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Abstract

Quantitative properties of modern software systems are often defined as a part of a
service level agreement (SLA) that fixes the maximal load to be submitted to a system
and guarantees bounds for the response time. The evaluation of software architectures in
order to validate SLAs is a challenging task since the systems tend to be complex, highly
dynamic and to some extent unpredictable. Thus, there is a need for fast and abstract
techniques to evaluate the performance of modern software architectures based on the
information available in the SLAs.

The paper presents an efficient approach to compute bounds on the response time
of composed systems based on available bounds for the load and the response times of
components. The technique can be used by a user of a software architecture to validate
SLAs of composed services based on SLAs of the components. It can also be used by a
provider of a software architecture to validate whether additional users can be accepted
or to compute required service capacities to fulfill an SLA. Finally, the approach can be
a base for software brokers to determine an optimal selection of services to fulfill some
SLAs including cost measures.

Keywords: Service Level Agreements, Performance Analysis, Analytical Techniques,
Quantitative Validation, Capacity Planning

1 Introduction

Modern software architectures are highly distributed, component-based and service-oriented.
The term Service Oriented Architecture (SOA) is commonly used to describe the fact that user
and provider agree on specific services that are implemented by the SOA. The environment
in which such a software system runs is dynamically changing and for a user to a large extent
unknown. Nevertheless, there are still functional and non-functional requirements which
have to be fulfilled by the system. Usually these requirements are formalized in Service Level
Agreements (SLAs) which are contracts between user and provider that include a detailed
specification of the functionality and the non-functional properties as well as a specification
of acceptable user behavior. We consider the non-functional part of an SLA and in particular
measures which are subsumed under the term Quality of Service (QoS). Thus, if we speak of
an SLA in the sequel of this paper we mean the quantitative part that describes the required
QoS.

From a QoS perspective the provider has to assure that her or his promises given in the
SLA are observed by the user which means that the available system has enough capacity or
that it is possible to add additional capacity from third parties to meet the user requirements.



This is a classical planning problem which should be solved before a system is implemented
or before a service is offered to a user. On the other hand, a user may compose her or his
service from several sub-services that are realized by different providers. The QoS of the
combined service then has to be computed from the QoS of the constituting sub-services.
This is important especially if the user becomes a provider who offers the combined service
to other users. In general there is a need for some rigorous specification of QoS parameters
which can be applied for capacity planning and analysis.

The analysis of QoS is a common problem of performance analysis and capacity planning.
For performance analysis of computer, communication and software systems established ap-
proaches like measurements, queuing networks or simulation [1, 11, 18, 22, 27| are available.
Measurements are not adequate for capacity planning because one would like to have results
on a system or a situation that has not been realized yet. Model based approaches are more
appropriate. Ideally models should be built from the available information which are for SOAs
the SLAs at the user side. At the provider side some additional information about the un-
derlying system and its performance are available but usually this information is incomplete
because often a provider uses third party components for which also only SLAs are given.
Consequently, a performance analysis approach for SOAs should be based on the QoS spec-
ification in SLAs. Usually an abstract approach is sufficient because the whole environment
is dynamically changing and rough estimates or better bounds for the results are the best
one can expect. It is more important to have an efficient and fast method to react quickly to
parameter changes.

The mentioned requirements show that simulation is usually not the right choice to analyze
SOAs, more appropriate are queuing networks (QNs) which are much more abstract and
can be analyzed very efficiently as long as one assumes product form as done here. Indeed
several approaches based on (extended) QNs are available to analyze SOAs and validate SLAs
[15, 19, 21, 23, 29, 36]. However, the mentioned approaches often do not compute the right
results and are based on assumptions and parameters that are not available in SLAs. For a
QN the input parameters are the arrival and service rates. In SLAs service rates are not or
only partially available, whereas usually some bound on the arrival process and the QoS of
the system, often in terms of the response time, are provided. Response time is commonly a
result of QN analysis and not a parameter. Since QNs analysis is based on simple analytical
formulas, it is possible to reorganize the equations such that service rates are computed from
arrival rates and response times. This is still not really what is needed for the analysis based
on SLAs because QN analysis relies on mean values of the parameters and computes mean
values of results. SLAs are based on upper bounds. The user ensures that the load provided
to the system does not exceed the upper bound and the provider guarantees that the system
will meet the response time bound for every load that is conform to the input bound. An
average value is not a good bound since at least the short and long term behavior have to
be separated. From the user perspective this means that at least the load that can be given
instantaneously to the system and the maximal load over some predefined time interval have
to be fixed. For the provider the maximal response time for a predefined number of service
invocations and a short time deviation for a few service calls have to be defined. These
quantities cannot be adequately considered in QNs even if some approximate methods exist
to analyze deviations from the average behavior [9, 22]. In [25] a fluid model is used to
analyze SLAs which allows one to compute bounds on the probability of violating an SLA
requirement but the approach requires some information about the probabilistic behavior of
the system or the workload which is usually not given in the SLA.



Analysis of systems based on bounds for the arrival and service process is a common
approach for analyzing certain computer and communication networks. Based on work in
the early nineties [10, 12, 13], the so called Network Calculus became popular in network
analysis [5]. Very roughly, Network Calculus computes bounds on the response time and
the buffer filling in QN-like models using bounds on the arrival and service process. For an
easier computation of the results, a fluid approach is used. Usually deterministic bounds on
result measures are computed from deterministic bounds on the arrival and service process.
More recently also some extensions to derive probabilistic bounds have been published [16]
but yield partially to fairly complex results which are only useful under strict assumption
on the involved processes. The ideas of Network Calculus have as well been applied in other
areas where performance guarantees are required. For the analysis of real time systems, the
Real Time Calculus [28] and for sensor networks the Sensor Network Calculus [26] have been
developed as extensions of Network Calculus.

The basis of Network Calculus, namely the derivation of bounds on result measures from
bounds of the input parameters, describes exactly the situation of SLA analysis. However,
in contrast to the problems in communication networks or real time systems, SLAs have no
information about the processing capacity. Instead bounds on the response time are part of
the specification and may be used to compute results like joint response times of composed
services or necessary service requirements. Even if the problems of SLA and network or real
time analysis are not identical, it is quite surprising that the bounding approaches have not
been applied in the area. Ideas of bounding performance results have, to the best of our
knowledge, not been used for capacity planning in SLA based systems. Only [14] presents an
application of Network Calculus for the analysis of component based software but the paper
only applies the available formulas for the analysis of workflows and does not further develop
the approach to meet the needs of SLA based analysis.

This report is based on [33] and preliminary results in [30, 32]. Here we extend the ap-
proach in various details. In particular, a new technique to compute bounds on the departure
process from bounds on the response time and the arrival process is developed and presented
for the first time. A more application oriented but less detailed version of this report can be
found in [8]. The main idea of the proposed approach, which is denoted as SLA Calculus,
is to start with the quantitative specification available in SLAs, formalize this quantitative
information in order to define bounds on arrival processes and response times, introduce com-
putations to perform basic operations, like concatenation, thinning or maximization, of the
processes, and derive results on composed systems. The major advantage of the approach is
that it is solely based on the information which is available in the SLAs and generates an
abstract model from this information. From the user perspective bounds on the results of
composed services can be derived, different realizations of a SOA can be compared and it
can be determined whether the restrictions on the arrival processes of sub-services are met
in a composed service. A provider can compute with the approach bounds on the processing
capacity from the SLAs of accepted services or he or she can determine whether another
service can be added without violating SLAs. The main advantages of SLA Calculus are the
limited need of information about the SOA, the information in SLAs is sufficient, and the
often efficient computation of the results, which is based on analytical formulas only. The
basic equations used in the approach are already implemented in some freely available tools
[4, 35]. SLA Calculus requires some additional operations which are not available in other
tools. Therefore a new software tool with a graphical interface is currently under develop-
ment. A prototype version of the tool, named SLA Tool is available [3, 2]. In contrast to
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Figure 1: Model of a service.

other tools using the max/+4 approach for system analysis, SLA Tool allows a completely
graphical system specification which hides the mathematical details from a user. In this way
the approach is comparable to the specification of product form queuing networks.

The remainder of the paper is organized as follows. In the next section, a formal approach
to define bounds on arrivals and response times is introduced and it is shown how basic op-
erations on these quantities are realized. In Section 3, the perspective of a user is presented.
It is shown how SLAs for composed services are derived from SLAs of sub-services. After-
wards system analysis from the providers’ perspective is introduced. In this case, bounds on
the necessary capacity are computed and this capacity can be compared with the available
capacity in order to decide whether to accept an additional customer or not. The paper ends
with the presentation of an application example and some concluding remarks.

