
In Proc. 2nd Int. Workshop on Software and Performance (WOSP), Ottawa, Canada, pp. 12-17, Sep. 2000

Quantitative System Evaluation with DSPNexpress 2000
Christoph Lindemann, Axel Thümmler,

Alexander Klemm, Marco Lohmann, and Oliver P. Waldhorst
University of Dortmund, Department of Computer Science

August-Schmidt-Str. 12
44227 Dortmund, Germany

{cl, at, ak, ml, ow}@ls4.cs.uni-dortmund.de
http://www4.cs.uni-dortmund.de/~Lindemann

ABSTRACT
This paper describes the software package DSPNexpress 2000,
a tool for the quantitative evaluation of systems specified in
stochastic Petri nets, the Unified Modeling Language (UML),
or other specification languages for discrete-event systems.
Linking the DSPNexpress software to commercial UML design
packages allows the effective computation of performance
measures like throughput and delay for UML system
specifications. The unique feature of DSPNexpress constitute
numerical solvers for transient and steady-state analysis of
generalized-semi Markov processes with exponential and
deterministic events, which may be concurrently active. The
applicability of the DSPNexpress software for practical
performance and dependability projects is demonstrated by an
UML specification of an alternating bit protocol. The
computational effort required by DSPNexpress for transient
and steady-state analysis is plotted for varying model size.
Furthermore, a performance curve for a measure of interest is
presented.

Keywords
Performance evaluation methods, tools, and frameworks,
quantitative evaluation of UML specifications, and Petri nets,
numerical techniques for the analysis of discrete-event systems.

1. INTRODUCTION
To effectively employ model-based evaluation of computer
systems, communication networks, and client-server systems,
software packages are needed that simplify model specification,
modification, as well as automate their quantitative analysis. The
most popular language for model specification used in industrial
projects is the Unified Modeling Language (UML, [2]). It is the
proper successor to the object modeling languages of three
previously leading object-oriented methods (Booch, OMT, and
OOSE). The UML was invented by Booch, Rumbaugh, and

Jacobson. In 1997, the UML was adopted as a standard by the
Object Management Group.

There exists a large number of software packages for quantitative
analysis of systems specified as queueing networks or stochastic
Petri nets. Software packages for stochastic Petri nets include
among many DSPNexpress [7], Möbius [12], and UltraSAN [13].
Such packages contain state-of-the-art quantitative analysis
techniques and are widely distributed in academia. However,
typically the recognition of such a package in industry is limited.
Commercial UML design packages widely used in industry
contain sophisticated user interfaces. However, such package
either rely on outdated quantitative analysis methods or do not
provide methods for quantitative system evaluation at all. To close
the gap between commercial UML design tools and academic
software packages for performance and dependability evaluation,
UML system specifications enhanced by timing constraints must
be transformed to stochastic Petri nets or even better to their
underlying stochastic processes. Tool support for the quantitative
evaluation of systems specified in the UML is particularly
important for software performance engineering (see e.g., [14],
[15]). Recently first approaches in this direction were made [5].

This paper describes the software package DSPNexpress 2000, a
tool for the performance and dependability evaluation of systems
specified in the UML, Petri nets, or other specification languages.
The previous version of DSPNexpress, DSPNexpress1.5 was
known for its highly efficient numerical method for steady-state
analysis of discrete-event stochastic systems with exponential and
deterministic events. As specification language for such discrete-
event stochastic systems, DSPNexpress1.5 relies only on
deterministic and stochastic Petri nets (DSPN, [1]). To outreach
from Petri nets to system specification languages used in
industrial projects, DSPNexpress 2000 can not only evaluate
DSPNs, but also system specifications in the UML. In particular,
DSPNexpress contains filters to the commercial UML design
packages Rhapsody™ [11], Rational Rose™, and Together™.
Such design tools allow the user-friendly specification and
visualization of the artifacts of software systems and business
process modeling. The package Rhapsody™ allows checking
purely deterministic time constraints in UML specifications. The
DSPNexpress software transforms UML specifications in which
events have associated an exponentially distributed or a
deterministic delay to a discrete-event stochastic system and,
subsequently, maps them onto a generalized semi-Markov process
(GSMP) [6], [7]. The DSPNexpress solution engine comprises of
highly efficient numerical solvers for transient and steady-state
analysis of GSMPs. Thus, linking the DSPNexpress software to
commercial UML design packages allows the effective

computation of performance measures like throughput and delay
for UML system specifications enhanced by exponential and
deterministic delays.

