Protocol Analysis using a timed version of SDL

Falko Bause, Peter Buchholz
Informatik IV, Universitit Dortmund
Postfach 50 05 00, FRG-4600 Dortmund 50

Abstract

A modified version of SDL (Timed SDL; TSDL) suitable for performance evaluation and
validation is presented. The modifications are done in a way, that TSDL is very close to SDL. A
prototypic version of a program package is described, which takes a TSDL model as input and
creates an internal representation of an equivalent Finite State Machine. Furthermore efficient
analysis algorithms for partial and exhaustive examination of the state space, described by the
TSDL model, are integrated into the program package, so that validation and performance
evaluation of TSDL models can be done automatically.

1. Introduction

In the recent years Formal Description Techniques (FDTs) have been developed for a
standardized specification of communication protocols. Examples for FDTs are Estelle
[ISO87a], LOTOS [ISO87b] and SDL [CCIT88]. The main goal of FDTs is to ensure a correct
specification and implementation. The use of FDTs allows the partial automation of the
validation and implementation of a given specification.

Another important aspect of communication protocol development is the performance analysis
of the protocol. Typical problems of protocol performance analysis are the estimation of
throughputs or the optimization of parameter settings (e.g. timeout length or buffer places). A
lot of work has been done in the area of protocol performance analysis, most of the techniques
are based on Markovian modelling of the protocol [DICH88,KRIT84,87]. The state space of a
Markov chain describing a realistic protocol can become very large, therefore approximative
techniques based on partially generation of the state space are very important, although those
techniques do not give exact results. However, the description of several techniques is usually
rather low level starting with the Markov chain description of the protocol. Although for general
performance analysis problems tools have been developed [POTI85], which allow a high level
specification of a model and an automatic mapping from the high level model description to the
low level analysis algorithms, tools including specialized algorithms and description languages
for protocol performance analysis exist only very rarely.

The specification, validation and performance analysis of a protocol using FDTs and
performance modelling tools requires two models. One model given in an FDT for the
specification and validation and another model for performance analysis. Amongst the effort of
writing two models there are several other problems, especially it is not clear if the two models
are really equivalent and the low level description of a performance model requires a lot of
knowledge about the analysis algorithms. Clearly it would be preferable to specify one model,

which can be used as a specification of the protocol and for validation and performance analysis
purposes. In order to reach this goal and to be consistent with current developments in protocol
specification, tools have to be developed which allow the automatic or partially automatic
implementation, validation and performance analysis from a given FDT description.

In this paper we describe a prototype version of a tool for the validation and performance
analysis of SDL specifications. Although we have not adressed the automation of the
implementation process, we think that these aspects can be integrated or the SDL description
can be used in tools supporting implementations. The SDL language has been chosen as a
representative for FDTs, because SDL seems to become the most widespread FDT and allows
the graphical and textual specification of a protocol. Unfortunately performance aspects are not
adressed in SDL (and the most other FDTs). The aspects of time and probability have to be
introduced into SDL to allow the performance analysis of SDL models. However this causes
the extension of the SDL syntax which has to be done with care to be as consistent as possible
with the given standard. A related approach adding performance aspects to FDTs is given in
[BOVASS].

The paper is structured as follows. In section 2 we introduce a timed version of SDL to allow
the mapping of SDL descriptions to Markov chains. Section 3 describes briefly the algorithms
used for performance analysis and validation of protocol specifications. Main attention has been
addressed to non-exhaustive techniques. The structure of a program package for analysing the
timed version of SDL is given in section 4. In section 5 an example is presented.

This paper is based on the work done by the members of a students group directed by the
authors. We wish to express our appreciation to all members of this group.

2. Timed SDL (TSDL)

Timed SDL (TSDL) is an extension of SDL [CCIT88], which is suitable to describe timing
aspects important for performance analysis. The extension is performed in a way that the SDL
version of CCITT is a real subset of TSDL. So protocol specifications in SDL are also valid
TSDL descriptions. Furthermore one of our goals was to introduce only slight modifications,
so that TSDL is very close to SDL. Using SDL descriptions, one can easily enrice his/her
model with timing aspects for performance evaluation.

Because SDL processes are Extended Finite State Machines (EFSM) [BEHO89, HOGRS89], it
is natural to put more information on the transitions of such a process. Typically some states are
vanishing states and the timeless transitions to other states are described by a discrete
probability function (cf. section 3). The other class of states are tangible states and are left with
a certain rate or after a specified time interval. Introducing probability and time is achieved by
the following modification to the SDL syntax.

