8 Dynamische Optimierung

Motivation/Einführung: Dynamische Optimierung

Sequentielle Optimierung

Stufenoptimierung

zwei mögliche Pfade

Für Planungsprobleme, deren Entscheidungsgrundlagen **problemseitig** nicht initial vollständig vorliegen,

- sich "im Lauf der Zeit" offenbaren ⇒ "dynamisch" zu berücksichtigen sind, z.B. Lagerhaltung über mehrere Perioden
 - ⇒ stochastische Techniken fließen auf natürliche Weise ein (tatsächliche Unsicherheiten)

Für Planungsverfahren, welche Entscheidungen **verfahrensseitig** schrittweise treffen,

- "im Laufe des Verfahrens" (Divide & Impera) vervollständigen ⇒ sequentiell arbeiten,
 - z.B. Knapsack Problem mit Entscheidungsbaum ⇒ randomisierte Techniken fließen künstlich ein (Konvergenzgründe, Effizienzgründe ...)

Ziele:

- Kennen lernen dynamisch zu optimierender Problemstellungen
- Erkennen warum schrittweise Optimierungsverfahren sinnvoll sein können
- Stochastische Einflüsse behandeln können
- Optimalitätskriterien für dynamische Probleme kennen lernen
- Lösungsmethoden der dynamischen Optimierung kennen lernen

Gliederung

- 8.1 Beispiele zur Einführung
- 8.2 Problemstellung der dynamischen Optimierung
- 8.3 Bellman'sche Funktionsgleichungsmethode
- 8.4 Stochastische dynamische Optimierung

8.1 Beispiele zur Einführung

Beispiel 1 Lagerhaltung:

Ein Gut sei zu lagern,

- über endlichem diskreten Planungszeitraum: n Perioden
- Belieferung jeweils zu Beginn einer Periode mit Lieferzugang u_j≥0, in Periode j (j=1,...,n)
- Auslieferung (gemäß Nachfrage) zu Beginn Periode unmittelbar nach Belieferung, sei $r_j \ge 0$, Nachfrage in Periode j (j=1,...,n) Annahme: Auslieferung = Nachfrage
- Es resultiert Lagerbestand x_j zu Ende Periode j, unmittelbar vor Periode j+1, als Bestand zu Periode j (j=1,...,n)
- Gemäß Lagerbilanzgleichung (dynamische Nebenbedingung) gilt $x_{i+1} = x_i + u_i r_i$ (j= 1,..., n)
- Annahmen: $x_j \ge 0$ für j = 2, ..., n+1 und $x_1 = x_{n+1} = 0$

• anfallende Kosten:

- Belieferung: $h_B(u_j)$,,fix + variabel" Lagerung: $h_L(x_j)$ und
- Gesamt $g(x_i, u_i)$
- Optimierungsaufgabe:
 - bestimme Liefermengen u_i (Entscheidungsvariable)
 - unter Einhaltung der Nebenbedingungen / Annahmen
 - derart dass Gesamtkosten minimal (bei gegebenen Nachfragen r_i => eigentlich kein dynamisches Problem)

Formal:
$$\min \sum_{j=1}^{n} g(x_{j}, u_{j})$$

 $udN \quad x_{j+1} = x_{j} + u_{j} - r_{j} \quad \text{für } j = 1, 2, ..., n$
 $x_{1} = x_{n+1} = 0$
 $x_{j} \ge 0 \text{ und } u_{j} \ge 0 \quad \text{für } j = 1, 2, ..., n$

Beispiel 2 Instandhaltung:

Ersatz verschlissener Systemkomponenten

- zu früh: großer Wertverlust
- zu spät: große Wartungskosten
- Endlicher Planungszeitraum: n Perioden
- Entscheidung zu Beginn der Periode
 - falls $u_i=1$ dann Ersetzung in Periode j für j=1,...,n
 - sonst $u_i=0$ und keine Ersetzung
- Resultat: Alter der Komponenten
 - zu Ende Periode j, unmittelbar vor Periode j+1
 - x_i enthält Alter der Periode j j=1,...,n
 - gemäß Zusammenhang (dynamische Nebenbedingung)
 - $x_{i+1} = x_i + 1$ falls nicht ersetzt
 - $x_{i+1} = 1$ falls ersetzt
 - daher $x_{j+1} = x_j (1 u_j) + 1$ für j = 1, ..., n
 - Annahme: $x_1 = 1$

• Anfallende Kosten

• Ersatz: $h_E(x_{i-1},u_i)$ Beschaffung - Restwert

• Wartung: $h_W(x_{i-1}, u_i)$

• Gesamt: $g(x_j, u_j)$

• Optimierungsaufgabe:

- bestimme Ersatzzeitpunkte j (Entscheidungsvariable u_i)
- unter Einhaltung der Nebenbedingungen / Annahmen derart, dass Gesamtkosten minimal werden.

Formal:

$$\min \sum_{j=1}^{n} g(x_{j}, u_{j})$$

$$udN \quad x_{j+1} = x_{j}(1-u_{j})+1 \quad \text{für } j=1,2,...,n$$

$$x_{1} = 1$$

$$x_{j} \in \{1,2,...,j\} \quad \text{für } j=2,...,n$$

$$u_{j} \geq 0 \quad \text{für } j=1,2,...,n$$

Beispiel 3 Rucksack-Problem:

Zur Erinnerung

n Gegenstände mit Gewichten $a_i > 0$ (j=1,...,n)

und Werten
$$c_i > 0$$
 $(j=1,...,n)$

Maximalgewicht $a_{max} > 0$

gepackte Werte-Summe zu maximieren

Entscheidungsvariablen (hier)

u_i=1 Gegenstand j wird eingepackt

u_i=0 Gegenstand j wird nicht eingepackt

Formal:

$$\max \sum_{j=1}^{n} c_{j} u_{j} \quad udN \quad \sum_{j=1}^{n} a_{j} u_{j} \leq a_{max} \quad und \ u_{j} \in \{0,1\} \quad \text{für } j = 1,2,...,n$$

"künstliche" Dynamisierung:

- Gegenstände ("irgendwie") geordnet
- Einpacken (oder nicht) "in Stufen"
 - auf Basis des noch verfügbaren Gewichtsrestes x_i
 - zu Ende Periode j-1, unmittelbar vor Entscheidung u_j
- resultierend in Gewichtsresten gemäß Zusammenhang (dynamische Nebenbedingung) $x_{j+1}=x_j$ a_ju_j (für j=1,...,n) initale Gewichtsreserve: $x_1=a_{max}$

Formal:

$$\max \sum_{j=1}^{n} c_{j} u_{j}$$

$$udN$$

$$x_{j+1} = x_{j} - a_{j} u_{j} \text{ für } j = 1,2,...,n$$

$$0 \le x_{j+1} \le a_{max}$$

$$u_{j} \in \{0,1\} \text{ für } x_{j} \ge a_{j} \text{ und } u_{j} = 0 \text{ für } x_{j} < a_{j}$$