In previous work, we introduced these transient and steady-state
solvers in the context of deterministic and stochastic Petri nets
(DSPNs) with concurrent deterministic transitions [8], [9], [10].
The approach is based on the analysis of a general state space
Markov chain (GSSMC) whose Chapman-Kolmogorov equations
constitute a system of multidimensional Fredholm integral
equations. The transition kernel of the GSSMC specifies one-step
jump probabilities from a given state to all reachable new states.
In general, a transition kernel is a functional matrix. Key
contributions of the GSSMC approach constituted the
observations that most of the elements of the transition kernel of
the GSSMC are constants (99% for queueing systems like
MMPP/D/2/K) and that the remaining elements comprise of
piece-wise continuous functions. As shown in [9], transient
analysis of quite complex DSPNs (i.e., with 20 thousand tangible
markings for mission time T = 100) requires about 20 minutes of
CPU time, steady-state analysis less than 5 minutes of CPU time.
Furthermore, we showed that DSPNexpress 2000 performs
transient analysis of DSPNs without concurrent deterministic
transitions in a few minutes of CPU time; i.e., three orders of
magnitude less computational effort than the previously known
method [3].

The remainder of this paper is organized as follows. Section 2
outlines the innovative features of DSPNexpress 2000.
Furthermore, the graphical user interface and the organization of
the numerical solvers are explained in detail. In Section 3, the
mapping of UML system specification onto generalized semi-
Markov processes is explained and the filters of DSPNexpress to
the package Rhapsody™ is presented. The applicability of the
DSPNexpress software for practical performance and
dependability projects is demonstrated by an UML specification
of an alternating bit protocol in Section 4. The computational
effort required by DSPNexpress for transient and steady-state
analysis is plotted for varying model size. Furthermore, a
performance curve for a measure of interest is presented.

2. DSPNexpress Software Architecture
2.1 Innovative Features of DSPNexpress 2000
The previous version of DSPNexpress, DSPNexpress1.5, is
known for its highly efficient numerical method for steady-state
analysis of deterministic and stochastic Petri nets (DSPNs, [1])
without concurrent deterministic transitions [6], [7]. Furthermore,
DSPNexpress1.5 contained already a graphical user interface
running under X11 allowing easy model specification,
modification, graphical animation, as well as automate
quantitative analysis. Novel innovative features of the
DSPNexpress 2000 include:

(1) A robust implementation of an efficient numerical method
for transient analysis of DSPNs without concurrent
deterministic transitions based on an iterative numerical
solution of one-dimensional Fredholm integral equations [9].

(2) A robust implementation of an efficient numerical method
for transient and steady-state analysis of DSPNs with two
deterministic transitions concurrently enabled [8], [9]. These
tasks require numerical solution of two-dimensional

Fredholm equations by an iterative scheme and direct
quadrature, respectively.

(3) Orthogonal software architecture especially tailored to
numerical analysis of the stochastic process underlying a
discrete-event stochastic system with exponential and
deterministic events (i.e., a Markov regenerative process or a
generalized semi-Markov process) based on interprocess
communication with UNIX sockets rather than writing
intermediate results in files.

(4) Filters to the commercial design packages Rhapsody™ [11],
Rational Rose™, and Together™. Thus, the numerical
solvers of DSPNexpress can also be utilized for quantitative
evaluation of system specifications with system
specifications in the UML.

(5) Open interface of the numerical solvers so that they can
easily be utilized for the quantitative evaluation of arbitrary
discrete-event stochastic systems with exponential and
deterministic events specified in other modeling formalisms
than just DSPNs (e.g., embedded systems represented as
Harel-statecharts or finite state machines).

2.2 The Graphical User Interface
Of course, the package DSPNexpress also provides a user-friendly
graphical interface running under X11. To illustrate the features
of this graphical interface, consider the snapshot shown in Figure
1. The first line displays the name of the package DSPNexpress
2000, the affiliation of the authors, University of Dortmund,
Computer Systems and Performance Evaluation Group, and the
year of release 2000. A DSPN of a two-server, finite-capacity
queue is displayed. The model is named
MarkovModulatedArrivalsTwoDetServers because customers
arrive according to a Markov modulated Poisson process and are
serviced by two servers with deterministic service times. Recall
that in DSPNs three types of transitions exist: immediate
transitions drawn as thin bars fire without delay, exponential
transitions drawn as empty bars fire after an exponentially
distributed delay whereas deterministic transitions drawn as black
bars fire after a constant delay.