<transition> ::= {<transitionstring> [<terminator statement>]}|
<terminator statement>
<terminator statement> ::= [<label>] [<valuation>] <terminator>
<end>
<valuation> ::= TRATE <expression> <end> |

TTIME <expression> <end> |
TPROB <expression> <end>

where the modified part of SDL’s syntax is written in bold. <expression> is a valid SDL
expression, which should be of type real. "TPROB <expression>" is the probability for this
transition. "TTIME <expression>" and "TRATE <expression>" are specifying the duration of
the transition. These constructs can be used equivalently, because "TTIME a" is equivalent to
"TRATE 1/a". The semantic difference between these syntactic constructs is based on the
analysis method. The following TSDL code illustrates the use of the <valuation>-expression.

STATE get_from_host;
PROVIDED TRUE;
TRATE A;
NEXTSTATE send;
ENDSTATE get_from_host;

STATE get;
INPUT message;
TPROB prob_damaged_message;
NEXTSTATE -;
INPUT message;
TPROB 1.0-prob_damaged_message;
NEXTSTATE send_to_host;
INPUT ack;
TPROB prob_damaged_ack;
NEXTSTATE -;
INPUT ack;
TPROB 1.0-prob_damaged_ack;
NEXTSTATE get_from_host;
ENDSTATE get;

One major difference between SDL and TSDL is the use and scope of identifiers. In contrast to
SDL, identifiers of TSDL can be declared at every hierarchical level, e.g. on block level or on
substructure level. The scope rules are similar to high level programming languages. Variables
declared at system level are global variables and can be used for the description of experiment
series, e.g.

SYSTEM example;

SIGNAL buffer (BOOLEAN), ack (BOOLEAN) ;

DCL timeout REAL := 20,
prob_err REAL := 0.001,
/* probabilty of damaged message */
rate_hs, /* rate host => sender */
rate_rh REAL := 32.0, /* rate receiver => host */
rate_sr REAL := 8.0, /* rate sender => receiver */
rate_ack REAL := 64.0; /* rate for acknowledge */
CHANNEL chan
FROM host TO wireblock WITH buffer;
FROM wireblock TO host WITH ack;

timeout, prob_err, rate_hs, rate_rh, rate_sr, rate_ack are global variables, which can be used to
specify experiment series to solve e.g. tuning problems (see the Control File in section 4 and
the example in section 5).

We also introduced a few constructs for inspecting a processes input queue and the state of a
process. This was done due to modelling convenience, because SDL offers no other possibility
of inspecting the messages in a queue than reading them. Using such constructs the description
of collisions is straight forward and easier to understand, which is demonstrated by an example
in section 5. In expressions the following extensions can be used:

- QUEUELEN gives the number of elements in a processes queue

- INSTATE(<state>) is true if the specified process is in state <state>.

- INQUEUE(<signal name>) is true if the queue contains the signal <signal name>.

Example: v > 5%j AND BLOCK b4/PROCESS pl A=4
AND PROCESS p3 INSTATE (waiting)
AND ((BLOCK bl/PROCESS p2 QUEUELEN = 0)
OR BLOCK bl/PROCESS pl INQUEUE (ack))

Modelling some examples using these extensions showed us that TSDL is suitable for the
description of timing aspects and that existing SDL descriptions can be easily transformed into
the timed version by specifying the missing rates and probabilities. So TSDL is very close to
the standard.

3. Algorithms for protocol analysis

Before we introduce the algorithms used for protocol analysis we give a brief overview of
results to be calculated and a more general framework for the analysis which will be further
investigated in the following section. The analysis consists of three main parts, the construction
of the state space, the validation and the performance analysis. Of course the three parts are not
performed sequentially, validation has to be done partially during state space generation and
when using a special non-exhaustive technique described below also performance analysis is
done during state space generation.

Every analysis starts with a fixed state of the protocol given by the states of all SDL processes.
The state space generation generates step by step all states of the protocol building the
successors of all already inspected states. Since the model class specified by TSDL includes
timeless and timed transitions both classes of transitions can be enabled in given state. In such a
case only the timeless transitions are allowed to fire to generate the set of successor states. This
interpretation is consistent with the concepts used in GSPNs [MABC84] and allows the deletion
of "timeless" states as described below.

The goal of validation is the detection of errors in the protocol specification. We can classify
two classes of errors, hard errors that can be detected by a tool and which do not allow the
performance analysis of the protocol and warnings which might announce an error in the
specification but do not terminate the performance analysis. Typical hard errors are deadlocks
and livelocks. In case of a deadlock all or some of the SDL processes are blocked in a fixed
state. A livelock indicates a situation where the state changes without making real progress, in
the sense that the system will never return to the starting state. Of course, the occurrence of
deadlocks or livelocks depends on the starting state which has to be chosen manually by the
user in an appropriate way.

