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Abstract

Markov models are often used in performance and dependability analysis and allow a precise and numerically stable

computation of many result measures including those which result from rare events. It is, however, known that simple

exponential distributions, which are the base of Markov modeling, cannot adequately describe the duration of availability

or unavailability intervals of components in a distributed system. Commonly used in modeling those durations are Weibull,

log-normal or Pareto distributions that can also capture a possibly heavy tailed behavior but cannot be analyzed analytically

or numerically. An alternative to applying the mentioned distributions in modeling availability or unavailability intervals

are phase type distributions and Markovian arrival processes that still result in a Markov model. Based on experiments for

a large number of publically available availability traces, we show that phase type distributions are a flexible alternative to

other commonly known distributions and even more that Markov models can be easily extended to capture also correlation

in the length of availability or unavailability intervals.

Keywords: Dependability Modeling, Phase Type Distributions, Availability Distributions, Parameter Fitting of Markov

Models.

1 Introduction

With an increasing number of components in distributed systems, the probability of observing failures resulting in the unavail-

ability of the whole system or parts of the system increases too. The consequences of unavailability of parts of a distributed

system are often a degradation of system performance and sometimes even wrong results. This may then result in the loss

of customers and profit. Several practical examples for the implications of failures in real systems can be found in [13].

The serious consequences of failures and the resulting unavailability of system components implies that these aspects have

to be considered in system planing and control. Usually these tasks are performed model based such that adequate models

which include detailed and realistic models of the duration of availability and unavailability intervals are a key step of model

building.

Availability is analyzed using stochastic simulation models [9] or Markov models [27] which can be analyzed using

simulation or numerical techniques. Simulation is very flexible and can be used independently of the model size and the
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used distributions. However, simulation is an approximation technique which only observes several sample paths such that

confidence intervals have to be computed for the derived results. If models are large, result measures have a high variance

or occur rarely, it is cumbersome to estimate or compute reliable and precise results from simulation. On today’s computers

very large Markov models can be analyzed numerically in a few seconds and the analysis is exact up to numerical errors such

that steady state or interval availability of complex systems can be easily determined from Markov models [23].

Independently whether simulation or numerical techniques are applied, the central step of availability modeling is the

modeling of the duration of availability and unavailability intervals. For simulation models Weibull, Pareto, log-normal or

Gamma distributions are commonly used [16, 13]. For these distributions maximum likelihood estimators of the parameters

are available [19] which allow an easy parameterization of the distributions from available measurements. Interestingly, only

few studies exist which compare the modeling power of the different distributions on real data as already noticed in [16, 13].

If Markov models are built for availability modeling, then the exponential distribution is the base since holding times in states

of Markov chains have to be memoryless [27]. However, it is also known that availability or unavailability interval lengths

are rarely exponentially distributed such that the exponential distribution is only a rough approximation of the real behavior

and modeling errors become large. It is possible to use Markov models in conjunction with more general distributions by

using phase type distributions (PHDs) [21] which are a distribution type that can theoretically approximate any non-negative

distribution arbitrarily close. Although PHDs have a few times been used to model availability or unavailability intervals

[8, 22], we are not aware of any study that generates PHDs from measured availability data and compares the resulting

PHDs systematically with other distributions. The major obstacle, that prohibited a wider use of PHDs in the past, lies in the

complexity of finding adequate parameters such that the PHD matches the observed behavior. However, nowadays efficient

algorithms are available to fit the parameters of a PHD according to measured data [25, 28] and it has been shown that the

resulting PHDs are very accurate models for the data, often much better than standard distribution with a small number of

parameters.

Another aspect which is rarely considered in modeling availability or unavailability is the autocorrelation in the process.

Since failures in distributed systems have often similar reasons, it is very likely that the intervals are correlated and disre-

garding this correlation may result in an overestimation of system performance. Correlation can be considered according to

different measures. It may occur in space since parts of a distributed system which are located nearby are more likely to fail

simultaneously. It may also occur in time since a failure is usually more likely if a system is highly loaded and high loads

are often observed during the day in the middle of the week, whereas the system is often lightly loaded over the weekend or

the night. The aspect of time dependent failures has been analyzed in [29]. Finally, correlation of consecutive availability or

unavailability intervals can be observed even if location and absolute time are neglected. We will consider this aspect in our

models but the proposed approaches may be extended to take into account also locations or absolute time. In the Markovian

setting, PHDs can be easily extended to Markovian Arrival Processes (MAPs) [20] which have been mainly applied to model

correlated arrival streams in computer networks [4, 15] but similar process types can in principle also be used to model

availability and unavailability intervals such that the resulting model is a Markov chain and describes correlated durations of

availability and unavailability intervals.

In this paper we use the traces from the failure trace archive (FTA) [13, 16] and generate PHDs to model the length of
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availability and unavailability intervals. The resulting distributions are compared to standard distributions like Weibull or

Gamma which have been used in the mentioned papers as a model for the data. Furthermore, we consider correlations in the

length of unavailability and availability intervals and use Markov chains to model these correlations.

The paper is structured as follows. In the next section the basic definitions and notations are introduced. Section 3 describes

the modeling of the unavailability and availability intervals for different traces from the FTA using PHDs. The quality of the

resulting PHDs is compared with the quality of other distributions like which have shown in [16] to be adequate models for

the data. In Section 4, the correlation in the length of availability and unavailability intervals is analyzed and modeled using

a Markov model which can be interpreted as a MAP. The paper ends with the conclusions and an outlook of future work in

the area.

2 Background and Basic Definitions

In the following paragraphs we introduce the basic definitions and notations that are needed for the experiments presented

subsequently. Additionally, we give a brief overview of related approaches from the literature.

2.1 Distributions of Availability and Unavailability Intervals

We use the same basic concepts and terminology as in [13] which is commonly used for describing dependability of dis-

tributed systems. A failure is an event that implies that a component of a distributed system does not act as described in its

specification. A time interval in which a component does not fulfill its specification is denoted as an unavailability interval,

often this means that the component does not react at all, but it may also contain a behavior where the system is too slow,

computes incorrect results or does not observe the required SLA. On the other hand, an availability interval is a period where

the component behaves according to its specification. As indicated it is not always clear whether a component is available

or not because it may only be too slow during some period of time and it is also not clear why the system is not available

at some time. However, abstract models, as they are required for complex systems, only consider the length of availability

and unavailability intervals of components to evaluate a system. For a realistic modeling, stochastic models have to be used

that describe the observed behavior of real systems. Since different possibilities exist to model the length of availability and

unavailability intervals, a fair comparison of the model types has to be based on real data and has to be done in a systematic

way.

As already observed in [16, 13], most studies in the area use their own data which is only available in a specific format,

if it is available at all. To provide a common base of availability data, the failure time archive (FTA) has been built [16, 13].