Figure 1. The graphical user interface of DSPNexpress

At any time, DSPNexpress provides on-line help messages
displayed in the third line of the interface. The command line and
the object line are located on the left side of the interface. The

buttons are located in a vertical line between the on-line help line
and the working area. The working area constitutes the remaining
big rectangle which contains the graphical representation of the
DSPN MarkovModulatedArrivalsTwoDetServers. This DSPN is
displayed with the options tags on. Thus, each place and each
transition of this DSPN is labeled (e.g., Source,
MMPoissonArrival, Decision, Accepted, etc.). A detailed
description of the features of the graphical interface is given in
Chapter 10 of [7].

2.3 Organization of the Numerical Solvers
The core of the package DSPNexpress constitutes the solution
engine for discrete-event stochastic systems with exponential and
deterministic events. The software architecture of this solution
engine and its software modules are shown in Figure 2. The
solution engine is drawn as the big white rectangular box. The six
software modules are drawn as rectangles. These software
modules are invoked from the solution engine as UNIX processes.
Interprocess communication with sockets drawn as broken
ellipses is employed for passing intermediate results from one
module to the next.

Structural Petri
Net Analysis

Derive EMC
Derive GSSMC

DSPN Result Measures

S
ol

ut
io

n
E

ng
in

e
fo

r
D

is
cr

et
e-

E
ve

nt
 S

to
ch

as
tic

 S
ys

te
m

s
(D

E
S

)
w

ith
 E

xp
on

en
tia

l a
nd

 D
et

er
m

in
is

tic
 E

ve
nt

s

DSPN Specification
File

Derive Tangible
Reachability Graph

Derive Subordinated
Markov Chain

Solve Linear System
Solve Fredholm Equations

Derive DSPN Results

Reachability Graph

QMATRIX<1>

QMATRIX<K>

PMATRIX<1>

PMATRIX<K>

CMATRIX<1>

CMATRIX<K>

CMATRIX<0>

PMATRIX<0>

DSPN Marking Probabilities

State Probabilities

UML Specification
File

Structural DSPN
Results

State Probabilities of
UML Specification

DSPN Throughput Values

UML2DES
Converter

DES2UML
Report

Generator

Figure 2. The software architecture of the numerical solvers of
DSPNexpress 2000

The main idea when developing the solution engine of
DSPNexpress was to create an open interface to utilize the
numerical solvers for quantitative evaluation of arbitrary discrete-
event stochastic system. In the current version of DSPNexpress
discrete-event stochastic systems can be specified as DSPNs or as
UML specifications especially statecharts and activity diagrams.
DSPNs can be edited directly with the Petri Net editor of
DSPNexpress and UML statecharts can be entered through the
UML2DES converter of DSPNexpress and resulting measures are
exported by the DES2UML report generator. In the following, we
describe the solution engine for DES with exponential and
deterministic events provided by DSPNexpress.

Steady-state analysis of DES without concurrent deterministic
events relies on analysis of an embedded Markov chain (EMC)
underlying such DES [1]. To efficiently derive the probability
matrix of this EMC, the concept of a subordinated Markov chain

(SMC) was introduced. Recall that a SMC associated with a state
si is a CTMC whose states are given by the transitive closure of
all states reachable from si via the occurrence of exponential
events [7]. After generating the reachability graph comprising of
tangible markings (states) of the DES, for each state the generator
matrix of its SMC is derived. These tasks are performed in the
modules Derive Tangible Reachability Graph and Derive
Subordinated Markov Chains, respectively. Entries of this
probability matrix are computed by transient analysis of the
SMCs. A multithreaded execution can be employed for the
computation of the entries of the probability matrix of the EMC
using the sockets PMATRIX<1> to PMATRIX<K>. Similarly,
the conversion factors required by the EMC approach are passed
through the sockets CMATRIX<1> to CMATRIX<K>.
Subsequently, a linear system corresponding to the stationary
equations of the EMC is solved and the state probabilities of the
continuous-time DES are derived using the conversion factors.
These task are performed in the submodules Derive EMC and
Solve Linear System. These software modules constituted the core
of version 1.5 of DSPNexpress.