2 Specification and Analysis of SLAs

We first consider the specification and analysis of QoS parameters of a single service. Figure
1 shows the basic model view. Service calls are submitted, are processed by the service and
afterwards leave. Additionally, the response time which the call spends in the service is
measured. The response time will be denoted as the delay to be consistent with the literature
on Network Calculus and to distinguish it from the response time in a queueing network which
is different as explained below. Service calls arrive at discrete points t1,%2,... in time and
each call brings some load into the system which can be interpreted as the size of the call.
Size is measured and specified application specific. In a database, it describes the complexity
of a query, for a compute server it specifies the number of computations and in a computer
network it is measured as packet size. For other applications similar measures have to be
defined to quantify calls. If all calls are identical, then they all have the same size which is
the simplest case. Let the ith call arrive at time ¢;, then its size is denoted by a(t;). The call
is processed and leaves afterwards the service. The time between arrival and departure of a
call is the delay. We describe this behavior by three processes. Arrivals are described by A(t)
where for a given sequence of arrivals a(t1),a(t2),..., A(0) = 0 and A(t) = >, o a(t;). At
time ¢; A(t) jumps from A(t;) = th<ti a(t;) to A(t;) = A(t; ) +a(t;). A(t) is non-decreasing
and A(t) =0 for ¢ < 0. A(t) includes the accumulated arrivals until time ¢. We denote A(t)
as an arrival process. Similarly the process C(t) contains the accumulated departures (i.e.,
processed arrivals) until time ¢. Since departures occur after arrivals A(t) > C(t). C(¢) is
also non-decreasing with C(t) = 0 for ¢t < 0. C(t) is the departure process of the service. Let
b(t) = A(t) — C(t) be the backlog of load in the system at time ¢. The virtual delay equals
d(t) =inf{r > 0: A(t) < C(t+7)}. Figure 2 shows an example for the processes A(t), C(t),
b(t) and d(t). We use t for the time and z for the accumulated load in the system.

Observe that the representation in Figure 2 corresponds to the classical description of the



Figure 2: An example for the course of the different processes.

load in queues [17] which is often used to describe sample paths of stochastic systems.

The next process we consider is the delay process D(t). The delay process measures the
accumulated delay in the system which is weighted by the size of the load. For example if two
calls of size 1 and 2, respectively, stay in the system for 3 time units each, the accumulated
delay equals (14-2)-3 = 9 time units. This interpretation differs from the standard definition of
response time in queuing networks [17] that defines the delay for single arrivals independently
of their size. For this reason, we use the term delay rather than response time.

To explain the delay process D(t), consider as a simple example a system where a single
service call of size 2 arrives at time ¢ and has a delay of A. Nothing else happens in the
system. Then D(r) = 0 for 7 < ¢t and D(7) = 2A for 7 > t. lLe., at time 7 the delay
of the arriving call is immediately added to D(t). This is the result one obtains when the
integration over the curve defined by D(t) is performed after exchanging z- and y-axis. We
denote this as vertical integration. Before vertical integration can be presented, we first define
the pseudo-inverse of A(t) and C(t) as

A7Y(x) = inf{r|A(7) > x} and C~(z) = inf{7|C(7) > z}. (1)

If (A(t) (resp. C(t)) is strictly increasing and continuous, then the pseudo-inverse becomes
an inverse, i.e., A“1(A(t)) = t. In general A(A~!(z)) > z and A~'(A(t)) < t [5]. For
completeness we define for A(t) = 0 for all t > 0, A~!(z) = oo for all z > 0 and vice versa.
Additionally, we define



the delay for load level z in the system. The accumulated delay D(t) is then given by

A(t) A(t) A(t)
D(t) = / d~Y(x)dz = / C™(2)dx — / AN z)dz. (2)
0 0 0

D(t) can also be represented in terms of the functions A(t) and C(¢) as
d(t)
(A(T) = C(r))dr + [ (A(t) = C(t+7))dr

+d(t)
A(r)dr 4+ d(t)A(t) — of C(r)dr.

D(t) =

Ot o O o
)

Function D(t) measures the delay accumulated up to time ¢. In most situations the delay
depends on the load that is offered to the system. Therefore we define a function F(z) that
quantifies the delay depending on the load.

F(z) = O/d_l(y)dyZ O/C‘l(y)dy—O/A‘l(y)dy- (3)

Of course, F(A(t)) = D(t). The derivative of F is d~!. In a similar way the accumulated
buffer filling in [0, ] equals

The derivative of B(t) is b(t).

Functions D(t) and F(x) describe the accumulated delay over sequences of service calls,
the delays of single calls are weighted by the size of the calls. They include no information
about the delay of a single call. However, in SLAs usually conditions on the delay of single
calls are formulated. To assure such conditions, assumptions about the scheduling of calls in
the service have to be made. We usually assume FCFS service such that a call arriving at
time ¢ has a delay of d(t). In this case D(t) and F(x) are directly connected to the behavior
of single service calls. The assumption of FCFS service does not strictly hold in a SOA with
parallel activities but it is in most cases a sufficiently accurate approximation of the behavior.

If b(t) and d(t) are bounded by bpax and dpax, respectively, then D(t) and F(z) can be
upper-bounded by a linear function. We assume that upper bounds for backlog and delay
exist because otherwise the SOA is unstable with delays potentially growing over all limits.

Before we continue the analysis of the behavior of service calls by defining bounds, the
theoretical framework for the following results will be introduced. We consider a set F of
causal wide-sense increasing functions [5] where a function f : R — R is causal if f(¢) = 0 for
t < 0 and it is wide-sense increasing if f(a) < f(b) for all @ < b. The functions A(t), C(¢),
D(t) and F(x) are causal and wide sense increasing,.

For f,g € F, the following operations are defined

(f+9) @) = f{)+g(t) (pointwise sum),
(fVvg (t) = f(t)Vg(t) (pointwise maximum),
(fAg)(t) = f(t)Ag(t) (pointwise minimum).
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If two arrival processes A;(t) and As(t) arrive concurrently at some service, then Aja(t) =
(A1 + A2) (t) is the joint arrival process. Similarly if A;(¢),...,A,(t) are potential arrival
processes for some service, then an upper bound and a lower bound for the arrival stream
can be computed as A*(t) = (A; AAg A...AA,) (1) and AY (1) = (A1 V Ay V...V A,) (1),
respectively.

Two additional operations are required for our analysis approach, namely min /+ con-
volution and deconvolution [5]. For f,g € F the min /+ convolution and deconvolution are
defined as

(f@g) (t) = info<s<t {f(t —s)+g(s)} (min/+ convolution)
(fag) (t) = supoc, {f(t+u) —g(u)} (min/+ deconvolution)

In general the deconvolution is not the inverse of the convolution operation and it is not even
closed in F. However, a duality between convolution and deconvolution exists which justifies
the name. For f,g,h € F fog < h if and only if f < g®h. For further details about the
operations we refer to the literature [5].

In a similar way convolution and deconvolution can be defined for max /+ algebra as

(f®g) (t) = supgcsey {f(t —5)+g(s)} (max/+ convolution)
(fog)(t) = infocu {f(t+u)—g(u)} (max /+ deconvolution)

For a functions f € F, the pseudo-inverse function f~! is defined as in (1).

f~H(z) = mf {t] f(t) > 2} (4)

We extend the pseudo-inverse to general non-negative function g with ¢g(t) = 0 for ¢ < 0 by
defining

g () = /0 " b(g(t) < o)t (5)

where 6(g(t) < x) =1 for g(t) < z and 0 else. For g € F both definitions coincide.

We are often interested in specific classes of good functions, namely sub-additive and super-
additive functions. A function f € F is sub-additive if and only if f(s +t) < f(s) + f(¢)
for any s,t > 0 and it is super-additive if and only if f(s+t) > f(s) + f(¢) for all s,t > 0.
A concave function f with f(0) > 0 is sub-additive. Similarly, a convex function f with
f(0) < 0 is super-additive. It can be shown that a function f is sub-additive if and only if
f < f®f and similar it is super-additive if and only if f > f®f. If f(0) = 0 the inequality
becomes an equality in both cases. Let d7(t) be the step function with o7 (t) = 0 for ¢ < T and
67(t) = 400 for t > T and define for f € F O =5y, fM = f and f = fof=Y. Then
f =inf,>0 { f (”)} is the sub-additive closure. In a similar way the super-additive closure f
can be defined. The relations f < f and f > f hold. If f is already sub-additive, then f = f
and for super-additive functions f = f. For further details of both operations we refer to [5].
Algorithms to realize the operations for piecewise linear functions can be found in [7, 34].