The FTA contains a large number of failure traces from different sources in a common format. Furthermore, it includes

Matlab scripts to perform a basic analysis of the data. In the mentioned papers the length of the availability and unavailability

intervals of the traces have been modeled using Weibull, Pareto, log-normal, Gamma and exponential distributions. It turns

out that the Weibull, log-normal and Gamma distribution are often adequate which means that the Kolmogorov-Smirnov (KS)

and Anderson-Darling (AD) tests give a high p-value (for details about the test see [16, 13] and the standard literature [19]).
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The exponential distribution fails to model the data adequately. Even if the Gamma distribution can at least be approximated

by a Markov model, the available results do not allow one to build a Markov model from the data such that simulation has to

be used as analysis method which is done in [13].

To the best of our knowledge, no attempt has been made yet to model the data from the FTA using PHDs. This will be

done in this paper and the results will compared to the above mentioned models from [16].

The data sets in the FTA contain for each component of a distributed system the absolute times when a session begins and

ends which means that the component is available in this interval and unavailable in between the intervals. As described in

[16], it is not always clearly defined when the system is available and when not. For the detailed traces an interpretation of

availability and unavailability phases is not always obvious but has a significant impact on the observed behavior. However,

we do not consider this interpretation in detail and use the data in its raw form, as also done in the basic modeling presented

in [16].

If we consider one component k in a distributed system, then we obtain from a trace an ordered sequence T (k) =

(ak1 , u
k
1 , a

k
2 , . . . , u

k
m(k)−1, a

k
m(k)), where aki is the length of the ith availability interval and uki is the length of the ith unavail-

ability interval. We define additionally two subtraces for component k, namelyA(k) = (ak1 , . . . , a
k
m(k)) and U (k)(uk1 , . . . , u

k
m(k)−1).

In some cases, traces may also start or end with an unavailability interval which implies that the following equations have

to be slightly modified. If the distribution of the interval length is considered, it is assumed for abstract modeling that all

components behave statistically identically such that A = (a11, . . . , a
K
m(K)) and U = (u11, . . . , u

K
m(K)−1) collect all durations

of availability and unavailability intervals. Let ma =
∑K
k=1m

(k) and mu =
∑K
k=1(m

(k) − 1) be the number of elements in

the traces A and U and denote the elements as ai and ui (i = 1, . . . ,ma or i = 1, . . . ,mu), respectively. Then

µ̂ja =
1

ma

ma∑
i=1

(ai)
j and µ̂ju =

1

mu

mu∑
i=1

(ui)
j (1)

are estimates for the jth moments of the length of availability and unavailability intervals. For the first moments we write µ̂a

and µ̂u. Additionally,

µ̂(k)
a =

1

m(k)

m(k)∑
i=1

aki and µ̂(k)
u =

1

m(k) − 1

m(k)−1∑
i=1

uki (2)

are the first moments of the length of availability and unavailability intervals of component k.

2.2 Phase Type Distributions

Phase type distributions (PHDs) are the basic model to describe non-exponential behavior in a Markov setting. A PHD can

be interpreted as an absorbing Markov chain with n+ 1 states, generator matrix

Q =

 D0 d1

0 0

 (3)

and initial distribution (π, 0). D0 is a non-singular subgenerator (i.e., diagonal elements are negative, non-diagonal elements

are non-negative and all row sums are smaller or equal 0), d1 = D0 I1 and π is a distribution vector. For details about PHDs

we refer to the literature [8, 21, 25, 28].
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The determination of the parameters of a PHD to match trace data is denoted as parameter fitting. There are two classes

of approaches, namely moment and maximum likelihood based fitting. Moment based fitting tries to find a PHD such that

lower order moments of the trace (see (1)) are exactly matched or approximated by a PHD. Corresponding approaches can

be found in [3, 11, 14]. Most methods of this type are fairly efficient but allow one only to match or approximate a smaller

number (at most 5 to 10) lower order moments. This is often not sufficient, in particular if the density function is multimodal.

The alternative to moment based parameter fitting are methods that maximize the likelihood which is defined for a trace

T and a PHD (π,D0) as

L(π,D0)(T ) =
∏
t∈T

f(π,D0)(t) =
∏
t∈T

πeD0td1. (4)

Of course, the likelihood can be defined for any distribution with density f(t). The maximization problem is then given by

L∗(T ) = max
(π,D0)

(
L(π,D0)(T )

)
. (5)

Maximum likelihood estimates are computed with expectation maximization (EM) algorithms [2]. Recent variants of these

algorithms [25, 28] are very efficient and can be applied to large traces to generate PHDs with 10 through 20 states in at most

a few minutes, which is usually sufficient for most data sets. Even if EM algorithms are only local optimization algorithms,

the resulting PHDs are often a better approximation of a trace than those resulting from moment fitting.

To compare the quality of some distribution as a model of a trace, different methods exist. In [16, 13] the p values of the

KS and AD test are used. Since the AD test is, as far as we know, not available for PHDs, we use only the p values of the KS

tests in our comparisons in Section 3. The KS test can be used for PHDs since the distribution function is given by

F(π,D0)(t) = 1− πeD0t I1 (6)

and can be easily computed. An alternative criterion is the comparison of the likelihood values of different distributions. It

is obvious that a larger likelihood indicates a better fitting. In this way, distributions like Weibull or Pareto can be compared

with PHDs.

The proposed fitting approaches are used to fit PHDs for the duration of availability and unavailability phases. Let

(πa,Da
0) and (πu,Du

0 ) be the resulting PHDs. If we assume that a component is initially up, then the availability of

the component can be described by a Markov chain with initial distribution (πa,0) and generator matrix

Q =

 Da
0 da1π

u

du1π
a Du

0

 . (7)

From this model the transient and stationary availability can be easily analyzed. Let

pt = (pat ,p
u
t ) = p0e

Qt (8)

and p = (pa,pu) = limt→∞ pt. SinceQ is irreducible, p is the unique solution of pQ = 0 subject to p I1 = 1.

From the vectors certain availability measures can be derived. For example, the system is available at time t with proba-

bility qat = pat I1 and the steady state availability equals qa = pa I1. Since the use of distributions is based on the assumption
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of independent and identically distributed availability and unavailability intervals, the probability that L out of K (L ≤ K)

components are available equals (
L

K

)
(qat )

L
(1− qat )

K−L
. (9)

More complex measures can also be computed for the components. For example the mean time before the component

becomes unavailable under the condition that is available at a random time point equals

pa

pa I1
(−Da

0)
−1

I1.

Similarly other quantities can be computed. We briefly describe below how the Markov model described in (7) can be used

to compute the availability in a more general context.