DSPNexpress 2000 contains two new software modules: Derive
GSSMC and Solve Fredholm equations. Transient analysis of
DES is based on the analysis of an embedded GSSMC. The
Chapman Kolmogorov equations of the GSSMC constitute a
system of Fredholm integral equations introduced in [9]. Steady
state analysis of DES with concurrent deterministic events relies
on the same approach [8]. Numerical computation of kernel
elements of the GSSMC relies also on transient analysis of
subordinated Markov chains and subsequent summation of
appropriately selected transient probabilities [7]. This task is
performed in submodule Derive GSSMC. As in case of the
computation of the entries of the probability matrix of the EMC, a
multithreaded execution can be employed for determining the
kernel elements using the sockets PMATRIX<1> to
PMATRIX<K>. Note that conversion factors are not required in
the GSSMC approach. Thus, the sockets CMATRIX<1> to
CMATRIX<K> are not used.

After Derive GSSMC has completed, for transient analysis of DES
the number of iterations corresponding to the mission time is
performed on the system of Fredholm equations [9] whereas for
steady state analysis one large but very sparse linear system is
solved using GMRES. This task is performed in the submodule
Solve Fredholm Equations. As indicated in Figure 2, only the
front end and back end of the solution engine are tailored to
DSPNs.

3. Mapping UML Specifications onto GSMPs
The Unified Modeling Language (UML, [2]) provides system
architects working on object analysis and design with one
consistent language for specifying, visualizing, constructing, and
documenting the artifacts of software systems, as well as for
business modeling. The UML provides different views of a model
that were represented by graphical diagrams: use case diagram,
class diagram, behavior diagram, and implementation diagrams.
Among the behavior diagrams are statecharts, activity diagrams
and interaction diagrams like sequence diagrams and
collaboration diagrams.

In this chapter, we will show that UML specifications such as
statecharts or activity diagrams can be represented as discrete-

event systems. Therefore, it is possible to quantitatively analyze
these specifications by means of a stochastic process. Statecharts
provide a simple yet formal means of modeling the complex
event-driven behavior common to embedded systems. All
semantics necessary to express behavior - states, historical
properties, timing, transitions, and compound transitional
connectors - are available on the statechart palette. Statecharts
allow a class to be defined in terms of the states it can be in and
the events which cause it to move between states. They are
essentially Harel statecharts [4]. States are drawn as rectangles
with rounded corners and transitions are drawn as directed arcs.
They are labeled with a trigger event, a guard, and an action:

trigger[guard]/action

All three parts of the transition label are optional. If the trigger
event occurs and the guard is accepted the action is executed
and the corresponding state change is performed. Events can be
either timed events that trigger a state transition after a
deterministic or exponentially distributed delay or they can be
(immediately) triggered by actions of other transitions. To
represent timed events, we define new syntactical expressions.
The expression after(EXP(λi)) defines an event that triggers
a state transition after an exponentially distributed delay with
parameter λi. The expression after(DET(D i)) defines an
event that occurs after a deterministic delay Di. Actions that
generate (immediate) events are denoted by GEN(Event) . States
can be ordered hierarchically and/or concurrently. Concurrent
states are separated by dashed lines and the hierarchy of states is
represented by embedding substates in superstates. The substate
that is visited by entering the corresponding superstate is denoted
with the default connector that is represented by a short arc
without a starting state. An example of a statechart of an M/D/1/K
queueing system is presented in Figure 3. The statechart consists
of one superstate named M/D/1/K with two concurrent substates
Customers and Server. The Customers state models the arriving
process of customers to the queue. After an exponential
distributed delay with parameter λ the state Decision is activated.
If the queue capacity K is expired the customer will be rejected
otherwise he will be put to the waiting line by increasing the
variable Queue. The Server state consists of only one state System.
A customer in the queue will be served in deterministic time D
which is represented in the statechart with the construct
after(DET(D)) . This statechart has a shared variable Queue
which consists of the number of customers waiting in the queue.

Source Decision
Systemafter(EXP(λ))

[Queue=K]

[Queue<K]/Queue++

after(DET(D))[Queue>0]/Queue--

M/D/1/K

Customers Server

Figure 3. Statechart of an M/D/1/K queue

In Rhapsody, it is possible to graphically design the behavior of
objects using statecharts and activity diagrams. The definition of
the statechart can be stored in an export file with suffix .sbs. For
timed events an extra specification file is needed to store the

expected waiting delays and if the delays are deterministic or
exponentially distributed. See Figure 4 for the specification of
state Source of Figure 3. The definition of the state consists of the
state ID, the name of the state, and the ID of the superstate it is
nested in.

