be/ja/2 1 - 1(6)

1. Systeme und Modelle

Begriff "Simulation" in verschiedenen Bedeutungen (nicht einheitlich) verwendet

so: Monte-Carlo-, dynamische, diskrete, kontinuierliche, Rechner-, ..., Simulation Simulatoren verschiedenster Art, ...

Für uns: wesentliche Schlagworte:

- Simulation ist eine Technik (eine der Techniken)
- zur "Behandlung" von Systemen (Beschreibung, Verständnis, Studium, Analyse, Synthese, ...)
- mit Interesse an Beurteilung ihrer Funktion(sweise) ihres Verhaltens
- mittels Untersuchungen / Studien an einem (System-)
 Modell

Simulation ist bedeutsame Technik wegen breiten (und wachsenden) Einsatzes

- in der Informatik: Rechen- und Kommunikations-Systeme
- in Anwendungen der Informatik:

Fertigungs-, Transport-, Organisations-, Verwaltungs-, Dienstleistungs-, Logistik-... -Systeme

be/ja/2 1 - 2(6)

Was ist ein "System"?

Sehr allgemeiner Begriff; ohne (potentiell schädliche!) Einschränkungen nur vage "definiert / definierbar":

Ein System besteht aus einer Menge von Untereinheiten / Teilen: "Objekten", "Komponenten"; Objekte haben gewisse Eigenschaften; (alle!) Objekte (bzw. ihre Eigenschaften) stehen untereinander in gewissen Zusammenhängen / Abhängigkeiten, üben aufeinander Wechselwirkungen aus.

Wesentlich:

System { Objekte }
und: System ist, was wir als solches verstehen (Klir91)
(incl. Abgrenzung!)

Beispiele:

Feuerwache

öffentlicher Nahverkehr

Maschinensaal

Insekt / Insektenvolk / Ökologie eines Gebiets Beachte: Wechsel der Objekte,

> Eigenschaften, Abhängigkeiten

aufgrund: Wechsel von Betrachtungszweck,

Umgebung / Abgrenzung

be/ja/2 1 - 3(5)

Künstliche (Mensch-geschaffene) **Systeme** werden zweckbestimmt entworfen / verwirklicht / betrieben.

Ihre Planer / Organisatoren: "Systemanalytiker" stellen typischerweise Fragen der Art:

- Wie schnell / wie groß / wie gut / ...
 ist System / Systementwurf / Systemversion?
- Was geschieht (mit System), wenn ... ?
- Was ist wie einzurichten, zu ändern, ..., damit ...?

Arbeitsweise des Systemanalytikers (Acko71):

Interessiere ein (reales, hypothetisches) System S, dessen So-Sein / Verhalten beeinflußt wird von

- einer Menge C "kontrollierbarer" Größen (diese sind "einstellbar", willkürlich "veränderbar")
- einer Menge U "unkontrollierbarer" Größen (diese "ändern sich potentiell", ohne einstellbar zu sein)

Mit W_C bzw. W_U als (i. allg. vektoriellen) Wertebereichen der Größen aus C bzw. U wird sich das System

für jede "Einstellung" w_C W_C für jedes "Eintreten" w_U W_U anders darstellen / verhalten

Sei P eine Menge (zumindest im Prinzip) beobachtbarer Größen mit Wertebereich W_P die als Grundlage einer Beurteilung (des So-Seins / Verhaltens) von S dienen

be/ja/2 1 - 4(5)

"Beeinflussung" von S drückt sich aus in "Beziehung" zwischen C-, U-Größen und P-Größen

z.B. Funktion f: (W_C, W_U) W_P oder Relation f $W_C \times W_U \times W_P$

Systemanalytiker ist (zweckorientiert) interessiert an der

 Beurteilung gewisser Güte- (oft: "Leistungs-") Kriterien anhand zugeordneter Güte- / "Leistungs-" Maße etwa: V = {v_i; i=1,2,...,n} die aus Beobachtungsgrößen ableitbar / errechenbar seien gemäß

$$v_i = g_i(w_p)$$
 $i=1,2,...,n$

- Einhaltung gewisser Güte- (oft: "Leistungs-") Grenzen
- Optimierung von Gütekriterien ("Leistungs"-Maßen)