8.2 Problemstellung der dynamischen Programmierung

Formalisierungen der Beispiele

- zwar sehr problemabhängig (kein Automatismus)
- aber weitgehend ähnlich d.h.
- Systembetrachtung über endlichen Planungszeitraum, wird eingeteilt in Perioden / Stufen j (j=1,...,n)
- zu Beginn Periode j (mit Beendigung Periode j-1) ist System im Zustand x_i (Zustandsvariable)
- zu Beginn Planungszeitraum herrscht Anfangszustand $x_1=x_a$
- in Periode j wird Entscheidung u_j getroffen (u_i ist Entscheidungsvariable / Steuervariable),
- resultiert zu Folgezustand $x_{j+1} = f_j(x_j, u_j)$ (abhängig vom Vorzustand und Entscheidung)
- und Kosten / Erlösen (rewards) $g_j(x_j, u_j)$ (abhängig vom Vorzustand und Entscheidung)

Restriktionen bestehen (potenziell)

- in Form erlaubter (nichtleerer) Steuerbereiche $U_j(x_j)$, $u_j \in U_j(x_j) \neq \emptyset$ (abhängig von Vorzustand)
- in Form erlaubter (nichtleerer) Zustandsbereiche X_{j+1} , $x_{j+1} \in X_{j+1} \neq \emptyset$ wobei $X_1 = \{x_1\}$
- Steuerbereiche $U_j(x_j)$ und Zustandsbereiche X_{j+1} <u>fallabhängig</u> eindimensional / mehrdimensional, reellwertig / ganzzahlig / zweiwertig,
- Funktionen f_j , g_j (dementsprechend) erklärt auf D_j := $\{(x,u)|\ x\in X_j,\ u\in U_j(x)\}$
- Optimierungsaufgabe besteht aus Minimierung Kosten (Maximierung Erlösen) über gesamten Planungszeitraum
 - hier vorrangig Kostenminimierung betrachtet

$$\min \sum_{j=1}^{n} g_{j}(x_{j}, u_{j}) \quad \text{udN} \quad x_{j+1} = f_{j}(x_{j}, u_{j}) \text{ für } j = 1, 2, ..., n \text{ und } x_{1} = x_{a}$$

kann sehr komplex sein! $x_{j+1} \in X_{j+1}$ und $u_j \in U_j(x_j)$ für j = 1, 2, ..., n

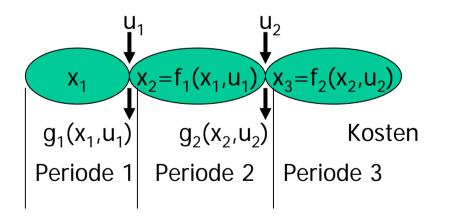
Struktur der vorgestellten Beispiele

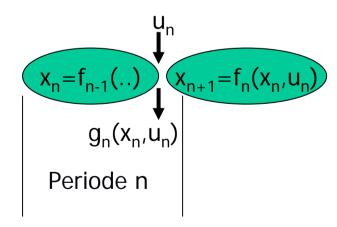
	Beispiel 1	Beispiel 2	Beispiel 3
	Lagerhaltung	Erneuerung	Rucksack
X_{j}	reellwertig Bestand	ganzzahlig Alter	reellwertig Kap.
X_{j}	\mathbb{R}_{+} für j=2,,n	{1,,j-1} für	[0,a _{max}] für
	$X_0 = X_{n+1} = \{0\}$	$j=1,,n+1, X_1=\{0\}$	$j=2,,n+1, \ X_1=\{a_{max}\}$
u_j	reellwertig	binär	binär
$U_j(x_j)$	\mathbb{R}_{+}	{0,1}	{0,1}
$f_j(x_j,u_j)$	$x_j + u_j - r_j$	$x_j(1-u_j)+1$	$x_j - a_j u_j$
$g_j(x_j,u_j)$	$h_{\mathrm{B}}(u_{\mathrm{j}}) + h_{\mathrm{L}}x_{\mathrm{j}}$	$h_{E}(u_{j},x_{j}) + h_{W}(u_{j},x_{j})$	-c _j u _j
	Kosten	Kosten	Nutzen (zu maximieren!)

Problemstellung (wie beschrieben) deckt nicht den allgemeinsten Fall, da:

- f_i und g_i nur von Vorzustand und Entscheidung abhängig sind
 - wird in stochastischen Modellen "Markov sch" heißen
 - ist durch Definition "Zustand" immer erreichbar
- f_i und g_i deterministisch definiert
 - Änderung wird zu stochastischen Modellen führen
- "Zeit" –Betrachtung eingeschränkt, da
 - in Perioden ablaufend (implizit: gleiche Länge?)
 - Zustandsübergänge "sprunghaft" geschehen: "zeitdiskrete" Modelle
 - beschränkt, endlich
 - ...

Veranschaulichung (Entscheidungszeitpunkte hierdurch nicht festgelegt)





Problemstellung verfolgt System über Zeit / über Stufen

- auf Basis einer Entscheidungsfolge (Politik / Steuerung) u₁,...,u_n
- welche zu (zugehöriger) Zustandsfolge $(x_1,...,x_n,x_{n+1})$ führt, wobei $x_1:=x_a$ und $x_{j+1}:=f_j(x_j,u_j)$ j=1,...,n

Eigenschaften

- <u>zulässige</u> Politik / Zustandsfolge
 - genügt Nebenbedingungen
 - generiert zulässige Lösung
- <u>optimale</u> Lösung / Politik / Zustandsfolge (Existenz vorausgesetzt)
 - ist zulässig
 - erreicht Optimierungsziel

Sind Funktionen f_j , g_j für j=1,...,nund Zustands-, Steuerbereiche X_{j+1} , U_j für j=1,...,n gegeben,

- dann hängt optimale Lösung sofern existent –
 offensichtlich vom Anfangszustand x₁ ab
- daher Bezeichnung für dieses Gesamtproblem $P_1(x_1)$.

Analog hängt optimale Lösung des (Teil-)Problems, welches nur Perioden j,...,n umfasst,

- ausschließlich von Anfangszustand x_i ab,
- daher Bezeichnung für dieses Teilproblem $P_j(x_j)$ für j=2,...,n

Wesentliche Voraussetzung:

• f_i, g_i nur von Vorzustand und Entscheidung abhängig!

Existiere für Teilproblem $P_j(x_j)$ eine optimale Politik $(u^*_j, u^*_{j+1}, ..., u^*_n)$ mit resultierendem Minimalwert der Zielfunktion $v^*_j(x_j)$

Aussage:

• Wird das Folgeproblem $P_{j+1}(x_{j+1})$ mit Anfangszustand $x_{j+1} = x^*_{j+1} := f_j(x_j, u_j)$ betrachtet, so ergibt sich für $P_{j+1}(x^*_{j+1})$ als optimale Politik $(u^*_{j+1}, ..., u^*_n)$ mit Minimalwert (Teil-) Zielfunktion $v^*_{j+1}(x^*_{j+1})$

Beweisskizze:

• Wenn nicht, so gäbe es für $P_{j+1}(x^*_{j+1})$ bessere Politik $(u'_{j+1},...,u'_n)$ mit niedrigerem Wert $v'_{j+1}(x^*_{j+1})$ und folglich auch für $P_j(x_j)$ bessere Politik mit $(u'_j, u'_{j+1},...,u'_n)$ mit niedrigerem Wert

$$g_j(x_j, u_j^*) + v_{j+1}(x_{j+1}^*) < g_j(x_j, u_j^*) + v_{j+1}^*(x_{j+1}^*) = v_j^*(x_j^*)$$

=> Widerspruch zur Optimalitätsvoraussetzung für v*_j (x*_j)

Satz 8.1 (Bellman'sches Optimalitätsprinzip)

Sei $(u^*_1,...,u^*_j,...,u^*_n)$ eine optimale Politik für $P_1(x_1)$ und x^*_j Zustand (zu Beginn) Periode j, dann ist $(u^*_j,...,u^*_n)$ eine optimale Politik für $P_j(x^*_j)$ (d.h. optimale Folgeentscheidungen (ab j) sind unabhängig von Vorentscheidungen (vor j), allerdings abhängig von Anfangszustand x_i).