In an SLA, bounds for A(t) and D(t) or F(z) have to be formulated. Usually this is
done by defining long term average arrival rates and delays and short term deviations from
the long term averages. We use a similar but slightly more formal way. Our model is a fluid
model where we assume that load arrives continuously to the system and delay is continuously
produced by the system. An upper bound for the load arriving to the system is defined by
a sub-additive function oY (t) and an upper bound for the delay at time is defined by a sub-
additive function WY (t). For the delay at load level z, the sub-additive function ®Y(z) is



an upper bound. We denote the functions as upper arrival and delay curve, respectively.
Consequently, an upper arrival or delay curve is a specific function that defines an upper
bound for the arrival or delay process. An arrival stream A(t) is conform to an upper arrival
curve oU(t) if and only if for every 0 < s < t, A(t) — A(s) < aY(t — s) or equivalently
A< A@aU. Since we have discrete arrivals aU(O) > Qmax Where amax is the maximal size
of an arriving service call. Similarly the delay function D(t) is conform to the upper bound
WY (t) if and only if for every 0 < s < ¢, D(t) — D(s) < ¥Y(t — s) or equivalently D < DWWV
and F(x) is conform to the upper bound ®Y(z), if and only if F(x) — F(y) < ®Y(z —y) (for
0 <y < z) or equivalently F' < F®®Y. The upper arrival and delay curves can be substituted

by their sub-additive closures @, T and 5[], if the functions are not sub-additive. To avoid
an overloading of notation we usually do not print the bars and assume that the functions
are sub-additive.

For oV, ¥V and ®Y usually simple functions are used to keep the definition understandable
and allow an efficient analysis. The class of piecewise linear functions is easy to handle and
can be used to approximate arbitrary concave functions. To specify piecewise linear curves
we use a specification similar to the one used in the RT'C-Toolbox [35] and define a sequence
of segments (z;,y;,$;) (i =1,...,L). We assume x; = 0 and x; < x;41 specifying the values
at the z axis. y; > 0 specify the corresponding values f(z;) = y; and s; > 0 is the slope of
the linear segment starting at z;. For some x > 0 f(z) = max;c(1,.. 1},0,<2 i + 8i(T — 23) }
and f’(x) = s; is the slope at x. Although s; > 0 functions need not be non-decreasing since
we may have the situation that y; < y;—1 + $;—1(2; — ;—1) which means that the functions
makes a step downwards at z;. Such functions occur if bounds for the output of a service
are considered where calls that arrive later have a smaller delay than calls arriving earlier
which means that there is some overtaking inside the service. A piecewise linear function is
continuous if y;+1 = y; + Si(yit1 — y;) for all 1 <4 < L. A continuous function is concave if
s; > s;4+1 and it is convex if s; < s;41.

For the specification of quantitative properties of SLAs it is sufficient to consider piecewise
linear functions with finitely many segments. This implies that for x > zj the slope of the
function equals sy, i.e., the function becomes linear. Most operations we use result in piecewise
linear functions with a finite number of linear segments, if applied to those functions. This
does not necessarily hold for the sub-additive or super-additive closure. Both functions may
result in picewise linear functions with an infinite number of segments. In this case, it is
possible to use upper or lower bounds, consisting of finitely many segments, with some loss
of tightness. In principle the approach can also be used for functions where piecewise linear
segments are periodically concatenated [7, 34] which enlarges the class of functions. Periodic
functions are important for real time systems and some computer networks where a detailed
specification of the behavior of a system is available. However, for SLA modeling the simpler
piecewise linear functions with a finite number of segments are sufficient.

We assume that oV, ®Y and WY are specified by continuous concave piecewise linear
functions and consider first bounds for the arrival process resulting from a mixture of affine
arrivals curves [5].

Usually either WY or ®Y are used in an SLA. If ¥V is used, then a contract on the
delay per time is made. As long as the arrival process is conform to the upper arrival bound
a¥(t), the accumulated delay in [0, ) is not larger than WY (¢). The definition of UV implies
that for a low load, the delay per load unit can grow without violating the delay contract.
Alternatively, ®V puts a bound on the delay per load unit which is often more appropriate.



Figure 3: Upper bounding curve and lower bounding curve with three segments.

In this case, the system keeps at least its speed if the load shrinks. If ®U is defined for the
maximum load oV and the delay is proportional to the offered load, then ®Y (a¥ (t)) = WU (t)
is the corresponding load dependent delay function.

Example 1. A deterministic arrival process which generates one service call of size 1 every
A time units can be described by oV = (0,1, A™Y). If the arrival process has a jitter of at
most o (o0 < A), then it can be described by two segments, namely,

o’ =((0,1,(A=0)™ ), (A=0,2,A71)).

The worst case in this situation occurs if the first call arrives at time 0 and the remaining
calls arrive as early as possible which means that the ith call arrives at time i - A — 0.

If we assume that the calls arrive every A time units but the sizes of calls are independently
and uniformly distributed in [0.5,1.5], then a curve that considers the worst case is defined
by (0,1.5,1.5/A). However, this curve is very pessimistic because a long term arrival rate
of 1.5 load units is assumed whereas the average rate is 1. Thus, it is usually sufficient to
assume that only the first i arrivals are of size 1.5 and consider afterwards the average load
of 1. This results in the arrival curve ((O, 1.5,1.5/A), (iA, 1.5i,A*1)). Of course, with some
probability, the arrival process may exceed the upper bound. This occurs if the sum of k (> i)
uniformly [0.5,1.5] distributed random variables is larger than 1.5i + (k — ). Since the sum
converges towards a normal distribution with mean k and standard deviation \/k/12 due to
the central limit theorem, the probability can be approximated. For k — oo, the upper bound
is exceeded with a probability of almost 0.5 for any i. However, in SLAs one usually allows
some violation of the SLA, if it occurs rarely and with a very small probability. Thus, the
time window kA and a small probability for violating the upper bound can be defined. In this
case, the value of i can be computed from the quantiles of the standard mormal distribution.

Bounds for the delay process are defined by the same kind of function. The accumulated
delay is then bounded by a piecewise linear function WY and ¢ (t) = (¥V)/(¢) the delay in the
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Figure 4: Delay curves for the two examples

Example 2. For an arrival process where every A time units a call of size 1 arrives and
leaves the system with a delay of T, the delay curve can be bounded by (0,I',T'/A). The
corresponding curves are shown on the left side of Figure 4. If the delay is proportional to
the load, we obtain ®Y(x) = (1 + z)T.

As a second example we consider a periodic arrival process with period A and jitter o (o <
A/2). Arriving calls have an alternating delay of T' and 2T" time units. The mazximal delay

curve of this system is shown as the solid line in the right graph of Figure 4. A piecewise linear

upper bounding curve WY for this process is given by <<0, 2T, %) , (2A — 0,3, %)) This

curve is shown by the dashed line in the right graph of Figure 4.

Available semi-formal and even informal specifications of SLAs bounding the arrival pro-
cess and the delays of service calls can be transformed into piecewise linear functions in a
natural way. It is also possible to derive bounding curves from measurements of arrivals
and delays. A conservative approach generates the curves as an upper bound for all mea-
surements, more sophisticated approach allow some violations of the SLAs. First ideas to
generate arrival and delay curves for SLAs from measured data can be found in [31] and are
based on statistical techniques.

Apart from upper bounds, one can also define lower bounds. A natural lower bound for
the arrival stream and the delay is 0. However, in some cases, like in periodic systems, one can
also define a lower arrival and delay curve. Like for upper bounds, piecewise linear functions
are used but we now assume that the functions are concave and y; = 0. Figure 3 shows on
the right side a lower bounding curve with 3 segments. We denote the corresponding curves
by ok, Wl and ®F, respectively. Observe that we assume o (0) = 0.

If o and oY describe a lower and an upper arrival curve, then o (t) < aV(t) for all t > 0
which implies (aL), (t) < (aU), (t) if a¥ is convex and oV concave.
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Example 3. We describe lower arrival curves for the first examples given above. For a
deterministic arrival process that generates arrivals of size 1 every A time units, the lower
curve equals o = ((0,0,0), (A,O,Afl)). The curve becomes mon-zero at time A. If the
arrival process has a jitter of at most o (0 < A), we obtain o = ((0,0,0), (A + 0,0, A‘l)).
If calls arrive every A time units and the sizes are specified by independent uniform [0.5,1.5]
distributed random variables. Then ol = ((0,0,0),(A,0,0.5/A)) is a conservative lower
bound. With the same arguments as for the upper bound, one can also define a lower bounding
curve that switches to an average slope of 1 after i arrivals.

A service generates a departure process C(t) < A(t). We now compute bounds for the
departure process from the bounds of the arrival process and the delay. Let o, oV, ¥ and
U be the lower and upper bounds of the arrival process and the delay. We assume that
the upper bounds are strictly increasing, continuous, concave and the lower bounds are non-
decreasing continuous convex. This assumption is not restrictive in systems which potentially
run for an infinite time such that one can assume an increasing number of arrivals and an
increasing accumulated delay over time. In this case, the pseudo-inverse of the upper bounds
becomes an inverse and the same holds for the part of the lower bounds where the function
becomes non-zero.

