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Abstract 

Large logistics networks often require sophisticated decisions to be made 
to meet the required service qualities. Often these decisions are made ac-
cording to a model based analysis and optimization of the network. For 
this purpose simulation models and appropriate optimization techniques 
have to be combined. This combination is still a challenge, in particular if 
the approach should run in a more or less automated way. 

In this paper we present the combination of a process chain based simu-
lator and the response surface method for optimization. Particular empha-
sis is placed onto a realization of the response surface method which runs 
completely automatically after initialization. The quality of the proposed 
optimization approach is shown by means of two example models. 

1 Introduction 

The design and operation of logistics networks requires a large number of 
decisions to be made to find a realization of the network which meets the 
required service qualities and which can be realized with low costs. Usu-
ally several design parameters like the location and capacity of depots, the 
number and type of vehicles and other resources have to be set to the right 
values to meet the design goals. Due to the complexity of the problem one 
cannot expect to find an optimal or at least a good solution in an ad hoc 
manner. What is required is a systematic approach which can be applied 
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without too much effort. Such an approach has to be model driven since 
experiments using the real system are impossible or too costly. 

The inherent complexity of logistics networks requires an adequate 
modeling formalism to describe them and adequate methods to analyze 
them. For the analysis part discrete event simulation often has to be the 
method of choice since it is the only approach that can be applied for the 
analysis of large and complex models as they result from real scenarios. 
For model specification different approaches exist, often process chains 
are used since they allow a very natural mapping of real world processes 
onto the corresponding modeling elements [7], [12]. However, usually 
process chains are only descriptive models and cannot be used as specifi-
cation of a simulation model. Consequently, process chains have to be en-
hanced with additional information to allow an automatic mapping onto a 
simulation program which can be used to determine quantitative results 
like processing times, filling of depots, down time of vehicles or costs of 
the whole design. One modeling approach that is based on process chains 
and can be used to specify simulation models is the ProC/B approach with 
the corresponding toolset [1] which has been developed in the collabora-
tive research center 559 [5] at the university of Dortmund. The ProC/B 
Toolset allows the graphical and hierarchical specification of process chain 
models, the subsequent mapping onto different analyzable models includ-
ing simulation programs and the representation of the results at the level of 
the process chain description. 

With the ProC/B Toolset models of logistics networks can be specified 
and analyzed, but the finding of optimal or good designs is not supported 
in the original toolset. From an abstract mathematical point of view the 
simulator represents a function φ(w1,…,wk) for some input parameter vec-
tor w = (w1,…,wk). Due to the stochastic nature of the simulation model 
φ(w) can only be observed with some statistical fluctuation and confidence 
intervals can be computed [8]. The optimization goal is to find minw∈W 
E[φ(w)] where E[φ(w)], also denoted as f(w), is the expectation of φ(w) 
and W is a feasible range for the parameters. Since φ is only implicitly rep-
resented as a simulation model or in other words as a black box, only those 
optimization methods can be applied which do not exploit the structure of 
function f. Optimization of simulation model is an important topic, several 
methods have been developed and some optimization packages are avail-
able [6], but most available optimization packages are not fully integrated 
with the simulation model, are not robust or do not scale well for larger 
problems. In so far the development and realization of integrated and 
automated optimization methods is a challenging research topic. 
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Among the large number of available optimization methods for simula-
tion models the response surface method (RSM) [10], [11] became very 
popular and is often used. RSM originally has been developed for optimi-
zation based on real experiments, but can be easily extended to be used 
with simulation. However, although RSM is known for a long time and a 
well established theory has been developed, the algorithm is usually de-
scribed in a way that several steps have to be done manually such that the 
approach cannot be integrated in an optimization package where the whole 
experimentation and optimization approach is done automatically. Only 
very few implementations of RSM exist which can be used for automatic 
optimization [11] and it is not trivial to realize robust implementations of 
RSM that work for a wide range of models. 

In this paper we describe the extension of the ProC/B Toolset by an op-
timization package which applies RSM for the optimization of complex 
process chains. Of particular importance is the concrete realization of RSM 
such that it can run with very limited information or support by the user. In 
this way the toolset supports the whole design process of large logistics 
networks from the specification of the model to the finding of a good 
parameterization. 

The paper is organized as follows. In the next section a brief overview 
of the ProC/B approach and the corresponding toolset is given. Afterwards 
RSM as an approach for the optimization of ProC/B models is introduced. 
Particular emphasis is given to the introduction of a realization of RSM 
that runs without interaction with the user. In Section 4, the optimization 
of two example models is represented, one small example, where the com-
plete response function can be computed and one large and realistic model 
of a cargo transfer station. The paper ends with the conclusions. 

2 Modeling Process Chains with the ProC/B Toolset 

Process Chains (PCs) are a convenient paradigm to model complex scenar-
ios of logistics networks. As a mixture of graphical and textual description 
they are often easy to understand, but on the other hand they are usually 
not completely formalized and therefore do not include a full description 
of the system dynamics which is necessary for a model based quantitative 
analysis. Available formal modeling approaches are directly analyzable, 
but are often more abstract and harder to understand for a modeler, espe-
cially if he or she is coming from an application area. Often a trade off be-
tween the degree of freedom the modeler has and the strictness of the mo-
deling paradigm exists. However, even if formal models have to be more 
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more strict in their syntax and semantics, they can be designed in a way 
that they adopt common modeling elements from an application area and 
become in this way understandable and acceptable by people from that ap-
plication area. 