Der Beweis des Satzes folgt aus der Darstellung

$$v_{j}^{*}(x_{j}^{*}) = g_{j}(x_{j}, u_{j}^{*}) + v_{j+1}^{*}(x_{j+1}^{*})$$
 und

der Minimalität der beiden Wertefunktionen $v_{i}^{*}(x_{j}^{*})$ und $v_{i+1}^{*}(x_{i+1}^{*})$.

Allgemeine Darstellung durch Bellman'sche Funktionsgleichung:

$$v_{j}^{*}(x_{j}) = \min_{u_{j} \in U_{j}(x_{j})} \left\{ g_{j}(x_{j}, u_{j}) + v_{j+1}^{*}[f(x_{j}, u_{j})] \right\}$$

mit $v^*_{n+1}(x_{n+1}) := 0$ für alle $x_{n+1} \in X_{n+1}$

(wesentlich Voraussetzung für alles Folgende:

Existenz optimaler Lösungen)

8.3 Bellman'sche Funktionsgleichungsmethode

In direkter Anwendung der B´schen Funktionalgleichung, naheliegende Vorgehensweise (Alternativen existieren)

- rückwärts, also für j=n, n-1, ..., 1
 - startend mit $v^*_{n+1}(x^*_{n+1}) := 0$ und $x^*_{n+1} \in X_{n+1}$
 - erreicht man sukzessiv (und hält fest / speichert) $v^*_i(x^*_i)$ und $x^*_i \in X_i$ für j=n, n-1, ..., 1
 - wobei abschließend $v_1^*(x_1^*)$ das gesuchte Optimum ist.
 - wobei man jeweils zusätzlich die Minimalstelle $z^*_{j}(x_{j})$, die beste Entscheidung u_{j} des Klammerausdrucks der Gleichung $\left\{g_{j}(x_{j},u_{j})+v^*_{j+1}[f(x_{j},u_{j})]\right\}$

festhält, so dass für die Minimalstelle gilt

$$g_{j}(x_{j}, z^{*}_{j}(x_{j})) + v^{*}_{j+1}[f(x_{j}, z^{*}_{j}(x_{j}))]$$

$$= \min_{u_{j} \in U_{j}(x_{j})} \left\{ g_{j}(x_{j}, u_{j}) + v^{*}_{j+1}[f(x_{j}, u_{j})] \right\} = v^{*}_{j}(x_{j})$$

Folge (z*₁,...,z*_n) wird als **optimale Rückkopplungssteuerung** bezeichnet

Damit lässt sich "vorwärts" für j=1,2,…,n (in Verfolgung der Bestentscheidungen und der daraus resultierenden Zustände)

• die optimale Politik $(u^*_1,...,u^*_n)$ und die optimale Zustandsfolge $(x^*_1,...,x^*_{n+1})$ konstruieren, gemäß

$$x^*_1 = x_a => u^*_1 = z^*_1(x^*_1)$$
 $-> x^*_2 = f_1(x^*_1, u^*_1) => u^*_2 = z^*_2(x^*_2)$
 $-> \dots => u^*_n = z^*_n(x^*_n)$
 $-> x^*_{n+1} = f_n(x^*_n, u^*_n)$

Die berechnete Politik ($u^*_1,...,u^*_n$) und die Zustandsfolge ($x^*_1,...,x^*_{n+1}$) sind optimal für das Problem $P_1(x^*_1=x_a)$

Speicherung der Werte $v_j^*(x_j)$ und $z_j^*(x_j)$ für jeden Zustand x_j

Alternative Berechnung (Variante 2):

- Bestimme in der Rückwärtsberechnung nur die Funktionswerte $v^*_j(x_j)$ (nicht aber die optimalen Entscheidungen $z^*_j(x_j)$)
- Der optimale Funktionswert entspricht dem minimalen $v_1^*(x_1)$
- Bestimme in de Vorwärtsphase aus der Kenntnis der $v^*_j(x_j)$ die jeweils optimale Entscheidung, aus der sich der optimale Nachfolgezustand ergibt
- Beide Varianten bestehen aus einer Vorwärts- und einer Rückwärtsphase,
- die Rückwartsphase durchläuft
 - alle Zustände und
 - alle Wege zwischen Zuständen der Phase j+1 und j (j=1,...,n-1)
- die Vorwärtsphase
 - durchläuft den optimalen Pfad

Algorithmus zur dynamischen Optimierung (Variante 1):

Schritt I (Rückwärtsrechnung)

$$\begin{split} v^*_{n+1}(x_{n+1}) &:= 0 \text{ for all } x_{n+1} \in X_{n+1} \\ \text{For } j &= n \text{ downto } 1 \text{ do} \\ & \text{For all } x_j \in X_j \text{ do} \\ & v^*_{j}(x_j) \coloneqq \min_{u_j \in U_j(x_j)} \left\{ g_j(x_j, u_j) + v^*_{j+1}(f_j(x_j, u_j)) \right\} \; ; \\ & z^*_{j}(x_j) \coloneqq \text{argmin}_{u_j \in U_j(x_j)} \left\{ g_j(x_j, u_j) + v^*_{j+1}(f_j(x_j, u_j)) \right\} \; ; \end{split}$$

Schritt II (Vorwärtsrechnung)

$$x_{1}^{*} := x_{a}^{*};$$

For $j = 1$ to n do $x_{j+1}^{*} := f_{j}(x_{j}^{*}, z(x_{j}^{*}));$

Vorgehen erfordert keine speziellen Voraussetzungen an die Gestalt der Funktionen g_j und f_j!

Beispiel 1: Einfaches Lager- und Liefer-System

Einfaches Lager für einen Warentyp,

- das periodisch beliefert wird und aus dem periodisch ausgeliefert wird
- Planung / Verfolgung des Lagersystems für n = 4 Perioden
- beschränkte Lagerkapazität: max 2 "Stück"
- Lagerkosten: 0 vernachlässigt
- initiale Lagerbelegung: 0 leer
- beschränkte Belieferungskapazität: max 2 Stück / Periode
- Belieferungskosten saisonal schwankend, aber bekannt,
 - in Periode j: $q_i \in / \text{Stück } q_1 = 7, q_2 = 9, q_3 = 12, q_4 = 10$
- feste Auslieferungsmengen 1 Stück / Periode
 - mit Auslieferung aus Lager oder direkt aus Anlieferung
 - Auslieferungskosten: 0 vernachlässigt

Gesucht ist optimale Politik

- d.h. Entscheidungsfolge bzgl Belieferungsmengen u_i Stück / Periode j
- die zu Lagerzuständen x_j Stück zu Beginn Periode j führt
- die die Nebenbedingungen wahrt und
- die minimale Kosten $u_1q_1+u_2q_2+u_3q_3+u_4q_4$ verursacht

