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Abstract

The importance of the order two Markovian arrival
process (MAP(2)) comes from its compactness, serv-
ing either as arrival or service process in applications,
and from the nice properties which are not available
for higher order MAPs. E.g., for order two processes
the acyclic MAP(2) (AMAP(2)), the MAP(2) and the
order two matrix exponential process (MEP(2)) are
equivalent [2]. Additionally, MAP(2) processes can be
represented in a canonical form, from which closed form
moments bounds are available. In this paper we inves-
tigate possible fitting methods utilizing the special nice
properties of MAP(2).

We present two fitting methods. One of them par-
titions the exact boundaries of the MAP(2) class into
bounding subsurfaces reducing the numerical inaccu-
racy of the optimization based moment fitting . The
characterizing new feature of the other one is that it
considers the distance of joint density functions of in-
finitely many arrivals.
Keywords: MAP(2); arrival process fitting

1 Introduction

Markovian arrival processes (MAPs) are widely applied
in stochastic modeling. Their popularity comes from
their relatively easy applicability and the associated
efficient numerical methods (referred to as matrix an-
alytic methods) [11]. MAPs can approximate a wide
range of stochastic processes from the simplest renewal
processes to the long range dependent, fractal-like and
heavy tailed ones [9]. Since it is an important mod-
eling technique researchers pay particular attention to
exploring the MAP(n) class but up to now there are
still open questions. One of these open questions is,
what are the boundaries of the MAP(n) class?

This question is answered only for order two MAPs

[2]. The first results on the order two MAPs are given
in [5] which presents a basic moment set matching
method for hyperexponential MAP(2)s – MAP with
hyperexponential marginal distribution. In the next
step [6] provides the same results for general acyclic
MAPs (AMAPs). Finally [2] proves the equivalence of
matrix exponential processes, MAPs and AMAPs of
second order as well as [2] provides a minimal Marko-
vian canonical representation of the two dimensional
arrival processes.

The knowledge on MAP(2) boundaries can be useful
in developing simple models of complex systems as well
as in utilizing it as basic building block for large mod-
els [4]. Although [2] introduced a moment matching
method, together with the derivation of the MAP(2)
boundaries, it is not utilized yet for special fitting tech-
niques or to simplify the existing, usually some kind
of multidimensional optimization based, fitting algo-
rithms.

In this paper we propose two fitting algorithms uti-
lizing the MAP(2) boundaries and the canonical form.
The first method searches for an optimal point in the
valid MAP(2) moment space by minimizing the Eu-
clidean distance of the moment sets. The difficulty
of this approach comes from the fact that the bound-
ary of the valid MAP(2) moment space is very irregu-
lar. Practically the proposed approach is to divide the
MAP(2) boundary into “nice” subsurfaces on which the
minimization for the distance is constrained. We show
that it is worth to do so as the constrained problems
can be solved easier than global optimization problems
that do not take care of the exact boundaries.

The second fitting algorithm fits MAPs of low order
to MAPs of higher order based on the distance of the
finite or infinite dimensional joint density functions. In
this generally applicable approach we restrict our at-
tention to the case when the low order MAP is MAP(2),
because we make use of the MAP(2) canonical form.
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We will demonstrate the performance of the pro-
posed algorithms by comparing the cumulative dis-
tribution function, the correlation structure and the
queueing behavior of the fitted MAP(2)s and the orig-
inal higher order MAP.

The rest of the paper is organized as follows. First
we overview the basic MAP properties in Section 2,
then in Section 3 we outline the general approach of
MAP fitting by examples of some previously developed
methods. The two newly developed fitting algorithms
are detailed in Sections 4 and 5. There is a detailed
numerical study on the performance of the fitting algo-
rithms given in Section 6. Finally Section 7 concludes
the paper.

2 Markovian arrival processes

Let X0, X1, . . . be the interarrival times of the ar-
rival process X(t) and let the joint density function of
X0, X1, . . . , Xn be defined by the matrix pair (D0,D1)
as

f(x) =f(x0, x1, . . . , xn)

=πeD0x0D1e
D0x1D1 · · · · · eD0xnD11, (1)

where 1 is the column vector of ones and π is the solu-
tion of the system of linear equations π(−D−1

0 )D1 =
πP = π and π1 = 1.