The ProC/B modeling paradigm is a formal approach for the specifica-
tion of process oriented models of logistics networks which has been de-
fined with two goals in mind: 

1. Even complex models should be easy to understand and the modeling 
elements should be similar to known approaches in the area. 

2. Models have to be analyzable by computers according to various analy-
sis goals including quantitative evaluation of technical and economical 
measures. 

The model class of ProC/B will be described in more detail in Section 
2.1. The ProC/B Toolset is based on the ProC/B modeling paradigm. It in-
cludes a graphical editor to specify models and several converters to trans-
late ProC/B models to various analysis tools like the HIT simulator [4]. 
The toolset is introduced in Section 2.2. 

2.1 Description of the ProC/B Paradigm 

The ProC/B paradigm allows a modular and hierarchical description of 
process oriented models. Processes are described using process chains 
(PCs) which are a graphical way to visualize and specify the behavior. 
Each PC (see e.g. Fig. 5) describes one or several behavior patterns real-
ized by connected activities. Activities are represented graphically with 
some additional textual annotation. Activities are connected by so called 
connectors. Different connectors exist to realize common behaviors like 
conditional branches, fork-joins, or loops. Each behavior pattern starts 
with a source denoted as a circle with an included dot and ends in a sink 
denoted as a circle with an included “×”. In the process description of the 
example in Fig. 5, sources generate activities according to some (stochas-
tic) description of the arrival process and are denoted as unconditional 
sources. Alternatively one may define conditional sources that are driven 
by some external process (see e.g., the introduction of hierarchies below). 

Activities often have some duration and require some resources. To de-
scribe a pure delay or timeless data manipulation, activities can be ade-
quately enhanced. For the specification of resource usage activities are en-
hanced by resource and service names (see Fig. 5). Resources are specified 
as Functional Units (FUs) which are named elements that are able to per-
form some named services. Each description of a FU contains one or sev-
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eral named services which are graphically represented by source and sink 
symbols at the border of the graphical representation (see the lower parts 
of Fig. 5). FUs describe the consumption of the basic resources time and 
space. One can distinguish between basic and constructed FUs. The 
ProC/B paradigm defines two basic FUs Servers and Counters for time and 
space consumption, respectively. Servers capture the behavior of tradi-
tional queues including different scheduling strategies and load dependent 
speeds. Counters realize the consumption of space and are realized by vec-
tors of integer variables with individual upper and lower bounds. A request 
to a counter is immediately granted, if the result is within the predefined 
bound, otherwise the calling activity has to wait until the request becomes 
possible. Apart from simple ones, FUs may be constructed by defining 
their behavior using a process chain description including conditional 
sources and sinks. Each source/sink pair describes a service which can be 
used by some calling activity. From some upper level basic and con-
structed FUs look similar from the outside. By construction of FUs from 
PCs two hierarchies are defined, a behavioral hierarchy of process patterns 
and a structural hierarchy by the definition of FUs using other FUs. For a 
flexible use of the approach it is possible to define general (non tree-like) 
hierarchies by using FUs from another PC in one PC. The corresponding 
services are denoted as external. Of course, recursive usage of this con-
struct is not allowed since it results in components defined by themselves. 

Fig. 5 shows a simple example of a ProC/B model containing a single 
behavior pattern. Processes are generated with negatively exponentially 
distributed interarrival times and perform several activities. The first activ-
ity, named Queue1, uses a service alter_or_skip of a FU named 
Unit. Depending on the outcome of this activity the process performs ad-
ditional activities or terminates immediately in the else-branch. Service 
alter_or_skip has three parameters and a return value which is stored 
in the local variable success. Depending on the value of success, the 
if- or the else-branch of the subsequent connector are chosen. Observe 
that the Unit1 provides further services which are not all used by the PC 
of the model, but they might be used as external services by some other 
process description in the model. Of course, this model is very simple and 
contains only a few features, but it shows the general principle of modeling 
with PCs. Further details about the ProC/B approach can be found in the 
literature [1], [2]. 
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2.2 The ProC/B Toolset 

The ProC/B Toolset is a collection of tools which include an editor for PCs 
and several tools for quantitative analysis and visualization of the result 
measures. In this paper only the ProC/B editor and the simulation-based 
model analysis via the tool HIT will be briefly described. 

The ProC/B Editor 

With the ProC/B editor PCs can be modeled following the ProC/B model-
ing paradigm. The main window of the editor presents the current model in 
a hierarchical view, which allows the modeler to get an overview of his or 
her model and to access model parts directly. 

