5. Spezifikation quantitativer Modellgrößen

Modellbildung identifiziert

Eigenschaften Ersatzsystem

 (auf Basis mentalen Modells, in gewählterAbstraktion)

Eingeschlossen sind im Modell zu repräsentierende

- strukturelle und qualitative Eigenschaften (Objekte, Prozesse, Regeln, Relationen, ...)
- quantitative Eigenschaften (numerische Größen):

konkrete Werte / Wertverläufe zu spezifizieren

Klassifikation quantitativer Eigenschaften (EmSi70):

- exogene (numerische) Faktoren;
 können (im Prinzip) verschiedene Werte haben,
 beeinflussen Modellverhalten,
 werden von Modellverhalten nicht beeinflußt
 (falls für eine Untersuchung/Analyse fest:
 "Konstante", "Parameter", "statische Größe"
 sonst: "Variable" (im PS-Sinn), "dynamische Größe"
- endogene (numerische) Faktoren;
 werden durch Modellverhalten (potentiell) beeinflußt

Erinnerung an Kap.1: Unterscheidung

- kontrollierbare Größen:
 "willkürlich" einstellbar (für "was-wenn"-Fragen, zur Suche "optimale Güte")
- unkontrollierbare Größen:
 als "unbeeinflußbar" angesehen ("was-wenn"-Fragen)

Um Simulation ablaufen lassen zu können, müssen exogenen (kontrollierbaren oder nicht kontrollierbaren) Größen konkrete Werte / Werteverläufe zugewiesen sein

(Nachteil Simulation: formale "Parameter" können nicht durchgetragen werden)

Woher Werte / Werteverläufe ??

3 prinzipielle Quellen:

- Theorie
- reale Welt
- Hypothesen (Annahmen)

Folgt Übersicht über

- exogene / endogene
- kontrollierbare / nicht kontrollierbare
- statische / dynamische
- deterministische / stochastische numerische Modellgrößen

und daraus resultierender "Bedarf an Daten"

	kontrollierbar		nicht kontrollierbar	
	statisch	dynamisch	statisch	dynamisch
exogen	Annahme	en treffen	aus Theorie entnehmen oder beobachten: messen, schätzen	
		determi	nistisch:	
	Wert	Fkt. der Zeit		Fkt. der Zeit
		stochastisch:		
	Verteilung	stoch. Proz.	Verteilung	stoch. Proz.
<u> </u>	hai fastli	egender	ergehe	en sich
endogen	bei festliegender Aufgabenstellung nicht existent		aus Ai	
		determi	nistisch:	
			Resultat-	
			Wert	Fkt. der Zeit
		stocha		l ultat-
			Werte- menge	Wertverlauf- menge
			(Stichprobe)	(Stichprob menge)

Bedarf an Daten:

exogen: für Simulation selbst

endogen: potentiell zur

"retrospektiven", "historischen"

Validierung

Abbildung 5.0.1: Klassifikation von "Faktoren"

und Bedarf an Daten

Für Modell insbesondere benötigt:

Bestimmung / Darstellung / Charakterisierung /

"Modellierung"

nicht kontrollierbarer, exogener Faktoren

Fälle:

- (i) statisch / deterministisch: Wert
 - aus Theorie
 - aus Messung realer Welt (System / Umgebung)
- (ii) statisch / stochastisch: Verteilung
 - aus Theorie
 - aus Messung realer Welt (System / Umgebung)
 Realisierungen (Stichprobe)
 Verteilung
- (iii) dynamisch / deterministisch: Zeitfunktion
 - aus Theorie
 - aus Messung realer Welt (System / Umgebung)
- (iv) dynamisch / stochastisch: stochastischer Prozeß
 - aus Theorie
 - aus Messung realer Welt (System / Umgebung)
 Realisierungen (Zeitreihen) Generierungsgesetze

- (i,iii) Vorgehen bekannt
- (ii) im folgenden genauer betrachtet
- (iv) schwieriger, meist auf (ii) zurückgeführt auch: mit "traces" behandelt

5.1 Modellierung von Zufallsvariablen

Statisch-stochastische, numerische (exogene) Faktoren

- im Modell durch ZV beschrieben
- (zugehörige) Verteilung benötigt, um
 (während Simulation) Realisierungen zu ziehen (vgl 3.3)

Notwendige Modellierungsschritte:

- (i) Identifikation Verteilungstyp
- (ii) (uU) Schätzung Verteilungsparameter

Mögliche (typische) Situationen:

- (a) Verteilungstyp aus Theorie,Parameterschätzung aus real vorliegender Stichprobe
- (b) Empirische Verteilung aus Stichprobe, direkt zur Generierung Realisierungen verwendet
- (c) Verteilungstyp aus Stichprobe identifiziert, Parameterschätzung aus Stichprobe
- (d) Weder theoretische Hinweise noch reale Stichprobe vorhanden, lediglich "Charakter: ZV" feststehend

Literaturhinweis: LaKe82/...

