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Abstract

This paper describes the latest version of the software package DSPNexpress, a
tool for modeling with deterministic and stochastic Petri nets (DSPNs). Novel
innovative features of DSPNexpress 2000 constitute efficient numerical methods
for transient and steady-state analysis of DSPNs with concurrent deterministic
transitions. In particular, DSPNexpress 2000 can perform transient analysis of
DSPNs without concurrent deterministic transitions in three orders of magnitude
less computational effort than the previously known method. To outreach from
stochastic Petri net modeling to system specification languages used in industrial
projects, DSPNexpress 2000 contains filters to the commercial design packages
StateMate™ and Together™. Due to an open interface, the solvers of
DSPNexpress can be utilized for analysis of discrete-event stochastic systems
with exponential and deterministic events specified in arbitrary modeling
formalisms.
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1 Introduction

To effectively employ model-based evaluation of computer and communication systems,

software environments are needed that simplify model specification, modification, as well as

automate quantitative analysis. Due to the complexity of practical modeling applications

requiring sophisticated solution methods, the development of effective software tool support

for stochastic Petri nets is an active research area. Software packages for stochastic Petri nets

include GreatSPN [4], Möbius [18], QPN-tool [3], SPNP [6], and UltraSAN [17].

This paper describes the latest version of one such software package, the DSPNexpress

2000 modeling environment. The previous version of DSPNexpress, DSPNexpress1.5 is

known for its highly efficient numerical method for steady-state analysis of deterministic and

stochastic Petri nets (DSPNs, [1]) without concurrent deterministic transitions [11], [13]. This

numerical method analyzes DSPNs with four orders of magnitude less computational effort

that the previously known method implemented in the version 1.4 of the package GreatSPN.

Novel innovative features of DSPNexpress 2000 constitute efficient numerical methods for

transient and steady-state analysis of DSPNs with concurrent deterministic transitions. In

previous work, transient analysis of DSPNs was always based on the restriction that

deterministic transitions are not concurrently enabled. Choi, Kulkarni, and Trivedi observed

that the marking process underlying a DSPN with this restriction is a Markov regenerative

stochastic process [5]. They introduced a numerical method for transient analysis of such

DSPNs based on numerical inversion of Laplace-Stieltjes transforms. More recently, German

et al. developed a numerical method for transient analysis of DSPNs based on the approach of

supplementary variables [10]. Using the same approach, Telek and Horvath developed state

equations for transient analysis of Markov regenerative stochastic Petri nets in which timed

transitions keep their remaining firing times in case their firing process gets preempted for

subsequent resumption instead of discarding them and restarting the firing process [19].

While these methods are certainly of theoretical interest, they are both not suitable for

application in practical performance and dependability modeling projects. Numerical

inversion of Laplace-Stieltjes transforms can only be employed for the analysis of simple

models (i.e., DSPNs with a few tangible markings). The practical applicability of the

supplementary variables approach is severely limited because it requires, already in the

restricted case of no concurrent deterministic transitions, numerical solution of partial

differential equations.

In previous work, we introduced an effective numerical method for transient and steady-

state analysis of deterministic and stochastic Petri nets (DSPNs) with concurrent deterministic

transitions [14], [15], [16]. This approach is based on the analysis of a general state space

Markov chain (GSSMC) whose Chapman-Kolmogorov equations constitute a system of
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multidimensional Fredholm integral equations. The transition kernel of the GSSMC specifies

one-step jump probabilities from a given state at instant of time nD to all reachable new states

at instant of time (n+1)D. In general, a transition kernel is a functional matrix. Key

contributions of the GSSMC approach constituted the observations that most of the elements

of the transition kernel of the GSSMC are constants (99% for DSPNs corresponding to

queueing systems as shown in Section 4) and that the remaining elements comprise of piece-

wise continuous functions. Such functional kernel elements are always separable. That is,

elements depending on several clock readings can be expressed as the sum and/or product of

constants, and functions depending on just one functional expression. It is known that a

system of Fredholm integral equations with separable kernel is of a particularly simple form

[8]. Therefore, its numerical solution requires orders of magnitude less computational cost

than numerical solution of partial differential equations. As shown in Section 4, transient

analysis of quite complex DSPNs (i.e., with 20 thousand tangible markings for mission time

T = 100) requires about 26 minutes of CPU time [15], steady-state analysis less than 5

minutes of CPU time. Furthermore, we showed in [15] that DSPNexpress 2000 performs

transient analysis of DSPNs without concurrent deterministic transitions in a few minutes of

CPU time (i.e., three orders of magnitude less computational effort than the previously known

method [10]).