The ProC/B editor supports two modes, the modeling mode and the ex-
periment mode. In the modeling mode PCs are edited. A selected model 
part will be opened in a new window similar to the one shown in Fig. 5. 
The experiment mode allows the definition of measures and values of 
global variables. Measures can be defined for FUs and include the prede-
fined standard measures throughput, turnaround time, population and utili-
zation. By default these measures are evaluated globally, but it is also pos-
sible to obtain results according to a specific calling instance. Apart from 
the mentioned technically oriented measures it is also possible to define 
and evaluate economic measures by assigning costs to specific activities. 

For optimization of models it is necessary to evaluate the model for sev-
eral parameter settings to obtain an optimal or good design. Series of ex-
periments are supported by the toolbox using global variables for the val-
ues that are modified during optimization and setting the values either in a 
predefined way or, as usually necessary for optimization, by some optimi-
zation algorithm that determines new parameter values from the results of 
the current experiments. 

Simulation of ProC/B Models with HIT 

As already mentioned ProC/B models can be transformed into models for 
several other tools, the resulting models can be analyzed with these tools 
and the results can be mapped back to the ProC/B model. Our optimization 
approach uses simulation as analysis method which can be done with HIT 
[4]. HIT is a powerful software tool originally developed for the analysis 
of computer and communication systems. It contains a simulator including 
support for statistical analysis of simulation results. Simulation runs can be 
controlled by different parameters including stopping criterions depending 
on the estimated accuracy of result measures. 
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For the coupling of optimization and simulation it is most convenient to 
access ProC/B models at the level of the HIT model. Parameters of the 
HIT model are modified by the optimization module and simulation con-
trol values are set. HIT produces results based on these settings and the re-
sults are interpreted by the optimization module. Only the final parameter 
set and the corresponding results (i.e., the computed optimal configuration) 
is translated to ProC/B. 

3   Model Optimization with Response Surface 
Methodology 

This section describes the framework for fully automated application of 
the Response Surface Methodology (RSM) for optimization of stochastic 
simulation models. In general, RSM is a collection of statistical and 
mathematical techniques, which are applied for the optimization of sto-
chastic functions [10]. RSM relies on low-order linear regression meta-
models. Local marginal effects of the simulation model are estimated to 
find a direction of improvement. Fig. 1 shows a possible course of the gen-
eral RSM procedure in a two-dimensional search space. In the local-
exploration phase (see phase I in Fig. 1), RSM uses a sequence of first-
order regression metamodels, combined with steepest ascent search. In this 
phase four points in a square are simulated and a first-order regression 
model is approximated to characterize the response surface around the cur-
rent center point. In the final optimization phase, RSM uses a second-order 
regression metamodel (see phase II in Fig. 1) to estimate the optimum 
from the resulting fit. 

As already mentioned, a simulation model can be represented by a sto-
chastic function φ, which maps a set of input parameters w1, …, wk onto a 
sample of an output performance measure which is a random variable. The 
goal of optimization is the optimization of the expectation of this random 
variable which is expressed by 

[ ]1 k 1 kf (w ,...,w ) E (w ,...,w ) y= φ =  (1) 

where f is also called the response surface function. Note that a simulator 
produces a sample of the output random variable according to a given seed 
value of a particular random number generator implemented in the simula-
tor. In general, the expected value of this random variable is determined by 
replicating the simulation run for different seed values. 
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Fig. 1. Illustration of the Response Surface Methodology in two dimensions 

The general optimization problem discussed in this section is character-
ized by finding a setting of the input parameters that maximizes/minimizes 
the response surface function. In RSM, the input parameters of the simula-
tion model are usually called factors, whereas the stochastic output is 
called the response of the simulation model. Note, that in general input 
factors can be quantitative (i.e., continuous) and/or qualitative (i.e., dis-
crete) variables. Nevertheless, in the following we assume that the input 
factors are continuous variables only, but it should be mentioned that our 
approach can be applied in a similar way for a mixture of continuous and 
discrete variables (see [10], pp. 456-478, for a discussion on qualitative 
variables). The main steps of the proposed RSM optimization algorithm 
are the following: 

(i) Approximate the response surface function in a local region by a low-
order linear regression metamodel 

(ii) Test the metamodel for adequate approximation 
(iii) Use the metamodel to predict the factor values of improved response 

Note that steps (i) to (iii) are repeated until a certain stopping criterion is 
reached. In fact, after step (iii) is finished and an improved response has 
been determined, a new regression metamodel is approximated in the local 
region around the improved response. Steps (i) to (iii) are described in 
more detail in the next sections. 
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3.1  Approximating the Response Surface Function by 
Regression Models 

In this section the approximation of the response surface function in a local 
region by a low-order linear regression metamodel is considered. In par-
ticular, we consider first-order and second-order regression models and 
develop the equations required for implementing the RSM algorithm. A 
comprehensive introduction in regression metamodels and a detailed de-
velopment of the required theory can be found for example in the textbook 
[10]. 