Formalisierung:

- Steuerbereiche grob $U_j(x_j) \equiv \{0,1,2\}$ (j=1,...,4) könnten zustandsabhängig begrenzt werden durch volles Lager
- Zustandsbereiche grob $X_i = \{0,1,2\}$ (j=1,...,4)
 - davon abweichend begrenzt Initialzustand $X_1=\{0\}$ sinnvoller Endzustand $X_5=\{0\}$

I.a. tritt ganz X als Menge möglicher Endzustände auf! Randbed: v*_{n+1}(x_{n+1})=0

• Zustands-(Transformations-)Funktionen

$$(x_{i+1}=)$$
 $f_i(x_i,u_i) = x_i + u_i - 1$

$$(j=1,...,4)$$

Kostenfunktionen

$$g_j(x_j, u_j) = u_j q_j$$

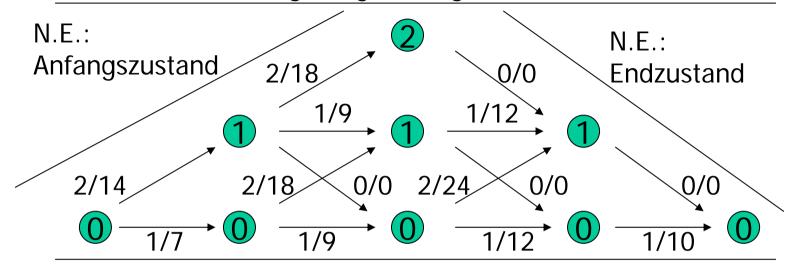
$$(j=1,...,4)$$

Zustandsbereiche endlich

- Veranschaulichung des Problemraums mittels attributierten Digraphen möglich
- Darstellung der (diversen) Funktionen im Verfahrensverlauf mittels Tabellen sinnvoll

Veranschaulichung des Problemraums

Nicht erreichbar: Lagerbegrenzung



Nicht erreichbar: Lagerbegrenzung

Durchführung: Bellman'sche Funktionalgleichungsmethode mit

$$\text{Schlüsselbeziehung:} \quad v_j^*(x_j) = min_{u_j \in U_j(x_j)} \left\{ \ g_j(x_j, u_j) + v_{j+1}^*[f(x_j, u_j)] \ \right\}$$

Rückwärtsentwicklung, Periode 4

X_4	u_4	$x_5 = f_4(x_4, u_4)$	$v*_{5}(x_{5})$	$g_4(x_4,u_4)$	$v_4(x_4,u_4)$	$z^*_{4}(x_4)$
0	0	-1				
	1	0	0	$q_4 = 10$	10*	1
	2	1				
1	0	0	0	0	0*	0
	1	1 Lager	r muss bei			
	2	2 Perio	ode 5 leer		also fü	r Periode 4
2	0	1	sein!			mögliche
	1	2				ände mit optimalen
	2	3			_	olitiken

unzulässiger Bereich

optimale Werte

Zur Erinnerung:

$$g_j(x_j, u_j) = u_j q_j$$

 $q_1=7$, $q_2=9$, $q_3=12$, $q_4=10$

Rückwärtsentwicklung, Periode 3

X_3	u_3	$x_4 = f_3(x_3, u_3)$	$v_{4}^{*}(x_{4})$	$g_3(x_3,u_3)$	$v_3(x_3,u_3)$	$z^*_{3}(x_3)$
0	0	-1				
	1	0	10	$q_3 = 12$	22*	1
	2	1	0	$q_3 = 12$ $2q_3 = 24$	24	
1	0	0	10	0	10*	0
	1	1	0	$q_3 = 12$	12	
	2	2				
2	0	1	0	0	0*	0
	1	2	oriodo 4 o	rlaubt		
	2		Periode 4 e nur Zustän			

unzulässiger Bereich

optimale Werte

Zur Erinnerung:

$$g_j(x_j, u_j) = u_j q_j$$

 $q_1=7, q_2=9, q_3=12, q_4=10$

und 1

Rückwärtsentwicklung, Periode 2

X_2	u_2	$x_3 = f_2(x_2, u_2)$	$v^*_{3}(x_3)$	$g_2(x_2,u_2)$	$v_2(x_2,u_2)$	$z^*_2(x_2)$
0	0	-1				
	1	0	22	q ₂ =9	31	
	2	1	10	$q_2=9$ $2q_2=18$	28*	2
1	0	0	22	0	22	
	1	1	10	$q_2 = 9$	19	
	2	2	0	$q_2=9$ $2q_2=18$	18*	2
2	0	1	10	0	10	_
	1	2	0		9*	1
	2	3 P	eriode 3 e	rlaubt		

unzulässiger Bereich

optimale Werte

Zur Erinnerung:

$$g_j(x_j, u_j) = u_j q_j$$

 $q_1 = 7, q_2 = 9, q_3 = 12, q_4 = 10$

Zustände 0,1,2

Rückwärtsentwicklung, Periode 1:

X_1	u_1	$x_2 = f_1(x_1, u_1)$	$v^*_{2}(x_2)$	$g_1(x_1,u_1)$	$v_1(x_1,u_1)$	$z^*_1(x_1)$
0	0	-1				
	1	0	28	$q_1=7$	35	
	2	1_	18	$2q_1=14$	32*	2

unzulässiger Bereich

optimale Werte

Periode 2 erlaubt nur Zustände 0 und 1 Zur Erinnerung:

$$g_j(x_j, u_j) = u_j q_j$$

 $q_1 = 7, q_2 = 9, q_3 = 12, q_4 = 10$

Vorwärtsentwicklung:

$$x_{1}^{*}=0 \Rightarrow u_{1}^{*}=2 \rightarrow x_{2}^{*}=1 \Rightarrow u_{2}^{*}=2 \rightarrow x_{3}^{*}=2 \Rightarrow u_{3}^{*}=0 \rightarrow x_{4}^{*}=1 \Rightarrow u_{4}^{*}=0 \rightarrow x_{5}^{*}=0$$

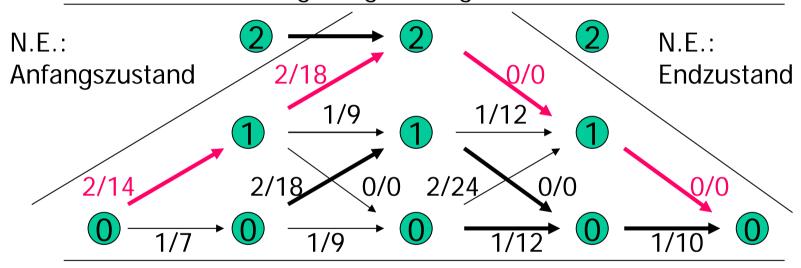
- \Rightarrow optimale Politik: (2,2,0,0) und optimale Zustandsfolge: (0,1,2,1,0)
- \Rightarrow optimales Ergebnis $v_1^*(0) = 32$

Veranschaulichung der algorithmischen Lösung

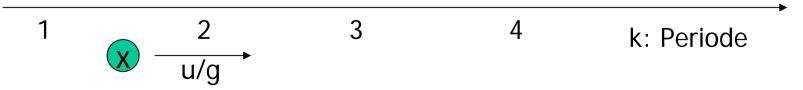
Damit optimale Politik bekannt

optimal für $P_j(x_j)$, auf optimaler Entscheidungsfolge optimal für $P_j(x_j)$, nicht auf optimaler Entscheidungsfolge