Wesentliches "Problem" also:

Funktion / Relation f "in den Griff zu bekommen",

d.h.

den Einfluß der "controllables" C und "uncontrollables" U auf das "Sein / Verhalten" P des Systems S und damit auf seine "Güte" V

zu verstehen und (zweckorientiert) nutzen zu können

be/ja/2 1 - 5

Für reales System S:

f ist durch S repräsentiert

f also durch Beobachten,

Ausprobieren,

Experimentieren "studierbar"

(für Größen aus C: "systematisch einstellen"

aus U: "wartend beobachten")

Dies empirische Vorgehen oft nicht wünschenswert,

nicht durchführbar

in Planung befindlicher Flughafen: unmöglich

kritische Betriebszustände eines Atomreaktors:

gefährlich

unterschiedliche Bus-Routen: zeitaufwendig,

teuer

Alternative ?? Modell !!

Studium eines "Ersatzsystems" S' (anstatt Systems S) wo

- S' irgendwie "einfacher" zu manipulieren als S
- S' aber imstande, das Sein/Verhalten von S im gewünschten Kontext: Zweck! zu repräsentieren, also f "nachzubilden"

be/ja/2 1 - 6(2)

In diesem allgemeinen Sinn viele Modelltypen existent und in Gebrauch

Einige Klassifikationen (Mihr72, Evan88):

Rosenblueth / Wiener (RoWi45)

materiell (aus Materie)

formal (aus Symbolen)

closed box: beschreibt I/O-Zusammenhang open box: beschreibt "Mechanik" des I/O-

Zusammenhangs

brauchbar für Vorhersage bei ungeändertem System nötig für Einschätzung von System-Veränderungen, "Verständnis"

be/ja/2 1 - 7(5)

Churchman / Ackoff / Arnoff (ChAA57)

ikonisch	analog	symbolisch
bildliche Nachahmung	Erfassung Eigenschaften mittels "anderer" physikalischer Eigenschaften	Darstellung durch mathematische, logische Verknüpfungen von Symbolen
	O	<i>3</i>

Sayre / Crosson (CrSa63)

Replikationen	Formalisierungen	Simulationen
physikalische Ähnlichkeit	keine physikalische Ähnlichkeit: Symbole mittels "wohldefinierten Kalküls" manipulierbar	keine physikalische Ähnlichkeit: Symbole nicht (völlig) innerhalb Kalküls manipulierbar

be/ja/2 1 - 8(6)

Für uns naheliegend (ausschließlich betrachtet)

symbolische / formale Modelle

Modellformen in diesem Bereich:

Ideal: f liegt als geschlossene, explizite Formel vor
Beurteilung, Veränderung, Optimierung
"mit Bleistift und Papier" möglich: analytisches
Vorgehen

Nächstbest: f liegt als implizite Formel vor.

Beurteilung, Veränderung, Optimierung
durch systematisches "Abtasten" von f
für verschiedene Werte der Einflußgrößen aus C, U
u.U. "Überblick", Grenzen/Schranken durch
Formelmanipulation:

numerisches
Vorgehen

Schwierig: Nur (Menge von) Zusammenhängen, Abhängigkeiten formal notierbar. Beurteilung, Veränderung, Optimierung durch schrittweises

"Konsistent-Machen" der Zusammenhänge "Durchspielen" der Abhängigkeiten:

> simulatives Vorgehen

Außer bei "Ideal":

f immer nur "punktweise" (numerisch) erforscht

Warnung: wegen methodischer "Unterlegenheit" sollte Simulation letzter Ausweg sein (wenn "alles andere" versagt!)