2.3 Adding Correlations to PHDs

The assumption of independent and identically distributed durations of availability and unavailability intervals is usually only

an approximation. In practice, failures resulting in unavailability of components have common reasons and are therefore often

correlated. The traces from the FTA have been analyzed with respect to correlation in [29]. In this paper a time dependent

correlation is analyzed and the behavior is modeled by a process with two phases, a phase with low and another phase with

high failure rates. Here we use two different models for correlations. First, we consider the correlation of the durations of

availability and unavailability intervals of single components. This viewpoint considers local sources for failures which may

result in sequences of consecutive failures. Second, we consider the mean duration of availability intervals depending on

the number of failed components in the system. This usually means, that the length of availability intervals is smaller, if

less components are available such that the load of a component increases. Even if time dependent failures are not explicitly

considered in this model, the behavior is similar to the behavior of the model described in [29] because intervals with many

available components and low failure rates alternate with phase where many components are unavailable and failure rates are

high. However, a detailed comparison of both modeling approaches is left for future research.

We begin with analysis of the dependence of component failures and define for a system of K components numbered 1
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through K the following four quantities.

ρ̂
(k)
a =

(m(k)−1)
m(k)−1∑

i=1

(aki−µ̂
(k)
a )(aki+1−µ̂

(k)
a )

(m(k)−2)
m(k)∑
i=1

((ak
i
−µ̂(k)

a )2

ρ̂
(k)
u =

(m(k)−2)
m(k)−2∑

i=1

(uk
i−µ̂

(k)
u )(uk

i+1−µ̂
(k)
u )

(m(k)−3)
m(k)−1∑

i=1

((uk
i
−µ̂(k)

u )2

ρ̂
(k)
au =

m(k)−1∑
i=1

(aki−µ̂
(k)
a )(uk

i−µ̂
(k)
u )√

m(k)−1∑
i=1

(ak
i
−µ̂(k)

a )2
m(k)−1∑

i=1

(uk
i
−µ̂(k)

u )2

ρ̂
(k)
ua =

m(k)−1∑
i=1

(uk
i−µ̂

(k)
u )(aki+1−µ̂

(k)
a )√

m(k)−1∑
i=1

(ak
i
−µ̂(k)

a )2
m(k)−1∑

i=1

(uk
i
−µ̂(k)

u )2

(10)

which are the correlation coefficients of the length of availability, unavailability, availability-unavailability and unavailability-

availability intervals for component k. Since the implicit assumption of the modeling is that all components are stochastically

identical, the corresponding coefficients over all components can be computed from the following equations.

ρ̂a =
K∑
k=1

m(k)

ma
ρ
(k)
a ρ̂u =

K∑
k=1

m(k)−1
mu

ρ
(k)
a

ρ̂au =
K∑
k=1

m(k)−1
mu

ρ
(k)
au ρ̂ua =

K∑
k=1

m(k)−1
mu

ρ
(k)
ua

(11)

The quantities describe the correlation between availability and unavailability intervals of components. We now build

models that consider this correlation and begin with ρ̂au and ρ̂ua. The resulting Markov model is an extension of (7) with

generator matrix

Q =

 Da
0 Qau

Qua Du
0

 . (12)

Observe that (7) is just a special case of (12). Let Ma = (−Da
0)
−1 and Mu = (−Du

0 )
−1. We assume that matrices Qau

and Qua are chosen such that πaMaQau = πu and πuMuQua = πa, then the sojourn time in the first subset of states

(where the system is available) is distributed according to PHD (πa,Da
0) and the sojourn time in the second subset of states

(where the system is unavailable) is distributed according to PHD (πu,Du
0 ).

The Markov chain in (12) can be interpreted as a Markovian Arrival Process (MAP). A MAP [20, 12, 17] can be interpreted

as a irreducible Markov chain with generator matrix Q = D0 +D1 such that D0 is a non-singular subgenerator and D1 is

non-negative. The interpretation of the behavior of a MAP is as follows, transitions from D0 are silent whereas transitions

in matrix D1 are related to events. The distribution of the time between two events is given by a PHD (π,D0) where

π (−D0)
−1
D1 = π and π I1 = 1. The inter-event times of MAPs are usually correlated.

For the modeling of availability and unavailability interval length, we have two types of events, namely the end of an

availability interval and the end of an unavailability interval. Since the duration of availability and unavailability intervals
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usually differs, it is not appropriate to model both events using a single process. Instead we use so called marked MAPs

(MMAPs) [10] that describe the generation of K rather than only one event. In our case K = 2 is sufficient. An MMAP with

two event types is described by three matrices D0, D1 and D2 such that Q = D0 +D1 +D2 is an irreducible generator

matrix, D0 is as above and D1,D2 are non-negative. Some results about results like conditional moments or conditional

joint moments of MMAPs can be found in [6]. In our setting matrixQ from (12) is decomposed as follows.

D0 =

 Da
0 0

0 Du
0

 ,

D1 =

 0 Qau

0 0

 , D2 =

 0 0

Qua 0

 .

(13)

Events of type 1 indicate the end of an availability interval and events of type 2 the end of an unavailability interval. The

parameter fitting of MMAPs can be done according to moments [6] or the likelihood value [15]. We consider a two phase

approach based on the ideas proposed in [12] where first a PHD is fitted to match the distribution and afterwards the PHD

is extended to an MMAP such that the distribution remains the same but correlation is added to match the coefficient of

correlation. This approach can be extended to capture also other quantities describing the correlation as shown in [6].

However, we consider only the coefficient of correlation as estimated in (10).

For our MMAP we denote by ξau and ξua the correlation coefficients between availability and unavailability interval

length. The values are computed from the following equations.

ξau = πa(Ma)2QauM
u I1−(πaMa I1)(πuMu I1)√

(2πa(Ma)2 I1−(πaMa I1)2)(2πu(Mu)2 I1−(πuMu I1)2)

= aQaub−ψ
η

ξua = πu((Mu)2QuaM
a I1−(πaMa I1)(πuMu I1)√

(2πa(Ma)2 I1−(πaMa I1)2)(2πu(Mu)2 I1−(πuMu I1)2)

= cQaud−φ
ζ

(14)

Observe that the vectors a, b, c,d and the scalars ψ, φ, η, ζ result from the PHDs modeling the length of availability and

unavailability intervals. Since the estimated autocorrelation coefficients should be matched or at least approximated by ξ.,

(ξau− ρ̂au)2 and (ξua− ρ̂ua)2 have to be minimized under the constraints πaMaQau = πu,Qau I1 = −Da
0 I1,Qau ≥ 0 and

πuMuQua = πa, Qua I1 = −Du
0 I1, Qua ≥ 0. This is a non-negative least squares problem with linear constraints. If an

exact solution exists, it can be computed from a set of linear equations of an order smaller or equal to na · nu where na and

nu the number of phases of the PHDs modeling the availability and unavailability interval length, respectively. The solution

is described in the context of parameter fitting of MAPs in [12] and for MMAPs in [6].

To match or approximate additionally ρ̂a and ρ̂u, we show first the coefficients of correlation of the sojourn time in the

availability and unavailability phases.