For some non-decreasing piecewise linear function (z;,y;,s;) (1 < i < [), the pseudo-
inverse equals (y;, s, s; 1) where 5;1 = 0 for s; = 0. The inverse of the concave upper bound
is the convex lower bound and the inverse of the convex lower bound is the concave upper
bound. Since a(t) < A(t) < aV(t) for all t > 0, also (o) ™! () > AL (z) > (a¥) " () has
to hold for all > 0 which also implies fox (ozL)_1 (y)dy > fo‘r A=Y y)dy > fox (ozU)_1 (y)dy
for all x > 0. Since aV(t) > A(t + u) — A(u) > o(t) for every u > 0, (aU)fl (x) <
ANz +y) — A7 (y) < (aL)_l (x) for every y > 0 and the same relations hold for the
integrals over the functions. By definition we have WY (t) > D(t + u) — D(u) > WE(t) for
all uw > 0. The derivatives U (t) = (\I/U)l(t) and ¢l(t) = (\IIL),(t) of the delay functions
describe the bounds for the delay of a call arriving at time ¢. Since the functions are piecewise
linear, delays are piecewise constant. Since ¥V is concave, ¥V is non-increasing and since W’
is convex, 1! is non-decreasing.

The accumulated delay at time ¢ is computed using (2), (3) allows us to represent the
delay depending on the load x. This representation is used in the following equation where a
lower bound for the integral of f;+x C~Y(y)dy, i.e., the time when load = leaves the service,
is computed.

inf.>g {71 (CHy) — A7 (2)) dy} =

z

v

Ttz
inf, > {D(Al(a: +2))=DA =)+ [ (A (y) — A7(2)) dy}

inf.>o {D(A Y (z 4+ 2)) — D(A7'(2))} +inf.>o {mfz (A~ Hy) — A71(2)) dy} >
pl ((ozU)f1 (x)) + f (ozU)f1 (y)dy
0

The relation holds due to (2) because
z+x z+x

D (A_l(x + z)) - D ((A_l(z)) = / C’_l(y)dy — / A_l(y)dy .
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If 2 is fixed, A~!(2) is constant and the derivative can be computed.

c7l @) = vk (V) (@) + (V) (@) (7)

The previous equations introduce a lower bound for the inverse of the departure process. If
Ul and aV are piecewise linear, the lower bound for the integral is a quadratic function and
the lower bound for C~!(z) is piecewise linear. Let (x;,1;,s;) be the resulting lower bound
for C~1(x), then (y;,z;,s; ') is an upper bound for C(t).

In a similar way, a lower bound for C(t) can be computed if we assume that o is non-zero,
otherwise the lower bound of the departure process becomes zero too.

sp.zo { (€70~ A7) di -
SUP.>( {D(A‘l(x +2)) — D(A7\(2)) wf (A1 (y) — A71(2)) dy} .
20 {D(A o+ 2) = DA N} +swpso { ] (A7) - A7 @)y} <

W (o) @)+

Such that

IN

=z
—
o
h
SN—
L
—~
<
S~—
QL
N

7M@) <4 (o) @) + (F) 7 (@), (9)

Since we can assume that o”(0) = 0, the lower bound can be computed for every z > 0 using
the equation. Again the resulting bound for C~1(z) is piecewise linear if the bounds for the
arrival process and accumulated delay are piecewise linear. Let (z;,y;, s;) be the upper bound
for C~1(x) and its inverse (y;,x;,s; ")) is a lower bound for C(t).

Bounds based on ® and ®Y are computed in exactly the same way as

infzzo{zfx(c Uy) - ANz >)dy}><I>L o+ @)

z

O (z) 2 ¢ () + (a¥) ' (

(10)

and

“te -1 _4-1 U A
supz>o{f (C-1(y) - A <z>)dy}s<1> @)+ [ (@)

z

O Yz) < oV (2) + (o) (2)

where ¢F = (<I>L ) and ¢V = ( )/. Again we assume that ¢” is non-decreasing and ¢ is non-
increasing. The bounds (10) and (11) are usually much tighter than the bounds computed
via (6) and (8) since the functions ®* and ®Y define a correspondence between load and
delay, whereas U* and UV define a time-dependent delay, independently of the load, only a
maximum load is used. In the sequel we use the bounds ®% and ®Y for the computations.
The bounds for the departure process C(t) are denoted as v*~ and 4V, respectively.

(VW) (@) = ¢ (2) + (V) (@) and (vF7) T (@) = V(@) + (@F) (@) (12)

If ®L and ®Y are piecewise linear functions, then ¢ and ¢V are constants which, however,
may depend on z, i.e. ¢¥(x) = (&) (x) and ¢V (z) = (®Y)(x). To compute the functions

(11)
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vF= and AV, (’yL_)_l and (7U+)_1 have to be inverted. As long as the functions are
non-decreasing, the pseudo-inverse can be easily computed for piecewise linear functions.

If ® is piecewise linear and convex, as assumed here, then qu is non-decreasing and
the same holds for ( U)_1 such that the pseudo inverse of ( U*) can be computed. The
function is usually not continuous if lim, , o' (y) # ¢"(z) (i.e., at points where the slope
of the linear segments building ®Y changes). Function v/+ describes departures from the
system starting with an empty system and arrivals specified by aV. Arrivals oV (0) have to be
delayed by ¢ according to the lower delay bound. This means that in the interval [0, ¢*(0))
no departures at all occur and then the arrivals at time 0 leave the system.

The situation is different for (’yL*)_l. If ®Y is concave, as assumed here, and consists
of more than one segment, ¢V is decreasing at those points where the slope of ®U changes.
Thus, the pseudo-inverse cannot be computed with (4). However v*~ can be computed with
(5) because v~ (t) equals the load that has left the system under arrival stream o with
delay ¢U(x) for load z. Let d(t) = ¢V (a(t)), the delay of load arriving at time ¢ under
the assumption that ol specifies the arrivals. d(t) is like ¢V piecewise constant and non-
increasing in t. For each ¢ > 0 exists a finite number of disjoint intervals T} = (¢;,¢;] such
that 7+d(7) < t if and only if 7 € T! for some i € {1,...,I'}, i.e. load that arrived in T} has
left the system at time t. Let I' be the number of intervals for time ¢, then

]t
=Y o (th) =) (13)
i=1

For piecewise linear functions o also v*~ is piecewise linear.

Example 4. As an example we consider a service with the bounding curves

ol = ((0,0,0),(1,0,1),(2,1,2)), oV = ((0,1,0),(1,1,3),(2,4,2)), &L = ((0,0,1),(1,1,2))
and ®Y = ((0,0,3),(1,3,2)). Then ¢* = ((0,1,0),(1,2,0)) and (a¥)" (1, $),(4,2,3))
such that

(YYH) ™ = ((0,1,0), (1,1,0), (1,3, ), (4,4, 1)) and

Y+ = ((0,0,0),(1,0,0),(1,1,0), (3,1, 3), (4,4, 2 )

For the computation of vL=, we have (%~ ) (z) = ¢Y(z) + (aL)_1 (x) with (aL)_l =
(0,1,1),(1,2, 1) and ¢ = ((0,3,0),(1,2,0)). This results in (v27) " = ((0,4,1),(1,4, ),
a function which makes a steps downwards at x = 1 such that the pseudo inverse cannot be
computed with (4. By applying (5), we obtain v*~ = ((0,0,0), (4,0,3),(5,3,2)). At time
t=44¢ (0 <e<1), load departs that arrived at time 1+ € (and had a delay of 3) and load
that arrived at 2+ €) (and had a delay of 2). At time 5+ v (0 <v) load departs that arrived
at time 3 + v with a delay of 2.

The functions v+ and 4%~ describe bounds for possible departure processes that can be
observed for the system with an arrival process bounded by a’ and aV. For the departure
process C(t) the relation y2~ (t) < C(t) < 4Y*(t) holds. If v*~ is super-additive, then it is a
lower departure curve since it considers the worst case, an empty system, a minimal arrival
process and a maximal delay ¢V (0) (> ¢Y(z) for all x > 0). The situation is different for
AU (t). The function delays the input by ¢*(0) (< ¢*(z) for all z > 0) which means that in

"We show explicitly subsequent steps like (1,0,0) and (1,1,0) to indicate where the curve jumps from one
level to a higher one. Usually this information is redundant.
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the interval [0, ¢*(0)) no departures occur at all and it does not consider the cases that calls
are backlogged.

To obtain an appropriate upper bound for the departure process, we have to introduce
an additional assumption. We assume the the system shows a monotonic behavior. Thus,
if A;(t) and As(t) are two arrival processes and Dq(t), Ds(t) are the corresponding delay
processes, then A;(t) — Ai(s) > Aa(t) — Aa(s) for all t > s > 0 implies D;(t) > Ds(t) for all
t > 0. Furthermore, for the system with arrival process aU(t) backlog b(t) and delay d(t) are
maximal, i.e., no arrival process A < A®aV exists where ba(t) > b, (t) or da(t) > dv(t)
for some t. ba(t), da(t) and b,v (t), d,v(t) are the backlog and delay under arrival process
A and oY, respectively. Similarly we assume that no arrival process A > a*®A exists such
that ba(t) < b,c(t) or da(t) < d,c(t). Both assumptions are reasonable and hold in most
systems.

