
Optimization of Process Chain Models with
Response Surface Methodology and the ProC/B
Toolset

Peter Buchholz, Dennis Müller, Axel Thümmler

University of Dortmund, Informatik IV, 44227 Dortmund
http://ls4-www.cs.uni-dortmund.de/MuS

Abstract

Large logistics networks often require sophisticated decisions to be made
to meet the required service qualities. Often these decisions are made ac-
cording to a model based analysis and optimization of the network. For
this purpose simulation models and appropriate optimization techniques
have to be combined. This combination is still a challenge, in particular if
the approach should run in a more or less automated way.

In this paper we present the combination of a process chain based simu-
lator and the response surface method for optimization. Particular empha-
sis is placed onto a realization of the response surface method which runs
completely automatically after initialization. The quality of the proposed
optimization approach is shown by means of two example models.

1 Introduction

The design and operation of logistics networks requires a large number of
decisions to be made to find a realization of the network which meets the
required service qualities and which can be realized with low costs. Usu-
ally several design parameters like the location and capacity of depots, the
number and type of vehicles and other resources have to be set to the right
values to meet the design goals. Due to the complexity of the problem one
cannot expect to find an optimal or at least a good solution in an ad hoc
manner. What is required is a systematic approach which can be applied

554 P. Buchholz, D. Müller, A. Thümmler

without too much effort. Such an approach has to be model driven since
experiments using the real system are impossible or too costly.

The inherent complexity of logistics networks requires an adequate
modeling formalism to describe them and adequate methods to analyze
them. For the analysis part discrete event simulation often has to be the
method of choice since it is the only approach that can be applied for the
analysis of large and complex models as they result from real scenarios.
For model specification different approaches exist, often process chains
are used since they allow a very natural mapping of real world processes
onto the corresponding modeling elements [7], [12]. However, usually
process chains are only descriptive models and cannot be used as specifi-
cation of a simulation model. Consequently, process chains have to be en-
hanced with additional information to allow an automatic mapping onto a
simulation program which can be used to determine quantitative results
like processing times, filling of depots, down time of vehicles or costs of
the whole design. One modeling approach that is based on process chains
and can be used to specify simulation models is the ProC/B approach with
the corresponding toolset [1] which has been developed in the collabora-
tive research center 559 [5] at the university of Dortmund. The ProC/B
Toolset allows the graphical and hierarchical specification of process chain
models, the subsequent mapping onto different analyzable models includ-
ing simulation programs and the representation of the results at the level of
the process chain description.

With the ProC/B Toolset models of logistics networks can be specified
and analyzed, but the finding of optimal or good designs is not supported
in the original toolset. From an abstract mathematical point of view the
simulator represents a function φ(w1,…,wk) for some input parameter vec-
tor w = (w1,…,wk). Due to the stochastic nature of the simulation model
φ(w) can only be observed with some statistical fluctuation and confidence
intervals can be computed [8]. The optimization goal is to find minw∈W
E[φ(w)] where E[φ(w)], also denoted as f(w), is the expectation of φ(w)
and W is a feasible range for the parameters. Since φ is only implicitly rep-
resented as a simulation model or in other words as a black box, only those
optimization methods can be applied which do not exploit the structure of
function f. Optimization of simulation model is an important topic, several
methods have been developed and some optimization packages are avail-
able [6], but most available optimization packages are not fully integrated
with the simulation model, are not robust or do not scale well for larger
problems. In so far the development and realization of integrated and
automated optimization methods is a challenging research topic.

Optimization of Process Chain Models with RSM and ProC/B 555

Among the large number of available optimization methods for simula-
tion models the response surface method (RSM) [10], [11] became very
popular and is often used. RSM originally has been developed for optimi-
zation based on real experiments, but can be easily extended to be used
with simulation. However, although RSM is known for a long time and a
well established theory has been developed, the algorithm is usually de-
scribed in a way that several steps have to be done manually such that the
approach cannot be integrated in an optimization package where the whole
experimentation and optimization approach is done automatically. Only
very few implementations of RSM exist which can be used for automatic
optimization [11] and it is not trivial to realize robust implementations of
RSM that work for a wide range of models.

In this paper we describe the extension of the ProC/B Toolset by an op-
timization package which applies RSM for the optimization of complex
process chains. Of particular importance is the concrete realization of RSM
such that it can run with very limited information or support by the user. In
this way the toolset supports the whole design process of large logistics
networks from the specification of the model to the finding of a good
parameterization.

The paper is organized as follows. In the next section a brief overview
of the ProC/B approach and the corresponding toolset is given. Afterwards
RSM as an approach for the optimization of ProC/B models is introduced.
Particular emphasis is given to the introduction of a realization of RSM
that runs without interaction with the user. In Section 4, the optimization
of two example models is represented, one small example, where the com-
plete response function can be computed and one large and realistic model
of a cargo transfer station. The paper ends with the conclusions.

2 Modeling Process Chains with the ProC/B Toolset

Process Chains (PCs) are a convenient paradigm to model complex scenar-
ios of logistics networks. As a mixture of graphical and textual description
they are often easy to understand, but on the other hand they are usually
not completely formalized and therefore do not include a full description
of the system dynamics which is necessary for a model based quantitative
analysis. Available formal modeling approaches are directly analyzable,
but are often more abstract and harder to understand for a modeler, espe-
cially if he or she is coming from an application area. Often a trade off be-
tween the degree of freedom the modeler has and the strictness of the mo-
deling paradigm exists. However, even if formal models have to be more

556 P. Buchholz, D. Müller, A. Thümmler

more strict in their syntax and semantics, they can be designed in a way
that they adopt common modeling elements from an application area and
become in this way understandable and acceptable by people from that ap-
plication area.