ξa = πa(Ma)2QauM
uQuaM

a I1−(πaMa I1)2

2πa(Ma)2 I1−(πaMa I1)2

= aQauM
uQuab−ϕ
υ

ξu = πu(Mu)2QuaM
aQauM

u I1−(πuMu I1)2

2πu(Mu)2 I1−(πuMu I1)2

= cQuaM
aQaud−χ
ω

(15)
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In the equations only Qau and Qua are unknown. Unfortunately, the equations are no longer linear in Qau and Qua.

However, if assume that Qau is known, then the problem of computing Qua is again a non-negative least squares problem

and if we assume thatQua is known, then computation ofQau is a non-negative least squares problems. Thus, first matrices

are computed according to (14) using a constrained non-negative least squares solution algorithm. Then the approach can

be iterated until the correlation coefficients are matched or approximated adequately. The outlined approach is denoted as

alternating least squares [7, 18]. If it is not possible to approximate the correlation coefficients close enough, one can try to

perform equivalence transformations of the PHDs (πaDa
0) and (πuDu

0 ) to increase their flexibility as in [5].

After matrix Q is available, the component can be analyzed using (8). With the additional assumption that components

are independent, the complete system can be analyzed using (9).

The dependencies considered in the previous equations are all based on local failure conditions in a component such

that dependencies between successive availability and unavailability intervals are described using only informations about

this component. Apart from these conditions there are also global conditions such that the availability and unavailability

intervals of different components are correlated. This dependency has also been considered in [29] where two failure modes

are introduced, a normal mode and a peak mode. In peak mode, failure rates are higher. The model considers the duration of

peak and normal modes and the length of the availability and unavailability intervals in both modes. Here we use a different

approach to model the same phenomena.

We denote by δ(ak) for ak ∈ A and δ(uk) for uk ∈ U the number of components that are available at the end of the

corresponding interval excluding the component to which the interval belongs. Let ma(k) and mu(k) be the number of

availability and unavailability intervals that end if k other components are available. Then the first moments conditioned on

the number of available components at the end of the interval are given by

µ̂a(k) = 1
ma(k)

∑
ai∈A,δ(ai)=k

ai and

µ̂u(k) = 1
mu(k)

∑
ui∈U,δ(ui)=k

ui.
(16)

If some valuesma(k) ormu(k) are 0, then the corresponding values are approximated by inter- or extrapolation. Then define

αk =
µ̂a

µ̂a(k)
and βk =

µ̂u
µ̂u(k)

. (17)

Under the assumption that the length of intervals depends on the state of components but the distribution of the interval

length remains similar, the following Markov chain describes the behavior of one component when k other components are

available.

Q[k] =

 αkD
a
0 αkQau

βkQua βkD
u
0

 (18)

The matrix describes the behavior of a single component which is now no longer independent such that for an analysis the

state of other components has to be taken into account. However, this implies that for an exact analysis a Markov chain has

to be built that considers the state of all components which results in the so called state space explosion, an in the number

of components exponentially growing state space. The Markov chain usually cannot be analyzed numerically if K is large
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as in real systems. In this case simulation or approximation techniques have to be applied. Simulation of Markov models is

straightforward, whereas approximation techniques have to be developed specifically for this type of system.

It is also possible to apply the presented Markov processes in more general models. In [13] the availability models are

integrated in a grid simulator to analyze the effect of failures on grid workloads. It is, of course, also possible to include

the Markov models in such an environment. In contrast to [13], where correlations are not considered, the Markov models

include correlation. It would be interesting to analyze the effect of correlations in the simulation model.

3 Modeling Availability Distributions with PHDs

To analyze the modeling quality of our Markov models we build models for nine different traces from the FTA. In this section

we consider only the computation of the distribution of the lengths of availability and unavailability intervals. In the following

section, correlation is added. In [13, 16] the same traces have been used and exponential, Weibull, log-normal, Gamma and

Pareto distributions have been fitted to the traces using maximum likelihood estimators for the parameters.

The set of traces contains data from 22 HPC systems at Los Alamos National Laboratory (lanl05), from a computa-

tional grid platform in France (g5k06), and from desktop PCs at Microsoft (microsoft99) and the University of Notre Dame

(nd07cpu). Additional measurements cover HTTP file requests to different web servers (websites02), results from different

DNS servers (ldns04), data measured between all pairs of PlanetLab nodes (pl05), data from the Overnet peer-to-peer file-

sharing system (overnet03) and from the Skype superpeer network (skype06). For detailed information about the traces we

refer to [13, 16] and the references given therein.

For PHD fitting we used the EM algorithm that is described in [28]. This algorithm fits the parameters of Hyper-Erlang

distributions, a subclass of PHDs, and is very efficient such that for most traces PHDs are computed in a few seconds. We

generated PHDs with 2, 3, 5, 8 and 10 phases to examine possible differences in the fitting quality when increasing the

number of phases. The number of parameters of a PHD is too large to present the detailed distributions here. We will make

them available on our web page [1]. The parameters of the PHDs have all been computed with the publically available

software gfit which can also been downloaded form the mentioned web page. The time to compute the PHD parameters with

gfit depends on the number of phases, the number of elements in the trace and the structure of the trace. If a trace contains

too many elements, i.e. more than 105 entries, it is possible to perform trace aggregation and to consider only an aggregated

trace with about 103 or 104 aggregated entries. The approach is described in detail in [26]. In this way the computation of

the parameters for PHDs with about 10 phases needs less than a minute and sometimes only a few seconds. Therefore it

is possible to compute PHDs with an increasing number of phases and stop the generation if the likelihood value, which is

implicitly computed during parameter fitting, does not significantly grow after adding a new phase. This approach works as

long as the number of phases becomes not too large and is also used in the following examples.
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3.1 Comparison of Lower Order Moments

First we compare lower order moments of the traces and lower order moments of the fitted distributions. Observe that the

parameters of the distributions are not explicitly fitted to match lower order moments. It is, for example, possible to match

with PHDs lower order moments exactly but this does not mean that the PHD is a good model for the data. Usually maximum

likelihood based as done in the fitting algorithms used here and also in the estimators for the distributions from [13, 16] are

much better. This means that the comparison of moments of the trace and the fitted distributions is not necessarily a criterion

for the quality of the fitted distribution it is only a first hint. We compare the fitted PHDs with exponential, Weibull, log-

normal and Gamma distributions from [13, 16].

Table 1 contains for each trace and all distributions that have been generated for the trace, the first moment, the coefficient

of variation and the skewness. In each column that is headed by the name of the trace, the values are given in the above order

for the trace and nine distributions. The value that is reached by a distribution and is closest to the corresponding value of

the trace is printed in bold. PHDs including the exponential distribution usually match the first moment exactly, even if they

are fitted with an ME algorithm, as done here, that does not explicitly use the moments for fitting. For the trace ldns04 this is

not true for the exponential distribution which we took from [13, 16]. For the Weibull, log normal and Gamma distribution

the first moment is only approximated. In some case, the difference between first moment of the trace and the distribution is

fairly large. The coefficient of variation is not exactly matched by the PHDs but they provide a much better approximation of

this quantity than the other distributions do. For the third measure, the skewness, in two traces, websites02 and nd07cpu, the

Weibull distribution gives the best approximation. For the seven remaining traces the PHDs show the best approximations.