In general, the units of input parameters w1, …, wk of the simulation 
model differ from each other. Even if some of the parameters have the 
same units, not all of these parameters will be considered over the same 
range. For example, one parameter may be the mean arrival rate of cus-
tomers to a queue, ranging from 0.1 to 10, and a second parameter may be 
a failure probability of the server, ranging from 10-5 to 10-2. Since input pa-
rameters have different units and/or different ranges in the experimental 
setting, regression analysis should not be performed on the raw (dimen-
sional) parameters themselves. Instead, the input parameters must be nor-
malized before performing the regression analysis. Thus, they are called 
normalized variables or coded variables. Each of the coded variables is 
forced to range from −1 to 1. Let li and ui the lower limit and upper limit of 
input parameter wi, i = 1,…,k, respectively. We denote the coded variable 
that corresponds to the natural variable wi by xi. The transformation from 
wi to xi is performed by 

i i
i

i

w mx
b
−=  (2) 

with the center and half-width of the considered range mi = (ui + li)/2 and 
bi = (ui − li)/2, respectively. 

The first-order regression metamodel in the coded variables is given by 
k

0 i i
i 1

y x
=

= β + β ⋅ + ε∑  (3) 

with k+1 regression coefficients β0, ..., βk and ε an additive error having 
normal distribution with mean zero and variance σ2. Estimators of the re-
gression coefficients are determined using ordinary least-squares (OLS) 
estimation. Suppose that n > k observations of the response variable, de-
noted by y1, ..., yn, are available. Each observed response yi is the result of 
a simulation experiment with input factor values xi1, …, xik. Note that the 
input factors must be transferred to the natural variables to carry out the 
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simulation experiment. Choosing an appropriate set of input factor values 
xi1, …, xik, i=1,..,n, is called an experimental design [9]. With OLS estima-
tion the regression coefficients are determined such that the sum of squares 
of the errors εi for each parameter/response pair xi1, …, xik, yi in Eq. (3) is 
minimized. Writing the OLS system in matrix notations yields 

= ⋅ +β εy X  (4) 

with 

1

2

n

y
y

y

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

y , 

11 12 1k

21 22 2k

n1 n2 nk

1 x x x
1 x x x

1 x x x

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

X , 

0

1

k

β⎛ ⎞
⎜ ⎟β⎜ ⎟=
⎜ ⎟
⎜ ⎟
β⎝ ⎠

β , 

1

2

n

ε⎛ ⎞
⎜ ⎟ε⎜ ⎟=
⎜ ⎟
⎜ ⎟

ε⎝ ⎠

ε (5) 

The least-squares estimates, β̂ , of the regression coefficients β are com-
puted by 

( ) 1T Tˆ −
β = X X X y  (6) 

Experimental designs, where the regression matrix X satisfies XT·X = 
n·I, are called orthogonal. Orthogonal designs simplify the computations, 
since they lead to uncorrelated regression coefficients and to minimal vari-
ance of the predicted response in the region of interest. In the proposed 
RSM algorithm, we use an orthogonal design with two levels for each fac-
tor for the approximation of first-order regression models, i.e., a 2k facto-
rial design or a 2k-p fractional factorial design [9]. To approximate a sec-
ond-order model a 2k factorial design is augmented with nc center points 
and 2k axial points yielding a central composite design (see Fig. 2). 

Linear regression in the widest sense is based on regression metamodels 
which are linear in the regression coefficients but not necessarily linear in 
the coded variables. In linear regression the computation of the regression 
coefficients is always based on the solution of Eq. (6) which results from 
minimizing the error sum of squares. 

Recall from Section 3.1, that the final optimization phase of the RSM 
algorithm is based on second-order regression metamodels. Such meta-
models are more flexible in approximating the response surface function, 
since they can capture curvature of the response surface, but on the other 
hand they also require a higher number of simulation runs to be conducted. 
The second-order regression metamodel is given by 
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k k k k
2

0 i i i,i i i, j i j
i 1 i 1 i 1 j i 1

y x x x x
= = = = +

= β + β ⋅ + β ⋅ + β ⋅ ⋅ + ε∑ ∑ ∑∑  (7) 

where the first sum corresponds to the main effects, the second sum to 
pure quadratic effects, and the third sum to the interaction effects between 
the variables. Note from Eq. (7) that the model contains 1 + 2k + k(k−1)/2 
regression coefficients. As a result the experimental design used must con-
tain at least this number of distinct design points and at least three levels of 
each design variable. The central composite design fulfils this conditions. 
The computation of estimates for the regression coefficients in Eq. (7) can 
be carried out analogously to the first-order model with OLS estimation 
based on Eq. (6). The substitution βk+1 := β1,1, ..., β2k := βk,k, β2k+1 := β1,2, 
..., etc. and xk+1 := x1·x1, ..., x2k = xk·xk, x2k+1 = x1·x2, ..., etc. transforms Eq. 
(7) into the regression model of Eq. (3) with k’ = 2k + k(k−1)/2 coded 
variables. The solution of Eq. (6) and back-substitution yields estimates for 
the regression coefficients of Eq. (7). 
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Fig. 2. 2k factorial design (left) and central composite design (right) for k=2 fac-
tors 

3.2 Testing the Regression Model for Adequate 
Approximation 

In Section 3.1 we showed how to fit a low-order regression metamodel to 
the experimental data, i.e., the input parameter settings and the correspond-
ing simulation responses. When using regression metamodels we assume 
that it is possible to represent the response surface adequately by a first-
order or a second-order polynomial function. Thus, it should be tested if 
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the estimated regression model adequately describes the behavior of the 
response in the current region of interest. For example, if we fitted a first-
order model and if the response shows interaction between the factors or 
pure curvature, the estimated model will likely show lack-of-fit, which can 
be assessed by a statistical test. 