The ProC/B modeling paradigm is a formal approach for the specifica-
tion of process oriented models of logistics networks which has been de-
fined with two goals in mind:

1. Even complex models should be easy to understand and the modeling
elements should be similar to known approaches in the area.

2. Models have to be analyzable by computers according to various analy-
sis goals including quantitative evaluation of technical and economical
measures.

The model class of ProC/B will be described in more detail in Section
2.1. The ProC/B Toolset is based on the ProC/B modeling paradigm. It in-
cludes a graphical editor to specify models and several converters to trans-
late ProC/B models to various analysis tools like the HIT simulator [4].
The toolset is introduced in Section 2.2.

2.1 Description of the ProC/B Paradigm

The ProC/B paradigm allows a modular and hierarchical description of
process oriented models. Processes are described using process chains
(PCs) which are a graphical way to visualize and specify the behavior.
Each PC (see e.g. Fig. 5) describes one or several behavior patterns real-
ized by connected activities. Activities are represented graphically with
some additional textual annotation. Activities are connected by so called
connectors. Different connectors exist to realize common behaviors like
conditional branches, fork-joins, or loops. Each behavior pattern starts
with a source denoted as a circle with an included dot and ends in a sink
denoted as a circle with an included “×”. In the process description of the
example in Fig. 5, sources generate activities according to some (stochas-
tic) description of the arrival process and are denoted as unconditional
sources. Alternatively one may define conditional sources that are driven
by some external process (see e.g., the introduction of hierarchies below).

Activities often have some duration and require some resources. To de-
scribe a pure delay or timeless data manipulation, activities can be ade-
quately enhanced. For the specification of resource usage activities are en-
hanced by resource and service names (see Fig. 5). Resources are specified
as Functional Units (FUs) which are named elements that are able to per-
form some named services. Each description of a FU contains one or sev-

Optimization of Process Chain Models with RSM and ProC/B 557

eral named services which are graphically represented by source and sink
symbols at the border of the graphical representation (see the lower parts
of Fig. 5). FUs describe the consumption of the basic resources time and
space. One can distinguish between basic and constructed FUs. The
ProC/B paradigm defines two basic FUs Servers and Counters for time and
space consumption, respectively. Servers capture the behavior of tradi-
tional queues including different scheduling strategies and load dependent
speeds. Counters realize the consumption of space and are realized by vec-
tors of integer variables with individual upper and lower bounds. A request
to a counter is immediately granted, if the result is within the predefined
bound, otherwise the calling activity has to wait until the request becomes
possible. Apart from simple ones, FUs may be constructed by defining
their behavior using a process chain description including conditional
sources and sinks. Each source/sink pair describes a service which can be
used by some calling activity. From some upper level basic and con-
structed FUs look similar from the outside. By construction of FUs from
PCs two hierarchies are defined, a behavioral hierarchy of process patterns
and a structural hierarchy by the definition of FUs using other FUs. For a
flexible use of the approach it is possible to define general (non tree-like)
hierarchies by using FUs from another PC in one PC. The corresponding
services are denoted as external. Of course, recursive usage of this con-
struct is not allowed since it results in components defined by themselves.

Fig. 5 shows a simple example of a ProC/B model containing a single
behavior pattern. Processes are generated with negatively exponentially
distributed interarrival times and perform several activities. The first activ-
ity, named Queue1, uses a service alter_or_skip of a FU named
Unit. Depending on the outcome of this activity the process performs ad-
ditional activities or terminates immediately in the else-branch. Service
alter_or_skip has three parameters and a return value which is stored
in the local variable success. Depending on the value of success, the
if- or the else-branch of the subsequent connector are chosen. Observe
that the Unit1 provides further services which are not all used by the PC
of the model, but they might be used as external services by some other
process description in the model. Of course, this model is very simple and
contains only a few features, but it shows the general principle of modeling
with PCs. Further details about the ProC/B approach can be found in the
literature [1], [2].

558 P. Buchholz, D. Müller, A. Thümmler

2.2 The ProC/B Toolset

The ProC/B Toolset is a collection of tools which include an editor for PCs
and several tools for quantitative analysis and visualization of the result
measures. In this paper only the ProC/B editor and the simulation-based
model analysis via the tool HIT will be briefly described.

The ProC/B Editor

With the ProC/B editor PCs can be modeled following the ProC/B model-
ing paradigm. The main window of the editor presents the current model in
a hierarchical view, which allows the modeler to get an overview of his or
her model and to access model parts directly.

The ProC/B editor supports two modes, the modeling mode and the ex-
periment mode. In the modeling mode PCs are edited. A selected model
part will be opened in a new window similar to the one shown in Fig. 5.
The experiment mode allows the definition of measures and values of
global variables. Measures can be defined for FUs and include the prede-
fined standard measures throughput, turnaround time, population and utili-
zation. By default these measures are evaluated globally, but it is also pos-
sible to obtain results according to a specific calling instance. Apart from
the mentioned technically oriented measures it is also possible to define
and evaluate economic measures by assigning costs to specific activities.

For optimization of models it is necessary to evaluate the model for sev-
eral parameter settings to obtain an optimal or good design. Series of ex-
periments are supported by the toolbox using global variables for the val-
ues that are modified during optimization and setting the values either in a
predefined way or, as usually necessary for optimization, by some optimi-
zation algorithm that determines new parameter values from the results of
the current experiments.

Simulation of ProC/B Models with HIT

As already mentioned ProC/B models can be transformed into models for
several other tools, the resulting models can be analyzed with these tools
and the results can be mapped back to the ProC/B model. Our optimization
approach uses simulation as analysis method which can be done with HIT
[4]. HIT is a powerful software tool originally developed for the analysis
of computer and communication systems. It contains a simulator including
support for statistical analysis of simulation results. Simulation runs can be
controlled by different parameters including stopping criterions depending
on the estimated accuracy of result measures.

