
The Nsolve Program

Peter Buchholz

Informatik IV, University of Dortmund

D-44227 Dortmund, Germany

Email: peter.buchholz@udo.edu

1 Short Introduction to Nsolve

Nsolve is a program to determine the stationary solution of hierarchical Markovian models exploiting a
hierarchical Kronecker structure of the generator matrix. The model class contains stochastic automata
networks (SANs) without functional transition rates and superposed generalized stochastic Petri nets
(SGSPNs) which are both described by a hierarchical model with one state in the upper level. A hier-
archical model consists of a number of components (LLMs) and one high level model (HLM). Detailed
descriptions of the required matrix structure and some solution methods can be found in [4, 7, 5, 2]. The
different file formats which are used to describe hierarchical models are explained in a companion report
[8].

Nsolve includes iterative solution techniques using the hierarchical Kronecker representation of the
matrix and it includes as well iterative techniques using a sparse matrix representation. In the latter
case, the flat matrix is first generated out of the hierarchical Kronecker representation. Observe that the
implementation of the generation is not very efficient such that solution techniques for sparse matrices
should only be used for models with a modest state space size (≤ 105).

Nsolve requires the following files:

• 〈 name 〉.conf configuration file (Description in 2)

• 〈 name 〉0.mat HLM matrix (Description in [8])

• 〈 name 〉.spa HLM state space (Description in [8])

• 〈 name 〉j.mat LLM j matrix (Description in [8])

A file for each LLM has to exist. The number of LLMs can be found in the configuration file.

All files may include comments. Comments start with # as the first character in a line, then the rest of
the line is interpreted as a comment!

The program is called with
Nsolve name

2 Configuration File

The configuration file includes the following values (plus possibly some comments):

Number of LLMs (integer ≥ 0)
Solution method (integer ≥ 0)
Maximum number of iterations (integer ≥ 0)
ε1 (real ≥ 0.0)
ε2 (real ≥ 0.0)
ε3 (real ≥ 0.0)
Maximum CPU-time (real ≥ 0.0)
Relaxation-parameter (real ≥ 0.0)
Output overall vector (Boolean)

Output HLM vector (Boolean)

for all LLMs 1, . . . , Number of LLMs

Output LLM vector (Boolean)

1



Initial state HLM (integer ≥ −2)

if initial state HLM ≥ 0 then

for all LLMs 1, . . . ,Number of LLMs

Initial state LLM (integer ≥ 0)

2.1 Interpretation of the parameters

Values in the configuration file are interpreted as follows.

Number of LLMs

The number of components which form the model.

Solution method

The currently available solution methods are summarized in table 1. The number in the first column of
the table has to be used in the configuration file.

Maximal number of iterations

The solution stops, if the number of iterations has been reached

ε1
The solution stops, if the absolute value if the largest element in the residual vector becomes smaller
than ε1 . The residual vector is currently checked every 10 iterations in most methods. Observe that in
some methods like the projection methods TFQMR and BICGSTAB the residual can only be estimated
during computation. Thus, these methods may stop too early or too late. In any case, the true residual
is computed after termination of the method.

ε2
The value is used for several purposes. In A/D-methods, an A/D step for the HLM is performed if the
residual norm projected onto the HLM state space exceeds ε2. For methods with ILUTH preconditioner,
the value is interpreted as the threshold for keeping non-zero elements during the incomplete factorization.

ε3
The value is only used for A/D-methods where an A/D step for a LLM is performed, if the residual norm
projected onto the LLM state exceeds ε3.

CPU time limit

The method stops, if the CPU time of the solution (excluding the time for matrix generation) exceeds
the limit.

Relaxation-parameter

Relaxation-parameter for the methods JOR, SJOR, SOR and BSOR. The value should be taken from
(0, 2).

Output parameters for solution vectors

Parameter values can be 0 (= no output) or 1 (= output). The first parameter is for the complete
solution vector, the second for the solution vector of the HLM and then follow the values for all LLMs.
Solution vectors are written in files. File name_overall.vec contains the complete vector, name0.vec
HLM vector and namej.vec the vector for LLM j.