For testing lack-of-fit, multiple observations of the response (i.e., repli-
cated simulation runs) are needed in at least one point of the current region 
of interest. Suppose that we have mi > 1 observations of the response for 
input factor values xi = (xi1, …, xik), i=1,…,n. Let yij, denote the j-th obser-
vation of the response for input factor values xi. There are 
m=m1+m2+…+mn observations altogether. The lack-of-fit test involves 
partitioning the error (or residual) sum of squares (SSE) 

( )
imn 2

E ij i PE LOF
i 1 j 1

ˆSS y y SS SS
= =

= − = +∑∑  (8) 

into a pure error sum of squares (SSPE) and a sum of squares for lack of fit 
(SSLOF) 

( )
imn 2

PE ij i
i 1 j 1

SS y y
= =

= −∑∑  (9) 

( )
n

2
LOF i i i

i 1
ˆSS m y y

=
= ⋅ −∑  (10) 

where iy  denotes the mean simulation response (over all mi replications) 
and iŷ  denotes the metamodels output for input factor values xi, respec-
tively. As test statistic F0 for lack-of-fit we consider (see [10]): 

LOF
0

PE

SS (n k 1)F
SS (m n)

− −=
−

 (11) 

If the response surface function is linear, then F0 is the realization of a 
Fn-k-1,m-n distributed random variable, i.e., an F-distribution with n-k-1 
nominator and m-n denominator degrees of freedom, respectively. There-
fore, to test for lack-of-fit, we have to compute the test statistic F0 and eva-
luate the complementary cumulative distribution function of Fn-k-1,m-n at F0 
to get the statistical P-value. A small P-value (< 0.05) indicates, that the 
response surface function can not be adequately represented by a linear 
model, i.e., we have found lack-of-fit. If lack-of-fit is detected, we suggest 
to reduce the size of the region of interest or to use a higher-order regres-
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sion metamodel. Nevertheless, in RSM it is not customary to fit a higher 
than second-order regression metamodels. 

3.3 Predicting Factor Values of Improved Response 

Suppose that a low-order regression metamodel is estimated according to 
the methods discussed in Section 3.1 and found to be an adequate ap-
proximation of the response surface function according to the lack-of-fit 
test presented in Section 3.2. In this section we show how to use the 
metamodel to derive input factors where improvement of the simulation 
response is expected. 

First of all, we consider first-order metamodels. Since a first-order 
model is a planar approximation of the response surface function, the 
method of steepest ascent/descent is used to predict a direction of im-
proved response. The direction of steepest ascent is given by the gradient 
of the first-order metamodel, i.e., 1 k

ˆ ˆ( , , )β β… , and the direction of steepest 
descent is given by the negative gradient, respectively. A line search is 
performed starting from the center point of the local region in this direc-
tion to find a point of improved response. 

The question that arises is how to choose the step size for this line 
search. A common approach is to choose a “most important factor” xj ac-
cording to the size of its regression coefficient, i.e., j = i 1,..,k i

ˆarg max | |= β , 

and to set the step size ∆ = j
ˆ1 | |β , i.e., the first step results in a point on 

the boundary of the local region (in coded variables) corresponding to fac-
tor value xj. Since the center of the local region in coded variables is 
(0,…,0), the m-th point in the direction of steepest ascent is given by 

( )1 k
ˆ ˆm , ,m∆β ∆β… . (12) 

Negation of Eq. (12) results in the line search points for steepest de-
scent. Starting with m=1 these line search points must be transformed into 
natural variables and simulations must be conducted to determine the cor-
responding responses. To end this type of line search a stopping rule has to 
be chosen. The most recommended rule is to stop the line search when no 
further improvement of the response is observed [11]. Fig. 3 illustrates the 
described line search algorithm. 

Next, we consider the second-order regression metamodel and assume 
that it is found to be an adequate approximation of the response surface. 
To determine a point of maximal improvement of the simulation response 
we use canonical analysis, i.e., the stationary point is derived from the first 
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derivative of the regression metamodel. The fitted second-order model of 
Eq. (7) can be written in matrix notation as follows: 

T T
0

ˆ ˆ ˆŷ = β + +x b x Bx  (13) 

with 

1

2

k

x
x

x

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

x ,   

1

2

k

ˆ

ˆˆ

ˆ
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Differentiating Eq (13) with respect to x and setting the result equal to 
zero, one can solve for the stationary point: 

11
s 2

ˆ ˆ−= − ⋅x B b  (15) 

The nature of the stationary point can be determined by inspecting the 
eigenvalues of B̂ . If all eigenvalues are positive (negative), then the sec-
ond-order model has a minimum (maximum) at xs. If the eigenvalues have 
mixed signs, then the stationary point is a saddle point. 
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Fig. 3. Line search along the path of steepest ascent/descent 

3.4 Implementation Issues 

This section presents an approach that combines the building blocks of the 
response surface methodology as discussed in Sections 3.1 to 3.3 in a fully 
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automated algorithmic fashion. In fact, Fig. 4 shows a high-level pseudo-
code representation of the proposed RSM algorithm that we applied for the 
optimization of the application examples presented in section 4. 