With these assumptions, backlog and delay can be bounded and an upper bound for the
departure process can be computed by considering the system with arrival process oV. Load
arriving at time s will be for sure in the system at some time ¢ (s < t) if s + ¢*(aY(s)) > t,
it will be potentially in the system if s + ¢V (aV(s)) > t. By assumption ¢* and ¢V are
piecewise constant. Since ¢’ is non-decreasing for each t exists some value ¢~ (t) such that
for all s € [¢p~(t),t): s+ ¢T(s) > t. Thus, b= (t) = oV (t) — oY (t — ¢~ (t)) is a lower bound
for the backlog of the system with arrival process a¥. The situation is more complex for the
upper bound. Since ¢V is non-increasing we may have the situation that calls arriving later
have a smaller delay than calls arriving earlier and leave the system before. However, for each
t > 0 exists a finite number of disjoint intervals Z! = [¢F(¢), ¢V (¢)) (i = 1,..., ;) such that
for each s € I}, s + ¢V (s) > t. Then

I

b)) = (aV(¢} (1) — ¥ (¢f (1))

i=1

is an upper bound for the backlog. Thus, at time t the backlog will be in the interval
[b=(t),bT(t)] and bt (t) — b~ (t) is the load that can immediately leave the system. bT(t) is
the backlog of the system under arrival process oV and delay process ®¥ which results in
departure process yU*. Similarly b~ (¢) is the backlog of the system under arrival process a¥
and delay process ®V resulting in departure process

() (@) = ¢Y (@) + (V)
Then bF(t) — b= (t) =YY+ (t) —yY(t). Let

-1

(). (14)

t* =sup{t:Vs <t,s+¢"(a"(s)) >t}. (15)

At time t* the first load leaves the system with arrival process o delay process ®Y. We now
show that the difference b+ (t) — b~ (t) becomes maximal for ¢+ = ¢* such that yY* shifted by
t* becomes the upper departure curve. Let

nt(t) = inf {s:s+ or(s) > 0} and nY(t) = inf {s:s+ oY (s) > 0}.

n* and nY are non-decreasing because s + ¢V > t = s+ ¢V > t — ¢ for € > 0 and
nY(t) < nE(t) because ¢r(s) < ¢V (s) for all s > 0. Furthermore the difference n*(t) — nY (¢)
is non-decreasing for nV(t) > 0 because the difference ¢V (t) — ¢*(t) is non-increasing. If
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s+ ¢l(s) >t = s+ e+ ¢l (s +¢€) >t because ¢”(s) is non-decreasing. However, this does
not hold for Y (t) because ¢ (t) is non-increasing. Let §(s+ ¢V (s) > t) = 1 for s+ ¢V (s) >t
and 0 otherwise. Then

n*(t)
L (1)
br(t) = j 5(s+¢Y(s) > t)aV(s)ds = ft oY (s)ds + nft §(s+ ¢Y(s) > t)alY(s)ds.
nY (t) n* () nY (t)

The last equality holds because ¢V (s) > ¢*(s). This implies

n(t)
bH(t) — b (1) = / 5(s + 6V (s) > t)al (s)ds
nY(t)
For nY(t) > 0
n*(t) n*(t)
/ 5(s + ¢V (s) > t)aV (s)ds > / 5(s+et ¢V (s+e) > t)al(s + e)ds
nY () nY(t)

such that the difference b*(t) — b~ (t) is non-increasing if nY(¢) > 0. For Y (¢t) = 0 we have
#Y(0) >t + € and

({ §(s+¢Y(s) >t)al(s)ds+ [ S(s+¢Y(s) > t)al(s)ds

which shows that the difference is non-decreasing. This implies that the largest backlog is
achieved for ¢ = t* and an upper departure curve equals

- 0 fort <0
U+ _ 5
7 = { AUF(t + 1) for t > 0. (16)

Since b~ (t) is non-decreasing, for a concave upper arrival curve the maximal backlog of
load that can leave the system immediately equals bT(t*) — b= (t*) = AUT(t* — ¢) for an
arbitrarily small ¢ > 0. The latter equality holds since vV*(t) = 0 for t < t* by definition of
t*.

The departure process vV of the service under maximal delay has been defined in (14).
To define a valid upper departure curve bound we use the result from [5, Theo. 1.2.2]) that
for an output stream R(t), RQR is an upper curve and even more, it is the smallest upper
curve. Thus, we define

7V =Y2". (17)
For completeness we define also the minimal departure process under minimal delay as
-1 -1
(V") =¢t @) + (o) (a). (18)
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Figure 5: Arrival and delay curves.

Example 5. We consider a system where calls of an identical size of 1 arrive with a periodic
stream with an inter-arrival time of A = 1 and a jitter of 0.2. A possible upper arrival curve
is oV = ((0,1,1.25),(0.8,2,1)). A lower arrival curve is given by o = ((0,0,0),(1.2,0,1)).
Let ®V = ((0,0,1.5),(2,3,1.2)) and ®* = ((0,0,1),(2,2,1.2)) be the upper and lower delay
curves, respectively.

8

- Ut

2 C‘*) 4 5 6
t
Figure 6: Bounds for the departure processes.

Figure 5 shows the (pseudo-)inverse arrival curves and the delay curves for the example.
Using (12,14,18) the inverse curves for the departure process can be computed which are
inverted to obtain YL, v~ AV, AVt AV and AYT. The curves for the departure process are
shown in Figure 6. The departure curves v and 3V are super- respectively sub-additive.
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Figure 7: Bounds for the backlog under a maximal arrival process.

Bounds for the backlog of the system under the maximal arrival process defined by oV are
shown in Figure 7. An upper bound for the backlog is 2.7 and the mazximal amount of load
that can immediately leave the system is 1.75 (mazimal difference between bt and b~ ). The
backlog under mazimal arrivals converges towards 1.2 which is the amount of load that arrives
during the delay of 1.2. The lower bound for the backlog in the system is 0 since the maximal
time without arrivals is 1.2 and the minimal delay is also 1.2.

3 The User Perspective of Composed SLAs

After the basic method to specify SLAs for services has been defined, we now show how to
use the approach from the user’s side of a SOA. In the subsequent section the viewpoint of a
provider will be taken.

An arrival process A(t) is conform to an upper arrival curve o if and only if A(t) <
(A®aY)(t) for all t > 0 [5]. If the arrival process is not conform to the upper arrival curve
but the SLA allows sufficient capacity (i.e, limy—oo (A(t) — a¥(t)) < A < 00), then the arrival
stream can be smoothed using what is called in the network world a greedy shaper [5]. Greedy
shapers with piecewise linear shaping curves can be realized by the concatenation of leaky
buckets. The behavior of a greedy shaper is as follows. If a service call arrives which is conform
to the upper arrival limit, it is immediately passed to the service. If an arriving service call
violates the upper bound, it is delayed by a minimum amount of time such that the stream
which is passed to the service observes the arrival bounds. Calls in the shaper are served in
FCFS order. The departure process of the shaper is then given by C(t) = (A®aV)(t). It is
conform with the upper arrival curve a¥ of the service. However, the price is an additional
delay

d(t) = C L (A(t)) —t . (19)

If a user wants to use the service of a SOA with arrival bounds (o, a¥) and delay bounds
(®L, ®Y) he or she first has to check whether the arrival stream A(#) lies in the given bounds.
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If the arrival stream is not conform to the SLA, a greedy shaper like element can be introduced
with an additional delay that has to be added to the delay of the service. If the arrival stream
exceeds the capacity of the service, then either another service has to be chosen or the stream
has to be distributed over several services as shown below. The lower bound is usually not a
problem, since services rarely require a minimum number of calls. If this is the case, artificial
calls can always be generated.

Often the user has no complete knowledge about his or her arrival process but knows
some bounds. Let (aOL , aOU ) be a pair of bounds. We assume that the bounds are specified
by piecewise linear functions, which are convex and concave. If a service with arrival bounds
(alL, 0/1]) is used, then the arrival stream can be passed immediately to the service if alL <
ab@al and of < aff®al. In this case bounds for the departure process of the service can
be computed with (13,16) if the minimal or maximal departure process under varying delay is
analyzed and with (18,17) if the minimal and maximal departure process under the minimal
and maximal delay is analyzed. We concentrate on the latter step to determine bounds for
the delay of composed services.