To outreach from stochastic Petri net modeling to system specification languages used in

industrial projects, DSPNexpress 2000 contains filters to the widely known commercial

design packages StateMate™ and Together™. Thus, the numerical solvers of DSPNexpress

can also be utilized for quantitative evaluation of system specifications with Harel state charts

[9] as well as state charts and activity diagrams of the Unified Modeling Language (UML

[7]). Due to an open interface, the solvers of DSPNexpress can be utilized for analysis of

discrete-event stochastic systems with exponential and deterministic events specified in

arbitrary modeling formalisms.

The remainder of this paper is organized as follows. Novel innovative features of the

DSPNexpress 2000 are described in Section 2. In Section 3, we recall the GSSMC approach

discuss the software architecture of the numerical solvers, and give a brief glance at the

graphical user interface of the package. To illustrate the practical applicability of

DSPNexpress 2000 in complex performance and dependability modeling projects, Section 4

presents curves plotting the CPU time and memory requirements of two DSPNs versus model

size. These curves illustrate that DSPNexpress 2000 can effectively be employed for the

transient and stationary analysis of DSPNs with large state space and two deterministic

transitions concurrently active. Finally, concluding remarks are given.
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2 Innovative Features of DSPNexpress 2000

The previous version of DSPNexpress, DSPNexpress1.5, is known for its highly efficient

numerical method for steady-state analysis of deterministic and stochastic Petri nets (DSPNs,

[1]) without concurrent deterministic transitions [11], [13]. Furthermore, DSPNexpress1.5

contained already a graphical user interface running under X11 allowing easy model

specification, modification, graphical animation, as well as automate quantitative analysis.

Novel innovative features of the DSPNexpress 2000 include:

(1) An implementation of an efficient numerical method for transient analysis of DSPNs

without concurrent deterministic transitions based on an iterative numerical solution of

one-dimensional Fredholm integral equations [15].

(2) An implementation of an effective numerical method for transient and steady-state

analysis of DSPNs with two deterministic transitions concurrently enabled [14], [15].

These tasks require numerical solution of two-dimensional Fredholm equations by an

iterative scheme and direct quadrature, respectively.

(3) Orthogonal software architecture especially tailored to numerical analysis of the

stochastic process underlying a discrete-event stochastic system with exponential and

deterministic events (i.e., a Markov regenerative process [5] or a generalized semi-

Markov process [14]) based on interprocess communication with UNIX sockets rather

than writing intermediate results in files.

(4) Filters to the commercial design packages StateMate™ and Together™ so that the

numerical solvers of DSPNexpress can also be utilized for quantitative evaluation of

system specifications with Harel state charts [9] as well as state charts and activity

diagrams of the Unified Modeling Language (UML [7]).

(5) Open interface of the numerical solvers so that they can easily be utilized for the

quantitative evaluation of arbitrary discrete-event stochastic systems with exponential

and deterministic events specified in other modeling formalisms than just DSPNs (e.g.,

hardware systems represented as finite state machines).

3 DSPNexpress Software Architecture

3.1 Methodological Results

Methodological results published in [14],[15],[16] introduced an approach for the cost-

effective numerical analysis of DSPNs with concurrent deterministic transitions. The

approach is based on representing the marking process of the DSPN as a finite-state

generalized semi-Markov process (GSMP) with exponential and deterministic events.
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Subsequently, transient and steady-state analysis of this GSMP is performed by considering a

general state space Markov chain (GSSMC) embedded at equidistant time points nD

(n=1,2,...) of the GSMP. We showed that both the continuous-time GSMP representing the

marking process of the DSPN and the discrete-time GSSMC have the same limiting

distributions provided that such limits exist [14]. Otherwise, these two processes have the

same time-averaged distribution. The GSSMC is completely specified by a transition kernel

and an initial distribution at time t = 0.