Aber: Dies ist (auch) subjektiver Gesichtspunkt ("Wissen" über alternative Techniken)

be/ja/2 1 - 9(5)

Feinere orthogonale Klassifizierung symbolischer Modelle (Fish73):

(i)	analytisch	numerisch				
	Ergebnisgrößen sind Funktionen der Einflußgrößen	Ergebniswerte können für jeden Wertesatz der Einflußgrößen ermittelt werden				
z.B.	"Gesetze" Physik: Newton, Ohm Wartesysteme: Little	Implizite Formeln Simulator				
(ii)	statisch	dynamisch				
	zeitliche Veränderungen nicht beschrieben	Prozeßbeschreibungen, "Zustands"-Veränderungen über der Zeit beschrieben				
z.B.	Aufstellungsplan Maschinensaal	Vorgänge an Bankschalter, Nationalökonomie				
(iii)	deterministisch	stochastisch				
	alles ist / geschieht "mit Sicherheit"	Zufallsvariable beschreiben (Regelmäßigkeiten der) Unsicherheit / Variabilität				
		ne Beschreibungsentscheidung, wobei Unwissen, Unwillen zum Detail wesentliche Rolle spielen Beschreibungs-"Ökonomie"				
z.B.	Rechenzentrum, Montage Na)feste Montagezeit: b)variierende Montagezeit: c)Kaffeepause etc. d)variierende M.zeiten:	Magnetbänder deterministisch stochastisch deterministisch stochastisch stochastisch				

be/ja/2 1 - 10(5)

Weitere Beispiele (Fish73):
numerisch + dynamisch auch "prozedural" genannt
(Beschreibung Entwicklung über Zeit, schrittweise Analyse):
Simulator / Simulation

	anal	ytisch	sta	tisch	dete	rminist.
	numerisch		dynamisch		stochastisch	
Beispiele	а	n	S	d	d	S
Ohm'sches Gesetz	Χ		Х		X	
Normalverteilung	X		Х			Χ
Newton's Gesetz	X			Χ	X	
Markoff-Prozeß	X			Χ		Χ
Polynom, Ordnung>4		Χ	Х		X	
Nichtlineare						
Differentialgleichung		Х		Х	l x	
in der Zeit		Λ		Α		
Maximum-likelihood-						
Schätzer		X	X			X
Reparaturwerkstatt-						
Simulator		X		X		X

Feinere Unterscheidungen Simulatoren:

aggregiert / detailliert

Entscheidung bei Modell"bildung":

Bei Simulation im Prinzip jedes Detail berücksichtigbar.

- z.B.: Herstellungsprozeß
- jede Tätigkeit jeder Person und Maschine, jede Informationsübermittlung, ...
- Gesamt-Materialfluß (Ein- und Verkäufe), Personalbestand, Gesamt- Ein- und Ausgaben

Niveau Detaillierung

von Fragestellung (incl. Genauigkeit), Ressourcen / Aufwand diktiert

Zumindest Größen, deren Werte in Beurteilung eingehen, müssen repräsentiert sein

be/ja/2 1 - 11(5)

physikalisch / behaviouristisch

rein physikalische Prozesse (z.B. Flugbahn Körper) / menschliches Verhalten (z.B. Entscheidungsprozeß im Bundestag)

Praktisch wesentlich: gemischter Fall

Rechner- / Mensch-

bzgl. "Durchführung" Simulation, gemischte Fälle möglich

- bei Unwissen über menschliches Verhalten,
- in Erziehung und Ausbildung

kontinuierlich / diskret

zeitveränderliche Größen (Variable)		
können sein	können sich verändern	
kontinuierlich	kontinuierlich mit der Zeit	
	sprunghaft über diskreter Zeit	
diskret	sprunghaft über kontinuierlicher Zeit	
district	sprunghaft über diskreter Zeit	

diverse Kombinationen möglich

z.B.: Mann geht auf Tür zu

kontinuierlich : kontinuierlich kontinuierlich : Zeitinkremente

kontinuierlich: hier/dort ereignisorientiert hier/dort: hier/dort ereignisorientiert

be/ja/2 1 - 12(6)

