increasing model size. We observe a linear growth of
CPU time. This is due to the exploitation of the
separability of the transition kernel of the GSSMC
resulting in an almost linear growth of the nonzero kernel
elements to be considered in the iterative scheme [11].
Figure 4 plots the memory requirements for storing the
nonzero elements of the transition kernel versus model
size and, thus, provides further evidence along this line.
In these experiments, the number of discretization steps
employed in the numerical quadrature is M = 10. A DSPN
of an MMPP/D/1/K queue with failure and repair was
already considered in [7] and a computational effort of
100 hours of CPU was reported. Figures 3 and 4 show
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that the software package DSPNexpress performs
numerical transient analysis of such DSPNs three orders
of magnitude faster than the previously known numerical
method based on the approach of supplementary variables
[7]. Since the DSPN does not contain concurrently
enabled deterministic transitions, the stationary of time-
averaged state probabilities of its marking process can be
computed by an embedded Markov chain as already
implemented in the previous version of the software
package DSPNexpress [8]. Note that by setting the
mission time sufficiently long, the transient solver can
also be employed for computing stationary or time-
averaged distributions. We use this fact for estimating the
numerical accuracy achieved by the newly implemented
transient solver for a given numerical quadrature of the
Volterra integral equations. Figure 5 plots the accuracy of
the stationary distribution of the DSPN achieved by the
transient solver versus the number of discretization points
employed in the iterative scheme. We observe that for
already 10 discretization points a numerical accuracy of
less that 10-7 is obtained.

5. Conclusions

This paper provided an overview of DSPNexpress 2.000,
the new version of a widely distributed software package
for modeling with deterministic and stochastic Petri nets.
While the previous version of DSPNexpress was known
for its highly efficient numerical solver for stationary
analysis of DSPNs without concurrent deterministic
transitions [8], DSPNexpress 2.000 also provides a
method for transient analysis of DSPNs [11].
Furthermore, both the stationary analysis and the transient
analysis is no longer restricted to the case that
deterministic transitions cannot be concurrently enabled
[10].

To illustrate the applicability of the newly
implemented transient solver of DSPNexpress for
practical dependability projects, we presented curves for
an MMPP/D/1/K queue with failure and repair plotting

the CPU time and memory requirements versus model
size and mission time, respectively. For this DSPN, the
transient solver of DSPNexpress implementation based on
the GSSMC approach [9], [11] requires a couple of
minutes of CPU time on a modern workstation whereas as
reported in [7] the previously known method requires
more than 100 hours of CPU time.
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