Optimization of Process Chain Models with RSM and ProC/B 559

For the coupling of optimization and simulation it is most convenient to
access ProC/B models at the level of the HIT model. Parameters of the
HIT model are modified by the optimization module and simulation con-
trol values are set. HIT produces results based on these settings and the re-
sults are interpreted by the optimization module. Only the final parameter
set and the corresponding results (i.e., the computed optimal configuration)
is translated to ProC/B.

3 Model Optimization with Response Surface
Methodology

This section describes the framework for fully automated application of
the Response Surface Methodology (RSM) for optimization of stochastic
simulation models. In general, RSM is a collection of statistical and
mathematical techniques, which are applied for the optimization of sto-
chastic functions [10]. RSM relies on low-order linear regression meta-
models. Local marginal effects of the simulation model are estimated to
find a direction of improvement. Fig. 1 shows a possible course of the gen-
eral RSM procedure in a two-dimensional search space. In the local-
exploration phase (see phase I in Fig. 1), RSM uses a sequence of first-
order regression metamodels, combined with steepest ascent search. In this
phase four points in a square are simulated and a first-order regression
model is approximated to characterize the response surface around the cur-
rent center point. In the final optimization phase, RSM uses a second-order
regression metamodel (see phase II in Fig. 1) to estimate the optimum
from the resulting fit.

As already mentioned, a simulation model can be represented by a sto-
chastic function φ, which maps a set of input parameters w1, …, wk onto a
sample of an output performance measure which is a random variable. The
goal of optimization is the optimization of the expectation of this random
variable which is expressed by

[]1 k 1 kf (w ,...,w) E (w ,...,w) y= φ = (1)

where f is also called the response surface function. Note that a simulator
produces a sample of the output random variable according to a given seed
value of a particular random number generator implemented in the simula-
tor. In general, the expected value of this random variable is determined by
replicating the simulation run for different seed values.

560 P. Buchholz, D. Müller, A. Thümmler

� �

� �

�

�

�

�
� �

Fig. 1. Illustration of the Response Surface Methodology in two dimensions

The general optimization problem discussed in this section is character-
ized by finding a setting of the input parameters that maximizes/minimizes
the response surface function. In RSM, the input parameters of the simula-
tion model are usually called factors, whereas the stochastic output is
called the response of the simulation model. Note, that in general input
factors can be quantitative (i.e., continuous) and/or qualitative (i.e., dis-
crete) variables. Nevertheless, in the following we assume that the input
factors are continuous variables only, but it should be mentioned that our
approach can be applied in a similar way for a mixture of continuous and
discrete variables (see [10], pp. 456-478, for a discussion on qualitative
variables). The main steps of the proposed RSM optimization algorithm
are the following:

(i) Approximate the response surface function in a local region by a low-
order linear regression metamodel

(ii) Test the metamodel for adequate approximation
(iii) Use the metamodel to predict the factor values of improved response

Note that steps (i) to (iii) are repeated until a certain stopping criterion is
reached. In fact, after step (iii) is finished and an improved response has
been determined, a new regression metamodel is approximated in the local
region around the improved response. Steps (i) to (iii) are described in
more detail in the next sections.

Optimization of Process Chain Models with RSM and ProC/B 561

3.1 Approximating the Response Surface Function by
Regression Models

In this section the approximation of the response surface function in a local
region by a low-order linear regression metamodel is considered. In par-
ticular, we consider first-order and second-order regression models and
develop the equations required for implementing the RSM algorithm. A
comprehensive introduction in regression metamodels and a detailed de-
velopment of the required theory can be found for example in the textbook
[10].

In general, the units of input parameters w1, …, wk of the simulation
model differ from each other. Even if some of the parameters have the
same units, not all of these parameters will be considered over the same
range. For example, one parameter may be the mean arrival rate of cus-
tomers to a queue, ranging from 0.1 to 10, and a second parameter may be
a failure probability of the server, ranging from 10-5 to 10-2. Since input pa-
rameters have different units and/or different ranges in the experimental
setting, regression analysis should not be performed on the raw (dimen-
sional) parameters themselves. Instead, the input parameters must be nor-
malized before performing the regression analysis. Thus, they are called
normalized variables or coded variables. Each of the coded variables is
forced to range from −1 to 1. Let li and ui the lower limit and upper limit of
input parameter wi, i = 1,…,k, respectively. We denote the coded variable
that corresponds to the natural variable wi by xi. The transformation from
wi to xi is performed by

i i
i

i

w mx
b
−= (2)

with the center and half-width of the considered range mi = (ui + li)/2 and
bi = (ui − li)/2, respectively.

The first-order regression metamodel in the coded variables is given by
k

0 i i
i 1

y x
=

= β + β ⋅ + ε∑ (3)

with k+1 regression coefficients β0, ..., βk and ε an additive error having
normal distribution with mean zero and variance σ2. Estimators of the re-
gression coefficients are determined using ordinary least-squares (OLS)
estimation. Suppose that n > k observations of the response variable, de-
noted by y1, ..., yn, are available. Each observed response yi is the result of
a simulation experiment with input factor values xi1, …, xik. Note that the
input factors must be transferred to the natural variables to carry out the

562 P. Buchholz, D. Müller, A. Thümmler

simulation experiment. Choosing an appropriate set of input factor values
xi1, …, xik, i=1,..,n, is called an experimental design [9]. With OLS estima-
tion the regression coefficients are determined such that the sum of squares
of the errors εi for each parameter/response pair xi1, …, xik, yi in Eq. (3) is
minimized. Writing the OLS system in matrix notations yields

= ⋅ +β εy X (4)

with

1

2

n

y
y

y

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

y ,

11 12 1k

21 22 2k

n1 n2 nk

1 x x x
1 x x x

1 x x x

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

X ,

0

1

k

β⎛ ⎞
⎜ ⎟β⎜ ⎟=
⎜ ⎟
⎜ ⎟
β⎝ ⎠

β ,

1

2

n

ε⎛ ⎞
⎜ ⎟ε⎜ ⎟=
⎜ ⎟
⎜ ⎟

ε⎝ ⎠

ε (5)