Folgend alles für kontinuierliche Faktoren (als Bsp.), diskrete Faktoren: vgl Literatur

zu (d):

- sehr "ungemütliche" Situation!
- uU Feld für (strittige!) "maximum entropy"-Verfahren

- im Anschluß: einige heuristische Tips zu Verteilung und Parametern einer zu modellierenden ZV Y

Alternative Situationen:

 subjektive Grenzen u, o bekannt / ermittelbar, derart, daß P[Y<u] P[Y>o] 0 Vorschlag: Gleichverteilung

$$FY(y) = \begin{cases} 0 & y \ u \\ (y-u)/(o-u) & u < y \ o \\ 1 & y > o \end{cases}$$

$$E[Y] = \frac{u+o}{2}$$

M[Y] y-Wert maximaler Dichte (Modalwert, mode) nicht eindeutig

 subjektive Grenzen u, o und subjektiver Modalwert w bekannt / ermittelbar

Vorschlag: Dreiecksverteilung

$$FY(y) = \begin{cases} 0 & y \ u \\ \frac{(y-u)^2}{(o-u)(w-u)} & u < y \ w \\ 1 - \frac{(o-y)^2}{(o-u)(o-w)} & w < y \ o \\ 1 & y > o \end{cases}$$

$$E[Y] = \frac{u+w+o}{3} \qquad M[Y] = w$$

subjektiv

Grenzen u, o

Modalwert w

Mittelwert m

bekannt / ermittelbar

Vorschlag: **Beta-Verteilung** "beta(1, 2)"

Für u=0, o=1 (Translation, Dehnung/Stauchung möglich):

$$fY(y) = \begin{cases} y & 1^{-1} (1-y) & 2^{-1}/B(1, 2) & 0 < y \ 1 \\ 0 & sonst \end{cases}$$

$$E[Y] = \frac{1}{1+2} \quad (=m)$$

$$M[Y] = \frac{1^{-1}}{1+2^{-2}} \quad (=w)$$

1, 2 > 1, aus m und w zu bestimmen, B(...) "Beta-Funktion":

B(1, 2) :=
$$\int_0^1 t^{-1} (1-t)^{-2-1} dt$$

be/ja/2 5 - 8

zu (a):

Einige Hinweise zu Verteilungsformen auf Basis theoretischer Überlegungen (vgl Mihr72,LaKe82)

 ZV Y, welche Summe einer größeren Anzahl zufälliger Einflüsse darstellt, könnte (zentraler Grenzwertsatz) normalverteilt sein N(μ, ²)-verteilt

$$fY(y) = \frac{1}{\sqrt{2}} \exp\left(-\frac{(y-\mu)^2}{2^2}\right)$$

$$E[Y] = \mu$$

$$VAR[Y] = 2$$

Beispiele: "natürliche" Faktoren wie Größe Lebewesen, aber: auf y<0 achten ("truncation")

 ZV Y, welche Minimum einer größeren Anzahl zufälliger Einflüsse darstellt, könnte (Grenzwertsatz) Weibull-verteilt sein

$$FY(y) = \begin{cases} 1 - \exp(-(y/y)) & y > 0 \\ 0 & y = 0 \end{cases}$$

Beispiele: "time between failures" komplexen technischen Systems

 ZV Y, welche zeitliche Abstände zwischen aufeinanderfolgenden Ereignissen darstellt, wo anzunehmen, daß Ereignisse

- einzeln auftreten
- insgesamt mit konstanter "Rate" auftreten
 könnte (Satz über "seltene Ereignisse")
 (negativ) exponentiell verteilt sein

$$FY(y) = \begin{cases} 1 - \exp(-y) & y > 0 \\ 0 & y = 0 \end{cases}$$

Damit (gleichwertig:) Zahl Ereignisse in beliebigem Zeitintervall **Poisson-verteilt**

Beispiele: Ereignisse,

die zu "absolut zufälligem" Zeitpunkt

von jeweils einem Mitglied

großer Gesamtheit ausgelöst werden

(etwa: an Vermittlung eintreffende Telefonanrufe)

 ZV Y, welche Produkt einer größeren Anzahl zufälliger Einflüsse darstellt, könnte (Grenzwertsatz) log-normal verteilt sein, LN(µ, ²)-verteilt

$$fY(y) = \begin{cases} \frac{1}{y\sqrt{2}} & exp\left(-\frac{(\ln(y)-\mu)^2}{2^2}\right) & y > 0\\ 0 & y = 0 \end{cases}$$

Insgesamt zu (a):

- Werte Verteilungsparameter?
- "wie gesagt", aus Stichprobe "schätzen"

vgl Abschnitt 5.2

zu (b): Explizite Bestimmung "Verteilungstyp" vermieden, stattdessen Verteilungsfunktion aus Stichprobe "direkt" geschätzt

```
Einschub:
In "verteilungsfreier" / "nichtparametrischer" Statistik
häufig Verwendung von "Ordnungsstatistiken"

(order statistics):
Ordnungstatistik einer Stichprobe (Umfang n) ist Folge
(Y(1),Y(2),...,Y(n))
der größenmäßig aufsteigend geordneten
Stichprobenvariablen Y1,Y2,...,Yn
Folge (y(1),y(2),...,y(n))
der größenmäßig aufsteigend geordneten
Stichprobenwerte y1,y2,...,yn
ist Realisierung Ordnungsstatistik
```

"Empirische Verteilungsfunktion" F*Y(y) wird aus Stichprobe (y₁,y₂,...,y_n) gewonnen:

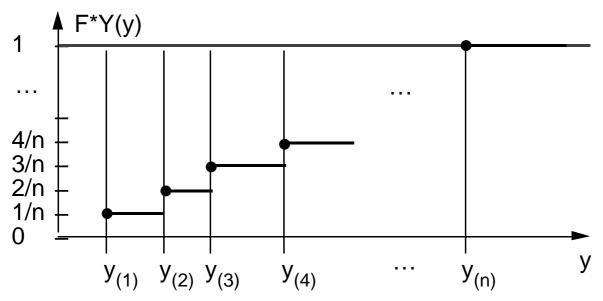
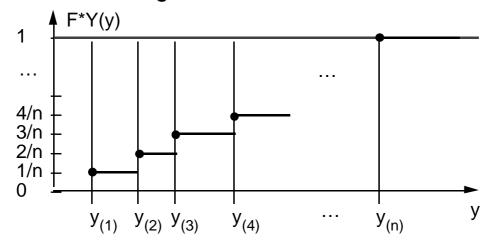