 
(1) Transform natural variables into coded variables according to Eq. (2) 
(2) Choose initial center point cnew = (0,…,0) and half-width of local region ω = 0.4 
(3) WHILE ω > ωstop DO 
(4) cold = cnew 
(5) Transform local region with center point cold into a [−1,1]k hypercube according 

to Eq. (2) 
(6) Approximate response surface function in the local region with center point cold 

by a first-order linear regression metamodel according to Eq. (6) 
(7) Test the first-order model for lack-of-fit according to Eq. (11) 
(8) IF first-order model is adequate THEN DO 
(9) determine direction of steepest ascent/descent and step size 
(10) REPEAT 
(11) go one step in direction of steepest ascent/descent according to Eq. (12) and 

determine the response for the new factor values via a single simulation run 
(12) UNTIL new response results in no further improvement 
(13) cnew = factor values of last improvement of the response 
(14) IF cnew = cold THEN set new half-width ω := ω/2 
(15) ELSE DO 
(16) IF ω < 4·ωstop THEN DO 
(17) Approximate response surface function in the local region with center point 

cold by a second-order linear regression metamodel according to Eq. (6) 
(18) Test the second-order model for lack-of-fit according to Eq. (11) 
(19) IF second-order model is adequate THEN DO 
(20) Determine stationary point of second-order model according to Eq. (15) 
(21) Determine type of stationary point according to the signs of the eigen-

values of matrix B in Eq. (14) 
(22) IF type of stationary point is conform with optimization goal THEN 

cnew = stationary point 
(23) OD 
(24) OD 
(25) set new half-width ω := ω/2 
(26) OD 
(27) OD 
(28) RETURN optimal solution cnew 

Fig. 4. Pseudo-code of the RSM optimization algorithm 

 
When starting the algorithm one has to choose the lower and upper lim-

its of each input parameter in order to transform the whole search space 
into a [−1,1]k hypercube, i.e., transform the natural into coded variables 
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(see step (1) in Fig. 4). Furthermore, an initial center point cnew and an ini-
tial half-width ω of the local region in the response surface must be speci-
fied. If not other mentioned we assume the center point cnew = (0,…,0) and 
local region [−0.4,0.4]k as initial values. The main steps of the algorithm 
are performed in the while-loop from step (3) to step (27) in Fig. 5. In our 
implementation we consider two types of stopping criteria, i.e., stop the 
RSM iteration if (i) the estimated optimal simulation response does not 
improve sufficiently anymore or (ii) the local region becomes too small. 
Note, that the pseudo-code in Fig. 4 implements the second stopping rule, 
where ωstop is the half-width of the local region when the algorithm should 
stop. An implementation of the first criterion is quite similar. 

In each RSM iteration the current local region is transformed into a 
[−1,1]k hypercube. Then the response surface function is approximated by 
a first-order linear regression metamodel as discussed in Section 3.1. If the 
first-order model is found to be an adequate approximation of the response 
surface function (see lack-of-fit test in Section 3.2) the line-search algo-
rithm according to Section 3.3 is applied in order to find a point of im-
proved response. If no improved response could be found with the line-
search the half-width of local region is decreased and a new RSM iteration 
is started. This is exactly what is implemented in steps (4) to (14) in Fig. 4. 

If the first-order model is found to be no adequate approximation of the 
response surface function, it is likely that the response surface has signifi-
cant curvature in the local region and may be better approximated by a 
second-order quadratic metamodel. Nevertheless, we recommend the ap-
proximation of a second-order model only in the final steps of the optimi-
zation procedure (i.e., if ω is less than 4 times the stop-width ωstop), since 
second-order models require much more evaluations of the simulation 
model than first-order models. Thus, a better strategy is to decrease the lo-
cal region in order to better approximate a first-order model (see step (16) 
and (25) in Fig. 4). 

In the final optimization phase it may be reasonable to approximate a 
second-order model. Similar to the first-order model a lack-of-fit test 
should be performed. If the approximated model shows no significant lack-
of-fit, a point of improved simulation response is predicted with canonical 
analysis as presented in Section 3.3 (see steps (17) to (24) in Fig. 4). At the 
end of all RSM iterations the algorithm returns the center point of the local 
region, after transformation from coded to natural variables, as the optimal 
solution that has been found. 



Optimization of Process Chain Models with RSM and ProC/B      569 

4 Application Examples 

4.1 Optimization of a Tandem Queueing System 

To illustrate the applicability of the automated RSM algorithm for optimiz-
ing simulation models, we consider a tandem queueing system as applica-
tion example. This model also serves for comparison of the impact of dif-
ferent configurations of the RSM algorithm on the performance of the 
optimization process and quality of the solution. 