The least-squares estimates, β̂ , of the regression coefficients β are com-
puted by

() 1T Tˆ −
β = X X X y (6)

Experimental designs, where the regression matrix X satisfies XT·X =
n·I, are called orthogonal. Orthogonal designs simplify the computations,
since they lead to uncorrelated regression coefficients and to minimal vari-
ance of the predicted response in the region of interest. In the proposed
RSM algorithm, we use an orthogonal design with two levels for each fac-
tor for the approximation of first-order regression models, i.e., a 2k facto-
rial design or a 2k-p fractional factorial design [9]. To approximate a sec-
ond-order model a 2k factorial design is augmented with nc center points
and 2k axial points yielding a central composite design (see Fig. 2).

Linear regression in the widest sense is based on regression metamodels
which are linear in the regression coefficients but not necessarily linear in
the coded variables. In linear regression the computation of the regression
coefficients is always based on the solution of Eq. (6) which results from
minimizing the error sum of squares.

Recall from Section 3.1, that the final optimization phase of the RSM
algorithm is based on second-order regression metamodels. Such meta-
models are more flexible in approximating the response surface function,
since they can capture curvature of the response surface, but on the other
hand they also require a higher number of simulation runs to be conducted.
The second-order regression metamodel is given by

Optimization of Process Chain Models with RSM and ProC/B 563

k k k k
2

0 i i i,i i i, j i j
i 1 i 1 i 1 j i 1

y x x x x
= = = = +

= β + β ⋅ + β ⋅ + β ⋅ ⋅ + ε∑ ∑ ∑∑ (7)

where the first sum corresponds to the main effects, the second sum to
pure quadratic effects, and the third sum to the interaction effects between
the variables. Note from Eq. (7) that the model contains 1 + 2k + k(k−1)/2
regression coefficients. As a result the experimental design used must con-
tain at least this number of distinct design points and at least three levels of
each design variable. The central composite design fulfils this conditions.
The computation of estimates for the regression coefficients in Eq. (7) can
be carried out analogously to the first-order model with OLS estimation
based on Eq. (6). The substitution βk+1 := β1,1, ..., β2k := βk,k, β2k+1 := β1,2,
..., etc. and xk+1 := x1·x1, ..., x2k = xk·xk, x2k+1 = x1·x2, ..., etc. transforms Eq.
(7) into the regression model of Eq. (3) with k’ = 2k + k(k−1)/2 coded
variables. The solution of Eq. (6) and back-substitution yields estimates for
the regression coefficients of Eq. (7).

� � � � � � �

� 	 � � � � �

� � � � � �

� � � � � � �

� 	 � � � �

� � � � � � � � � � �

� � � � � �

� 	 � 	 �

� � � � � � � � � � �

� � � � � � � � � � � � �

Fig. 2. 2k factorial design (left) and central composite design (right) for k=2 fac-
tors

3.2 Testing the Regression Model for Adequate
Approximation

In Section 3.1 we showed how to fit a low-order regression metamodel to
the experimental data, i.e., the input parameter settings and the correspond-
ing simulation responses. When using regression metamodels we assume
that it is possible to represent the response surface adequately by a first-
order or a second-order polynomial function. Thus, it should be tested if

564 P. Buchholz, D. Müller, A. Thümmler

the estimated regression model adequately describes the behavior of the
response in the current region of interest. For example, if we fitted a first-
order model and if the response shows interaction between the factors or
pure curvature, the estimated model will likely show lack-of-fit, which can
be assessed by a statistical test.

For testing lack-of-fit, multiple observations of the response (i.e., repli-
cated simulation runs) are needed in at least one point of the current region
of interest. Suppose that we have mi > 1 observations of the response for
input factor values xi = (xi1, …, xik), i=1,…,n. Let yij, denote the j-th obser-
vation of the response for input factor values xi. There are
m=m1+m2+…+mn observations altogether. The lack-of-fit test involves
partitioning the error (or residual) sum of squares (SSE)

()
imn 2

E ij i PE LOF
i 1 j 1

ˆSS y y SS SS
= =

= − = +∑∑ (8)

into a pure error sum of squares (SSPE) and a sum of squares for lack of fit
(SSLOF)

()
imn 2

PE ij i
i 1 j 1

SS y y
= =

= −∑∑ (9)

()
n

2
LOF i i i

i 1
ˆSS m y y

=
= ⋅ −∑ (10)

where iy denotes the mean simulation response (over all mi replications)
and iŷ denotes the metamodels output for input factor values xi, respec-
tively. As test statistic F0 for lack-of-fit we consider (see [10]):

LOF
0

PE

SS (n k 1)F
SS (m n)

− −=
−

 (11)

If the response surface function is linear, then F0 is the realization of a
Fn-k-1,m-n distributed random variable, i.e., an F-distribution with n-k-1
nominator and m-n denominator degrees of freedom, respectively. There-
fore, to test for lack-of-fit, we have to compute the test statistic F0 and eva-
luate the complementary cumulative distribution function of Fn-k-1,m-n at F0
to get the statistical P-value. A small P-value (< 0.05) indicates, that the
response surface function can not be adequately represented by a linear
model, i.e., we have found lack-of-fit. If lack-of-fit is detected, we suggest
to reduce the size of the region of interest or to use a higher-order regres-

Optimization of Process Chain Models with RSM and ProC/B 565

sion metamodel. Nevertheless, in RSM it is not customary to fit a higher
than second-order regression metamodels.