These examples show that the flexibility of PHDs, which is a consequence of the large number of parameters, results in a

better approximation of moments even if maximum likelihood methods are applied.

3.2 Comparison using Statistical Tests and Likelihood Values

It is not easy to evaluate the quality of a distribution with respect to trace data. In [13, 16] the AD and KS test are used for

this purpose. As already mentioned that AD test cannot be applied for PHDs because the corresponding test statistics is not

available. The KS test can be used also for PHDs. However, since the traces are very long, an application of the test to the

whole trace will usually result in a low p value. This is known to be a general problem of goodness-of-fit tests. Therefore, in

[13, 16] the following approach is adopted from [24]. 30 samples from a trace are selected randomly and the corresponding

p-value is computed. This is repeated 1000 times and the average p-value is used as p-value for the distribution. This step

is by no means exact, i.e., we cannot prove that resulting p-value is really the probability of rejecting the hypothesis that the

trace is drawn from the distribution. However, the value can be used as an indicator of the matching quality of the distribution

according to the trace and it can therefore be used to compare different distributions. As a second measure we compare the

log-likelihood values of the different distributions, as defined in (4). Again, a larger log-likelihood value indicates a better

match of distribution and trace. Almost all of the traces contain intervals with length zero. To obtain feasible log-likelihood

values we deleted those values for the likelihood computation, because most of the distributions have density functions that

are only defined for x > 0.
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Table 1: Mean, coefficient of variation and skewness for the availability traces and the fitted distributions

lanl05 g5k06 microsoft99

Trace 1779.99 1.95 3.09 32.41 2.91 15.06 67.01 2.07 3.40

Exponential 1779.99 1.00 2.00 32.41 1.00 2.00 67.01 1.00 2.00

Weibull 1766.1 2.37 7.24 31.08 2.37 7.24 60.10 1.97 5.43

Log-Normal 4519.0 17.36 5287.4 84.62 18.67 6560.80 74.65 5.34 168.46

Gamma 1785.9 1.69 3.38 32.08 1.72 3.43 66.50 1.56 3.12

PH(2) 1780.0 1.74 2.87 32.41 1.50 2.46 67.01 1.90 3.24

PH(3) 1780.0 1.90 3.22 32.41 2.28 4.78 67.01 2.12 4.08

PH(5) 1780.0 1.99 3.52 32.41 2.71 7.86 67.01 1.89 3.19

PH(8) 1780.0 1.99 3.51 32.41 2.69 7.62 67.01 2.09 3.88

PH(10) 1780.0 1.99 3.52 32.41 2.70 7.66 67.01 2.14 4.14

websites02 pl05 ldns04

Trace 11.85 3.38 9.02 159.48 2.91 4.91 140.93 1.37 1.24

Exponential 11.85 1.00 2.00 159.49 1.00 2.00 141.06 1.00 2.00

Weibull 8.69 2.52 7.99 120.62 4.45 20.25 153.01 2.18 6.34

Log-Normal 9.68 7.63 466.5 252.09 59.72 213160 389.34 15.06 3463.0

Gamma 11.99 1.80 3.59 157.61 2.24 4.47 141.35 1.60 3.20

PH(2) 11.85 2.18 3.49 159.48 2.19 3.36 140.93 1.55 2.54

PH(3) 11.85 2.97 5.66 159.48 2.66 4.14 140.93 1.60 2.65

PH(5) 11.85 2.41 3.96 159.48 2.97 4.95 140.93 1.47 1.90

PH(8) 11.85 2.99 5.72 159.48 2.63 3.84 140.93 1.44 1.71

PH(10) 11.85 2.92 5.12 159.48 2.93 4.61 140.93 1.43 1.60

overnet03 nd07cpu skype06

Trace 2.29 2.02 8.03 13.73 4.37 25.49 16.27 2.12 4.81

Exponential 2.29 1.00 2.00 13.73 1.00 2.00 16.27 1.00 2.00

Weibull 2.22 1.18 2.56 10.31 2.61 8.41 15.10 1.62 4.08

Log-Normal 1.95 1.27 5.86 15.18 11.20 1439.0 16.93 3.28 45.15

Gamma 2.30 1.05 2.97 13.85 1.83 3.65 16.32 1.37 2.74

PH(2) 2.29 1.96 5.66 13.73 2.07 3.33 16.27 2.01 4.26

PH(3) 2.29 1.86 5.07 13.73 3.16 6.40 16.27 2.08 4.56

PH(5) 2.29 2.03 8.24 13.73 3.31 7.11 16.27 2.02 4.29

PH(8) 2.29 1.89 5.38 13.73 3.02 5.87 16.27 2.13 4.93

PH(10) 2.29 2.05 8.48 13.73 3.18 6.45 16.27 2.14 5.04
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Table 2: p-Values and Log-likelihood for the availability traces

lanl05 g5k06 microsoft99 websites02 pl05

Exponential 0.007 −168618 0.015 −1318033 0.003 −2738184 0.000 −166122 0.000 −151356

Weibull 0.465 −155798 0.513 −1117466 0.318 −2493940 0.098 −119874 0.092 −101085

Log-Normal 0.498 −155941 0.421 −1123175 0.402 −2444803 0.211 −112550 0.190 −97496

Gamma 0.368 −156660 0.455 −1134256 0.212 −2534195 0.068 −127251 0.045 −105054

PH(2) 0.426 −156271 0.307 −1156746 0.484 −2433653 0.241 −113191 0.273 −96302

PH(3) 0.512 −155309 0.493 −1118104 0.487 −2428660 0.205 −109868 0.344 −93023

PH(5) 0.520 −155107 0.525 −1106988 0.485 −2416022 0.253 −106771 0.313 −92563

PH(8) 0.521 −155104 0.530 −1105644 0.491 −2408099 0.249 −105215 0.379 −91214

PH(10) 0.521 −155103 0.530 −1105569 0.490 −2407495 0.237 −104139 0.379 −90672

ldns04 overnet03 nd07cpu skype06

Exponential 0.012 −1328996 0.053 −61094 0.000 −485623 0.044 −110711

Weibull 0.360 −1227189 0.081 −59959 0.388 −349636 0.427 −103576

Log-Normal 0.390 −1232037 0.168 −52889 0.456 −335876 0.516 −101241

Gamma 0.329 −1227126 0.062 −60986 0.182 −369163 0.291 −105507

PH(2) 0.449 −1206368 0.094 −55642 0.365 −349772 0.486 −101547

PH(3) 0.487 −1202157 0.204 −51213 0.477 −335631 0.530 −101341

PH(5) 0.487 −1197068 0.172 −50424 0.516 −333845 0.523 −100659

PH(8) 0.497 −1192887 0.168 −50398 0.501 −332763 0.524 −100603

PH(10) 0.499 −1190530 0.197 −49886 0.516 −330375 0.527 −100576
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Table 2 shows the results for the availability traces. For each distribution and trace the p-value (left entry) and the log-

likelihood value (right entry) are listed. For both values a higher value indicates a better approximation. The largest values

for each trace are printed in bold face. Note, that for exponential, Weibull, log-normal and Gamma the p-values slightly

differ from the ones presented in [16] due to the random selection of the samples for the KS-test, although we used the

same distributions. As already noticed in [13, 16] the exponential distribution fails to model the availability interval length.