{ Istate
- _id = GUID 9f22947a ...;
- _myState = 128;
- _name = "Source";
- _inheritsFromHandle = { Ihandle

- _m2Class = "";
}
- _parent = GUID 9f229478 ...;
- _defaultTrans = ;

}

Figure 4. Statechart specification of state Source in Rhapsody

See Figure 5 for the specification of transition after(EXP(λ))
of Figure 3. The specification of the transition consists of the
identifier of the transition, the transition label with trigger event,
guard, and action and the target and source state of the transition.
This transition has no guard and no action so the variables
itsGuard and itsAction are set to NULL. In Figure 6 the
specification file to determine the expected waiting delays for
timed transitions is presented. It consists of the name of the delay
parameter, the type, and the parameter itself. In case of
exponentially distributed delays it is the parameter λ which
represents the arrival rate of customers and for deterministic
timing it is the service delay D.

{ Itransition
- _id = GUID 9f229485 ...;
- _myState = 32;
- _name = "transition_0";

...
- _itsLabel = { ILabel
- _id = GUID 9f229487 ...;
- _itsTrigger = { IinterfaceItemTrigger
- _id = GUID 9f22948d ...;
- _body = "after(EXP(lambda))";

...
}
- _itsGuard = NULL;
- _itsAction = NULL;
}
- _itsTarget = GUID 9f22947c ...;
- _staticReaction = 0;
- _itsSource = GUID 9f22947a ...;

}

Figure 5. Part of statechart specification of transition
after(EXP(λ)) in Rhapsody

For quantitative analysis of statechart expressions, we need to
explore the state space of the statechart model. This state space
consists of all possible tangible configurations. The reachability
graph consists of directed connections between all configurations
of the statechart. A configuration of a statechart is a snapshot of
its execution. It consists of the active states of all concurrent states
of the system and the setting of all variables. A tangible
configuration is a configuration in which a timed event is
activated. One can view a configuration as the information that is
needed to completely restore the "state" of the statechart. Every
tangible configuration of the statechart maps to a state of the
corresponding state space of the underlying process and every
configuration change of the statecharts corresponds to a state
change in the underlying generalized semi-Markov process

(GSMP). This GSMP is the stochastic process that represents the
evaluation of a discrete-event system over time.

lambda EXP 0.9
D DET 1

Figure 6. Specification file for delay distributions associated
with events

A GSMP is a continuous-time stochastic process that makes a
state transition when one or more “events” associated with the
occupied state occur. Events associated with a state compete to
trigger the next state transition, and each set of trigger events has
its own distribution for determining the next state. At each state
transition of the GSMP, new events may be scheduled. For each
of these new events, a clock indicating the time until the event is
scheduled to occur is set according to an independent (stochastic)
mechanism. I.e., for each new event a clock reading is generated
according to its clock setting distribution. For each scheduled
event which does not trigger a state transition but is still
scheduled in the next state, its clock continues to run. If an event
is no longer scheduled in the next state, it is canceled, and the
corresponding clock reading is discarded. In general, a GSMP
describes the evolution of the stochastic behavior of a discrete-
event stochastic system (DES).

The UML2DES converter shown in the software architecture of
DSPNexpress (Figure 2) is the component of DSPNexpress for
constructing the state space from the statechart specification. Then
it is possible to evaluate the stochastic behavior of the statechart
with DSPNexpress via the numerical solvers for discrete-event
stochastic systems. Thus, linking the DSPNexpress software to
commercial UML design packages allows the effective
computation of performance measures like throughput and delay
for UML system specifications.

4. Application Example
To illustrate the practical applicability of the DSPNexpress
software for transient and steady-state analysis of discrete-event
systems, we consider an UML-Statechart model of a reliable
transport protocol. We present two QoS curves computed with
DSPNexpress and one performance curve witch shows the CPU
time used for solution for different model sizes. The experiments
have been performed on a Sun Sparc Enterprise station with 1
GByte main memory running the operating system SunOS5.6. For
the performance tests the CPU time has been measured by the
UNIX system call times.