3.3 Predicting Factor Values of Improved Response

Suppose that a low-order regression metamodel is estimated according to
the methods discussed in Section 3.1 and found to be an adequate ap-
proximation of the response surface function according to the lack-of-fit
test presented in Section 3.2. In this section we show how to use the
metamodel to derive input factors where improvement of the simulation
response is expected.

First of all, we consider first-order metamodels. Since a first-order
model is a planar approximation of the response surface function, the
method of steepest ascent/descent is used to predict a direction of im-
proved response. The direction of steepest ascent is given by the gradient
of the first-order metamodel, i.e., 1 k

ˆ ˆ(, ,)β β… , and the direction of steepest
descent is given by the negative gradient, respectively. A line search is
performed starting from the center point of the local region in this direc-
tion to find a point of improved response.

The question that arises is how to choose the step size for this line
search. A common approach is to choose a “most important factor” xj ac-
cording to the size of its regression coefficient, i.e., j = i 1,..,k i

ˆarg max | |= β ,

and to set the step size ∆ = j
ˆ1 | |β , i.e., the first step results in a point on

the boundary of the local region (in coded variables) corresponding to fac-
tor value xj. Since the center of the local region in coded variables is
(0,…,0), the m-th point in the direction of steepest ascent is given by

()1 k
ˆ ˆm , ,m∆β ∆β… . (12)

Negation of Eq. (12) results in the line search points for steepest de-
scent. Starting with m=1 these line search points must be transformed into
natural variables and simulations must be conducted to determine the cor-
responding responses. To end this type of line search a stopping rule has to
be chosen. The most recommended rule is to stop the line search when no
further improvement of the response is observed [11]. Fig. 3 illustrates the
described line search algorithm.

Next, we consider the second-order regression metamodel and assume
that it is found to be an adequate approximation of the response surface.
To determine a point of maximal improvement of the simulation response
we use canonical analysis, i.e., the stationary point is derived from the first

566 P. Buchholz, D. Müller, A. Thümmler

derivative of the regression metamodel. The fitted second-order model of
Eq. (7) can be written in matrix notation as follows:

T T
0

ˆ ˆ ˆŷ = β + +x b x Bx (13)

with

1

2

k

x
x

x

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

x ,

1

2

k

ˆ

ˆˆ

ˆ

⎛ ⎞β
⎜ ⎟
⎜β ⎟= ⎜ ⎟
⎜ ⎟
⎜ ⎟β⎝ ⎠

b ,

11 12 1k

22 2k

kk

ˆ ˆ ˆ2 2
ˆ ˆ 2ˆ

ˆsym.

⎛ ⎞β β β
⎜ ⎟
⎜ β β ⎟= ⎜ ⎟
⎜ ⎟
⎜ ⎟β⎝ ⎠

B (14)

Differentiating Eq (13) with respect to x and setting the result equal to
zero, one can solve for the stationary point:

11
s 2

ˆ ˆ−= − ⋅x B b (15)

The nature of the stationary point can be determined by inspecting the
eigenvalues of B̂ . If all eigenvalues are positive (negative), then the sec-
ond-order model has a minimum (maximum) at xs. If the eigenvalues have
mixed signs, then the stationary point is a saddle point.

� �

� �

� � � � � � �

� � � � �

� � � � � � � � �

� � � � � � � � �

� � � � � � � � � � �

� � � � � � � � � � � � �

� 	 � 	 �

� � � � � � � � � � �

� � � � � � � � �

Fig. 3. Line search along the path of steepest ascent/descent

3.4 Implementation Issues

This section presents an approach that combines the building blocks of the
response surface methodology as discussed in Sections 3.1 to 3.3 in a fully

Optimization of Process Chain Models with RSM and ProC/B 567

automated algorithmic fashion. In fact, Fig. 4 shows a high-level pseudo-
code representation of the proposed RSM algorithm that we applied for the
optimization of the application examples presented in section 4.

(1) Transform natural variables into coded variables according to Eq. (2)
(2) Choose initial center point cnew = (0,…,0) and half-width of local region ω = 0.4
(3) WHILE ω > ωstop DO
(4) cold = cnew
(5) Transform local region with center point cold into a [−1,1]k hypercube according

to Eq. (2)
(6) Approximate response surface function in the local region with center point cold

by a first-order linear regression metamodel according to Eq. (6)
(7) Test the first-order model for lack-of-fit according to Eq. (11)
(8) IF first-order model is adequate THEN DO
(9) determine direction of steepest ascent/descent and step size
(10) REPEAT
(11) go one step in direction of steepest ascent/descent according to Eq. (12) and

determine the response for the new factor values via a single simulation run
(12) UNTIL new response results in no further improvement
(13) cnew = factor values of last improvement of the response
(14) IF cnew = cold THEN set new half-width ω := ω/2
(15) ELSE DO
(16) IF ω < 4·ωstop THEN DO
(17) Approximate response surface function in the local region with center point

cold by a second-order linear regression metamodel according to Eq. (6)
(18) Test the second-order model for lack-of-fit according to Eq. (11)
(19) IF second-order model is adequate THEN DO
(20) Determine stationary point of second-order model according to Eq. (15)
(21) Determine type of stationary point according to the signs of the eigen-

values of matrix B in Eq. (14)
(22) IF type of stationary point is conform with optimization goal THEN

cnew = stationary point
(23) OD
(24) OD
(25) set new half-width ω := ω/2
(26) OD
(27) OD
(28) RETURN optimal solution cnew

Fig. 4. Pseudo-code of the RSM optimization algorithm

When starting the algorithm one has to choose the lower and upper lim-

its of each input parameter in order to transform the whole search space
into a [−1,1]k hypercube, i.e., transform the natural into coded variables

568 P. Buchholz, D. Müller, A. Thümmler

(see step (1) in Fig. 4). Furthermore, an initial center point cnew and an ini-
tial half-width ω of the local region in the response surface must be speci-
fied. If not other mentioned we assume the center point cnew = (0,…,0) and
local region [−0.4,0.4]k as initial values. The main steps of the algorithm
are performed in the while-loop from step (3) to step (27) in Fig. 5. In our
implementation we consider two types of stopping criteria, i.e., stop the
RSM iteration if (i) the estimated optimal simulation response does not
improve sufficiently anymore or (ii) the local region becomes too small.
Note, that the pseudo-code in Fig. 4 implements the second stopping rule,
where ωstop is the half-width of the local region when the algorithm should
stop. An implementation of the first criterion is quite similar.