If D0 is a transient Markovian generator, i.e.,
(D0)ij ≥ 0 ∀i 6= j, and (D0)ii < 0 ∀i, D0 is non-
singular and (D1)ij ≥ 0 ∀i, j such that −D01 = D11
then f(x) is a density function, i.e., (f(x) ≥ 0) ∧
(∫

x
f(x)dx = 1

)
(∀n)(∀x ≥ 0), and X(t) is a MAP.

2.1 Basic MAP properties

The MAP with representation (D0,D1) has PH dis-
tributed stationary interarrival times with representa-
tion (π,D0), where π is the stationary phase distri-

bution after an arrival. Matrix P = (−D0)
−1

D1 de-
scribes the state transition probabilities of the discrete
time Markov chain (DTMC) embedded at the arrival
epochs. The probability density function of the PH
marginal and its kth raw moment are

f(t) = πeD0t (−D0)1 (2)

and

µk = E(Xk) = k!π (−D0)
−k 1 (3)

respectively.

The lag-k correlation of a MAP is

corr (X0, Xk) =
E(X0Xk)− E2(X)

E(X2)− E2(X)

=
π(−D0)

−1Pk(−D0)
−11− µ2

1

µ2 − µ2
1

.

(4)

A non-redundant MAP(m) (i.e. a MAP for which no
equivalent MAP(o) with o < m exists) is determined
by the so-called basic moment set, containing m2 re-
duced (joint) moments [3]. In case of MAP(2) a process
is defined by four parameters. They are the first 3 mo-
ments defining the PH(2) marginal distribution and the
lag-1 correlation defining the, geometrically decaying,
correlation structure of the process.

2.2 The moment boundaries of the
MAP(2) set

Instead of working with the first 3 moments and the
lag-1 correlation it is often beneficial to work with di-
mensionless quantities. In MAP(2) analysis the use of
normalized moments [13] and the correlation coefficient
became popular. The normalized moments are defined
as

nk =
µk

µk−1µ1
, k ≥ 2, (5)

whilst [7] defines the shape parameter γ of the geomet-
ric decaying autocorrelation function of the MAP(2)
class as

corr (X0, Xk) =
E (X0Xk)− µ2

1

µ2 − µ2
1

= γk
n2

2 − 1

n2 − 1
. (6)

As a result of (5) and (6) we can represent a MAP(2)
with µ1 (multiple of the time unit) and 3 dimensionless
quantities n2, n3, γ. In case of parameter matching µ1 is
easy to match independently of the other parameters
since for a positive constant c with D′

0 = cD0, and
D′

1 = cD1 we have

µ′
1 = µ1/c,

n′
k =

µ′
k

µ′
k−1µ

′
1

=
c−kµk

c−(k−1)µk−1c−1µ1
=

µk

µk−1µ1
= nk,

E(X ′
0X

′
k) = π(−cD0)

−1Pk(−cD0)
−11 = c−2 E(X0Xk),

P′ = (−cD0)
−1

(cD1) = (−D0)
−1

D1 = P

and

γ′ =
E (X ′

0X
′
1)− µ′

1
2

µ′

2

2 − µ′
1
2

=
c−2 E (X0X1)− (c−1µ1)

2

c−2µ2

2 − (c−1µ1)2
= γ.

Hence, our focus is on the matching/fitting of the di-
mensionless quantities n2, n3, γ.
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Figure 1: The PH(2) boundaries on the (n2, n3) plane

The boundaries of the PH(2) marginal distri-
bution [1] The marginals of a MAP(2) are PH(2)
distributed and are characterized by µ1 and (n2, n3).
The bounds for (n2, n3) are as follows [1].

3

2
≤ n2. (7)

To give the bounds of the third normalized moment
first we introduce simplifying notations

p2 =
3(n2 − 2)

3n2

(

−2
√
3√

12− 6n2
− 1

)

,

a2 =
n2 − 2

p2(1− n2) +
√

p22 + (2p2(n2 − 2))
,

l2 =
3(a2 + 1)

a2p2 + 1
− 6a2

2 + a2p2(2a2 + 2)
, (8)

u2 =
6(n2 − 1)

n2
. (9)

Using these notations we can express the third normal-
ized moment bounds by its lower

l2 ≤ n3, if
3

2
≤ n2 ≤ 2 (10a)

3

2
n2 < n3, if 2 ≤ n2 (10b)

and upper bounds

n3 ≤ u2, if
3

2
≤ n2 ≤ 2 (10c)

n3 <∞, if 2 < n2. (10d)

The boundaries of the PH(2) class, together with the
curve (13), are summarized in Figure 1.