Even if the first moment is matched exactly, this is not sufficient for a good fitting. The Weibull, log-normal and Gamma

distribution are much better than the exponential distribution and show a relatively high p-value in most cases. However, it

can also be noticed that a PHD with only 2 phases is most of the time better than the other distributions in terms of the p-value

and in terms of the log-likelihood value. Increasing the number of states of the PHD usually results in higher p-values and

log-likelihood values. In all cases the highest log-likelihood value is achieved with 10 phases, the largest number of phases

we consider in our study. A further increase of the number of phases would probably increase the likelihood-value but it can

be seen that the difference between 8 and 10 phases is usually marginal such that a further increase in the number of states is

probably not worth the additional effort for parameter fitting and later analysis.

We now perform the same steps for the length of unavailability intervals. Table 3 contains the mean, coefficient of

variation and skewness of the traces and the corresponding distributions. From the moments of the traces it can be seen

that some of the unavailability traces have a very irregular behavior, i.e., a high coefficient of variation and skewness. This

indicate that the traces are harder to model which also comes out of our analysis and confirms the results from [13, 16]. As

for the availability traces the PHDs behave better than the other distributions. The mean values are exactly matched and

the coefficient of variation is also usually quite well approximated by PHDs. However, in some cases, a larger number of

states are necessary. For trace like lanl05, g5k06 or websites02 PHDs with 2 or 3 states are not sufficient. For the other

distributions even more problems become visible. Especially for the Weibull and log-normal distribution the maximum

likelihood estimators sometimes result in a distribution with a mean that is far away from the mean of the trace which usually

indicates a low fitting quality, even if the mean might not be the major measure for heavy tailed distributions. In general the

comparison of the moments for the unavailability traces confirms our observations from the availability traces. PHDs are

better than the other distributions.

Table 4 shows the p-values of the KS test and the log-likelihood values for the unavailability traces which also confirm the

observations from the availability traces. Note, that some log-likelihood values are −∞ because of some very large values in

the trace for which the corresponding density of the distribution becomes zero during computation. As already indicated by

the moments, the unavailability traces appear to be more difficult to model, e.g. for the traces websites02 and overnet03 none

of the distributions reached a p-value above the significance level of 0.05. Of course, the same can be observed in [13, 16].

This does not necessarily mean that the modeling quality is bad, it can also imply that the test statistics is not appropriate.

It should be noted that for the unavailability traces, the difference between the log-likelihood values of PHDs and the other

distributions is sometimes very large, much larger than for the availability traces. In particular for the traces g5k06 and

websites02 the PHDs achieve a much better log-likelihood value. Since we consider the logarithm of the likelihood value,

the difference is really significant and should become visible if the distributions are applied as part of a larger model.
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Table 3: Mean, coefficient of variation and skewness for the unavailability traces and the fitted distributions

lanl05 g5k06 microsoft99

Trace 5.88 13.32 43.96 7.41 8.13 26.26 16.49 2.82 8.52

Exponential 5.92 1.00 2.00 7.41 1.00 2.00 16.49 1.00 2.00

Weibull 3.43 1.83 4.90 2.36 3.97 16.74 14.05 1.76 4.59

Log-Normal 2.88 2.55 24.27 1.52 11.20 1439.0 13.54 3.12 39.63

Gamma 5.87 1.62 3.24 7.58 2.29 4.59 16.34 1.47 2.95

PH(2) 5.88 4.40 8.99 7.41 3.02 4.59 16.49 1.76 3.01

PH(3) 5.88 7.41 18.27 7.41 5.29 8.98 16.49 1.71 2.87

PH(5) 5.88 11.03 34.18 7.41 3.77 5.80 16.49 2.40 4.99

PH(8) 5.88 11.81 38.30 7.41 5.42 9.28 16.49 2.25 4.16

PH(10) 5.88 11.92 39.02 7.41 5.69 9.97 16.49 2.91 9.20

websites02 pl05 ldns04

Trace 1.18 19.46 111.03 49.61 5.44 15.10 8.61 2.40 8.62

Exponential 1.18 1.00 2.00 49.61 1.00 2.00 8.61 1.00 2.00

Weibull 0.83 1.59 3.97 25.55 3.77 15.35 7.96 1.66 4.20

Log-Normal 0.62 1.61 8.98 30.0 20.09 8163.6 9.53 3.70 61.97

Gamma 1.19 1.41 2.82 49.91 2.18 4.36 8.60 1.40 2.80

PH(2) 1.18 2.58 4.95 49.61 2.42 3.72 8.61 1.75 3.28

PH(3) 1.18 2.30 4.34 49.61 3.49 5.67 8.61 2.26 6.60

PH(5) 1.18 9.74 42.74 49.61 3.10 4.87 8.61 2.24 6.37

PH(8) 1.18 9.64 42.13 49.61 3.43 5.53 8.61 2.42 9.29

PH(10) 1.18 15.77 83.72 49.61 4.53 9.01 8.61 2.43 9.57

overnet03 nd07cpu skype06

Trace 11.98 3.07 3.66 4.25 14.77 33.72 14.31 2.11 6.26

Exponential 12.00 1.00 2.00 4.25 1.00 2.00 14.31 1.00 2.00

Weibull 7.78 2.70 8.88 1.43 2.18 6.34 13.42 1.66 4.20

Log-Normal 5.47 4.95 136.4 0.81 2.00 14.08 18.11 4.35 95.51

Gamma 12.08 1.86 3.71 4.22 1.89 3.78 14.27 1.41 2.83

PH(2) 11.98 2.72 4.31 4.25 5.91 10.03 14.31 1.94 4.66

PH(3) 11.98 2.52 3.97 4.25 9.56 17.17 14.31 2.07 5.32

PH(5) 11.98 3.47 5.98 4.25 7.79 13.59 14.31 2.05 5.10

PH(8) 11.98 3.20 4.86 4.25 10.56 19.35 14.31 1.94 4.28

PH(10) 11.98 3.18 4.45 4.25 10.06 18.23 14.31 2.03 4.94
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Table 4: p-Values and Log-likelihood for the unavailability traces