In each RSM iteration the current local region is transformed into a
[−1,1]k hypercube. Then the response surface function is approximated by
a first-order linear regression metamodel as discussed in Section 3.1. If the
first-order model is found to be an adequate approximation of the response
surface function (see lack-of-fit test in Section 3.2) the line-search algo-
rithm according to Section 3.3 is applied in order to find a point of im-
proved response. If no improved response could be found with the line-
search the half-width of local region is decreased and a new RSM iteration
is started. This is exactly what is implemented in steps (4) to (14) in Fig. 4.

If the first-order model is found to be no adequate approximation of the
response surface function, it is likely that the response surface has signifi-
cant curvature in the local region and may be better approximated by a
second-order quadratic metamodel. Nevertheless, we recommend the ap-
proximation of a second-order model only in the final steps of the optimi-
zation procedure (i.e., if ω is less than 4 times the stop-width ωstop), since
second-order models require much more evaluations of the simulation
model than first-order models. Thus, a better strategy is to decrease the lo-
cal region in order to better approximate a first-order model (see step (16)
and (25) in Fig. 4).

In the final optimization phase it may be reasonable to approximate a
second-order model. Similar to the first-order model a lack-of-fit test
should be performed. If the approximated model shows no significant lack-
of-fit, a point of improved simulation response is predicted with canonical
analysis as presented in Section 3.3 (see steps (17) to (24) in Fig. 4). At the
end of all RSM iterations the algorithm returns the center point of the local
region, after transformation from coded to natural variables, as the optimal
solution that has been found.

Optimization of Process Chain Models with RSM and ProC/B 569

4 Application Examples

4.1 Optimization of a Tandem Queueing System

To illustrate the applicability of the automated RSM algorithm for optimiz-
ing simulation models, we consider a tandem queueing system as applica-
tion example. This model also serves for comparison of the impact of dif-
ferent configurations of the RSM algorithm on the performance of the
optimization process and quality of the solution.

The tandem queueing system comprises two M/M/1/K queues arranged
in a row, that is, customers leaving the first queue are immediately trans-
ferred to the second queue as input customers. Both queues are assumed to
have finite capacity K = 10. Arrivals of customers to the first queue occur
according to a Poisson process with rate λ = 0.5. Each queue comprises a
single server with first-come, first-served (FCFS) service discipline and
exponentially distributed service time. The service rates (i.e., speed of the
servers) at the first and second queue are denoted as w1 and w2, respec-
tively, and are subject to be optimized by the RSM algorithm. A process
chain representation of the tandem queue model is shown in Fig. 5.

The optimization problem we considered uses the following objective
function that determines the revenue earned for given server speeds w1 and
w2:

() ()1 2 1 2 1 1 2 2R w ,w r X w ,w c w c w= ⋅ − ⋅ − ⋅ (16)

where X(w1,w2) is the throughput of the tandem queueing system (i.e., the
time-averaged number of customers leaving the second queue) and r, c1,
and c2 are constants representing a revenue factor and cost factors, respec-
tively. In other words, a faster server is more expensive. Since X(w1,w2) is
decreasing for decreasing w1 and/or w2, the revenue function (16) clearly
quantifies the trade-off between a high throughput (i.e., a high production
rate) and costs of providing fast service.

To compute X(w1,w2) quantitative analysis of the model must be con-
ducted. For general models this can only be done by discrete-event simula-
tion. Nevertheless, for the simple tandem queueing system, also numerical
transient analysis of the underlying continuous-time Markov chain can be
applied for its quantitative solution. For numerical analysis we applied the
APNN toolbox [3]. An exact response surface function for the model,
computed from transient numerical analysis at time t = 1000 starting with
an empty system at time t=0 and with service rates w1 and w2 each varying
from 0.1 to 2.0, is presented in Fig. 6. The revenue factor and the cost fac-
tors are assumed to be r = 100, c1 = 10, and c2 = 30. From this experiment

570 P. Buchholz, D. Müller, A. Thümmler

we obtained the input parameter vector wopt = (wopt,1,wopt,2) = (0.5959,
0.5284) that maximizes the revenue function (16). The optimal revenue
found is R(wopt) = 24080 EUR. Note that the revenue function of the tan-
dem queueing system is quite sensitive for varying the service rates. In
fact, a “wrong” configuration of the system may result in an unacceptable
negative revenue.

Fig. 5. ProC/B model of the tandem queueing system

In the following we use the optimal parameter vector wopt as a bench-

mark for our response surface algorithm when evaluating the tandem
queueing system via discrete-event simulation. In fact, we consider the
Euclidean distance between the optimum wopt and the best found solution
of the RSM algorithm, denoted as optŵ . Recall, that the RSM algorithm
can only observe the noisy surface that results from possibly replicated
simulation runs and not the undisturbed response surface. In contrast to the
response surface as shown in Fig. 6, Fig. 7 shows the simulation responses
observed by the RSM algorithm after simulating the model for t = 1000
time units, starting at time t = 0 with an empty system.