Abbildung 5.1.1: empirische Verteilungsfunktion

Empirische Verteilungsfunktion



schätzt Verteilungsfunktion erwartungstreu:

- aus Zeichnung:

$$\widetilde{F}Y(y) = \frac{|\{\text{Realisierungen von } Y \text{ } y \text{ } | \text{ } n\text{-Stichprobe}\}|}{n}$$
s. Zeichnung
$$= \frac{n}{1} \frac{|Y|}{n} \text{ wg. Unabhängigkeit}$$

- wo "Indikatorfunktion":

$$I := \begin{cases} 1 & \text{wahr} \\ 0 & \text{falsch} \end{cases}$$

und damit:

$$E[\widetilde{F}Y(y)] = \frac{1}{n} \quad n \quad E[I_{Y y}]$$
$$= P[Y y]$$
$$= FY(y)$$

Verwendung während Simulation: Generierung von Realisierungen von Y gemäß F*Y(y)

Wieder Anleihe bei "inverse Transformation" (Abschn. 3.3): bei [0,1)-gleichverteiltem U (+ Voraussetzungen) liefert FY⁻¹(U) gemäß FY verteilte ZV

Als Rezept:

Ziehe u, dann ist jenes $y_{(i)}$ die gesuchte Realisierung, für das gilt $F^*Y(y_{(i-1)})$ u < $F^*Y(y_{(i)})$

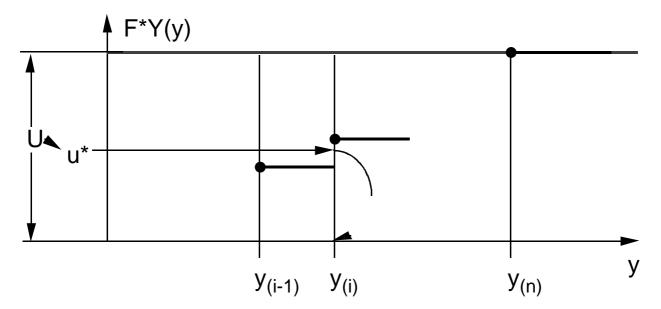


Abbildung 5.1.2: "Ziehen" aus empirischer Verteilungsfunktion

bzw einfacher (identisches Ergebnis!): alle Treppenstufen gleich hoch (1/n), damit wegen gleichverteiltem U

- alle Werte $y_{(1)}, y_{(2)}, ..., y_{(n)}$
- bzw alle Werte y₁,y₂,...,y_n mit gleicher Wahrscheinlichkeit 1/n zu wählen

praktisch:

Ziehung aus diskret [1,n]-gleichverteiltem U' liefert direkt Position des gesuchten Wertes in einem n-Feld mit Werten $y_{(1)},y_{(2)},...,y_{(n)}$ bzw $y_1,y_2,...,y_n$

gelegentlich empfohlen:

lineare Interpolationen zur Definition von F*Y (auch Interpolationen höherer Ordnung) klingt plausibel, zerstört aber Erwartungstreue!

numerisch uU

Simulation

zwei oder mehr Werte der Stichprobe identisch:

- Treppenstufen entsprechend höher,
- bzw beide (alle) Werte ins n-Feld

zu (c):

 Keine theoretisch fundierte Hypothese für Verteilungstyp, wohl aber Stichprobe verfügbar

- Versuch, Verteilungstyp aus Stichprobe zu "erahnen", zu "identifizieren"
- Auf diesem Weg erste Hinweise auf Ausschluß bestimmter Verteilungstypen auf Basis von (auf Momenten beruhenden) Verteilungscharakteristika

so etwa des Variationskoeffizienten VK[Y]

$$VK[Y] := \frac{\sqrt{VAR[Y]}}{E[Y]}$$

Bekannt sind Schätzer für Erwartungswert und Varianz (vgl Abschn. 4.1):

$$\tilde{\mu}_1 = \frac{Y_i}{n}$$
 $\tilde{\mu}_2 = \frac{Y_i}{n} (Y_i - \tilde{\mu}_1)^2 / (n-1)$

Natürlicher (nicht erwartungstreuer) Schätzer für VK wäre:

$$\sim := \sqrt{\sim 2}/\tilde{\mu}_1$$

Da gewisse Verteilungstypen VK's nur bestimmter Wertebereiche zulassen (zB: <1, >1), kann Schätzwert * zum Ausschluß ganzer Verteilungsfamilien ausreichen

[&]quot;ähnliche" Ausschlußhinweise vgl zB LaKe00

Subjektive ("visuell" geführte)
 Identifizierung Verteilungstyp
 mittels Histogrammen (Schätzer Dichtefunktion)
 (Verteilungsfunktion "visuell" schlecht einsetzbar)

- Weg:
 - vorhanden: Stichprobe (y₁,y₂,...,y_n)
 - bilde "Klassen" von Wertebereichen [b₀,b₁),[b₁,b₂), ...,[b_{k-1},b_k) gleicher Breite b=b_i-b_{i-1} j=1,2,...,k
 - bestimme relative Häufigkeiten

$$r_j := \frac{\#y_i \text{'s in } [b_{j-1}, b_j)}{n}$$
 $j = 1, 2, ..., k$

und zeichne "Histogramm":

$$HY(y) := \begin{cases} 0 & y < b_0 \\ r_j & b_{j-1} \ y < b_j \\ 0 & y \ b_k \end{cases}$$