If the lower bound is not conform, aOL is substituted by ongr = aé@a% which means that
artificial service calls are generated. If the upper bound is not conform, a shaper has to be
used to delay incoming service calls. The shaper has a service curve o such that

aV = ag@allj (20)

is an upper bound for the departure process [5, Theo. 1.4.3]. If the buffer of the shaper is
empty at time 0 and ag , a({ specify the arrival and service process, respectively, then [5, Eq.
1.12]

a=af@af (21)

is the departure process of the shaper.
The lower bound for the additional delay is zero (i.e., ®f = 0) if af™ < aft@aV. If this
is not the case, the lower bound for the input process produces

o = ag*gay

as a lower bound for the departure process [5] of the shaper. The computation of lower and
upper bounds for the delay in the shaper are introduced in Section 4 (Egs. 29-31) where
the computation of delay bounds from known lower and upper bounds for arrival and service
processes are introduced. For a shaper, the service process is exactly known, i.e., lower and
upper bound are identical. The delay of the shaper has to be added to the delay of the
service such that <I>0Ll + <I>1L and (I)DUI + <I>[1J are the lower and upper delay bounds for the service
including additional delays to smooth the input which are necessary to meet the SLA for the
input process.

Often a user builds her or his service from the concatenation of available services and
the SLA of the concatenated service has to be derived from the SLAs of the constituting ser-
vices. We start with the sequential concatenation of two services with arrival curves (af, a¥),
(af,a¥) and delay curves (&, ®Y), (®%, ®Y) (see Fig. 8). After composition, the resulting
service should be described by arrival curves (aly,al,) and delay curves (@5, ®%,). The
composed service can then be used like a single service as described above.

There is, of course, an interdependence between the bounds for the arrival process and
the resulting delay bounds. A pair of lower and upper arrival bounds (af,, a,) can be used
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af <aof , W <of , o1
Y Service 1 7 B Service 2 7
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(F, ) (5, 9)

Figure 8: Sequential composition of two services.

as input for the composed service, if limy—,o a%,(t) — limy—o0 (min {a¥/ (t), a¥ (t)}) < cc. The
delay bounds become &%, = &L 4 &L or Y, = Y + oY + <I>§[+ + <I>2U+. (I>[1]+ is the additional
delay which is necessary to smooth the input for the first service to be consistent with the
upper arrival bound of the first service. To analyze the maximal delay in a sequence of
services, we have to consider the output of the first service under a maximal arrival process
with maximal delay as input process for the second service. Let 4% be the upper departure
curve of the first service computed via (17) using a%@a? as an upper arrival curve. Then (I)ng
is the maximal delay of a smoother with arrival process 7% and service curve af (computed
with (31,32) below). If the arrival and delay curves are piecewise linear, then the same holds
for the curves for the composed service. However, the minimum and maximum of convex
or concave curves results not necessarily in a convex or concave curve. This implies that
the resulting arrival curves for the composed service may not be convex and concave. In
this cases, it is possible to substitute them by piecewise linear convex and concave lower and
upper bounds. Similarly the upper delay bound may not be concave since d)lﬂ might not be
concave.

A service resulting from a sequential concatenation can be interpreted as a single service
with arrival and delay contract and can then be used in further compositions with other
services. In this way, sequential concatenation can be applied to compose an arbitrary number
of services.

Example 6. We consider as a simple example the concatenation of two services. Analy-
sis 15 restricted to upper bounds that are usually more important than lower bounds. Ser-
vice 1 has an upper arrival curve of = ((0,1,2),(2,5,1)) and an upper delay curve ®Y =
((0,0,6), (5,30,3)). For the second service arrivals are bounded by the arrival curve of =
(0,2.5,1.5) and the delay is bounded by the upper delay curve ®Y = (0,0,2). The lower bounds
of the arrival and delay process are all zero (i.e., (0,0,0)). We assume that an arrival process
with bounds ok, = ot and oY, = oY is fed to the composed service.

Figure 9 shows the upper arrival curves for both services, the departure process of the first
service under mazimal load and minimal delay vV and the upper departure curve Y. In this
case t* = 5 because at this time, the first load leaves the system under a mazimal arrival
stream and mazximal delay. It can be seen that the upper departure curve of the first service is
not conform with the upper arrival curve of the second service (i.e., the blue line lies initially
above the red line) which implies that a shaper has to be put between the first and second
service. The delay of the shaper corresponds to the area between the red and blue curve in
Figure 9. Figure 10 shows the upper delay curves for the two services, the shaper between
service 1 and 2 and the composed service. Since the arrival process bounds equal the arrival
curve for the first service, no shaper in front of the first service is necessary.

Apart from sequential composition, services may also be composed in parallel. We can
distinguish between two possible parallel compositions of services which are shown in Figure
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Figure 9: Upper bounds for the arrival and departure processes.

11 and 12 for two composed services. The composition is described in the figures by a circle
with the symbol & or ||. Both compositions occur as pairs. An opening node with one input
and two outputs corresponds to a closing node with two inputs and one output. In this way,
a composed service has the same interface as a simple service consisting of one input and one
output. Between opening and closing node a complex network of composed or simple services
can be used (see Fig. 15 for a simple example).

We begin with the &-composition. The semantics of a circle with a & symbol is that the
amount of incoming load or fluid is removed from the incoming arc and the same amount is
put onto each outgoing arc. In the closing node load from the arc where more load arrived
is buffered until load is available on the other arc The construct describes a sort of fork-join
parallelism.

If for the arrival curve af < o¥®af and of < af®al hold, then no smoothing of the
input process is necessary. If aff exceeds temporarily o or o, then a smoother is integrated
before the corresponding service to delay service calls that violate the upper arrival bound.
We assume that the additional delay is implicitly added to the delay defined for this service. If
ok, oV (i = 1,2) are the derivatives of ®F, &Y then ¢, ¢V describe the delay of load arriving
at level . Then

ol = b v ok Bl = /0 ok (y)dy and ¢% = ¢V v oF, 8Y, = /0 hdy  (22)

are the lower and upper delay curves of the composed service. I.e., the maximum of both
delays determines the delay of the call in the composed service. For the departure process
the following relations hold

Ya(x) =1 (z) A% (z) and yi5(x) =7 () A5 () (23)

The ||-composition describes the situation that the arriving service call may be routed to
one of both sub-services. The choice of an appropriate sub-service might be completely in the
hand of the user or it might be determined by some service parameters. In the latter situation,

20



Figure 10: Lower and upper delay curves for the composed service.
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(af, af)

Figure 11: Parallel &-composition of two services.

the worst case behavior is given whenever the slower of both services is used. In this case, the
new departure and delay bound equals the bounds for the &-composition. This implies that
there is no gain in having two choices. In general, however, better bound can be computed.
Ideally, one can define two arrival curves (afy,af}) and (ady, afy) such that of = oy + af
and of = of] + af,. (af,af) is then fed into service i (i = 1,2). It is often not possible
to decompose an input stream into two streams such that the sum of both streams matches
exactly the original stream. Often the relations of > of; + o, and of < off| + af, are used
to define arrival bounds for the sub-services.

We consider two cases, namely a choice by the user and a probabilistic choice by the
system. We begin with the choice by the user. In an ideal situation where load arrives as
fluid, it is possible to divide the input stream arbitrarily among the two services. However,
service calls arrive as discrete portions which bring some load into the system and a single
call has to be transferred to one service and cannot be split. Thus, if ag = (x4, Y, Si)
(1 < i < L), then y; usually describes the maximum size of a single call which has to be
routed to one service. The distribution of arriving service calls among the services is strongly
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Figure 12: Parallel ||-composition of two services.

related to packet-by-packet generalized processor sharing (PGPS) [24] which is a widely used
multiplexing scheme. In PGPS we have packets of different classes arriving at a server and the
server has to decide which packet to serve next. Here we have packets of one class arriving at
a ||-element and it has to be decided to which service the call is routed. We consider only the
case of two services and assume that w; and we are the non-negative weights of the services
and load should be distributed proportional to these weights. To describe the scheme, we
first define p = w; /(w1 + we) the portion of calls to be routed to service 1 and 1 — p is the
portion of calls to be routed to service 2. Let A(t~) be the load that has been arrived in
[0,¢) and let A1(t7) and A2(t7) (A(t™) = A1(t7) + A2(t7)) be the amount that has been
routed to service 1 and 2, respectively. If a new call arrives at time ¢ it is routed to service
1if A;(t7) < pA(t™), otherwise it is routed to service 2. The following lemma is required to
compute arrival curves.

Lemma 1. If the size of arriving calls is bounded by ) and the above scheme is used to
distribute calls to the services, then

(p—1)Q < pA(t) — Ar(t) < pQ and —pQ < (1 —p)A(t) — Az(t) < (1 —p)Q.
for allt > 0.

Proof. 1t is sufficient to prove the result for service 1 because by exchanging the number 1
and 2 and p and (1 — p) the proof for the second service follows.

We assume that at time ¢ a call of size w (< Q) arrives and that (p — 1)Q2 < pA(t™) —
Ai(t7) < pfd.