In a first experimental setting, we compare the performance of different
configurations of the RSM algorithm. In the experiments we denote

Optimization of Process Chain Models with RSM and ProC/B 571

RSM(nc, nd) the RSM algorithms using nc replicated evaluations of the de-
sign center point and nd replications for the remaining design points. In all
experiments the upper and lower bounds of the input parameters are li=0
and ui=2, i=1,2, respectively, and the RSM algorithm starts with center
point c = (1,1) and half-width ω = 0.4, i.e., center point (0,0) in coded vari-
ables. The RSM algorithm stops iterating if ω becomes less than 10-2.

 0
 0.2

 0.4
 0.6

 0.8
 1
 1.2

 1.4
 1.6

 1.8
 2

Rate at
server 1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Rate at
server 2

-60
-50
-40
-30
-20
-10

 0
 10
 20
 30

Revenue [1000 EUR]

 0
 0.2

 0.4
 0.6

 0.8
 1
 1.2

 1.4
 1.6

 1.8
 2

Rate at
server 1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Rate at
server 2

-60
-50
-40
-30
-20
-10

 0
 10
 20
 30

Revenue [1000 EUR]

Fig. 6. Response surface for the Fig. 7. Observed response surface
tandem queue model for the tandem queue model

 0

 0.025

 0.05

 0.075

 0.1

 0.125

 0.15

 0.175

 0 2 4 6 8 10 12 14 16 18 20

D
is

ta
n

ce
 b

et
w

ee
n

 t
ru

e
o

p
ti

m
u

m
 a

n
d

o
p

ti
m

u
m

 f
ro

m
 R

S
M

 a
lg

o
ri

th
m

Number of replications

RSM(1,1)
RSM(1,2)
RSM(3,1)
RSM(6,2)

 0

 50

 100

 150

 200

 250

 0 2 4 6 8 10 12 14 16 18 20

N
u

m
b

er
 o

f
ev

al
u

at
io

n
s

re
q

u
ir

ed
 b

y
 t

h
e

R
S

M
 a

lg
o

ri
th

m

Number of replications

RSM(1,1)
RSM(1,2)
RSM(3,1)
RSM(6,2)

Fig. 8. Quality of found solutions for Fig. 9. Computational effort for
different configurations of RSM different configurations of RSM

Recall, that the RSM algorithm calls the simulator as a black-box func-

tion. By one evaluation of the simulation model we mean one call of this
black-box function. Note that one evaluation of the simulation model can
comprise several replicated simulation runs, i.e., we assume that the simu-
lator returns the mean response of (say) n simulation runs with identical
input parameters but different seed values of the random number genera-
tor. Fig. 8 shows the mean distance between wopt and optŵ for varying the
number of simulation replications that are used for one evaluation of the

572 P. Buchholz, D. Müller, A. Thümmler

simulation model, where the mean distance measure is computed from 100
replications of the whole optimization procedure. Fig. 9 presents the corre-
sponding number of evaluations required by the RSM algorithm. When in-
creasing the number of simulation replications, the simulation responses
obviously approximate the “true” response, thus, the RSM algorithm ob-
serves a less noisy surface. That is why for all RSM configurations in Fig.
9 the quality of the solution gets better for increasing the number of simu-
lation replications.

Comparing the different configurations of the RSM algorithm, we con-
clude from Fig. 8 that RSM(6,2) finds the best solution and configurations
RSM(1,1) and RSM(1,2) produce the worst solutions on average. On the
other hand, the number of required evaluations of the RSM(6,2) strategy is
much higher than for RSM(1,1) or RSM(1,2). Thus, RSM(6,2) may be not
the method of choice if each simulation run is very costly, i.e., takes a long
time to produce the response. Considering RSM(3,1), we observe that this
strategy finds the second best solution on average but uses only about half
of the evaluations of RSM(6,2). Furthermore, it is important to note, that
RSM(3,1) requires less evaluations than RSM(1,2) but finds a better solu-
tion. We conclude, that RSM(3,1) should be the method of choice if simu-
lation runs are very costly, otherwise RSM(6,2) may be more appropriate.

4.2 Optimization of a Cargo Transfer Station

As a second application example we consider a general cargo transfer sta-
tion with two terminals each having five ramps. Lorries arrive to the ter-
minals 1 and 2 with exponentially distributed interarrival times with mean
24 and 19 minutes, respectively. Arriving lorries are directed to one of the
ramps. If no free ramp is available the lorry leaves the station without been
unloaded. In order to unload a lorry that arrived at a ramp one of two wor-
kers is requested to come from the office to the ramp. For unloading, the
worker uses a fork-lift which is located at the terminal (i.e., at each termi-
nal one fork-lift exists). After the lorry is unloaded, the worker starts
unloading the next lorry at the same terminal if at least one lorry is still
waiting, otherwise he goes back to the office. On average a worker needs
2.4 minutes (drawn from an exponential distribution) to go from the office
to one of the terminals as well as to go from the terminal back to the office.
To unload a lorry and to transfer the load into the storage the worker needs
36 minutes on average and additional 12 minutes for cleanup after the un-
loading is finished. The cargo transfer station is depicted in Fig. 10.

Optimization of Process Chain Models with RSM and ProC/B 573

� � � � �

� � � � � �

 � � � � � � � � � � � � � � � �

Fig. 10. Cargo transfer station with 2 terminals each having 5 ramps

 24

 23.5

 23

 22.5

 22

 21.5

 21

 20.5

 20
 0 1 2 3 4 5 6 7 8 9

T
h

ro
u

g
h

p
u

t
[l

o
rr

ie
s/

d
ay

]

Number of iterations

Starting with 23 days inter-maintenance time
Starting with 25 days inter-maintenance time
Starting with 30 days inter-maintenance time

 24

 23.5

 23

 22.5

 22

 21.5

 21

 20.5

 20
 0 10 20 30 40 50 60 70 80 90

T
h

ro
u

g
h

p
u

t
[l

o
rr

ie
s/

d
ay

]

Number of evaluations

Starting with 23 days inter-maintenance time
Starting with 25 days inter-maintenance time
Starting with 30 days inter-maintenance time

Fig. 11. Improvement of throughput Fig. 12. Improvement of throughput
per iteration during an RSM run per evaluation during an RSM run

The fork-lifts used in the cargo transfer station have to be maintained

from time to time, otherwise they can break down due to a mechanical
failure. The time to failure is assumed to be normally distributed with
mean 30 working days and standard deviation of 5 days. The repair time
and the maintenance time are assumed to be exponentially distributed with
mean 6 days and 1 day, respectively. If a failure appears when a lorry is
unloaded, the unloading is interrupted until the fork-lift is repaired. If the
fork-lift is in use when it should be maintained, the unloading is completed
before the maintenance is started. We assume, that a fork-lift is maintained
when a deterministic time of 25 days has been elapsed after the last main-
tenance or repair period.