The algorithmic generation of the simplest form of the transition kernel of this GSSMC

given the building blocks of the GSMP is discussed in a recent paper [16]. The transition

kernel of the GSSMC specifies one-step jump probabilities from a given state at instant of

time nD to all reachable new states at instant of time (n+1)D. In general, entries of the

transition kernel of a GSSMC are functions of clock readings associated with the current state

(i.e., functions in c1 and c2) and functions for clock readings associated with the new state

(i.e., functions in a1 and a2). In general, the transition kernel of the GSSMC, denoted by

P(c1,c2,a1,a2), has the form:
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Here, N1 and N2 denote the number of tangible markings of the DSPN enabling only

exponential transitions and the number of tangible markings in which exactly one

deterministic transition is enabled. The total number of tangible markings of the DSPN is

denoted by N. Thus, the number of tangible markings in which two deterministic transitions

are concurrently enabled is given by N N N− −1 2.

In [16] we present four theorems that provide the foundation for an algorithmic generation

of the transition kernel. First, we formally proof that kernel elements pij .0 5  can always be

computed by appropriate summation of transient state probabilities of continuous-time

Markov chains. Second, we derive a set of conditions on the building blocks of the GSMP

(and, hence structural properties of the DSPN) under which kernel elements are constant; i.e.,

p kij ij.0 5 =  for 0 < c1,c2,a1,a2 ≤ D where kij  is a positive real number. Third, we proof that

functional kernel elements are always separable. That is, functional kernel elements
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depending on several clock readings can be expressed as the sum and/or product of constants,

functions depending on just a single new clock reading and functions taking into account just

a single old clock reading. Fourth, we derive conditions on the building blocks of the GSMP

(and, hence structural properties of the DSPN) for which state probabilities π i a a1 2,1 6 are

symmetric in respect to clock values of deterministic events concurrently active. That is

π πi ia a a a1 2 2 1, ,1 6 1 6=  for 0 < a1,a2 ≤ D. The exploitation of the properties of the transition

kernel substantially reduces the computing time and memory requirements for the numerical

solution of the system of Fredholm integral equations.

The form of the multidimensional Fredholm integral equations that constitute the time-

dependent and stationary equations of the GSSMC have been presented in [14] and [15]. To

write the system of time-dependent equations for the GSSMC in vector notation, we define

three vectors of transient state probabilities at time nD, n = 1,2,..., respectively.
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As shown in [13], [14] the GSSMC approach allows the numerical analysis of DSPNs with

concurrent deterministic transitions with different delays. However, for ease of exposition we

present only the restricted case that all deterministic transitions of the DSPN have the same

firing delay D. The extension of the time-dependent equations for DSPNs with deterministic

transitions having different delays can be performed exactly as for the system of stationary

equations introduced in [13]. Then, using the submatrices Pij (.) of the transition kernel, time-

dependent state probabilities for the GSSMC underlying a DSPN with two deterministic

transitions concurrently enabled can be derived by the (discrete-time) forward Chapman-

Kolmogorov equations. Thus, with (1) and (2) for n = 0,1,2,... we have:
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for 0 < a1,a2 ≤ D with a a2 1≤

The system of equations (3) to (6) constitutes a system of two-dimensional Fredholm

integral equations of the second type already written in an iterative scheme for its numerical

solution. This iterative scheme is called Picard iteration. Due to the decomposition in disjoint

subregions, all elements of P(c1,c2,a1,a2) are piece-wise continuous. Thus, the iterative scheme

(3) to (6) converges to the stationary or time-averaged solution when n goes to infinity.

Moreover, by taking the limits n→ ∞  in (3) to (6), we derive the system of stationary

equations for the GSSMC underlying a DSPN with two deterministic transitions concurrently

enabled. For steady-state analysis, as described in [13], [14] the system of Fredholm integro-

differential equations (3) to (6) can be converted to system of a pure Fredholm integral for

which efficient numerical solution techniques based on direct quadrature and subsequent

solution of one large but very sparse linear system are known [8].

Note that if the transition kernel P(c1,c2,a1,a2) is symmetric with respect to clocks of

concurrent deterministic events, we have π πi ia a a a1 2 2 1, ,1 6 1 6=  for 0 < a1,a2 ≤ D. As a
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consequence, Equation (6) need not be evaluated and two-dimensional integrals can be

simplified in (3) to (5). That is e.g.,
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3.2 Organization of the Numerical Solvers

The core of the package DSPNexpress constitutes the solution engine for discrete-event

stochastic systems with exponential and deterministic events. The software architecture of this

solution engine and its software modules are shown in Figure 1. The solution engine is drawn

as the big white rectangular box. The six software modules are drawn as rectangles. These

software modules are invoked from the solution engine as UNIX processes. Interprocess

communication with sockets drawn as broken ellipses is employed for passing intermediate

results from one module to the next.