lanl05 g5k06 microsoft99 websites02 pl05

Exponential 0.000 −∞ 0.000 −∞ 0.005 −1877456 0.000 −∞ 0.000 −118859

Weibull 0.235 −47131 0.010 −141961 0.059 −1689962 0.001 −34361 0.043 −70312

Log-Normal 0.500 −42343 0.048 −59979 0.088 −1613592 0.007 −20081 0.098 −65821

Gamma 0.054 −53716 0.005 −247270 0.063 −1741644 0.004 −∞ 0.023 −76303

PH(2) 0.439 −43297 0.097 −28955 0.035 −1642806 0.000 −25135 0.142 −65725

PH(3) 0.495 −42290 0.065 13855 0.059 −1581405 0.001 −15247 0.100 −61914

PH(5) 0.504 −42097 0.214 49853 0.055 −1538586 0.001 −11705 0.171 −60887

PH(8) 0.520 −41647 0.208 65074 0.077 −1502368 0.002 −6372 0.151 −59677

PH(10) 0.520 −41635 0.192 69969 0.073 −1496229 0.003 −3513 0.149 −59086

ldns04 overnet03 nd07cpu skype06

Exponential 0.047 −508926 0.000 −123349 0.000 −∞ 0.071 −99340

Weibull 0.434 −465792 0.004 −82798 0.033 −136837 0.307 −92225

Log-Normal 0.509 −455891 0.014 −73824 0.152 −85521 0.200 −91270

Gamma 0.325 −476444 0.006 −90446 0.004 −197933 0.302 −93535

PH(2) 0.519 −459526 0.002 −68353 0.135 −91851 0.119 −93205

PH(3) 0.525 −455154 0.009 −63184 0.147 −81006 0.290 −89834

PH(5) 0.523 −454443 0.006 −60325 0.213 −66613 0.341 −87384

PH(8) 0.522 −454168 0.011 −58344 0.213 −64242 0.354 −87009

PH(10) 0.523 −453874 0.013 −55797 0.232 −61733 0.351 −86974
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3.3 Analyzing Availability Models for Components

With the distributions simple availability models for components can be built as in Eq. (7). We use this approach to analyze

components from the traces g5k06 and pl05.
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Figure 1: Cumulative distribution function of the availability trace g5k06, the fitted PHDs (left side) and the fitted remaining

distributions (right side).
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Figure 2: Cumulative distribution function of the unavailability trace g5k06, the fitted PHDs (left side) and the fitted remaining

distributions (right side).

We begin with the trace g5k06. The Figures 1 and 2 show the distribution functions of the length of the availability

phases for the trace and the different distributions. For the distribution of the length of availability phases, the exponential

distribution is a bad approximation and the PHDs with 5 and 10 states and the Weibull distribution show an almost perfect

matching with the trace. This, of course, corresponds to the values of the log-likelihood functions. For the unavailability

intervals, the distribution is much harder to fit which can be seen by the varying log-likelihood values for the different

distributions. The cumulative distribution functions in Figure 2 clearly show the problems. None of the distributions is able

to match probability of very small durations of unavailability intervals. They are overestimated by all distributions except

the exponential distribution which, however, differs completely from the distribution of the trace. After 0.1, the cumulative

distribution functions of the trace and the PHDs with 5 and 10 states are very similar, but the difference for small values exists
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Figure 3: Availability of a component from the trace g5k06 starting from at the beginning of an availability (left) or unavail-

ability (right) phase.

also for these distributions.

The steady state availability of a component depends only on the mean duration of availability and unavailability phases.

Since the PHDs, including the exponential distribution, match the mean of the trace exactly, they all result in a steady state

availability of 0.814 for a component of g5k06. If the Weibull distribution is used to model the length of availability and

unavailability intervals, the mean availability becomes 0.929, for the log-normal distribution it becomes 0.982, and for the

Gamma distribution it equals 0.809. These results show significant differences in the computed steady state availability. The

availability of a component during the measurement interval of the trace corresponds to the results for the PHDs which use

the exact mean values from the trace. For transient analysis, the behavior of the PHDs, of course, differs, although they all

reach eventually the same steady state value. In Figure 3 we show the availability of a component if the observation starts

at the beginning of an availability or unavailability phase. Exp-Exp means that availability and unavailability phases are

modeled by exponential distributions and PHx-PHy means that the availability is modeled by a PHD with x states and the

unavailability by a PHD with y states. It can be seen that the behavior, in particular at the beginning of the interval, depends

strongly on the distributions. This is not surprising since the log-likelihood values of the distributions differ significantly for

the unavailability. The models Exp-Exp and PH2-PH2 quickly reach the steady state availability, whereas in the other cases,

the availability is below steady state availability after some time, even if started at the beginning of an availability interval.

The influence of the model for the unavailability interval is larger than the influence of the model for the availability interval.

The reason is that the log-likelihood value of the PHD with 10 phases is much larger than the log-likelihood value of all

other distributions for modeling unavailability intervals. This can also bee seen by an inspection of the availability, the two

cases PH5-PH10 and PH10-PH10 show almost the same behavior and differ from the other cases. Thus, for modeling the

availability, a PHD with 5 phases is sufficient whereas the unavailability should be modeled with 10 or even more phases.

Results for the trace pl05 are similar. In Figure 4 the cumulative distribution function of the availability interval length of

the trace and the distributions is shown. Again it can be seen that most distributions have a larger probability of generating

very short intervals. For larger times the PHDs with 5 and 10 states again show a very good matching, better than the

remaining distributions. Exactly the same holds for the unavailability distribution which is shown in Figure 5.
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Figure 4: Cumulative distribution function of the availability trace pl05, the fitted PHDs (right side) and the fitted remaining

distributions (left side).
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Figure 5: Cumulative distribution function of the unavailability trace pl05, the fitted PHDs (right side) and the fitted remaining

distributions (left side).

4 Analyzing and Modeling Correlations

In Section 2 it is shown how four different correlation values from sequences of alternating availability and unavailability

intervals can be computed. The correlation between succeeding availability times ρ̂a, the correlation between succeeding

unavailability times ρ̂u and correlation between intervals ai, ui (ρ̂au) and ui, ai+1 (ρ̂ua) are considered.