The existence of warnings might indicate an error, but this can not be decided automatically by a
tool. A tool can only specify the system state where a strange event has been detected. The user

has to inspect his specification afterwards to decide wether an error has occured or not. The
following warnings can be detected:
- unrecognized_transition:
Describing the transitions of SDL processes that have never fired during analysis.
- unrecognized_timer_overflow, unrecognized_signal:
A signal (timer) has been deleted from a queue without treating it in a process.
- duplicated_timer_set:
A timer is set once more before it has been ended.

The result of performance analysis is the time between two consecutive entries to states from a
given set of marked states. This set of states might but need not include the initial state of the
protocol. We will call this time turnaround time. Depending on the set of states used for
performance analysis the turnaround time can describe the mean duration of a packet
transmisson, the recovery time after a failure, etc.

For protocol analysis two different approaches can be used. The first one is the simulation of
the protocol [WEST86]. Simulation has the advantage of avoiding the construction of large state
spaces, but is computational expensive. In the area of protocol analysis there are several events
that occure very seldom (e.g. the loss of a message, channel failures, etc.) but nevertheless
these events are important for the protocol behaviour and performance. Using simulation for the
analysis implies the well known problems when dealing with models including frequent and
rare events. Although some advances have been made in handling rare events [WALRS87], there
are still a lot of open problems.

The other class of approaches, which will be used here, works on the state space of the
protocol, using Markovian assumptions for the time dependent behaviour of the protocol. Since
the state space of the most realistic protocols becomes very large, the use of exhaustive analysis
techniques is often impossible. Nevertheless we start with the description of the exhaustive
analysis, because it provides a base for the non exhaustive techniques.

During the generation of the state space a first step of validation can be performed. If a state
without any successor is detected, then this indicates a static deadlock. After the state space has
been generated as a whole, livelocks can be detected by running iteratively through the states
and marking a state whenever it is connected through a single transition with a marked state.
The algorithm starts with the initial state as the only marked state and terminates if all states are
marked or if there are still some states not marked but none of them has a connection to a
marked state. The latter situation indicates a livelock. The different warnings can also be noticed
during or after state space generation.

If no error has occured during validation, performance analysis can be executed. The state space
S of the overall protocol contains two different classes of states, T the set of tangible states and
V the set of vanishing states. The terms tangible and vanishing have been adopted from the
analysis of generalized stochastic Petri nets [MABCS84], the former describes states which will
be left by timed transitions, the latter states are left by instantaneous transitions. If we sort the
states starting with the tangible states, followed by the vanishing states, the matrix of state
transitions U looks like follows.

u-(2E)

-~ \FG 3.1

where Del + EeT = QFeT + GeT =T e= (1.0, ... 1.0)

For calculating the steady state distribution p, which is necessary for performance evaluation,
all vanishing states have to be discarded and the generator matrix of a Markov chain has to be
constructed as described in (3.2).

pQ=0peT =1.0 (3.2)
where Q=D+E(-G)1F QeT=0

The inverse of the matrix (I-G) and the stationary solution exist since the protocol includes no
deadlocks or livelocks after validation [LABH87]. An overview of efficient algorithms for the
solution of the stationary distribution of a Markov chain is given in [KRSM91]. From the
steady state distribution, the turnaround time T can be estimated as given in (3.3).

O
T =(3O(p(s)q(s.8)))"! q(s,8)€Q (3.3)
sEM

where M is the set of marked states.

As mentioned, the exhaustive analysis can not be used for most of the realistic protocols since
the state spaces become too large. But the following non-exhaustive techniques are based
on exhaustive analysis.

The first non-exhaustive technique is exclusively devoted to the validation of a protocol
without estimating the performance of the protocol. The main idea is to restrict the number of
states which are generated and explored. Of course, like other non-exhaustive techniques, the
non-exhaustive validation can only detect errors and is not able to show that the specification is
error free (in the sense that no errors of the type handled here are present). The idea of the non-
exhaustive validation is rather simple, the parameter number_of_steps specifies the depth of the
reachability tree built up during validation. The states are explored in a breadth first ordering up
to the given limit of steps. Errors can be detected as described for the exhaustive case.
Unfortunately the detection of livelocks has to be modified since the uncomplete reachability
tree contains states without connection to the initial state. An algorithm for detection of livelocks
has to find cycles in the reachability tree by running through the different subtrees.