Steady-state analysis of DSPNs without concurrent deterministic transitions relies on

analysis of an embedded Markov chain (EMC) underlying such DSPNs [1]. To efficiently

derive the probability matrix of this EMC, the concept of a subordinated Markov chain

(SMC) was introduced. Recall that a SMC associated with a state si is a CTMC whose states

are given by the transitive closure of all states reachable from si via the occurrence of

exponential events [13]. After generating the reachability graph comprising of tangible

markings (states) of the DSPN, for each state the generator matrix of its SMC is derived.

These tasks are performed in the modules Derive Tangible Reachability Graph and Derive

Subordinated Markov Chains, respectively. Entries of this probability matrix are computed by

transient analysis of the SMCs. A multithreaded execution can be employed for the

computation of the entries of the probability matrix of the EMC using the sockets

PMATRIX<1> to PMATRIX<K>. Similarly, the conversion factors required by the EMC

approach are passed through the sockets CMATRIX<1> to CMATRIX<K>. Subsequently, a

linear system corresponding to the stationary equations of the EMC is solved and the state

probabilities of the continuous-time marking process of the DSPN are derived using the

conversion factors. These task are performed in the submodules Derive EMC and Solve

Linear System. These software modules constituted the core of version 1.5 of DSPNexpress.

DSPNexpress 2000 contains two new software modules: Derive GSSMC and Solve

Fredholm equations. As mentioned above, transient analysis of DSPNs is based on the

analysis of an embedded GSSMC. The Chapman Kolmogorov equations of the GSSMC
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Figure 1. The software architecture of the numerical solvers of DSPNexpress 2000

constitute a system of Fredholm integral equations introduced in (3) to (6). Steady state

analysis of DSPNs with concurrent deterministic transitions relies on the same approach [14].

Numerical computation of kernel elements of the GSSMC relies also on transient analysis of

subordinated Markov chains and subsequent summation of appropriately selected transient

probabilities [13]. This task is performed in submodule Derive GSSMC. As in case of the

computation of the entries of the propability matrix of the EMC, a multithreaded execution

can be employed for determining the kernel elements using the sockets PMATRIX<1> to

PMATRIX<K>. Note that conversion factors are not required in the GSSMC approach. Thus,

the sockets CMATRIX<1> to CMATRIX<K> are not used.

After Derive GSSMC has completed, for transient analysis of DSPNs the number of

iterations corresponding to the mission time is performed on the system of Fredholm

equations (3) to (6) whereas for steady state analysis one large but very sparse linear system is

solved using GMRES. This task is performed in the submodule Solve Fredholm Equations.
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As indicated in Figure 1 only the front end and back end of the solution engine are tailored to

DSPNs.

3.3 The Graphical User Interface

Of course, the package DSPNexpress also provides a user-friendly graphical interface running

under X11. To illustrate the features of this graphical interface, consider the snapshot shown

in Figure 2. The first line displays the name of the package DSPNexpress 2000, the affiliation

of the authors, University of Dortmund, Computer Systems and Performance Evaluation

Group, and the year of release 1999. A DSPN of a two-server, finite-capacity queue is

displayed. The model is named MMPPqueue because customers arrive according to a Markov

modulated Poisson process. Recall that in DSPNs three types of transitions exist: immediate

transitions drawn as thin bars fire without delay, exponential transitions drawn as empty bars

fire after an exponentially distributed delay whereas deterministic transitions drawn as black

bars fire after a constant delay.

At any time, DSPNexpress provides on-line help messages displayed in the third line of the

interface. The command line and the object line are located on the left side of the interface.

The buttons are located in a vertical line between the on-line help line and the working area.

Figure 2. The graphical user interface of DSPNexpress
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The working area constitutes the remaining big rectangle which contains the graphical

representation of the DSPN MMPPqueue. This DSPN is displayed with the options tags on.

Thus, each place and each transition of this DSPN is labeled (e.g., Source,

MMPoissonArrival, Decision, Accepted, etc.). A detailed description of the features of the

graphical interface is given in Chapter 10 of [13].