The tandem queueing system comprises two M/M/1/K queues arranged 
in a row, that is, customers leaving the first queue are immediately trans-
ferred to the second queue as input customers. Both queues are assumed to 
have finite capacity K = 10. Arrivals of customers to the first queue occur 
according to a Poisson process with rate λ = 0.5. Each queue comprises a 
single server with first-come, first-served (FCFS) service discipline and 
exponentially distributed service time. The service rates (i.e., speed of the 
servers) at the first and second queue are denoted as w1 and w2, respec-
tively, and are subject to be optimized by the RSM algorithm. A process 
chain representation of the tandem queue model is shown in Fig. 5. 

The optimization problem we considered uses the following objective 
function that determines the revenue earned for given server speeds w1 and 
w2: 

( ) ( )1 2 1 2 1 1 2 2R w ,w r X w ,w c w c w= ⋅ − ⋅ − ⋅  (16) 

where X(w1,w2) is the throughput of the tandem queueing system (i.e., the 
time-averaged number of customers leaving the second queue) and r, c1, 
and c2 are constants representing a revenue factor and cost factors, respec-
tively. In other words, a faster server is more expensive. Since X(w1,w2) is 
decreasing for decreasing w1 and/or w2, the revenue function (16) clearly 
quantifies the trade-off between a high throughput (i.e., a high production 
rate) and costs of providing fast service. 

To compute X(w1,w2) quantitative analysis of the model must be con-
ducted. For general models this can only be done by discrete-event simula-
tion. Nevertheless, for the simple tandem queueing system, also numerical 
transient analysis of the underlying continuous-time Markov chain can be 
applied for its quantitative solution. For numerical analysis we applied the 
APNN toolbox [3]. An exact response surface function for the model, 
computed from transient numerical analysis at time t = 1000 starting with 
an empty system at time t=0 and with service rates w1 and w2 each varying 
from 0.1 to 2.0, is presented in Fig. 6. The revenue factor and the cost fac-
tors are assumed to be r = 100, c1 = 10, and c2 = 30. From this experiment 
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we obtained the input parameter vector wopt = (wopt,1,wopt,2) = (0.5959, 
0.5284) that maximizes the revenue function (16). The optimal revenue 
found is R(wopt) = 24080 EUR. Note that the revenue function of the tan-
dem queueing system is quite sensitive for varying the service rates. In 
fact, a “wrong” configuration of the system may result in an unacceptable 
negative revenue. 

 
Fig. 5. ProC/B model of the tandem queueing system 

 
In the following we use the optimal parameter vector wopt as a bench-

mark for our response surface algorithm when evaluating the tandem 
queueing system via discrete-event simulation. In fact, we consider the 
Euclidean distance between the optimum wopt and the best found solution 
of the RSM algorithm, denoted as optŵ . Recall, that the RSM algorithm 
can only observe the noisy surface that results from possibly replicated 
simulation runs and not the undisturbed response surface. In contrast to the 
response surface as shown in Fig. 6, Fig. 7 shows the simulation responses 
observed by the RSM algorithm after simulating the model for t = 1000 
time units, starting at time t = 0 with an empty system. 

In a first experimental setting, we compare the performance of different 
configurations of the RSM algorithm. In the experiments we denote 
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RSM(nc, nd) the RSM algorithms using nc replicated evaluations of the de-
sign center point and nd replications for the remaining design points. In all 
experiments the upper and lower bounds of the input parameters are li=0 
and ui=2, i=1,2, respectively, and the RSM algorithm starts with center 
point c = (1,1) and half-width ω = 0.4, i.e., center point (0,0) in coded vari-
ables. The RSM algorithm stops iterating if ω becomes less than 10-2. 
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Fig. 6. Response surface for the Fig. 7. Observed response surface 
tandem queue model for the tandem queue model 
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Fig. 8. Quality of found solutions for Fig. 9. Computational effort for 
different configurations of RSM different configurations of RSM 

 
Recall, that the RSM algorithm calls the simulator as a black-box func-

tion. By one evaluation of the simulation model we mean one call of this 
black-box function. Note that one evaluation of the simulation model can 
comprise several replicated simulation runs, i.e., we assume that the simu-
lator returns the mean response of (say) n simulation runs with identical 
input parameters but different seed values of the random number genera-
tor. Fig. 8 shows the mean distance between wopt and optŵ  for varying the 
number of simulation replications that are used for one evaluation of the 
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simulation model, where the mean distance measure is computed from 100 
replications of the whole optimization procedure. Fig. 9 presents the corre-
sponding number of evaluations required by the RSM algorithm. When in-
creasing the number of simulation replications, the simulation responses 
obviously approximate the “true” response, thus, the RSM algorithm ob-
serves a less noisy surface. That is why for all RSM configurations in Fig. 
9 the quality of the solution gets better for increasing the number of simu-
lation replications. 