Figure 7 shows the alternating bit protocol modeled with UML-
Statecharts as presented in [5]. The sender, receiver, and the two
channels are modeled as different processes that operate
concurrently. It is assumed that at most one message is in a
channel as it is for example in an Ethernet. Furthermore we
assume that packets that arrive from the network layer were stored
in a queue with capacity K till the sender is ready to process them.
The inter arrival time of packets to the sender is exponential
distributed with rate Arrival. The timeout delay is modeled by a
deterministic delay TimeOut. The delay of the network link is
assumed to be exponentially distributed with rate d.

The alternating bit protocol consists of a Sender and a Receiver
communicating via two channels with FIFO characteristic, a Data
Channel for communication from sender to receiver and an
Acknowledgement Channel for the other direction. Both can loose

messages. The purpose of the protocol is to transmit data from the
sender to the receiver in the correct order, although the medium
can loose data and/or acknowledgement messages. Distorted
messages are handled like lost ones. The protocol works as
follows: The sender takes a message which is ready to be sent to
the receiver. It transmits the message together with a sequence bit
via the data channel to the receiver. Then the sender waits for an
acknowledgement from the receiver containing the same sequence
bit. If the appropriate acknowledgement arrives, the sender
performs the same procedure for the next waiting message, but
this time with an inverted sequence bit (i.e., 0→1, 1→0). If the
appropriate acknowledgement does not arrive within a certain
period of time, the sender resends the same message. This time
period is controlled by a (deterministic) timer that is started as
soon as the sender has transmitted the message to the receiver.
The timer is stopped as soon as the acknowledgement arrives. The
receiver acknowledges all incoming messages by including the
sequence bit of the message received. The first time the message
is received, the protocol delivers the message for processing.
Subsequent messages with the same sequence bit are simply
acknowledged and then discarded. The receiver now waits for the
message with an inverted sequence bit.

receive(ack,1)

receive(ack,0)

receive(ack,0)
after(EXP(d)) [prob(1-loss)]

[prob(loss)]

receive(ack,1)

after(DET(TimeOut))/
GEN(send_out(dat,0))

Sender

after(DET(TimeOut))/
GEN(send_out(data,1))

rd
t_

se
nd

(d
at

a)
/

G
E

N
(s

en
d_

ou
t(

da
ta

,1
))

rd
t_

se
nd

(d
at

a)
/

G
E

N
(s

en
d_

ou
t(

da
ta

,0
))

receive(ack,0) receive(ack,1)

Sent 1

Sent 0

Can Send 0

Can Send 1

send_back(p,n)

/GEN(receive(p,n))

Acknowledgement Channel

Data Channel

Idle

Sent n Arrived
Succeed
 or Fail

after(EXP(d)) [prob(1-loss)]

[prob(loss)]

send_out(p,n)

/GEN(receive(p,n))

Idle

Sent n Arrived
Succeed
 or Fail

Receiver

Wait for 0

receive(data,0)/
GEN(send_back(ack,0))

receive(data,1)/
GEN(send_back(ack,1))

receive(data,0)/GEN(send_back(ack,0));
GEN(deliver(data))

receive(data,1)/GEN(send_back(ack,1));
GEN(deliver(data))

Wait for 1

Source

Network Layer

[Queue > 0]/
GEN(rdt_send(data));
Queue--

Decision

[Queue < K]/Queue++

after(EXP(Arrival))

[Queue == K]

Alternating Bit Protocol

Figure 7. UML-Statechart of the Alternating-Bit-Protocol

Figure 8 presents a curve for a measure of interest of the
alternating bit protocol. It plots the utilization of the data- and the
acknowledgement channel for different packet arrival rates. We
observe that the maximum utilization of the data channel is about
50%. The utilization for the acknowledgement channel is only
40%. This is due to the stop-and-wait characteristic of the
alternating bit protocol.

Figure 9 plots the CPU time required for transient analysis at
instant of time T = 100 and for steady-state analysis versus
increasing model size. For this experiment, the buffer capacity K

is varied from 125 to 1000. Note that the UML specification of
Figure 7 does not contain deterministic events which are
concurrently active. Thus, only transient analysis has to resort on
the analysis of the GSMP, which requires the solution of a system
of integral equations. Steady-state analysis can be performed by
an embedded Markov chain and, hence, just requires the solution
of a system of linear equations.