The initial distribution

Different methods exist to define the initial distribution. The first value determines the type of the initial
distribution. If the first value is larger or equal to zero, then it is assumed that a single initial state
is defined. In this case the following values include the initial states of the LLMs. Observe that not
every combination of states defines a correct state. If inconsistencies are detected, the program tries to
repair the state and prints a warning. The distribution is initialized with 1.0 at the initial state and 0.0
elsewhere. Usually a uniform distribution is recommended as initial distribution because in a hierarchical
model all states are reachable if the state space is generated appropriately (see [5]). A uniform distribution
is generated if the first state value is set to −2. In this case the following values are not interpreted.
The last possibility to define the initial distribution is to read it from a file. In this case the value in the
configuration file has to be set to −1. The name of the file has to be name_overall.reach. The vector
length has to be equal to the number of states in the state space of the hierarchical model. The vector
is normalized to 1 before the iteration starts. With this feature result vectors of one method can be used
as initial vectors of another method.

2



Apart from the parameters in the configuration file, some parameters exist in the source files of the
different methods. However, modifications of these parameters requires a modification of the source code
and recompilation of the program. We tried to set the parameters to reasonable values, but the choices
might not be optimal for specific examples.

The methods NO_SOLUTION (0) and MAT_GEN (1) do not analyze the system. With NO_SOLUTION
only the matrix structures are built to prove consistency of the model. MAT_GEN generates a flat sparse
matrix which is written in the file name_overall.mat. The file format for the flat matrix can be found
in [9].

References

[1] P. Buchholz. Numerical solution methods based on structured descriptions of Markovian models.
In G. Balbo and G. Serazzi, editors, Computer Performance Evaluation - Modelling Techniques and
Tools, pages 251–267. Elsevier, 1992.

[2] P. Buchholz. A framework for the hierarchical analysis of discrete event dynamic systems. Habilita-
tionsschrift, Fachbereich Informatik, Universität Dortmund, 1996. available upon request.

[3] P. Buchholz. An aggregation/disaggregation algorithm for stochastic automata networks. Probability
in the Engineering and Informational Sciences, 11(2):229–253, 1997.

[4] P. Buchholz. An adaptive aggregation/disaggregation algorithm for hierarchical Markovian models.
European Journal of Operational Research, 116(3):85–104, 1999.

[5] P. Buchholz. Hierarchical structuring of superposed GSPNs. IEEE Transactions on Software Engi-
neering, 25(2):166–181, 1999.

[6] P. Buchholz. Projection methods for the analysis of stochastic automata networks. In B. Plateau,
W. J. Stewart, and M. Silva, editors, Numerical Solution of Markov Chains (NSMC’99), pages
149–168. Prensas Universitarias de Zaragoza, 1999.

[7] P. Buchholz. Structured analysis approaches for large Markov chains. Applied Numerical Mathemat-
ics, 31(4):375–404, 1999.

[8] P. Buchholz. A matrix format for structured markovian models. working paper, 10 2010.

[9] P. Buchholz. The sparse matrix file format. working paper, 10 2010.

[10] P. Buchholz and T. Dayar. Block SOR for Kronecker structured representations. Linear Algebra and
its Applications, 386:83–109, 2004.

[11] P. Buchholz and T. Dayar. Block SOR preconditioned projection methods for Kronecker structured
Markovian representations. SIAM Journal on Scientific Computing, 26:1289–1313, 2005.

[12] P. Buchholz, J. Dunkel, B. Müller-Clostermann, M. Sczittnick, and S. Zäske. Quantitative System-
analyse mit Markovschen Ketten. Teubner-Texte zur Informatik Band 8. Teubner, 1994.

[13] R. W. Freund and M. Hochbruck. On the use of two QMR for solving singular systems and appli-
cations in Markov chain modelling. Numerical Linear Algebra and Applications, 1:403–420, 1994.