If pA(t~) — A1(t7) > 0, then the call is routed to service 1 and immediately after the
arrival A;(t) = A1 (t7) +w, A(t) = A(t™) + w. Then

PA(t) = Ar(t) = p(A(t7) +w) = A1(t7) —w =pA(t™) — Ai(t7) + (p — Dw.
A lower bound for this equation equals
PAT) = A7)+ (p— Dw > (p - 1)Q
since w € [0,Q]. For the upper bound

pA(t™) —Ai(t7) + (p— Dw < pQ2
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holds.
If pA( ~)—A;1(t) <0, then the call is routed to service 2 and immediately after the arrival
Ai(t) = A1(t7), A(t) = A(t7) + w. Then

PA(t) — A1(t) = p(A(t") +w) — A1 (t7) = pA(t™) — Au(t7) + pw.
The lower bound equals
pA(t) — Ai(t) = (p— 1)Q2

and the upper bound
PA(t) — A1 (t) < pQ.

Since the relation holds at time 0 and it holds after every arrival, it holds for every ¢ > 0
since the load is modified only at arrival instances of calls. O

Now let af = ( Y yY, ?) (1 <i < L) be an upper arrival curve and define two arrival
processes ozgj = ( ; ',yZ , UJ) (1<i<L,j=1,2) where

Z

U- U- U-
R e N (R
2> =2V, s =1-p)sY, 2 =1 -pyl +py.

It is easy to show that of (t) + af,(t) = af (t) + ¥ (¢t > 0) holds, i.e. the combined upper
bound requires one additional service call of maximal size that can instantaneously arrive at
each sub- service. For some ¢ > 0 which belongs to the linear segment 4, we have

afi(t) —paf(t) = (t—a")sT +y —p((t— )8 +yY) =
(t —2V)ps¥ + py¥ + (1 — p) U =p(t—al)si +4) =
(1-p)yY.

If we choose Q = 3y and A(t) = af (¢) in Lemma 1, it can be seen that o, (¢) is a valid upper
bounding curve according to the PGPS like scheme of routing calls to services. In a similar
way valid lower bounding curves can be computed for the routing scheme.

The parameters of the composed service depend on the weights. Let w; and we be the
weights used to route calls to the services and let p; = wy/(wy + we) and py = 1 — p;.
Furthermore let €2 be the maximal size of a call. Then an arrival curve « does not exceed the
upper arrival curve «; of service j if

oV
pja+ij§a§-]:>a§ )
pj
such that U u
o o
oy="L QA2 _-Q.
p1 P2
Similarly, the lower bound is respected by an arrival curve «, if
L
oy + (1 —p;)Q
a]L <pja—(1-p))QN0=a> #/\0
pj
such that . .
Q 1-p1)Q « 1—p9)Q2
aky = 1+ (1 —p1) v 3 +(1—p2) V0.
Y4 P2
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For the delay bounds we have to consider the maximal and minimal delay which can occur
at load level z. Since <I>ZU is concave, delays are non increasing which means that for a minimal
load that arrived to a service the upper delay is maximized. If load x arrived to the composed
service, then p;(x — Q)T is the minimum of the load that arrived to service i (i = 1,2) and
oY (pi(x — Q)*) is the corresponding delay. For the lower delay bound we observe that ®F is
non-decreasing such that again the smallest load has to be considered to compute the lower
delay bound. Thus, the lower delay bound becomes ¢F (p;(xz — Q)T). Together this results in
the following computation of the delay bounds.

1Lz(~77) = min {‘f’%(Pl(x -0)), ¢£(P2($ - Q)+)} ) ‘I)fz (z) fo 12 ?/ (24)
¢ (x) = min {¢ (p1(z — Q)F), ¢ (p2(z — Q)T }, h(x) = [y ofa(y)d

For piecewise linear arrival and delay curves of the services, the arrival and delay curves of
the composed service are also piecewise constant. However, the delay curves of the composed
service need not be concave or convex even if this holds for the delay curves of the sub-services.

The output process of the composed service is given by the superposition of the output
processes of the sub-services. This implies that the sum of the lower or upper departure
curves defines a lower and an upper bound for the departure process of the composed service.
Furthermore, the output process is bounded by the input process because calls have to depart
after their arrival. This results in the following bounds.

71L2 = (71L + ’VQL) A aé and 7?2 = (%U + ’ygU) A af{ (25)

Example 7. We consider an example with two parallel services and the bounding curves
af =((0,0,0),(1,0,1),(3,2,1.5)), o = ((0,1,3),(2,7,2.5)),

df = ((0,0,1),(2,2,2)), Y = ((0,0,3), (1 3,2)) for service 1 and

o =((0,0,0),(0.5,0,1),(3,2.5,1.5)), ¥ = ((0,2,3.5), (4,16,2)),

®L = ((0,0,0),(2,0,1.5)), Y = ((0,0,2.5)) for service 2.

Both services are combined with an &-composition and the arrival bounds are chosen as
the minimum of the two upper arrival curves and the mazimum of the two lower arrival curves
resulting in oly = ((0,0,0),(0.5,0,1),(3,2.5,1.5)) and ¥, = ((0,1,3),(2,7,2.5),(12,32,2))
to avoid the use of a smoother. The delay curves are given by ®%, = ((0,0,1),(2,2,2)) and
oY, = ((0,0,3),(1,3,2.5)).

For a ||-composition we first determine the possible values for py which depend on the
bounds for the arrival process (aé,onU). To meet the long term arrival bounds of the sub-
services 1 and 2, the long term rate of the arrival process has to be between 3 and 4.5. Assume
that aly = ((0,0,0),(1,0,2),(2,2,4)) and o, = ((0,2,6), (1,8,4)), then p; € [0.5,0.625]. For
values outside the interval, the lower or upper bounds for at least one of the sub-services are
violated. We analyze the system for p1 = 0.5, py = 0.625 and Q2 = 1. The corresponding lower
and upper delay bounds are shown in Fig. 15. It can be seen that the curves for p = 0.625 are
above the curves fro p = 0.5.

For calls that are routed with some probability to one of the two services, a strict upper
bound corresponds to the above mentioned worst case scenario with no gain of the parallel
service composition. If a predefined small probability to exceed the bound in some finite
interval [0, T is accepted, then much better bounds can be computed. The concrete bounding
curves depend on the probabilities with which calls are routed to the services and on the
probability distribution of the size of calls (see also the following example).
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Figure 13: Lower and upper delay curves for the composed services and different values of py.

Example 8. Consider an arrival stream where calls of size 1 arrive periodically every A time
units with a jitter of o (< A). It has already been shown that ((0,1, (A — o)™1), (A — 0,2,A71))
describes a valid upper arrival curve. If we assume that calls can be processed by two services
with equal capacity, then ((0,1,0.5/(A —0)), (A —0,1.5,0.5/A)) is an upper arrival curve if
calls are equally distributed among the services (i.e., p =0.5).

Now consider an arrival stream with the same parameters as before but calls request with
probability 0.5 to the first service and with probability 0.5 the second service. If we choose the
previous arrival curves for the services, then the bound is exceeded by the second arrival with
probability 0.5, namely in all cases where two subsequent arrivals choose the same service.

If we use instead an arrival curve with <(O,1,ﬁ),(A —0,2,%), (kA — a,k,%)), then a
service is overloaded only if out of K (> k) calls more then 0.5K + k calls request one of the
services. The corresponding probability equals

2 i (l}f) 0.5%.

h=k+1

Thus, for a given probability that the upper bound is not exceeded within K arrivals, an
appropriate value of k can be computed.

With the presented results a user of a SOA can compose his or her services from available
sub-services that are combined sequentially or in parallel. For the resulting composed service
arrival and delay contracts can be computed easily from the arrival and delay contracts of the
sub-services. This allows one to compose complex services and obtain SLAs for the composed
service from the SLAs of the sub-services in a completely formalized way.

25



4 The Provider Perspective of SLAs

A provider is interested in the evaluation of the relationship between the load, the guaranteed
delay and the necessary service capacity. We assume that the service can be represented by a
function S(t) € F that describes the load processed in the interval [0,¢) under the condition
that load to process is available for the whole period. Usually one assumes a work conserving
strategy which implies that the system starts working as soon as load becomes available. We
consider the case of a single request stream.

To analyze SOAs we assume that the processing capacity of a service S(t) is bounded by
two functions o’ and ¢V such that

ol(t —s) < S(t) — S(s) <aV(t —s)

for all 0 < s < t. This kind of bound is denoted as a strict service curve in Network Calculus
[6]. The upper bound is assumed to be sub-additive and the lower bound super-additive.
Again we usually assume that the upper bound is given by a piecewise linear concave function
and the lower bound by a piecewise linear convex function.

If S(t) is available, then for the output process C(t) the following relation holds [5].

(A25) (t) < C(t) < (425) (1) (26)

If we have bounds for the arrival and service process, in the form of lower and upper arrival and
service curves, (o, aV) and (o, oY), then the following bounding curves can be computed

for the departure process (for a proof see [34])

vY = min { (aL@UU) ®ol, O'L} > algol (27)

7Y =min { (aU@UU) ool O'U} .