4 Application Examples

To illustrate the practical applicability of the DSPNexpress software for transient and steady-

state analysis of DSPNs, we consider DSPNs of two queueing systems of high interest for

communication network performance analysis. For these two DSPNs we present curves for

CPU solution time and memory requirements versus model size. The experiments have been

performed on a Sun Sparc Enterprise station with 1 GByte main memory running the

operating system SunOS5.6. For the performance tests the CPU time has been measured by

the UNIX system call times.

Figure 3 shows a DSPN of an MMPP/D/2/K queue already displayed in the working area

of the screenshot of DSPNexpress in Figure 2. The K tokens residing in place Capacity in the

initial marking represent the finite number of buffers of the queueing system. The token

residing the subnet comprising of the places Bursty mode and Normal mode controls the mean

firing time of the exponential transition Markov modulated Poisson arrival. That is, the

Markov modulated Poisson arrival stream is represented by defining the firing delay of the

corresponding exponential transition dependent on the location of the tokens in this subnet.

Tokens contained in the places Customers in queue represent customers waiting in the queue.

Tokens contained in the places Server 1 busy and Server 2 busy represent customers currently

being served. The number of tangible markings of this DSPN is given by 2 2( )K + . In 2

markings are only exponential transitions enabled whereas in 4 markings exactly one

deterministic transition is enabled. The number of tangible markings in which two

deterministic transitions are concurrently enabled is given by 2 1( )K − . The constant service

requirements are modeled by the deterministic transitions Service 1 and Service 2 which have

firing delay D = 1.0. We assume that the immediate transitions Start service at station 1 and

Start service at station 2 have both associated firing weights 1/2, such that arriving customers

to an empty system join each server with equal probability. Since a service completion at

either server leads to the same next tangible marking, the transition kernel of the GSSMC

underlying the DSPN of Figure 3 is symmetric. Thus, Equation (6) of the system of Fredholm

equations (3) to (6) need not be evaluated.

In all experiments, model parameters of the arrival process are set such that the effective

arrival rate λeff = 0.9. For the transient analysis we set the initial distribution such that with
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Figure 3. DSPN of an MMPP/D/2/K queue

probability 1.0 no customers reside in the system at time t = 0 and that the arrival process is in

normal mode. The number of discretization steps employed in each dimension in the

composite Simpson quadrature rule for integral expressions in the iterative scheme is set to

M = 10. As indicated by Figure 7, this leads to a numerical accuracy of more than 10-9. The

employment of higher-order quadrature rules like Gauss-Laguerre rules yield a numerical

accuracy of at least 10-14 which is close to optimal on a Sun Sparc under the Solaris operating

system.

Figure 4 plots the CPU time required for computing the transient solution at instant of time

T = 100 and for the steady-state solution, respectively, versus the model size. For both

transient and steady-state analysis, we observe a linear growth of CPU time. This is due to the

exploitation that almost all kernel elements are constants rather than functionals as evidently

illustrated in Table 1. The solver also exploits the separability of the transition kernel

P(c1,c2,a1,a2) in the iterative and direct solution of the Fredholm equations (3) to (5).

Furthermore, the solver employs a dynamic sparsing method by setting both constant and

functional kernel elements smaller than a given threshold ε = 10-16 to zero. This results in an
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almost linear growth of the nonzero kernel elements for this class of DSPN models. Figure 5

plots the memory requirements for storing the nonzero elements of the transition kernel

versus model size and, thus, provides further evidence along this line. In a second experiment,

the model size is kept fixed to 10020 and the mission time (i.e., the number of iterations that

have to be performed by the iterative scheme) is varied from 10 to 100. As expected, Figure 6

shows a linear growth of CPU time for increasing mission time, since in each step of the

iterative scheme a constant number of vector matrix multiplications is performed.