Comparing the different configurations of the RSM algorithm, we con-
clude from Fig. 8 that RSM(6,2) finds the best solution and configurations 
RSM(1,1) and RSM(1,2) produce the worst solutions on average. On the 
other hand, the number of required evaluations of the RSM(6,2) strategy is 
much higher than for RSM(1,1) or RSM(1,2). Thus, RSM(6,2) may be not 
the method of choice if each simulation run is very costly, i.e., takes a long 
time to produce the response. Considering RSM(3,1), we observe that this 
strategy finds the second best solution on average but uses only about half 
of the evaluations of RSM(6,2). Furthermore, it is important to note, that 
RSM(3,1) requires less evaluations than RSM(1,2) but finds a better solu-
tion. We conclude, that RSM(3,1) should be the method of choice if simu-
lation runs are very costly, otherwise RSM(6,2) may be more appropriate. 

4.2 Optimization of a Cargo Transfer Station 

As a second application example we consider a general cargo transfer sta-
tion with two terminals each having five ramps. Lorries arrive to the ter-
minals 1 and 2 with exponentially distributed interarrival times with mean 
24 and 19 minutes, respectively. Arriving lorries are directed to one of the 
ramps. If no free ramp is available the lorry leaves the station without been 
unloaded. In order to unload a lorry that arrived at a ramp one of two wor-
kers is requested to come from the office to the ramp. For unloading, the 
worker uses a fork-lift which is located at the terminal (i.e., at each termi-
nal one fork-lift exists). After the lorry is unloaded, the worker starts 
unloading the next lorry at the same terminal if at least one lorry is still 
waiting, otherwise he goes back to the office. On average a worker needs 
2.4 minutes (drawn from an exponential distribution) to go from the office 
to one of the terminals as well as to go from the terminal back to the office. 
To unload a lorry and to transfer the load into the storage the worker needs 
36 minutes on average and additional 12 minutes for cleanup after the un-
loading is finished. The cargo transfer station is depicted in Fig. 10. 
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Fig. 10. Cargo transfer station with 2 terminals each having 5 ramps 
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Fig. 11. Improvement of throughput  Fig. 12. Improvement of throughput 
per iteration during an RSM run per evaluation during an RSM run 

 
The fork-lifts used in the cargo transfer station have to be maintained 

from time to time, otherwise they can break down due to a mechanical 
failure. The time to failure is assumed to be normally distributed with 
mean 30 working days and standard deviation of 5 days. The repair time 
and the maintenance time are assumed to be exponentially distributed with 
mean 6 days and 1 day, respectively. If a failure appears when a lorry is 
unloaded, the unloading is interrupted until the fork-lift is repaired. If the 
fork-lift is in use when it should be maintained, the unloading is completed 
before the maintenance is started. We assume, that a fork-lift is maintained 
when a deterministic time of 25 days has been elapsed after the last main-
tenance or repair period. 

The objective of the optimization problem studied in this section is to 
maximize the throughput of lorries by choosing the optimal inter-
maintenance interval length, i.e., the time between two maintenance peri-
ods. A small interval length reduces the probability of a failure, which 
would cause a long repair time, but on the other hand frequent mainte-
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nance also results in many time periods where the fork-lift is unavailable 
and no throughput can be generated. 

For modeling and simulation of the cargo transfer station we used the 
ProC/B toolset and the HIT simulator introduced in Section 2. From the 
simulator we obtained the overall throughput of the system, i.e., the sum of 
the individual throughputs at each terminal. To ensure that the system is in 
steady-state we simulated the model for a minimum of 25 years and 
stopped the simulation when the throughput is within an interval of ± 8% 
around the mean with 90% confidence level. One simulation run takes 
about 15 minutes of CPU time on a Sun Sparc station with 2 GByte main 
memory running the operating system SunOS5.7. 

Figs. 11 and 12 show the improvement of throughput when running the 
RSM algorithm. In particular the throughput is presented after each itera-
tion (i.e., loop from steps (3) to (27) in Fig. 4) as well as after each evalua-
tion of the simulation model during a run of RSM(3,1). We considered 
three different starting conditions as examples for the current “running 
state” of the system, i.e., 23 days, 25 days, and 30 days inter-maintenance 
time for the fork-lifts at each terminal. Starting with 30 days inter-
maintenance time the RSM algorithm improves the throughput from 20.6 
lorries/day to 23.5 lorries/day, which corresponds to an improvement of 
about 14%. Independent of the starting point the best throughput was 
found for inter-maintenance times of 19.5 days and 20.5 days at terminal 1 
and 2, respectively. Of course, the optimum is not known for this complex 
model, because the complete response surface can only be generated with a 
huge effort. This example clearly shows the practical applicability of the 
proposed RSM optimization algorithm. 

5 Conclusions 

In this paper we present a realization of the response surface method that 
runs automatically and uses simulation to analyse the models. The re-
sponse surface method is integrated in the ProC/B Toolset for the model-
ing of large logistics networks by means of process chains. By means of 
two examples it has been shown that the proposed approach allows the 
automatic optimization of complex process chains. 

Although the response surface method is known for a long time, not 
many implementations of the method are available. The reason is that a ro-
bust implementation of the method is non-trivial and requires a lot of ex-
perience. In so far the major aspect is to optimize additional examples with 
the method to improve its robustness. Furthermore, we plan to extend the 
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implemented approach by adding additional features of the response sur-
face method such as other experimental plans and discrete parameters (see 
[10] for further details). 
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