For piecewise linear functions, v and 4V are easy to compute and piecewise linear.
To process the load that is brought to the system some of the available service capacity is

required. The remaining service capacity can then be used to serve other customers. Let 67

and 6V be a lower and upper bound for the remaining service capacity which be computed

from the following equations [34]

ol = (O’L — aU) ® 0 and 6V = (O’U — aL) ©0 (28)

Again the functions are piecewise linear for piecewise linear bounding curves of the arrival
and service process.
For the provider of a SOA two questions arise.

e Is the available service sufficient to fulfill the SLA?

e What is the minimal service capacity needed to fulfill the SLA?

We begin with a provider who knows (%, c") the bounds for the available service capacity.
Since in a SOA a service usually uses different resources, it is quite natural to describe the
available capacity in the form of bounds.

To compute bounds for the departure process and delay from the arrival and service
curves, we make the following assumption: If A;(t) and Aa(t) are two arrival processes with

A1(t) > Ay(t) for all t > 0 to some system S and Cy(t), Co(t) are the two departure processes
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from the system when A;(¢) and Aa(t) are fed to the system, then Cy(t) > Cy(t) and A;(t) —
Cy(t) > Aa(t) — Ca(t) for all t > 0. Similarly, if an arrival process At) is fed to a system with
two possible service processes S1(t) and So(t) with S1(t) > Sa(t) for all ¢ > 0 and C1(t), Ca(t)
are the corresponding departure processes, then C;(t) > Cy(t) and A(t)—C1(t) < A(t) —Ca(t)
for all ¢ > 0. These properties define again some kind of monotonic behavior of a system. If
we assume monotonic behavior and know the arrival curves (o, a") and the service curves
(c%, oY), then the system S, with arrival process o and service process oV produces the
smallest delay and the system S, with arrival process aV and service process o produces
the largest delay. Let

bl = inf {aL(u) - JU(u)} and bY = sup {aU(u) — UL(u)}
u>0 u>0
be the minimum and maximum backlog of S, and S, respectively. For both systems
bounds for the departure process can be computed using (27). Such that

0w = min { (aF0") 207,07} (29)
for the upper bound of the departure process of S, and
Yup = min { (aU@aL) ®c’, min {JL, aU}} (30)

is the lower bound for S,;,. Consequently, (10w) "t is an lower bound for the pseudo-inverse
of the departure process of Sy, and (%p)_1 is a upper bound for the pseudo-inverse of the
departure process of S,p.

If limy— oo @ > limy_oe @, then the delay becomes ((0,00,00)). Otherwise upper
and lower bounds for the delay for load x are then given by

oV () = 7 (2) — (V) ' (2) and ¢¥(z) = vk (2) — (a¥) 7 (2) (31)
and

Uiy = [ o¥ and ®F(z) = "t .
&Y (z) = /0 oV (y)dy and B (z) /0 ok (y)dy (32)

If ®Y, L are not concave or convex, respectively, they may be substituted by concave upper
and convex lower bounds. The computed bounds can then be compared with bounds required
by the SLA to prove whether the available service capacity is sufficient to fulfill the SLA.

We now compute bounds (UL,UU) for the required service capacity. Since we assume
a monotonic behavior of the system, the largest delay results from the system with arrival
process aV and service process . The output process of this system has to be larger or
equal to vV, the output process of the system with arrival process a¥ defined in (14). Since
aV®c! is as lower bound for the output process of the system with arrival process a¥ and
service process o, 4V > aV®c! implies that the service capacity is sufficient to meet the
upper delay bound under all arrival process that are conform to the SLA. With the relation
between ® and @ the lower service curve can be computed as

W <a’@0t o AYedV <ol (33)

such that o’ = 7Y @aV can be chosen.
For the computation of an upper bound for the service process we can in principle proceed
similarly. Due to the monotonicity the shortest delay will be observed in the system with
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the smallest arrival process a’ and the largest service process o¥. This system has to have
a delay process of at least ®L. However, if o = (0,0,0), then the delay bound cannot be
met and in several other cases, the upper bound becomes too small as outlined below. To
compute an upper bound, we first compute v~ from (18). With similar arguments as above,
the upper bound for the service process can be computed as

vE<alwd? o yFoal > oV (34)

Thus, 0V = v*@al is the required upper bound. Often ¢V > o will not hold, especially if
al is small and the service has to be very slow to meet the lower delay bound. In this case
we set oV = oV A ol and delay calls that are finished too early until they meet the lower

delay bound.

Example 9. We consider a system with the input and delay bounds as shown in Figure
5. Assume that the available service capacity is bounded from below by the service curve
ol =((0,0,0),(1.5,0,2)). For the lower bound this means that for a period of length 1.5 no
load is served and afterwards the service continues with rate 2. The lower output bound, which
is necessary to meet the upper delay bound under the maximal arrival stream (and therefore
under all allowed arrival streams that are bounded by V) is

Y =((0,0,0), (1.5,1,1.25), (2,1.625,2.25), (2.3,2.3,1)).

With service process o™ and arrival process oV we obtain an output process

v = ((0,0,0),(1.5,0,2), (2.7,2.4,1)).

Fig. 14 shows the curves and it becomes clear that v* < ~U which implies that the ser-
vice capacity is not sufficient. If we use instead a server with lower service curve o¥ =
((0,0,0),(1,0,2)), then the lower output bound becomes

72 = ((0,0,0),(1,0,2),(2.2,2.4,1))

and v2 > Y.

45

0 0.5 1

Figure 14: Bounds for the departure process.

The minimal service curve computed with (33) becomes
ol =((0,0,0),(1.2,0,1),(1.5,1,1.25), (2, 1.625,2.25), (2.3,2.3,1)).
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Provider 1 Provider 2
aV oV oV U
A | (0,5,5),(2,15,2) | (0,0,4),(2,8,2) (0,1,3),(2,7,2) (0,0,3),(2,6,2)
B | (0,1,8),(3,25,2) | (0,0,6),(4,24,4) | (0,1,3),(3,10,2) | (0,0,5),(3,15,3)
C | (0,2,3),(4,14,2) | (0,0,3),(3,9,2) (0,1,2) ((0,0,3),(2,6,1)
D | (0,1,3),(3,10,2) | (0,0,4),(5,20,2) (0,1,2) (0,0,3),(5,15,1)
E | (0,1,2),(2,5,1) | (0,0,6),(2,12,1) (0,1,1) (0,0,2),(2,4,1)

Table 1: Bounding curves for the service parameters offered by the two providers.

To meet the lower delay bound under the minimal arrival process we first compute

v =((0,0,0),(2.2,0,1), (4.2,2,0), (4.4,2,1))

using (34) we obtain

oV =((0,0,0),(1,0,1),(3,2,0),(3.2,2,1))

such that oV > o does not hold, i.e., oV has to be modified and calls have to be delayed, if
necessary.

5 An Example

G

e
Service E

Service C

Figure 15: Example service composition.

We consider the analysis of a composed service from the user’s perspective. The structure
of the model follows the examples presented in [20] where, however, only mean durations and
costs are considered. Figure 15 shows the service that is composed of 5 sub-services A, ..., E.
We assume that the ||-composition between D and E is defined by a probabilistic choice such
that 75% of the load goes to D and the maximal size of a call is 1. The sub-services are
provided by two different providers. The upper arrival and delay curves are shown in Table
1. We assume that all lower arrival and delay curves are zero, i.e., (0,0,0).

The services of both providers have the same arrival bounds and delays for large t. Provider
1 allows larger arrival batches and temporarily larger arrival rates at the beginning but the
price for this flexibility is a longer delay for the first load units. We analyze two configura-
tions where all services are provided by provider 1 or 2, respectively. ®{ and ®Y are the
corresponding upper delay curves of the composed service.

The system is first analyzed under an input process with upper arrival curves ozg =
((0,1,10), (4,41,4),(6,49,1)). Fig. 16 shows the upper delay bounds for both variants. Vari-
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ant 2 is better in this case, although it has a slightly larger delay at the begining.
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Figure 16: Upper delay bounds for the first arrival process.
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Figure 17: Upper delay bounds for the second arrival process.

If we change the arrival process to a process with upper bound oV = ((0,1,5), (2,11, 2)),
the situation changes. In this case, variant 1 is better than variant 2. The corresponding
upper delay curves are shown in Fig. 17.

6 Conclusion

In this report we present a new approach to analyze large software architectures based on the
information about the quantitative behavior available in the SLAs describing the functional
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and non-functional properties of the system. With the available information on bounds for the
load and the delay, bounds on the quality of service of composed services as well as require-
ments on the performance of the underlying architecture can be derived. Like with product
form queuing networks, systems can be analyzed with a minimal amount of information, only
simple piecewise linear functions are used to specify the parameters. Therefore necessary
computations are usually efficient. The approach considers mainly worst case behavior but
this is what is commonly specified in SLAs.

The presented approach is a first step in using min/plus algebra and the concept of Network
or Real Time Calculus for the performance analysis of software systems. It is possible to
extend the approach by adopting additional results from these areas. In particular multiple
classes and the integration of cost functions are interesting topics for future research.
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