Table 5 shows the different correlation values for the nine traces. Note, that the traces for some components start with

an unavailability interval and not with an availability interval as defined in Sect. 2. In these cases we used pairs ai, ui+1

for the computation of ρ̂au and ui, ai for ρ̂ua. Furthermore, for some components only few, i.e. two or less, availability or

unavailability intervals were available, which does not allow one to compute correlation values for those components. We

ignored these components for the computation. From Table 5 it becomes visible that the correlation in the traces differs

considerably which is not surprising because of the different systems the traces have been measured from. For the traces

g5k06 and pl05 all four values are too large to be neglected in modeling. Consequently, we used the fitted PHDs from Sect. 3

and tried to incorporate the correlation as described in Sect. 2. In the first step matrixQ from (12) has to be constructed. The
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Table 5: Correlation Coefficients according to Eq. (11)

Trace ρ̂a ρ̂u ρ̂au ρ̂ua

g5k06 0.211820 0.058601 0.139210 0.043502

lanl05 0.087681 −0.054249 −0.022377 −0.020657

ldns04 −0.063043 −0.136805 0.008968 0.008649

microsoft99 −0.001572 −0.066955 0.050020 0.023496

nd07cpu 0.155535 0.016765 0.042394 0.029314

overnet03 0.050644 −0.012634 0.024182 0.027758

pl05 0.166929 0.111189 0.055080 0.099938

skype06 0.006294 −0.067591 0.021445 0.033601

websites02 0.200295 0.038603 0.052859 0.023160

submatrices Da
0 and Du

0 are given by the two PHDs modeling the availability and unavailability times. Qau and Qua have

to be modeled such that the ξ. values from (14) (15) approximate the measured correlation values from Table 5. Additionally,

Qau andQua have to observe the constraints on row sums and the initial vectors of the distributions mentioned in Section 2.

For the construction of matrixQ we used PHDs of the same order, although other combination would be possible as well and

obtainQau andQua after solving an alternating least squares optimization problem as described in Section 2.

Table 6: Correlation Coefficients for fitted MMAPs
ρ̂a ρ̂u ρ̂au ρ̂ua

g5k06 0.211820 0.058601 0.139210 0.043502

PH(2) 0.045647 0.072663 0.142246 0.142199

PH(3) 0.211819 0.017055 0.108412 0.046229

PH(4) 0.211819 0.043256 0.139288 0.044761

PH(8) 0.181407 0.026113 0.107164 0.043751

pl05 0.166929 0.111189 0.055080 0.099938

PH(2) 0.155021 0.108354 0.245462 0.139143

PH(3) 0.299886 0.076783 0.106937 0.100046

PH(4) 0.104537 0.111739 0.054987 0.099937

PH(6) 0.135391 0.111083 0.055007 0.099937

As it turned out, the correlation values are difficult to approximate. Table 6 shows the values for the traces g5k06 and pl05

and MMAPs resulting from PHDs of different order. As one can see, it was not possible to obtain a good approximation

for all correlation values in most cases. Two or three values could be approximated usually, but for the remaining values

the approximation is only modest. The best results have been obtained for the trace g5k06 using two PHDs of order 4. The
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resulting matrix is

Q =

Da
0 Qau

Qua Du
0

 where

Da
0 =


−0.006 0 0 0

0 −0.044 0 0

0 0 −0.645 0

0 0 0 −7.913



Qau =


0.001 0.005 0 0

0.001 0 0 0.043

0.043 0 0 0.602

0 0 7.461 0.452

 (19)

Qua =


0.002 0 0.004 0

0.051 0 0.029 0

0 0 1.307 0

1.044 12.480 1.041 3.086



Du
0 =


−0.006 0 0 0

0 −0.080 0 0

0 0 −1.307 0

0 0 0 −17.651


that can be used for further analysis.

In a second step we further extend this matrix to describe the behavior of a component when k other components are

available, i.e. we construct the matrices Q[k] from (18). The trace g5k06 contains intervals for 1258 different components

(recall, that we removed some components from the trace because only few intervals were available for those components),

so we cannot present all matrices Q[k], but will only give an example. Let k = 500. Then, we obtain ma(k) = 690 and

mu(k) = 606, i.e. 690 availability intervals and 606 unavailability intervals end when 500 components are available. For the

conditional moments we get µ̂a(k) = 13.438 and µ̂u(k) = 2.1933, which results in factors αk = 2.4115 and βk = 3.2794

which shows a significant reduction in the length of availability and unavailability intervals compared to the mean values.

Combining these factors with the matrices from (19) we get

Q[k] =

 2.4115 ·Da
0 2.4115 ·Qau

3.2794 ·Qua 3.2794 ·Du
0

 .
The computation of the matrices Q[k] is straightforward, however, for a real system like the one that generated the trace

g5k06 we obtain a huge number of matrices making a numerically analysis cumbersome.

22



5 Conclusion

In this paper we described the modeling of different availability traces by means of phase type distributions. One outcome

of the experiments is that PHDs usually provide a better model for the data than other commonly used distributions like

Weibull, log-normal or Gamma distributions do. Since nowadays efficient algorithm for the parameter fitting of phase type

distributions are available, as long as the number of phases remains moderate, they are a good alternative. Another advantage

of phase type distributions is the possibility to analyze the resulting model analytically or numerically which is not possible

with most other distributions. This can be exploited to compute transient of stationary dependability measures. Furthermore,

correlation can be integrated by extending phase type distributions to processes. Approaches how to fit the parameters to

match the coefficient of correlation are presented in the paper. However, it also turns out that correlation in real traces is hard

to analyze and match such that additional research is necessary to find reliable methods to match the measured correlations

by a Markov model. The problems in correlation fitting mainly result from the solution of Eq. 15 in the paper which is

non-linear in the elements of the matricesQau andQua. The alternating least squares solver we used for the computation of

the matrices often seems to get stuck in some local optimum. However, there might be other optimization methods that are

more reliable for this kind of problems.

The paper considers only the parameterization of phase type distributions and not the analysis of the resulting models. It

would be interesting to compare the results of phase type distributions if they are used as parts of larger dependability models.

Furthermore, the distributions can also be used in simple queueing models to analyze the performance under failure or the

performability.
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[3] A. Bobbio, A. Horváth, and M. Telek. Matching three moments with minimal acyclic phase type distributions. Stochas-

tic Models, 21(2-3):303–326, 2005.

[4] P. Buchholz. An EM-algorithm for MAP fitting from real traffic data. In P. Kemper and W. H. Sanders, editors,

Computer Performance Evaluation / TOOLS, volume 2794 of Lecture Notes in Computer Science, pages 218–236.

Springer, 2003.

[5] P. Buchholz, I. Felko, and J. Kriege. Transformation of acyclic phase type distributions for correlation fitting. In

ASMTA, pages 96–111, 2013.

[6] P. Buchholz, P. Kemper, and J. Kriege. Multi-class Markovian arrival processes and their parameter fitting. Perform.

Eval., 67(11):1092–1106, 2010.

23



[7] P. Buchholz and J. Kriege. Aggregation of Markovian models - an alternating least squares approach-. In QEST’12,

pages 43–52. IEEE Computer Society, 2012.

[8] M. J. Faddy. Phase-type distributions for failure times. Mathematical and Computer Modelling, 22(10):63–70, 1995.

[9] J. Faulin, A. A. Juan, S. S. M. Alsina, and J. E. Ramirez-Marquez, editors. Simulation Methods for Reliability and

Availability of Complex Systems. Springer Series in Reliability Engineering. Springer, 2010.

[10] Q.-M. He and M. Neuts. Markov arrival processes with marked transitions. Stochastic Processes and their Applications,

74:37–52, 1998.
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