Nicht erreichbar: Lagerbegrenzung



Nicht erreichbar: Lagerbegrenzung



Beispiel 2: Spielproblem Verkaufsplanung

Annahmen des Beispiels praktisch nicht voll motivierbar Planung der Verkaufsmengen

- für 1 Typ von Gut
 - dessen Verfügbarkeitsmenge kontinuierlich anwächst
 - dessen Verkauf i. w. von erzielbaren Erlösen bestimmt ist
- Planung / Verfolgung des Verkaufssystems in Perioden für n = 3 Perioden
 - Gut sei kontinuierlich teilbar (kein Stückgut, sondern z.B. Öl,Gas)
 - => Verfügbarkeits-, Verkaufsmengen kontinuierlich
- Verkaufsmenge je Periode $u_i \in \mathbb{R}_+$ ME in Periode j
 - Verkauf erfolgt unmittelbar nach Beginn Periode

- Verfügbarkeitsmenge wächst (irgendwie) im Verlauf der Periode mit Faktor a (hier: a=2) mit Verfügbarkeitsmenge $x_j \in \mathbb{R}_+$ ME zu Beginn Periode j => offensichtlich $0 \le u_j \le x_j$
- Zustandsfunktionen $(x_{j+1}=)$ $f_j(x_j,u_j)=a$ (x_j-u_j) für j=1,2,3Anfangsbestand sei $x_1=1$
- erzielbare Erlöse $g_i(x_i,u_i)$ GE in Periode j
 - wachsen unterlinear mit Verkaufsmenge,
 - aber in jeder Periode identisch
 - gemäß $g_i(x_i,u_i) = \sqrt{u_i}$ für j=1,2,3
- Gesucht: optimale Politik
 - besteht aus Entscheidungen bzgl Verkaufsmengen u_j ME in Periode j
 - führt zu Beständen x_i ME zu Beginn Periode j
 - wahrt die Nebenbedingungen
 - erreicht maximale Erlöse $\sqrt{u_1} + \sqrt{u_2} + \sqrt{u_3}$

Formalisierung.

• Steuerbereiche
$$U_j(x_j) = [0,x_j]$$
 für j=1,2,3

• Zustandsbereiche
$$X_1 = \{1\}$$
, $X_j = \mathbb{R}_+$ für $j = 2,3,4$

- Zustands-(Transformations-)Funktionen $(x_{i+1}=)$ $f_i(x_i,u_i)=a\cdot(x_i-u_i)$ für j=1,2,3
- Kostenfunktionen $g_j(x_j, u_j) = \sqrt{u_j}$ für j=1,2,3

Im Gegensatz zu den bisherigen Beispielen kontinuierlicher Zustandsraum und Entscheidungsraum!

Durchführung Bellman'sche Funktionalgleichungsmethode angepasst an "Maximierung" und Problem

$$v_{j}^{*}(x_{j}) = \max_{u_{j} \in U_{j}(x_{j})} \left\{ g_{j}(x_{j}, u_{j}) + v_{j+1}^{*}[f(x_{j}, u_{j})] \right\}$$

$$= \max_{0 \le u_{j} \le x_{j}} \left\{ \sqrt{u_{j}} + v_{j+1}^{*}[2(x_{j} - u_{j})] \right\}$$

Einige Vorüberlegungen:

$$w(u) := \sqrt{[u]} + \sqrt{[c(x-u)]}$$
 mit $c > 1$ und $x \ge 0$ fest

$$z(x) := u^{+} \text{ und } u^{+} = \max [w(u); 0 \le u \le x]$$

w(u) strikt konkav über [0,x]

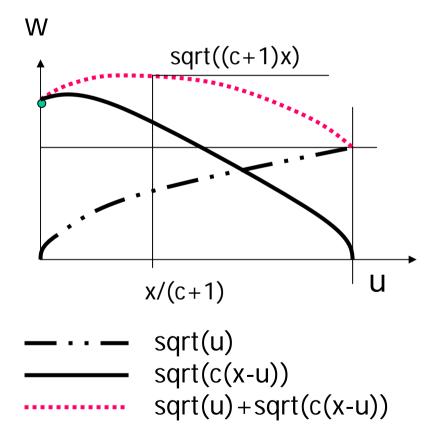
=> Extremstelle in [0,x] ist Maximum

Bestimmung der Extremstelle durch Nullsetzen der ersten Ableitung:

$$(0 =) \quad w'(u) = \frac{1}{2\sqrt{u}} - \frac{c}{2\sqrt{c(x-u)}}$$

$$c\sqrt{u} = \sqrt{c(x-u)} \implies u^{+} = \frac{x}{c+1}$$

$$w(u^{+}) = \sqrt{\frac{x}{c+1}} + \sqrt{c} \frac{x(c+1) - x}{c+1} = \sqrt{(c+1)x}$$



Rückwärtsentwicklung:

Periode 3:

- vereinbarungsgemäß ist v*₄(x₄)=0
- und daher $v*_3(x_3) = \max_{0 \le u_3 \le x_3} \{\sqrt{u_3} + 0\}$
- $v*_3(x_3) = \sqrt{x_3} z*_3(x_3) = x_3$ (zu Ende alles verkaufen)

Periode 2:

- $v*_2(x_2)=\max_{0\leq u_2\leq x_2}\{\sqrt{u_2}+\sqrt{[2(x_2-u_2)]}\}$
- Maximalstelle? aus Vorüberlegungen, für c=2, $v^*_2(x_2) = \sqrt{3}x_2$ $z^*_2(x_2) = x_2/3$

Periode 1:

- $v*_1(x_1)=max_{0\leq u_1\leq x_1}\{\sqrt{u_1}+\sqrt{[6(x_1-u_1)]}\}$
- Maximalstelle ? aus Vorüberlegungen, für c= 6 $v*_1(x_1) = \sqrt{7}x_1$ $z*_1(x_1) = x_1/7$

Vorwärtsentwicklung:

$$x_1^*=1 \Rightarrow u_1^*=1/7 \rightarrow$$

$$x_{2}^{*}=2(x_{1}^{*}-u_{1}^{*})=12/7 \Rightarrow u_{1}^{*}=x_{2}^{*}/3=4/7 \rightarrow$$

$$x_{3}^{*}=2(x_{2}^{*}-u_{2}^{*})=16/7 \Rightarrow u_{3}^{*}=x_{3}^{*}=16/7 \rightarrow$$

$$x_4^* = 2(x_3^* - u_3^*) = 0$$

- \Rightarrow optimale Politik (1/7,4/7,16/7)
- \Rightarrow optimale Zustandsfolge (1,12/7,16/7,0)
- \Rightarrow optimales Ergebnis $v*_1(1) = \sqrt{7} = 2,65$

Ausblick

Eine Reihe weiterer Aspekte wären noch zu betrachten:

- Aufwandsbetrachtungen
 - wg Rucksackproblem ist exponentieller Aufwand zu erwarten
 - wodurch entsteht der Rechenaufwand? n Stufen, je Stufe X_j Zustände mit Verzweigungsgrad U_j Binäres Rucksackproblem: für ganzzahlige Werte, $X=\{0,1,...,A\}$, Entscheidung binär, Algorithmus ist pseudopolynomial: O(nA)
 - Speicherplatzbedarf: n|X| Entscheidungen z*, für 2 Stufen Werte v*
- Verallgemeinerungen
 - bzgl Verknüpfungsoperationen bzgl stochastischer Modelle Inhalt des nächsten Abschnitts
- Anwendungen
 - Tricks, um Anwendungsprobleme geeignet zu "betrachten", so dass diese passend formalisierbar sind
 - bekannte / typische Anwendungen, Real-World Examples
 - •

Detaillierte Informationen z.B. in B. Bertsekas Kurs "Dynamic Programming" am MIT (http://www.athenasc.com/dpbook.html)

8.4 Stochastische dynamische Programmierung

Bisher untersucht "Deterministische" dynamische Optimierung System wird

- über endlichen Planungszeitraum aus n Perioden untersucht,
- wo zu Beginn von Periode j Systemzustand x_j herrschte, begrenzt auf Zustandsbereich Z_j mit $x_j \in Z_j \neq \emptyset$ (Benennungsänderung $X \rightarrow Z$) mit bekanntem Anfangszustand $x_1 = x_a$ und $Z_1 = \{x_1\}$
- wo in Periode j Entscheidung u_j getroffen wurde, begrenzt auf (zustandsabhängigen) Steuerbereich $U_j(x_j)$ und $u_j \in U_j(x_j) \neq \emptyset$
- wo aus Zustand x_i und Entscheidung u_i
 - nächster Zustand x_{i+1} resultierte gemäß $x_{i+1}=f_i(x_i,u_i)$
 - Kosten / Erlöse g_j resultierten gemäß $g_j(x_j,u_j)$
- Einführung probabilistischer / stochastischer Annahmen in Modelle dient
 - (formalisierter) Beherrschung von problemspezifischen Unsicherheiten
 - (aufwandsreduzierender) Einführung von Unsicherheiten in die Problemstellung

Entscheidung u_j auf Basis von Zustand x_j getroffen, führt (im Rahmen der Modellbeschreibung)

- nicht zu eindeutigem Folgezustand x_{i+1}
- sondern zu einem der erlaubten Folgezustände $x_{j+1} \in Z_{j+1}$

Motivierende Betrachtungen

In Bsp 1 könnten

- Auslieferungsmengen statt konstant 1 als schwankend angenommen sein, wobei die Ursache des Schwankens
 - entweder tatsächlich unbekannt (Unsicherheit)
 - oder nicht detailliert beschrieben (Aufwandsreduktion)
- Belieferungskosten statt je Periode j zu q_j €Stück fest als schwankend angenommen sein, wobei die Ursache des Schwankens
 - entweder tatsächlich unbekannt (Unsicherheit)
 - oder nicht detailliert beschrieben (Aufwandsreduktion)

Analog in Bsp 2

- Verfügbarkeitsmengen schwankend (z.B. wg Ausschuss)
- erzielbare Erlöse nicht präzise sondern in Grenzen schwankend

Unter stochastischen Annahmen

- wird erreichter Folgezustand x_{j+1} erfasst durch Zufallsvariable x_{j+1} , deren Verteilung die "Regelmäßigkeiten des Schwankens"/Häufigkeiten/Wahrscheinlichkeiten der realisierten Folgezustände $x_{i+1} \in Z_{i+1}$ beschreibt
 - wo bei endlichem / abzählbarem Zustandsbereich Z_{j+1} Verteilung charakterisiert (z.B.) durch Menge bedingter Wahrscheinlichkeiten
 - wo bei kontinuierlichem Zustandsbereich Z_{j+1} Verteilung charakterisierbar (z.B.) durch (bedingte) Dichtefunktion
- werden resultierende Kosten/Erlöse erfasst durch erweiterte Funktion g_j(x_j,u_j,x_{j+1}), d.h. zusätzlich von realisiertem Folgezustand abhängig)
 - bzw. als Zufallsvariable G_j mit zugehöriger (bedingter) Verteilung $\{PG_j(g|x_j,u_j)\}$ bzw $fG_j(g|x_j,u_j)$ falls Z_{j+1} diskret bzw kontinuierlich
 - andere Möglichkeit: gemeinsame Verteilung (G_j, X_{j+1})

Bellman'sche Funktionalgleichung

Unter diesen Annahmen (Ziel: Bellman'sche Fktgl.)

- ist der minimal Zielfunktionsbeitrag der Perioden j,...,n von realisiertem Zustand x_j zu Beginn Periode j startend ebenfalls als Zufallsvariable $V^*_j(x_j)$ zu charakterisieren, mit ihrer Verteilung und ihrem Erwartungswert $E[V^*_i(x_i)]$
- setzt sich der Erwartungswert des minimalen Zielfunktionsbeitrags (Perioden j,...,n) von Zustand x_j startend, bei Realisierung eines Folgezustands (additiv) zusammen gemäß $g_j(x_j,u_j,x_{j+1})+E[V^*_j(x_{j+1})]$ (Folgezustände treten gemäß Verteilung auf)
- ergibt sich die Bellman'sche Funktionalgleichung analog zur Ableitung der deterministischen Form bei diskreter Zustandsbereich Z_{i+1}

$$E[V *_{j}(x_{j})]$$

$$= \min_{u_{j} \in U_{j}(x_{j})} \sum_{x \in Z_{j+1}} \left\{ \left(g_{j}(x_{j}, u_{j}, x) + E[V *_{j+1}(x)]\right) PX_{j+1}(x \mid x_{j}, u_{j}) \right\}$$
© Peter Buchholz 2006 Modellgestützte Analyse und Optimierung

Kap. 8 Dynamische Optimierung

Spezialfall der stochastisch dynamischen Entscheidungsprozesse:

Markov'sche Entscheidungsprozesse mit endlichem Zustandsraum und Steuerbereich

Zustandsraum $X = \{1,...,m\}$ und Steuerbereich $U(i) = \{u_{i1},...,u_{is_i}\}$ (i = 1,...,m)

Sei x_i=i Zustand zu Beginn von Periode j

- System geht zu Beginn von Periode j+1 mit Wahrscheinlichkeit $p_{ik}(u_{i\sigma})$ in Zustand x_{j+1} =k bei Entscheidung $u_{i\sigma}$ über
- es gilt für die Übergangswahrscheinlichkeiten $p_{jk}(u_{i\sigma})$: $\sum_{k=1}^{m} p_{ik}(u_{i\sigma}) = 1.0 \text{ für alle } i \in X \text{ und } u_{i\sigma} \in U(i)$
- Übergangswahrscheinlichkeiten hängen nur vom Zustand und der gefällten Entscheidung ab (homogener Markov'scher Entscheidungsprozess)
- Erwartete Kosten der Entscheidung u_{io} in Zustand i:

$$E(g(i,u_{i\sigma})) = \sum_{k=1}^{m} p_{ik}(u_{i\sigma})g(i,u_{i\sigma},k)$$

g(i,u_{io},k) Kosten, die anfallen, wenn in Zustand i Entscheidung u_{io} zu einem Zustandsübergang nach k führt

Belman'sche Funktionsgleichung:

$$v_{j}^{*}(i) = \min_{\sigma=1,...,s_{i}} \left\{ E(g(i,u_{i\sigma})) + \sum_{k=1}^{m} p_{ik}(u_{i\sigma}) v_{j+1}^{*}(k) \right\}$$

Sei $\sigma_j^*(i)$ ein Entscheidung σ , für den das Minimum $v_j^*(i)$ angenommen wird

(also eine optimale Entscheidung im Zustand i für Periode j)

Bestimmung von $\sigma_{i}^{*}(i)$ und $v_{i}^{*}(i)$:

- Auswertung der Funktionsgleichung rückwärts von j = n bis 1 ausgehend von $v^*_{n+1}(i) = 0$ für i = 1,...,m
- Anschließende Vorwärtsberechnung von j=1 bis n ermittelt die optimale Politik und die dadurch auftretenden

Zustandswahrscheinlichkeiten (keine eindeutige Zustandsfolge!)