The objective of the optimization problem studied in this section is to
maximize the throughput of lorries by choosing the optimal inter-
maintenance interval length, i.e., the time between two maintenance peri-
ods. A small interval length reduces the probability of a failure, which
would cause a long repair time, but on the other hand frequent mainte-

574 P. Buchholz, D. Müller, A. Thümmler

nance also results in many time periods where the fork-lift is unavailable
and no throughput can be generated.

For modeling and simulation of the cargo transfer station we used the
ProC/B toolset and the HIT simulator introduced in Section 2. From the
simulator we obtained the overall throughput of the system, i.e., the sum of
the individual throughputs at each terminal. To ensure that the system is in
steady-state we simulated the model for a minimum of 25 years and
stopped the simulation when the throughput is within an interval of ± 8%
around the mean with 90% confidence level. One simulation run takes
about 15 minutes of CPU time on a Sun Sparc station with 2 GByte main
memory running the operating system SunOS5.7.

Figs. 11 and 12 show the improvement of throughput when running the
RSM algorithm. In particular the throughput is presented after each itera-
tion (i.e., loop from steps (3) to (27) in Fig. 4) as well as after each evalua-
tion of the simulation model during a run of RSM(3,1). We considered
three different starting conditions as examples for the current “running
state” of the system, i.e., 23 days, 25 days, and 30 days inter-maintenance
time for the fork-lifts at each terminal. Starting with 30 days inter-
maintenance time the RSM algorithm improves the throughput from 20.6
lorries/day to 23.5 lorries/day, which corresponds to an improvement of
about 14%. Independent of the starting point the best throughput was
found for inter-maintenance times of 19.5 days and 20.5 days at terminal 1
and 2, respectively. Of course, the optimum is not known for this complex
model, because the complete response surface can only be generated with a
huge effort. This example clearly shows the practical applicability of the
proposed RSM optimization algorithm.

5 Conclusions

In this paper we present a realization of the response surface method that
runs automatically and uses simulation to analyse the models. The re-
sponse surface method is integrated in the ProC/B Toolset for the model-
ing of large logistics networks by means of process chains. By means of
two examples it has been shown that the proposed approach allows the
automatic optimization of complex process chains.

Although the response surface method is known for a long time, not
many implementations of the method are available. The reason is that a ro-
bust implementation of the method is non-trivial and requires a lot of ex-
perience. In so far the major aspect is to optimize additional examples with
the method to improve its robustness. Furthermore, we plan to extend the

Optimization of Process Chain Models with RSM and ProC/B 575

implemented approach by adding additional features of the response sur-
face method such as other experimental plans and discrete parameters (see
[10] for further details).

References

1. Bause F, Beilner H, Fischer M, Kemper P, Völker M (2002) The ProC/B
Toolset for the Modelling and Analysis of Process Chains. Proc. 12th Int.
Conf. Modelling Tools and Techniques for Computer and Communication
System Performance Evaluation, London, UK, LNCS 2324, Springer, pp 51-
70

2. Bause F, Beilner H, Schwenke M (2003) Semantik des ProC/B-Paradigmas.
Technical Report 03001, SFB 559 – Teilprojekt M1

3. Bause F, Buchholz P, Kemper P, (1998) A Toolbox for Functional and Quan-
titative Analysis of DEDS. Proc. 10th Int. Conf. on Modelling Tools and
Techniques for Computer and Communication System Performance Evalua-
tion, Palma de Mallorca, Spain, LNCS 1469, 356-359, Springer. http://ls4-
www.cs.uni-dortmund.de/APNN-TOOLBOX/

4. Beilner H, Mäter J, Weißenberg N (1989) Towards a performance modeling
environment: News on HIT. Proc. Int. Conf. Modelling Tools and Techniques
for Computer Performance Evaluation

5. Collaborative Research Center 559 “Modelling of Large Logistic Networks”,
http://www.sfb559.uni-dortmund.de/eng/index.htm

6. Fu MC (2002) Optimization for Simulation: Theory vs. Practice. Informs
Journal on Computing 14: 192-215

7. Kuhn A, Hellingrath H (2002) Supply Chain Management – Optimierte Zu-
sammenarbeit in der Wertschöpfungskette. Springer, Berlin

8. Law AM and Kelton WD (2000) Simulation Modeling and Analysis, 3rd edn.
McGraw-Hill, Boston

9. Montgomery DC (2001) Design and Analysis of Experiments, 5th edn. John
Wiley & Sons, New York

10. Montgomery DC, Myers RH (2002) Response Surface Methodology: Process
and Product Optimization Using Designed Experiments, 2nd edn. John Wiley
& Sons, New York

11. Neddermeijer HG, van Oortmarssen GJ, Piersma N, Dekker R (2000) A
Framework for Response Surface Methodology for Simulation Optimization.
Proc. Winter Simulation Conference, Orlando, FL, USA, pp 129-136

12. Winz G, Quint M (1997) Prozesskettenmanagement: Leitfaden für die Praxis,
Verlag Praxiswissen, Dortmund

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