States of
GSSMC

Nonzero
entries

Constant
entries

Functionals in
1 variable

Functionals in
2 variables

Functionals in
3 variables

Functionals in
4 variables

  2004     2004997 99,30 % 0,20 % 0,49 % 2,5 10-4 % 1,0 10-4 %

  4008     8009997 99,65 % 0,10 % 0,25 % 6,3 10-5 % 2,5 10-5 %

  6012   18014997 99,77 % 0,07 % 0,17 % 2,8 10-5 % 1,1 10-5 %

  8016   32019997 99,83 % 0,05 % 0,12 % 1,6 10-5 % 6,3 10-6 %

10020   50024997 99,86 % 0,04 % 0,10 % 1,0 10-5 % 4,0 10-6 %

12024   72029997 99,88 % 0,03 % 0,08 % 6,9 10-6 % 2,8 10-6 %

14028   98034997 99,90 % 0,03 % 0,07 % 5,1 10-6 % 2,0 10-6 %

16032 128039997 99,91 % 0,02 % 0,06 % 3,9 10-6 % 1,7 10-6 %

18036 162044997 99,92 % 0,02 % 0,06 % 3,1 10-6 % 1,2 10-6 %

20040 200049997 99,93 % 0,02 % 0,05 % 2,5 10-6 % 1,0 10-6 %

Table 1. Classification of elements of the transition kernel of MMPP/D/2/K
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Table 1 shows the number of nonzero entries of the transition kernel of the GSSMC for

increasing model size; i.e., K = 1000 to 10000 and provides percentages for each of the five

different types of kernel elements. Note that this table shows the number of kernel entries

whose analytic expressions are nonzero. The employment of dynamic sparsing of kernel

entries in the practical computational scheme leads to a substantial reduction of nonzero

entries and, thus, of memory requirements. From Table 1 we observed that for this class of

DSPN models, i.e., DSPNs corresponding to queueing systems, kernel entries which are

functionals in 3 and 4 clock values occur very rarely and are independent of the model size.

Furthermore, functional entries in 1 and 2 clock values grow linearly with increasing model

size whereas constant entries grow quadratically. From Table 1, we observe that for this

example more than 99% of nonzero kernel entries are constant. For DSPNs corresponding to

queueing systems like the one shown in Figure 3, the exploitation of constant entries in the

transition kernel is key for their highly efficient transient and steady-state analysis.

To justify the GSSMC approach implemented in DSPNexpress 2000 software, we compare

numerical accuracy and CPU solution time with the well-known Greedy approach of

approximating deterministic delays by an Erlang distribution. For this experiment, we

consider an MMPP/D/1/K with arrival rate λeff = 0.9, service time D = 1.0, and K = 1000. As

measure of accuracy, the time-averaged mean queueing length is considered. Since this DSPN

does not contain concurrent deterministic transitions, this quantity can also be computed with

the EMC approach of DSPNexpress1.5 to determine the numerical accuracy.
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Figure 7. Accuracy for analysis of MMPP/D/1/K queue versus MMPP/Er/1/K queue
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For the GSSMC approach, the number of discretization steps for integral expressions in (3)

to (5) was set to M = 5, 10, 20, and 40. Erlang distributions with r = 10, 20,.., 200 phases and

mean value D = 1.0 were considered. Figure 7 in which the y-axis is drawn to scale with

respect to the required CPU solution time evidently shows the benefits of the GSSMC

approach for analysis of DSPNs; i.e., with the same amount of CPU solution time, the

GSSMC approach yields an accuracy of 8 orders higher than the Erlang approximation.

Figure 8 shows a DSPN of an Mi/D/Mi/Ki/2/L multiserver multiqueue system (MSMQ)

with exponential walking times as introduced in [2]. The queues have a Markovian arrival

stream with possibly different arrival rates λ1 and λ2, two deterministic servers, and capacities

K1 and K2, respectively. As shown in Figure 8, the walking time between individual queueing

systems is assumed to be exponentially distributed with rates µ1 and µ2, respectively. The

MSMQ is comprised of two queues that receive arrivals from the external world and of two

servers that cyclically attend the queues. Tokens residing in places Capacity 1 and Capacity 2

represent free buffers of each system. The two tokens residing in Figure 8 in place Server

available 1 represent the current position of the two servers. The exponential transitions

Walking 1 and Walking 2 have infinite server firing policy in order to take into account the

concurrent walking of servers. After at most two customers received service at one queue,

customers of the next queue will be served; i.e., limited service discipline. To explicitly model

concurrent enabling of deterministic transitions, the DSPN submodels representing individual

queues contain each two deterministic transitions; that is Service 1,1 and Service 2,1 as well

as Service 1,2 and Service 2,2. The conflicting immediate transitions have both firing weights

1/2 so that each server is chosen with equal probability by queued customers.
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Figure 8. DSPN of an Mi/D/Mi/K i/2/L multiserver multiqueue system
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The DSPN shown in Figure 8 has 17 7 7 11 2 1 2K K K K+ + +  tangible markings. In

3 3 3 31 2 1 2K K K K+ + +  markings are only exponential transitions enabled whereas in

8K 4 41 2 1 2K K K+ +  are exactly one deterministic transition enabled. The number of tangible

markings in which two deterministic transitions are concurrently enabled is given by

6 21 2K K − . In all experiments, we consider arrival rates λ1 = λ2 = 0.5, walking times of the

servers to the other queue with rates µ1 = µ2 = 1.0, and deterministic service times D = 1.0.