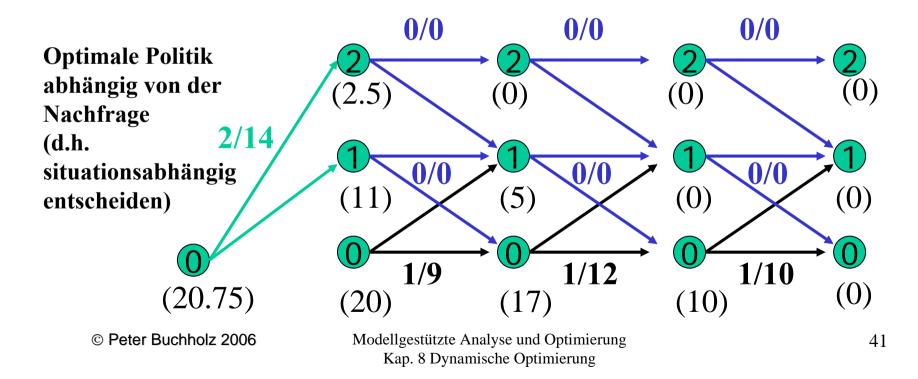
Vorgehen im Prinzip analog zum deterministischen Fall

Erweiterung des Beispiels von Folie 21-23

Zus. Annahme mit Wahrscheinlichkeit 0.5 wird ein Teil in der Periode ausgeliefert und mit Wahrscheinlichkeit 0.5 wird kein Teil ausgeliefert

Endzustand 0 am Ende der vierten Periode kann damit nicht gefordert werden!

Folgende Graphik zeigt nur die optimalen Entscheidungen in einem Zustand in der Form u/g



Bisherige Betrachtung fokusierte auf einen endlichen Planungshorizont und betrachtete den akkumulierten Gewinn oder die akkumulierten Kosten

Oft sollen Gewinne/Kosten über einen unendlichen Planungshorizont untersucht werden, dann ist das bisherige Vorgehen offensichtlich nicht anwendbar, da

- Gewinne/Kosten unendlich wären
- unendliche Zustandssequenzen analysiert werden müssten

Alternative Interpretation von Kosten/Gewinn:

- Erwartungswert pro Schritt
- Gewinne werden durch Diskontierungsfaktor $\alpha < 1$ geschmälert d.h. Gewinn x in k Perioden ist jetzt nur $\alpha^k \cdot x$ wert

Analysemethoden:

- Lineare Programmierung
- Politikiteration

Bestimmung des Erwartungswerts pro Schritt:

- v*_i(i) sind die minimalen Kosten im Zustand i nach j Schritten
- $c_i(i) = v*_i(i) / j$

Grundlagen zur Bestimmung optimaler Politiken:

Man kann zeigen (ohne dass wir es tun werden), dass

- $\lim_{j\to\infty} c^+_j(i) = c^+(i) = E(C^+)$ und $E(C^+)$ sind die minimalen erwarteten Kosten des Markov'schen Entscheidungsproblems mit unendlichem Planungshorizont sind
- eine stationäre optimale Politik $\sigma^+ = (\sigma^+(1),...,\sigma^+(m))$ existiert, so dass bei Wahl von Entscheidung $\sigma^+(i)$ in Zustand i bei einem unendlichen Planungszeitraum die erwarteten Kosten $E(C^+)$ auftreten
- $E(C^+)$ und σ^+ erfüllen die Gleichung $E(C) = \sum_{k=1}^m \pi(k) E(g(i, u_{i\sigma^+(i)}))$

mit
$$\pi(i) = \sum_{k=1}^{m} \pi(k) p_{ki}(u_{k\sigma^{+}(k)})$$
 und $\sum_{k=1}^{m} \pi(k) = 1$ stationäre Lösung

Annahme stationäre Lösung existiert (⇒ irreduzibler Markov-Prozess)

Darstellung als lineares Programm:

Sei $y_{i\sigma}$ ($i \in \{1,...,m\}$, $\sigma \in \{1,...,s_i\}$) die Wahrscheinlichkeit im Zustand i zu sein und Entscheidung σ zu treffen

Es gilt (lineare Nebenbedingungen):

$$\sum_{i=1}^{m} \pi(i) = \sum_{i=1}^{m} \sum_{\sigma=1}^{s_i} y_{i\sigma} = 1.0 \text{ und}$$

$$\sum_{\sigma=1}^{s_i} y_{i\sigma} = \sum_{i=1}^m \sum_{\sigma=1}^{s_i} y_{i\sigma} p_{ij}(\sigma)$$

Außerdem muss $y_{i\sigma} \ge 0$ gelten

Zielfunktion:
$$\min \sum_{i=1}^{m} \sum_{\sigma=1}^{s_i} y_{i\sigma} E(g(i, u_{i\sigma}))$$

Mittels Simplex-Algorithmus lösbar Variablenzahl:

$$\sum_{i=1,..m} s_i$$

Aus dem bisher gesagten folgt, dass für die optimale Lösung $y_{i\sigma} = 1$ für genau ein σ und für alle anderen $\rho \in \{1,...,s_i\} \setminus \{\sigma\}$ $y_{i\rho} = 0$

Lösung mittels Politikiteration:

Für eine Politik $\sigma = (\sigma(1),...,\sigma(m))$ gilt

$$G(\sigma) + v(i) = E(g(i, u_{i\sigma(i)})) + \sum_{k=1}^{m} p_{ik}(u_{i\sigma(i)})v(k)$$
 $(i = 1, ..., m)$

wobei
$$G(\sigma) = \sum_{k=1}^{m} E(g(k, u_{k\sigma(k)}))\pi(k)$$
 und $\pi(k) = \sum_{i=1}^{m} p_{ik}(u_{i\sigma(i)})\pi(i)$

Erläuterung des Zusammenhangs für eine feste Politik σ

Für große n gilt $V_n(i) \approx n \cdot G(\sigma) + V(i)$

und damit auch
$$v_n(i) - v_n(j) \approx v(i) - v(j)$$

Eingesetzt in die rekursive Beziehung ergibt sich (Vorsicht, es wird rückwärts von n aus gerechnet):

$$\begin{split} v_n(i) &= E(g(i,u_{i\sigma})) + \sum_{k=1}^m p_{ik}(u_{i\sigma(i)})v_{n-1}(k) &\Leftrightarrow \\ nG(\pmb{\sigma}) + v(i) &= E(g(i,u_{i\sigma})) + \sum_{k=1}^m p_{ik}(u_{i\sigma(i)})((n-1)G(\sigma) + v(k)) &\Leftrightarrow \\ G(\pmb{\sigma}) + v(i) &= E(g(i,u_{i\sigma})) + \sum_{k=1}^m p_{ik}(u_{i\sigma(i)})v(k) & & \end{split}$$