[14] G. Horton and S. Leutenegger. A multi-level solution algorithm for steady state Markov-chains.
ACM Performance Evaluation Review, 22:191–200, 1994.

[15] Y. Saad and K. Wu. DQGMRES: a direct quasi-minimal rsidual algorithm based on incomplete
orthogonalization. Numerical Linear Algabra and Applications, 3:329–343, 1996.

[16] W. J. Stewart. Introduction to the numerical solution of Markov chains. Princeton University Press,
1994.

[17] E. Uysal and T. Dayar. Iterative methods based on splittings for stochastic automata networks.
European Journal of Operational Research, 110(1):166–186, 1998.

[18] H. A. van der Vorst. Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution
of nonsymmetric linear systems. SIAM Journal on Scientific Computing, 13:631–644, 1992.

3



Nr. Method Explanation
Matrix structure test

0 NO SOLUTION Matrix generation without solution
1 MAT_GEN Flat matrix generation

Solution techniques for sparse matrices
2 LU LU-Factorization ([16] pp. 66ff, [12] pp. 30ff)

11 POWER Power-Method ([16] pp. 121ff)
12 JOR JOR ([16] pp. 127f)
13 SOR SOR ([16] pp. 128f)
21 POWER A/D Power-Method with Aggregation/Disaggregation ([12], pp. 51ff)
22 JOR A/D JOR with Aggregation/Disaggregation ([12], pp. 51ff)
23 SOR A/D SOR with Aggregation/Disaggregation ([12], pp. 51ff)
24 KMS KMS ([16], pp. 308)
25 ML Multi-level method ([14])
31 GMRES GMRES ([16], pp. 198ff)
32 BICGSTAB BiCGSTAB ([18]))
33 TFQMR Transpose free variant of QMR ([13]))
61 POWER ILU0 Power-Method with ILU0 Preconditioning ([16], pp. 145)
62 POWER ILUTH Power-Method with ILUTH Preconditioning ([16], pp. 145)
63 GMRES ILU0 GMRES with ILU0 Preconditioning ([16],pp. 205ff, 145)
64 GMRES ILUTH GMRES with ILUTH Preconditioning ([16],pp. 205ff, 146)
65 BICGSTAB ILU0 BICGSTAB with ILU0 Preconditioning
66 BICGSTAB ILUTH BICGSTAB with ILUTH Preconditioning
67 TFQMR ILU0 TFQMR with ILU0 Preconditioning
68 TFQMR ILUTH TFQMR with ILUTH Preconditioning

Solution techniques for Kronecker representations
111 POWER Power-Method ([12] pp. 203)
112 JOR JOR ([1])
113 SJOR SJOR ([12] pp. 204f)
114 SOR Real SOR ([17])
121 POWER A/D Power-Method with Aggregation/Disaggregation ([3, 4])
122 JOR A/D JOR with Aggregation/Disaggregation ([3, 4])
123 SJOR A/D SJOR with Aggregation/Disaggregation ([3, 4])
131 GMRES GMRES ([16], Spp 198ff)
132 DQGMRES DQGMRES ([15])
133 ARNOLDI Arnoldi-Method ([16], pp. 191)
134 CGS CGS ([16], pp. 222)
135 BICGSTAB BiCGSTAB ([18]))
136 TFQMR TFQMR ([13]))
150 PREPOWER Power with Neumann preconditioning ([7])
151 PREGMRES GMRES with Neumann preconditioning ([7])
152 PREARNOLDI Arnoldi with Neumann preconditioning ([7])
154 PRECGS CGS with Neumann preconditioning ([6])
155 PREBICGSTAB BICGSTAB with Neumann preconditioning ([6])
156 PRETFQMR TFQMR with Neumann preconditioning([6])
157 BSOR_BICGSTAB BICGSTAB with Block SOR preconditioning ([11])
157 BSOR_GMRES GMRES with Block SOR preconditioning ([11])
157 BSOR_TFQMR TFQMR with Block SOR preconditioning ([11])
172 STR_BSOR_T Two level BSOR ([10])

Table 1: Overview of available solution methods

4