The non-exhaustive performance analysis algorithm is based on [RUDI84]. Every
transition is valued either with a probability or with a rate. As described previously out of a
fixed TSDL state all possible transitions are valued either with probabilities or rates.
Probabilities out of a fixed state are normalized to 1.0 during state generation. Since we assume
Markovian behaviour of the model, probabilities can be attached to transitions with rates by
dividing the rate of the transition by the sum of all rates out of the state. The algorithm is
divided in the following two steps:
1. Searching for marked states
Since the states for performance analysis are marked at the level of single processes, these
states first have to be identified at the level of the overall state. Therefore the reachability tree
is generated in a depth first order building all possible paths starting with the initial state.
The generation of a path is terminated if the initial state or a state belonging to the class of
marked states is reached or if the probability of a path calculated as the product over all

transition probabilities along this path falls below a predefined minimum pljjy. At the end
of step 1 a list of marked states has been generated. If the initial state is a marked state then
step 1 is skipped, since no successors of this state have to be generated. If the list of marked
states is empty then step 2 is skipped and an error message is printed, since the turnaround
time can not be calculated.
2. Calculation of the turnaround time

For every state in the list of marked states the reachability graph is generated in a depth first
ordering. The generation terminates if the probability along the path falls below a predefined
minimum p2jim or if the path reaches a marked state. If the marked state is not in the list of
marked states, then the state is added to the list. Paths starting and ending in a marked state
are called a scenario. Every scenario i has a probability pj and a mean duration d; given by
the sum of the mean transition times in the scenario. After scanning all states from the list of
marked states, the mean turnaround time is given by >pid;j . The sum 1-Ypj gives a hint on
the degree of approximation, since it describes the probabilties of paths that have not been
taken into account.

During the execution the model is checked for deadlocks or livelocks, if one of these errors is
detected, the algorithm terminates. The warnings specified previously are also given after
successful termination of the algorithm.

The last algorithm implemented is based on the combined probabilistic validation and
performance evaluation published in [DICHS88]. Since the algorithm has to be extended and
modified for the use in our model class, we introduce the new version in more detail concerning
the modified parts. Let us start with a brief description of the algorithm. For the use of the
algorithm the state sp has to be tangible, since vanishing states are implicitly deleted. For the
calculation of the turnaround time only tangible marked states are considered for the same
reasons.

1) Initialize the set of unexplored states Sy={so} (so is the initial state of the protocol) and the
set of explored states Se= @.

2) Find a state sj in S, with the highest weight wj. (the calculation of w; is described below)

3) Explore s by finding all its tangible successor states and transform the transition rates into
transition probabilities.

4) Update the weights of the discovered states for every timed transition originated in s;. Add
newly discovered successor states to Sy and remove s; from S, and add it to the set of
explored states Se.

5) If a stopping criteria is fulfilled then stop else goto step 2.

In step 3 all vanishing states have to be deleted allowing the analysis of a model containing only
tangible states. Unfortunately we can not use (3.2) since vanishing states have to be deleted
during state space generation. For a state s; all tangible successors have to be estimated. Since
this step deletes all vanishing states and the starting state s is tangible, also s; is a tangible state.
Exploring the transitions and successor states, the successor state can be either tangible or
vanishing. In case of a tangible successor the algorithm continues as described below.
Vanishing successor states have to be deleted. Let sj be a vanishing successor state of s;
reached by a rate A. Let Sy; be the set of vanishing states, including s; as the first state, that are
reachable from s; using only timeless transitions and Sy; the set of tangible states reachable from
sj by timeless transitions. Let further Py; be the transition probability matrix of the states from

the set Syj and Py; the transition probability matrix from state of Syj to states of Sy;. Using these
matrices, the rates from s; to all states sgES¢j can be calculated as shown in (3.4).

Aik = pijer (L- Pyl Py eT (3.4)
where e, =is a vector with 1.0 at position z and 0.0 elsewhere

Aik is the rate from s; to the k-th tangible successor state
pij is the transition probability from s; to s;

If the inverse of the matrix (I - Pyj) does not exist, then this indicates a livelock. After using
(3.4) for every vanishing successor state of s;, the set of successor states includes only tangible
states. Since the algorithm has been developed for models where all transitions are valued with
probabilities, the rates of the transitions have to be transformed to probabilities. Such a
transformation can be simply performed by dividing all transition rates by a factor o, which is

I~
=
o
=}
=}
[©]
=
g
o}
c
=
o
S
=
=N
=
o
=1
2]
=
o
=
=
o
=
(¢
»
R
o
&
=
o8
(¢
(€]
=N
(@]
=
&
ol
o
»
=3
a
2]
c
=
o
=
=3
(¢]
=i
o
.
3
e
=i

-~

DCL nr,
TIMER t;
START

TTIME)

below

VARLIST;

r

SYSTEM PAR

DCL nr,

’

frame_nr

Iz

TIMER t

START;

RESET (t) ;

START

DCL nr,

o~

START

o~

START

START;

STATE get;

INPUT *;
I
|
|
|
I