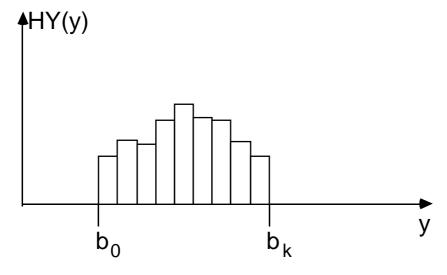


Abbildung 5.1.3: Histogramm

- Histogramm:
 - Aussehen sehr abhängig von b und Lage b₀,
 mehrere Alternativen "probieren"!
 - alle Intervalle sollten "hinreichende" Anzahl enthalten,
 Rat: > 5 ??
 - [b₀,b_k) muß nicht alle y_i enthalten,
 "outlier" uU vernachlässigen
- - einerseits ist

$$P[b_{j-1} Y < b_j] = \int_{b_{j-1}}^{b_j} fY(y) dy$$
$$= b fY(y'_j)$$

mit (Mittelwertsatz:) einem y'_j [b_{j-1},b_j)

- andererseits ist für y' [b_{j-1},b_j)
 HY(y') = r_j
 mit
 E[R_i] = P[b_{i-1} Y<b_i]
- so daß
 r_j b · fY(y'_j)
 und HY zu fY ungefähr proportional
- und somit HY(y)/ b Schätzer fY(y) für Dichte fY(y)
- Aus dem Bild (Histogramm) nun (subjektiv und erfahrungsabhängig)
 Typ einer uU zugrundeliegenden Verteilung identifizieren

Jede (analytisch charakterisierte) Verteilungsfamilie weist gewisse Parameter auf, hier erfaßt durch Parametervektor Q (zB: N: μ, EXP:) Werte dieser Parameter (nach Identifizierung V-Familie) noch zu bestimmen (schätzen) - analog Situation a) - Diesbezügliche Verfahren vgl Abschn. 5.2

uU kann schon vor Parameterschätzung Hypothese V-Typ verworfen werden; so bei V-Familien, deren Mitglieder ausschließlich über

- Translation
- Dehnung / Stauchung auseinander hervorgehen; zB: N

Dazu (wieder) "visuelle" Methode: probability plot

 Grundidee probability plot: Vergleich der Quantile zweier Verteilungen

 dabei q-Quantil y_q (0<q<1) der Verteilung einer ZV Y definiert über

$$FY(y_q) = q$$

dh bei kontinuierlichem, streng monotonem FY
 $y_q := FY^{-1}(q)$

 zwei ŻV X,Y genau dann identisch verteilt, wenn all ihre Quantile x_q,y_q übereinstimmen

Graph x_q versus y_q ist dann (Ursprungs-) Gerade (mit Steigung 1)

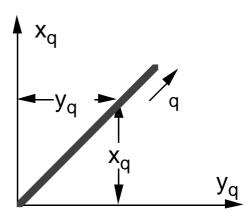


Abbildung 5.1.4

- hängen X und Y über lineare Transformation

$$X = a \cdot Y + b$$
 a>0 zusammen, dann

$$FX(x) = P[X x]$$

$$= P[a Y+b x]$$

$$= P[Y \frac{x-b}{a}]$$

$$= FY(\frac{x-b}{a})$$

und Graph x_q versus y_q ist Gerade (aus der sogar a und b abschätzbar)

konkrete Aufgabe hier:

visueller Vergleich

- empirische Verteilungsfunktion F*Y(y) aus Stichprobe
- hypothetische, analytische Verteilungsfunktion FY(y) aus visueller Identifikation

auf Basis jeweiliger Quantile

- y*_q für F*Y(y)y_q für FY(y)

Falls Hypothese: $F^*Y(y) = FY(y)$ zutreffend, sollte Graph y_q versus y_q^* (= "probability plot") Ursprungsgerade der Steigung 1 ähneln

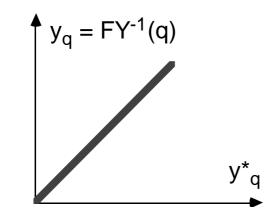


Abbildung 5.1.5:probability plot

- für konkrete Aufgabe ist (entsprechend Annahmen)
 - (Abszisse)
 - i/n-Quantil der Y-Vert'g gleich FY (Ordinate)

Zu inspizierender Graph hat Aussehen:

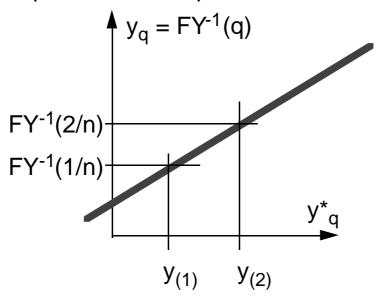


Abbildung 5.1.6: probability plot als Beurteilungsgraph

- danach
 - Hypothese $F^*Y(y) = FY(y)$ nicht abzulehnen. falls Punkte "so ungefähr" auf Winkelhalbierender
 - F*Y(y) und FY(y) nur durch **Hypothese** Translationsparameter a und Dehnungsparameter b unterschieden nicht abzulehnen. falls Punkte "so ungefähr" auf Gerade

Hypothese ablehnen, sonst: "Ahnung FY(y) war falsch"

5.2 Schätzung von Verteilungsparametern

Sei Y kontinuierliche Zufallsvariable, (für diskrete ZV: vgl Literatur)

deren Verteilungstyp bekannt / identifiziert sei
 (zumindest im Sinne "wohlbegründeter" Hypothese,
 vgl Abschn. 5.1),
 etwa durch funktionale Form ihrer Dichte

deren Parameter

$$\underline{\mathbf{Q}} = (1, 2, \dots, p)^{\mathsf{T}}$$

aber nicht bekannt, also zu bestimmen sind,

zu schätzen sind aus vorliegender Y-Stichprobe

$$(y_1, y_2, ..., y_n)$$

Für Aufgabe verfügbar diverse statistische Verfahren, hier vorgestellt:

- Momentenmethode
- maximum likelihood Methode

Momentenmethode

bedient sich der k-ten Momente von Y
 µ_k := E[Y^k]

bzw ihrer erwartungstreuen Schätzer (vgl Abschn. 4.1)

$$\tilde{\mu}_k := \frac{1}{n} \quad {}^n_1 \ \Upsilon_i^k$$

bzw diesbezüglicher Schätzwerte μ_k*

Parameter j lassen sich oft ausdrücken als Funktionen der Momente

$$j = j(\mu_1, \mu_2, ..., \mu_p)$$
 $j = 1, 2, ..., p$

- Momentenmethode
 - substituiert (in diesen Funktionen)

Momentenschätzer für Momente

- gewinnt so Parameterschätzer

$$\tilde{j} = j(\tilde{\mu}_1, \tilde{\mu}_2, ..., \tilde{\mu}_p)$$
 $j = 1, 2, ..., p$

 gewonnene Schätzer nicht notwendig erwartungstreu, meist asymptotisch erwartungstreu und konsistent

(Erinnerung:

Schätzer für Größe heißt

- erwartungstreu, wenn E[~] =
- asymptotisch erwartungstreu, wenn $\lim_{n} E[^{\sim}] =$
- konsistent, wenn $\lim_{n} P[|^{\sim} | >] = 0 > 0$

oft dennoch keine "guten" Schätzer ("Form" Verteilung)

Beispiel: Exponentialverteilung

Dichtefunktion:

$$fY(y;) = \begin{cases} exp(-y) & y = 0 \\ 0 & y < 0 \end{cases}$$

erstes Moment:

$$\mu_1 = \int_0^{\infty} y e^{-y} dy$$

partielle Integration

$$= \left[-y \stackrel{1}{-} e^{-y} + \left(\stackrel{1}{-} \right) \int e^{-y} dy \right]_0$$

$$= \left[-y e^{-y} + \left(-\stackrel{1}{-} \right) e^{-y} \right]_0$$

$$= \left[-e^{-y} \left(y + \stackrel{1}{-} \right) \right]_0$$

$$= 1$$

- (folglich) Zusammenhang
 (erstes) Moment (μ₁) vs (einziger) Parameter ():
 = 1/μ₁
- Parameterschätzer, mit Momentenschätzer (4.1.4) :

$$^{\sim} = \frac{n}{n} Y_i$$

maximum likelihood Methode

- Erinnerung:
 - Parameter Q der Verteilung einer ZV Y,
 deren Typ bekannt, zB als Dichte fY(y;Q),
 zu schätzen aus Stichprobe (y₁*,y₂*,...,y_n*)
 (* für Stichprobenwerte zur Unterscheidung, wo nötig)
 - Stichprobe zu sehen als Realisierung einer mehrdimensionalen ZV Y := (Y₁,Y₂,...,Y_n)
 - alle Stichprobenvariablen identisch verteilt:
 fY_i(y_i;Q) fY(y_i;Q) i = 1,2,...,n
 - alle Stichprobenvariablen unabhängig verteilt:

$$f\underline{Y}(\underline{y};\underline{\hspace{0.5cm}}) = \int_{1}^{n} fY(y_{i};\underline{\hspace{0.5cm}})$$
wo $\underline{y} := (y_{1},y_{2},...,y_{n})$

Idee der Methode:

Parametervektor Q so wählen (bestimmen),
daß Beobachtung (y₁*,y₂*,...,y_n*)
in den Punkt maximaler Dichte,

– Maximum von f<u>Y(y;Q)</u> –
zu liegen kommt

Motivation: Umgebung dieses Punktes ist Bereich größter Beobachtungswahrscheinlichkeit

- Weg:
 - Maximierung der

maximum-likelihood-Funktion

$$L(\underline{\ }):=\begin{array}{c} n\\ 1 \end{array} fY(y_i;\underline{\ })$$

bezüglich Komponenten des Vektors Q

 notwendige Bedingung für Maximum mehrdimensionaler, differenzierbarer Funktion (sei für gemeinsame Dichte L(Q) vorausgesetzt) ist

$$\left(\frac{L}{i}\right) = (0)$$

woraus p Bestimmungsgleichungen für die j = 1,2,...,p folgen

- uU muß explizit auf Vorliegen
 Maximum / Minimum / Sattelpunkt geprüft werden
- diese Beziehungen

$$_{j} := l_{j}(\underline{y})$$
 $j = 1,2,...,p$

liefern, nach Substitution

des Stichprobenvektors y*

für den Variablenvektor y

die gesuchten maximum-likelihood-Schätzwerte

$$j^* := I_j(\underline{y}^*)$$
 $j = 1, 2, ..., p$

- praktische Anwendung
 - Logarithmus log(L(Q)) der likelihood-Funktion, sog. log-likelihood-Funktion

$$log(L(_)) = log(\binom{n}{1} fY(y_i;_))$$
$$= \binom{n}{1} log(fY(y_i;_))$$

hat wegen Monotonie der Logarithmus-Funktion Maximum an derselben Stelle wie likelihood-Funktion