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0 1 2 3 4 5 6 7 8 9 10 11 12
Arrival Rate

Channel
Utilization

Data Channel Utilization
Ack Channel Utilization

d = 0.05
Timeout = 0.15

Loss = 10-4

Figure 8. Arrival Rate versus Channel Utilization

44,7

5,1
4,5

7,8

11,9

17,0

22,4

28,8

36,1

4,33,73,02,31,70,90,4
0

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25 30 35 40

Model size in 1000

CPU time
in minutes

Transient solution for T=100

Steady-state solution

d = 0.05
Timeout = 0.15

Loss = 10-4

Figure 9. Transient and steady-state analysis: CPU time versus
model size

5. Conclusions
This paper introduced DSPNexpress 2000, the new version of a
widely distributed software package for performance and
dependability modeling. While the previous version of
DSPNexpress was known for its highly efficient numerical solver
for steady-state analysis of DSPNs without concurrent
deterministic transitions [6], DSPNexpress 2000 also provides an
efficient method for transient analysis of DSPNs [9]. Furthermore,
both the stationary analysis and the transient analysis is no longer
restricted to the case that deterministic transitions cannot be
concurrently enabled [8]. To outreach from Petri nets to system
specification languages used in industrial projects, DSPNexpress
2000 can not only evaluate discrete-event systems specified as
Petri nets but also system specifications in the UML.

To illustrate the applicability of the newly implemented solvers of
DSPNexpress 2000, we considered a UML system model of an
alternating bit protocol introduced in [5]. We presented curves for
a measure of interest and for the computational effort required for
transient and steady-state analysis. These curves evidently show
that DSPNexpress 2000 can analyze quite complex discrete-event

systems in which events have either associated exponential or
deterministic delays in reasonable computing time.

6. REFERENCES
[1] M. Ajmone Marsan and G. Chiola, On Petri Nets with

Deterministic and Exponentially Distributed Firing Times,
in: G. Rozenberg (Ed.) Advances in Petri Nets 1987, Lecture
Notes in Computer Science 266, 132-145, Springer 1987.

[2] M. Fowler, UML Distilled: Applying the Standard Object
Modeling Language, Addison-Wesley 1997.

[3] R. German and A. Heindl, A Fourth Order Algorithm with
Automatic Step Size Control for the Transient Analysis of
DSPNs, IEEE Trans. Softw. Engin., 25, 194-206, 1999.

[4] D. Harel and M. Politi, Modeling Reactive Systems with
StateCharts: The StateMate Approach, McGraw Hill 1998.

[5] P. King, R. Pooley, Derivation of Petri Net Performance
Models from UML Specifications of Communications
Software, Proc. 11th Int. Conf. on Tools and Techniques for
Computer Performance Evaluation, Schaumburg, Illinois,
2000.

[6] Ch. Lindemann, DSPNexpress: A Software Package for the
Efficient Solution of Deterministic and Stochastic Petri Nets,
Performance Evaluation, 22, 3-21, 1995.

[7] Ch. Lindemann, Performance Modelling with Deterministic
and Stochastic Petri Nets, John Wiley & Sons 1998.

[8] Ch. Lindemann and G.S. Shedler, Numerical Analysis of
Deterministic and Stochastic Petri Nets with Concurrent
Deterministic Transitions, Performance Evaluation, Special
Issue Proc. of PERFORMANCE '96, 27&28, 565-582, 1996.

[9] Ch. Lindemann and A. Thümmler, Transient Analysis of
Deterministic and Stochastic Petri Nets with Concurrent
Deterministic Transitions, Performance Evaluation, Special
Issue Proc. of PERFORMANCE '99, 36&37, 35-54, 1999.

[10] Ch. Lindemann and A. Thümmler, Numerical Analysis of
Generalized Semi-Markov Processes, Technical Report
University of Dortmund, (submitted for publication).

[11] Rhapsody, http://www.ilogix.com/.

[12] W.H. Sanders, Integrated Frameworks for Multi-Level and
Multi-Formalism Modeling, Proc. 8th Int. Workshop on
Petri Nets and Performance Models, Zaragoza Spain, 2-11,
1999.

[13] W.H. Sanders, W.D. Obal, M.A. Qureshi, and F.K.
Widjanarko, The UltraSAN Modeling Environment,
Performance Evaluation, 24, 89-115, 1995.

[14] C.U. Smith, Performance Engineering of Software Systems,
Addison Wesley 1990.

[15] M. Woodside, Software Performance Evaluation by Models,
in: G. Haring, Ch. Lindemann, M. Reiser (Eds.)
Performance Evaluation: Origins and Directions, LNCS
State-of-the-Art Survey, 283-304, Springer-Verlag 2000.