"Ausprobieren" aller möglichen Politiken führt zu einem Algorithmus mit Aufwand Πs_i (inakzetabel) Besser schrittweise Verbesserung der Politik

- 1. starte mit einer Politik $\sigma = (\sigma(1),...,\sigma(m))^T$ wähle eine gute Näherungspolitik oder wähle $\sigma(i)$ so dass $E(g(i,u_{i\sigma(i)})$ minimal
- 2. berechne die zugehörigen Werte $\mathbf{v} = (v(1),...,v(m))^T$ \mathbf{v} ist die Lösung des linearen Gleichungssystems

$$G(\pmb{\sigma}) = E(g(i,u_{i\sigma(i)})) + \sum\nolimits_{k=1}^{m} p_{ik}(u_{i\sigma(i)})v(k) - v(i) \quad (i = 1,...,m)$$

wobei v(m) = 0 gesetzt wird (sonst keine eindeutige Lsg.)

3. bestimme verbesserte Politik σ aus der folgenden Minimierung

$$min_{\sigma'\!(i)=1,\dots,s_{i}}\left(E(g(i,u_{i\sigma'\!(i)})) + \sum\nolimits_{k=1}^{m} p_{ik}(u_{i\sigma'\!(i)})v(k)\right) \quad \text{für } i=1,\dots,m$$

4. Falls $\sigma' = \sigma$ optimale Politik erreicht, sonst $\sigma = \sigma'$ und fahre bei 1. fort (es gilt dann $G(\sigma') < G(\sigma)$)

Analyse der Kosten bei Multiplikation mit Diskontierungsfaktor $\alpha < 1$ (spätere Kosten sind positiv)

Bellman'sche Funktionsgleichungen:

$$v^{+}_{j}(i) = \min_{\sigma=1,...,s_{i}} \left\{ E(g(i,u_{i\sigma})) + \alpha \cdot \sum_{k=1}^{m} p_{ik}(u_{i\sigma}) v^{+}_{j-1}(k) \right\}$$
mit $v^{+}_{0}(i) = 0$ für $i = 1,..., m$

Ziel:

Ermittlung einer optimalen Politik, so dass bei einem unendlichen Planungshorizont $\lim_{n\to\infty} v^+_n(i)$ minimiert wird (durch Diskontierung bleiben Kosten endlich!)

Mögliche Lösungsmethoden:

- Wertiteration
- Politikiteration

Wertiteration:

Man kann zeigen (ohne dass wir es tun werden), dass

- $\lim_{j\to\infty} v^+_j(i) = v^+(i)$ und $v^+(i)$ die minimalen diskontierten erwarteten Kosten des Markov'schen Entscheidungsproblems mit unendlichem Planungshorizont sind
- eine stationäre optimale Politik $\sigma^+ = (\sigma^+(1),...,\sigma^+(m))$ existiert, so dass bei Wahl von Entscheidung $\sigma^+(i)$ in Zustand i bei einem unendlichen Planungszeitraum die erwarteten Kosten $\mathbf{v}^+ = (\mathbf{v}^+_1,...,\mathbf{v}^+_m)$ auftreten
- v^+ und σ^+ erfüllen die Gleichungen

$$v^{+}(i) = E(g(i, u_{i\sigma^{+}(i)})) + \alpha \cdot \sum_{k=1}^{m} p_{ik}(u_{i\sigma^{+}(i)})v^{+}(k)$$

Werteiteration (schrittweise Approximation der optimalen Kosten):

- 1. Initialisiere $v_0^+(i) = 0$ für alle i = 1,...,m
- 2. Bestimme für jeden Zustand:

$$\begin{split} v_n^+(i) &= min_{\sigma_n^+(i) \in \left\{1, \dots, s_i\right\}} \left(E(g(i, u_{i\sigma_n^+(i)})) + \alpha \cdot \sum\nolimits_{k=1}^m p_{ik}(u_{i\sigma_n^+(i)}) v_{n-1}^+(k) \right) \\ &\text{und speichere gewählte Politik } \boldsymbol{\sigma}^+. \end{split}$$

3. Falls für vorgegebenes $\varepsilon > 0$:

$$|(v_n^+(i) - v_{n-1}^+(i))/v_n^+(i)| < \epsilon$$
 für alle $i = 1,...,m$, setze $\mathbf{v}^+ = \mathbf{v}_n^+$ und $\mathbf{\sigma}^+ = \mathbf{\sigma}_n^+$

Einige Bemerkungen zum Verhalten des Algorithmus:

- Die optimale Politik muss nicht erreicht werden
- Auch wenn das Abbruchkriterium erfüllt ist, kann die gefundene Lösung noch weit vom Optimum entfernt sein.
- Die Iterationen sind sehr effizient realisierbar, da keine Gleichungssysteme zu lösen sind.

Politikiteration:

Idee (auf Basis des Wissens, dass eine optimale Politik existiert):

- 1. starte mit einer Politik $\sigma = (\sigma(1),...,\sigma(m))^T$ wähle eine gute Näherungspolitik oder wähle $\sigma(i)$ so dass $E(g(i,u_{i\sigma(i)}))$ minimal
- 2. berechne die zugehörigen Werte $\mathbf{v} = (v(1),...,v(m))^T$ \mathbf{v} ist die Lösung des linearen Gleichungssystems

$$v(i) = E(g(i, u_{i\sigma(i)})) + \alpha \cdot \sum_{k=1}^{m} p_{ik}(u_{i\sigma(i)})v(k) \qquad (i = 1, ..., m)$$

3. bestimme verbesserte Politik σ' mit zugehörigen Werten v' (≤v) neue Politik σ' wird aus der folgenden Minimierung bestimmt

$$\begin{split} E(g(i,u_{i\sigma'(i)})) + \alpha \cdot \sum\nolimits_{k=1}^{m} p_{ik}(u_{i\sigma'(i)}) v(k) = \\ min_{\sigma=1,\dots,s_{i}} \left(E(g(i,u_{i\sigma})) + \alpha \cdot \sum\nolimits_{k=1}^{m} p_{ik}(u_{i\sigma}) v(k) \right) \end{split}$$

Falls $\sigma'=\sigma$ wurde die optimale Politik σ^+ erreicht \Rightarrow σ^+ wird immer nach endlich vielen Iterationen erreicht

Einige Bemerkungen zum Abschluss

- Politikiteration sollte verwendet werden, wenn
 - eine gute initiale Politik bekannt ist
 - der Zustandsraum relativ klein ist
- Werteiteration sollte verwendet werden, wenn
 - der Zustandsraum sehr groß ist
 - der resultierende Markov-Prozess nicht (immer) irreduzibel ist
- Weiter Möglichkeiten
 - Lineare Programmierung (als Erweiterung der Vorgehensweise bei der Berechnung erwarteter Kosten)
 - Hybride Ansätze als Mischung von Wert- und Politikiteration