- log(L(Q)) wird zur Bestimmung des Maximums, daraus folgend der Schätzer _j wegen "leichterer" Differenzierbarkeit (Summe!) gern anstelle L(Q) verwendet
- ist das Gleichungssystem
 zur Bestimmung der Schätzer ~
 j
 nicht explizit lösbar, kann Maximum auch auf
 numerischem Weg ermittelt werden
- maximum-likelihood-Schätzer
 - sind (erneut) nicht notwendig erwartungstreu, aber meist konsistent
 - besitzen zusätzlich (unter gewissen Voraussetzungen) die (wünschenswerte) Eigenschaft minimal möglicher (asymptotischer) Varianz (vgl Fish73, Mihr72, LaKe82)

Beispiel: (wieder) Exponentialverteilung

Dichtefunktion:

$$fY(y;) = \begin{cases} exp(-y) & y = 0 \\ 0 & y < 0 \end{cases}$$

log-likelihood Funktion:

$$\log L = \int_{1}^{n} \log(e^{-y_i})$$

partiell differenziert (einziger Parameter ist)

$$\frac{\log L}{1} = \frac{n}{1} \frac{(-y_i) e^{-y_i} + e^{-y_i}}{e^{-y_i}}$$
$$= \frac{n}{1} \frac{1 - y_i}{1}$$

- Maximumbedingung:

$$\frac{\log L}{\log L} = 0 \qquad \qquad n - \qquad y_i = 0$$

daraus Parameterschätzer und Parameterschätzwert

$$\sim = n/ \gamma_i$$
 $* = n/ \gamma_i^*$

 es ist "purer Zufall", daß in diesem Fall Momentenschätzer

und **MLE** (maximum likelihood estimator) übereinstimmen

5.3 Überprüfung der Paßgüte angepaßter Verteilungen

Modellierung ZV umfaßte (falls analytische Form gefragt)

(i) Identifizieren Verteilungstyp (aus Theorie, durch intelligentes "Raten",...)

(ii) Schätzen Verteilungsparameter (aus Stichprobe, vgl Abschn. 5.2)

Man sollte

- (iii) sich vergewissern, ob (und wie "gut")
 gefundene Verteilungsform (samt Parameterwerten)
 mit Basisdaten übereinstimmt
 - entscheiden können, welche von uU mehreren Alternativen aus (i,ii) im Hinblick auf "Paßgüte" vorzuziehen

Beispielsweise aus vorliegender Stichprobe (zB über Histogramm) für "CPU-Anforderungen von jobs (in Zeiteinheiten)"

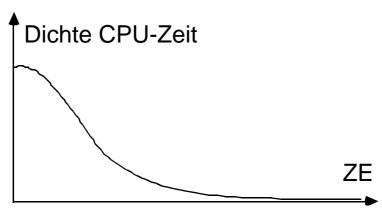


Abbildung 5.3.1: "erahnte" Dichte CPU-Zeit-Verteilung

Frage:

Exponentialverteilung oder Hyperexponentialverteilung oder Hypoexponentialverteilung oder COX-Verteilung oder Weibull-Verteilung

wählen??

Fragestellung in statistischer Form:

Liege vor: - Verteilungsdichte in funktionaler Form

(hier: identifizierte, angepaßte Dichtefunktion)

- Stichprobe (hier: Beobachtungsdaten)

Hypothese: Stichprobe ist aus dieser Verteilung "gezogen"

Frage: Muß Hypothese **verworfen** werden?

Oder könnte sie, alternativ dazu,

angenommen werden?

Beantwortung solcher Fragen durch statistische Anpassungstests / goodness-of-fit Tests

zwei konkrete Tests in Abschn. 5.3.1, 5.3.2

Zuvor:

Hinweise zu "statistischen Tests"

 Ziel ist (hier), hypothetische Aussagen über Verteilung einer ZV zu überprüfen anhand vorliegender Stichprobe (y₁,y₂,...,y_n)
 Beispiele: E[Y] > bestimmter Wert,

FY(y) ist Verteilungsfunktion

(dies wäre "Anpassungstest")

Zu überprüfende Aussage bezeichnet als
 Nullhypothese H₀
 dazu alternative Aussage als
 Alternativhypothese H₁ (= not H₀)

 Überprüfung anhand Stichprobe kann, wegen deren "statistischen Schwankens", immer zu falschen Folgerungen führen; dabei zwei "Typen" von "Fehlern" zu unterscheiden

Fehlertypen

- (i) (statistischer) Fehler 1.Art (-Fehler)
 wenn Entscheidung zugunsten H₁ getroffen,
 obwohl de facto H₀ gegeben
 bedeutet: fälschliches Verwerfen (der Nullhypothese)
- (ii) (statistischer) Fehler 2.Art (-Fehler)
 wenn Entscheidung zugunsten H₀ getroffen,
 obwohl de facto H₁ gegeben
 bedeutet: fälschliches Akzeptieren (der Nullhypothese)

```
Impliziert ein bestimmter Test
mit Wahrscheinlichkeit Fehler 1. Art,
heißt er "Test zum Niveau " (auch: "Niveau -Test")
(wo Niveau kurz für Signifikanzniveau),
unabhängig von Wahrscheinlichkeit eines Fehlers 2. Art
```

"Gütefunktion" / "Operationscharakteristika" / "power" von Tests zielen auf Aussagen über (bei gegebenem); häufig wenig darüber bekannt

Entscheidungsverfahren meist so, daß

Teststatistik $S(Y_1, Y_2, ..., Y_n)$

dh Funktion der Stichproben -Variablen,

beim Einsatz: -Werte

festgelegt, deren Werte

$$s(y_1, y_2, ..., y_n)$$

umso größer sind, je unwahrscheinlicher H₀ ist (und implizit: je wahrscheinlicher H₁ ist)

bei Vorliegen dieser Stichprobe

Zur Anwendung erforderlich:

- Bestimmung der Verteilung von S unter der Voraussetzung: H₀ zutreffend
- Ermittlung von "kritischen Werten" ca
 (bzw c1- : Vorsicht in Tafeln!)
 ab denen H₀ zum Niveau zu verwerfen

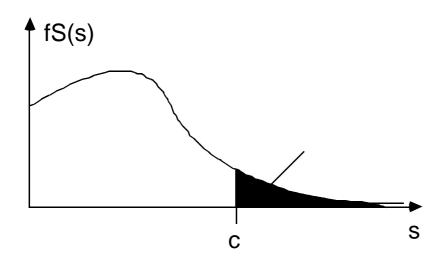


Abbildung 5.3.2: Prinzipskizze statistische Tests

nochmals:

Bestimmung c_a derart, daß P[$S>c_a$ | H_0] = oft spezielle Wahlen für -Werte:

= 0.05 "signifikant"

= 0.01 "hochsignifikant"

5.3.1 Der Chi-Quadrat- (χ^2 -) Test

Vorbereitung:

Chi-Quadrat- (2-) Verteilung ist in Statistik häufig verwendete Verteilungsfamilie

Definition:

Seien $Y_1, Y_2, ..., Y_k$

k unabhängige, identisch N(0,1)-verteilte ZV, dh

$$fY_i(y) = \frac{1}{\sqrt{2}} exp(-\frac{y^2}{2})$$
 $i = 1,2,...,k$

Dann ist

$$Y = \sum_{i=1}^{k} Y_i^2$$
 wieder ZV,

hat Verteilung ("so benannt") χ^2 -Verteilung mit k Freiheitsgraden

Familie der ²-Verteilung liegt tabelliert vor (keine explizite funktionale Form für Verteilungsfunktion)

Idee ²-Test:

- liege vor Stichprobe $\underline{\mathbf{y}} = (\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_n)$ dh n Beobachtungen einer ZV Y mit Dichte fY(y)
- werden Beobachtungen einsortiert in geschlossene Folge von Intervallen $[b_0,b_1),[b_1,b_2),\ldots,[b_{k-1},b_k)$

(analog Histogramm, aber gleiche Intervallbreiten nicht erforderlich)

und werden Beobachtungen je Intervall gezählt

$$z_i := |\{y_j : b_{i-1} \ y_j < b_i\}|$$
 $i = 1,2,...,k$

dann sollten relative Häufigkeiten

$$r_i := z_i/n$$
 $i = 1,2,...,k$ für hinreichend große Stichprobe (großes n) nahe theoretischen Wahrscheinlichkeiten

$$p_i := \int_{b_{i-1}}^{b_i} fY(y) dy$$

des Einnehmens dieser Intervalle liegen

Differenzen

$$z_i - n \cdot p_i$$

liefern Maße der Abweichungen je Intervall, ihr gewogenes quadratisches Mittel

$$d := {k \over {i=1}} {(z_i - n p_i)^2 \over n p_i}$$

ist (ein) mögliches Maß der "Gesamtabweichung"

- Erwartung:

je kleiner d, desto geringer Abweichung analytische Verteilung / Beobachtungen und umgekehrt

bzw:

je kleiner d, desto wahrscheinlicher ist y tatsächlich aus fY(y) gezogen

- jetzt die (standardmäßige) Überlegung:

wenn <u>y</u> tatsächlich aus fY(y) gezogen wird, welche Werteintervalle nimmt die ZV D (d ist deren Realisierung) mit welchen Wahrscheinlichkeiten ein?

m.a.W.:

Wie ist die Verteilung von D unter Hypothese FY(y)?

- Fallunterscheidung
 - sind Parameter der analytischen Y-Verteilung unabhängig von Stichprobe ermittelt (also **nicht** aus dieser geschätzt),

dann läßt sich zeigen, daß

D asymptotisch ²_{k-1}-verteilt

(für hinreichend große n approximativ ²_{k-1}-verteilt)

fD(d) also bekannt

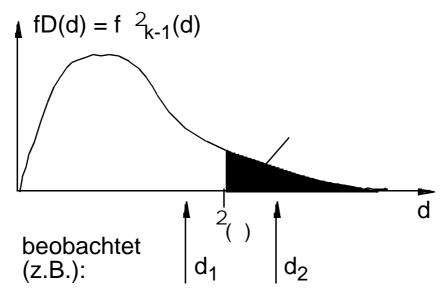


Abbildung 5.3.3: Skizze Entscheidungsverfahren

Realisierungen d von D (errechnete Abw.maße), die d > ²()
 erfüllen, treten bei zutreffender Hypothese auf mit Wahrscheinlichkeit

$$=\int_{\binom{2}{k-1}} f^{2}_{k-1}(x) dx$$

- d-Werte, die (bei zutreffender Hypothese) in lediglich wenig wahrscheinlichen Intervallen liegen zB $d > {}^2_{(0.1)}$, $d > {}^2_{(0.05)}$ als Grund interpretiert, **Hypothese zu verwerfen** (in Bsp.Skizze: d₂)
- dabei in Kauf zu nehmen, daß mit gewisser W'keit zB in 10% 5% aller Fälle (aller Schätzvorgänge)
 Verwerfung fälschlicherweise vorgenommen (Typ 1!)
- kleinere d-Werte:
 kein Anlaß, zu verwerfen,
 default: Hypothese zu akzeptieren
 (in Bsp.Skizze: d₁)
- dabei mit Typ 2 Fehlerwahrscheinlichkeit fälschlich akzeptiert
- kritische Werte aus Tabellen (Vorsicht: vs 1-)