Furthermore without loosing the representiveness of the experiments, we assumed K1 = K2.

Figures 10 and 11 plot CPU solution time and memory requirements versus increasing

model size. As in case of the MMPP/D/2/K queue, both transient analysis for mission time

T = 100 and steady-state analysis is considered. We observe that the curves of Figure 9 and 11

have the same shape as corresponding curves of Figure 4 and 6. Again, we observe a linear

growth in CPU solution time and memory requirements for increasing model size. However,

for a particular model size, say 20000, the analysis of MSMQ requires about 6 times as much

CPU time as the MMPP/D/2/K. As shown in Figure 10, the memory requirements for the

analysis of MSMQ are twice as large as for the MMPP/D/2/K queue. On a first glance, this

observations looks surprising because for a given model size this DSPN contains considerably

less markings in which two deterministic transitions are concurrently enabled than the DSPN

of the MMPP/D/2/K queue. However, as illustrated by Table 2, the classification of the

entries of the transition kernel provide the explanation for the high CPU solution time.

Table 2 provides percentages for each of the five different types of kernel elements for the

MSMQ with exponential walking times. As before, this table shows the number of kernel

entries whose analytic expressions are nonzero. Table 2 indicates that for this class of DSPN

models, i.e., because of the exponential walking times, there is an almost even split between

functionals kernel entries and constant kernel entries. This is opposed to Table 1 and the

States of
GSSMC

Nonzero
entries

Constant
entries

Functionals in
1 variable

Functionals in
2 variables

Functionals in
3 variables

Functionals in
4 variables

  1841 305035 27,83 % 23,33 % 18,64 % 16,35 % 13,85 %

  4036 977358 27,27 % 22,86 % 18,75 % 16,82 % 14,30 %

  5761 1493510 26,94 % 22,63 % 18,82 % 17,05 % 14,56 %

  7792 2276822 26,72 % 22,58 % 18,86 % 17,12 % 14,72 %

10129 3590882 26,61 % 22,53 % 18,89 % 17,18 % 14,79 %

11857 4808125 26,54 % 22,48 % 18,91 % 17,22 % 14,85 %

13721 6323849 26,48 % 22,44 % 18,93 % 17,25 % 14,90 %

15721 8180660 26,42 % 22,41 % 18,94 % 17,28 % 14,94 %

17857 9629948 26,39 % 22,39 % 18,95 % 17,30 % 14,97 %

20129 11993229 26,37 % 22,37 % 18,95 % 17,32 % 14,99 %

Table 2. Classification of elements of the transition kernel of MSMQ system
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single reason for the considerably higher CPU solution time shown in Figure 9. If the walking

time distribution is assumed to be deterministic, the classification of kernel entries will be

similar to Table 1. As a consequence, the CPU solution time will also be reduced

substantially.

Conclusions

This paper introduced DSPNexpress 2000, the new version of a widely distributed software

package for modeling with deterministic and stochastic Petri nets (DSPN). While the previous

version of DSPNexpress was known for its highly efficient numerical solver for steady-state

analysis of DSPNs without concurrent deterministic transitions [11], DSPNexpress 2000 also

provides a method for transient analysis of DSPNs [15]. Furthermore, both the stationary

analysis and the transient analysis is no longer restricted to the case that deterministic

transitions cannot be concurrently enabled [14]. To illustrate the applicability of the newly

implemented solvers of DSPNexpress 2000, we presented performance experiments for an

MMPP/D/2/K queue and a multi-server multi-queueing system. We presented curves plotting

the CPU time and memory requirements for transient and steady-state analysis versus model

size and mission time, respectively. These curves evidently show that DSPNexpress 2000 can

analyze quite complex DSPNs with two deterministic transitions concurrently active with

reasonable computing time and memory requirements.

In current work, we are integrating the exploitation of special structures and isomorphisms

presented for the analysis of DSPN without concurrent deterministic transitions in [12] in the

GSSMC approach. Following the lines of [12], we expect a further reduction of CPU solution

time by one order of magnitude.
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