Unsere Lehrveranstaltung SIMULATION widmet sich (vorrangig) der

ereignisorientierten (discrete event) im wesentlichen stochastischen Rechner-Simulation

Simulation als Technik Spezialfall innerhalb verschiedener Wissensgebiete; für uns alle relevant

System-Analytiker:

Rechner-Simulation eine von vielen Simulations-Arten

andere: Analog-Geräte (Schwingungen)

Labormodelle (Windkanal)

Testumgebung (Gesetzesauswirkung)

Mathematiker:

Simulationsmodell eine von vielen formalen System-Beschreibungsformen andere: analytische Modelle (Formeln)

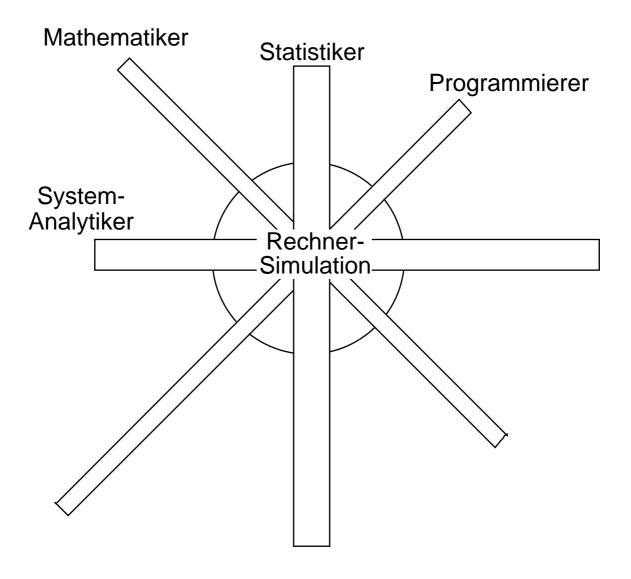
Statistiker:

Simulator ein von vielen Systemtypen, die als stochastisch verstanden und experimentell untersucht werden andere: Laboreyperiment

andere: Laborexperiment,

Experiment mit realem System

Programmierer:


Simulationsprogramm einer von vielen Programmtypen mit speziellen Programmier-Anforderungen, -Techniken

be/ja/2 1 - 13(6)

Also,

(ohne daß wir uns deshalb als Zentrum der Welt verstehen)

etwa so:

be/ja/2 1 - 14(6)

Frage: Wie erstellt man ein (Simulations-)Modell?

"Technik" oder "Kunst" ?

- Modellbildung ("unvermeidlicherweise") weitgehend geprägt von Kenntnisstand des System-Analytikers "Kunst"
- nachfolgende Simulatorerstellung erlernbare Fertigkeit, vielfältig "Tool"-unterstützt "Technik"

Außerdem:

- Modellbau hat wichtige weitere (positive) Aspekte (über Erreichung von Zielen wie Einhaltung der Spezifikationen, Optimierung hinaus)
- Modelle dienen

der Verständigung über ein System dem Verständnis eines Systems der Vorhersage seines Verhaltens der Einrichtung / Prägung seines Verhaltens der Steuerung und Regelung seines Verhaltens

Umgangssprachlich "Modell" in zwei Bedeutungen benutzt (Evan88)

mit (für Informatiker) hilfreichen Ansatzpunkten

Modell als "Idealbild": Spezifikation

Modell als "Ersatzbild": Beschreibung(en)

von Realisierung(en)

Mathematik: "umgekehrtes" Rollenverständnis!

be/ja/2 1 - 15

LEERSEITE

be/ja/2 1 - 16

LEERSEITE