- für bereits "benutzte" Stichprobe:
 - sind Parameter der analytischen Y-Verteilung derart aus Stichprobe ermittelt, daß Stichprobenwerte zunächst in k Intervalle sortiert, dann ML-Schätzer für p Parameter daraus ermittelt (wir hatten dies nicht getan)

bereits ausgeschöpft)

dann läßt sich zeigen, daß

D asymptotisch ²_{k-p-1}-verteilt

fD(d) also erneut bekannt

 sind Parameter der analytischen Y-Verteilung als ML-Schätzer aus nicht gruppierten Daten gewonnen,

dann läßt sich zeigen, daß

D asymptotisch

(im interessierenden Bereich)

"zwischen" 2_{k-p-1}- und 2_{k-1}-verteilt

FD(d) also eingegrenzt

- Entscheidungsverfahren für letzteren Fall

Beispiel: k=11, p=2, =0.05

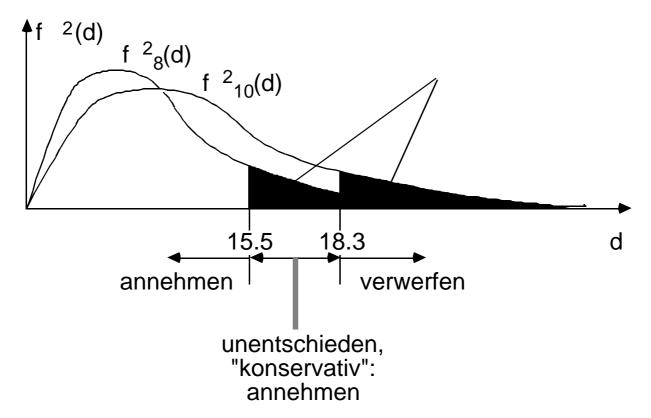


Abbildung 5.3.4: Skizze Entscheidungsverfahren

im "unentschiedenen" Fall (irgendwo dort liegt der wahre kritische Wert):

ist sog "konservative" Entscheidung:
"zögern zu verwerfen" annehmen
damit aber Typ 2 Fehler automatisch größer

Unterschied in praktisch häufigen Fällen (p eher klein, k eher groß) ohnehin gering

Praktische Hinweise
 (²_{k-1}-Verteilungen nur asymptotisch richtig)

 Intervalle nicht zu klein wählen, damit hinreichend viele Beobachtungen je Intervall

bei (Voraus-) Intervallfestlegung also $n\cdot p_i > 5$ wählen, dh

$$5 < n \int_{b_{i-1}}^{b_i} fY(y) dy = n (FY(b_i)-FY(b_{i-1}))$$

zB alle Intervalle gleichwahrscheinlich

$$p_i$$
 1/k $i = 1,2,...,k$
und damit
 $5 < n/k$, $n > 5 \cdot k$, $k < n/5$

- selbst bei vielen Daten Zahl Intervalle < 30
- i.allg.: für große Stichproben geeignet auch für diskrete Verteilungen anwendbar auch bei Parameterschätzung anwendbar

5.3.2 Der Kolmogoroff-Smirnoff-Test

- Grundidee:
 - empirische Verteilungsfunktion aus einer n-Stichprobe ist Treppenkurve (vgl Abschn. 5.1):

$$F^*Y(y) = (\#y_i \ y)/n$$
 ("#" für "Anzahl")

Abweichung

zwischen F*Y(y) aus Stichprobe und FY(y) hypothetischerweise zugrundeliegende Verteilungsfkt. sollte als Maß der "Paßgüte" brauchbar sein; "Abweichung" noch zu definieren

- Abweichung im Kolmogoroff-Smirnoff- (KS-) Sinn ist maximaler Abstand zweier Verteilungsfunktionen
 - Testgröße KS-Test (als Anpassungstest)
 bei n-Stichprobe ist entsprechendes
 D_n := max_y | F*Y(y)-FY(y) |
 (größter vertikaler Abstand der Funktionen, wo nötig, mit "sup" statt "max" definiert)
 auch: d_n := g(n,D_n)
 (mit speziellen Funktionen g(...), vgl unten)
 - Testhypothese

$$H_0$$
: $F^*Y(y) = FY(y)$ für alle y Alternativhypothese

 H_1 : $F^*Y(y)$ FY(y) für wenigstens ein y

Durchführung

Fallunterscheidungen:

falls Parameter von FY(y) nicht aus Stichprobe,
 ist Verteilung von D_n
 (unabhängig vom Typ der Verteilung von Y)

(unabhängig vom Typ der Verteilung von Y) bekannt und kritische Werte vertafelt

approximativer Test durchführbar mit

$$d_n := (\sqrt{n} + 0.12 + 0.11/\sqrt{n}) D_n$$

und einer (von n unabhängigen)

Tafel kritischer Werte {c } vgl LaKe82

wie üblich, H0 zu verwerfen falls

$$d_n > c$$
 (wo zB = 0.1, 0.05, 0.01)

 falls Parameter von FY(y) aus Stichprobe geschätzt, (und D_n sicher von Verteilungstyp abhängig) ist D_n-Verteilung nur bekannt für spezielle Y-Vert'gen so für:

* Normalverteilung (μ^* , *2 erwartungstreu geschätzt) mit approximativer Testgröße $d_n':=(\sqrt{n}-0.01+0.85/\sqrt{n})\ D_n$

und zugehörigen kritischen Werten (Tafel) {c'}

Exponentialverteilung (µ* erwartungstreu geschätzt)
 mit approximativer Testgröße

$$d_n'' := (\sqrt{n} + 0.26 + 0.5/\sqrt{n}) (D_n - 0.2/n)$$

und zugehörigen kritischen Werten (Tafel) {c" }

* Weibull-Verteilung (vgl Literatur)