The boundaries of the γ parameter are provided in
[2] and are summarized in Table 1.

2.3 MAP(2) canonical form

The canonical form (CF) of the MAP(2) class has two
variants depending on the sign of the correlation pa-
rameter [2]. In both variants the canonical form is
given in terms of the rate parameters 0 < λ1 ≤ λ2 and
probabilities 0 ≤ a ≤ 1 and 0 ≤ b ≤ 1.

The canonical form when γ ≥ 0, CF 1 For a
MAP(2) with positive γ the canonical matrix repre-
sentation has the form

D0 =

(
−λ1 (1− a)λ1

0 −λ2

)

, D1 =

(
aλ1 0

(1− b)λ2 bλ2

)

.

(11)

Additional requirements on the parameters are a, b 6= 1
for recurrency. The stationary phase distribution after
an arrival for CF 1 is π = ( 1−b

1−ab

b−ab

1−ab ) .

The canonical form when γ < 0, CF 2 For nega-
tive γ MAP(2) has the canonical form

D0 =

(
−λ1 (1− a)λ1

0 −λ2

)

, D1 =

(
0 aλ1

bλ2 (1− b)λ2

)

.

(12)

Additional requirements on the parameters are b 6= 0
for recurrency and λ1 6= λ2 if a = 1 for a valid order
two process. The stationary phase distribution after
an arrival for CF 2 is π = ( b

1+ab
1− b

1+ab ) .

3 Approximate fitting algo-
rithms

The availability of explicit expressions that define the
parameters of the canonical MAP(2) form based on
the moment set (µ1, n2, n3, γ) makes moments match-
ing an obvious job when the moments to be fitted are
within the MAP(2) moment bounds (Section 2.2). Un-
fortunately, to find the best MAP(2) approximate of a
moment set which is outside the valid MAP(2) moment
boundaries is a far more complex task.

This section compares some general purpose opti-
mization algorithms for solving this problem. The gen-
eral fitting approach is to optimize some distance mea-
sure over the MAP(2) class.

There are various options for defining a distance of
the moment sets. We made several comparisons and
found that with respect to the properties we are inter-
ested in (the benefit of optimizing with Algorithm 2)
all reasonable distances behave similarly. Throughout
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Table 1: The MAP(2) γ bounds in terms of the normalized moments

γ bound

condition lower upper

n2 < 2 −n2(n3−6)+6
3n2−6

−
2

(

1
2
(n2−2)+ 1

2

√

n2
2
−

2n2n3
3

)

2

n2−2

n2 > 2 ∧ n3 < 9− 12
n2

−n2(n3−6)+6
3n2−6

1

n2 > 2 ∧ 9− 12
n2

≥ n3

n2(n3−9)−

√

n2

(

n2

(

18n2+n3(n3−18)−27
)

+24n3

)

+12

n2(n3−9)+

√

n2

(

n2

(

18n2+n3(n3−18)−27
)

+24n3

)

+12

1

the paper we use the Euclidean distance, or simply dis-
tance, of the basic moment sets

d
(
(µ1, n2, n3, γ), (µ

′
1, n

′
2, n

′
3, γ

′)
)
=

√

(µ1 − µ′
1)

2 + (n2 − n′
2)

2 + (n3 − n′
3)

2 + (γ − γ′)2.

As there is no widely applied measure for fitting
and since the Euclidean distance is the most natural
distance over the three dimensional space, we use this
distance measure to show how the decomposition of
the MAP(2) bounds can improve the moment fitting.
The same concept can be applied for any other dis-
tance measure to which the moment bounds, given in
Table 1, can be transformed, e.g., weighted moment
distance. We do not search for the “the best” distance
measure in the paper.

3.1 Global optimization

Having the boundaries of the MAP(2) class in the mo-
ment space and a non MAP(2) point (a point outside
the valid MAP(2) moment set) it seems obvious to de-
fine a distance and minimize it subject to the MAP(2)
set. In case of a convex surface it is numerically stable
but in case of the MAP(2) class there are two tangen-
tial parts of the subset over the (n2, n3) plane and also
the γ boundaries are built up of five separate surfaces.

The problem is that the accuracy of such a fitting
method highly depends on the performance of the ap-
plied optimization algorithm, especially in case of a
concave and not differentiable surface. How does the
distance “change” between the tangential subspaces es-
pecially as the MAP(2) class does not contain the point
of tangency? How can the method “leave” local min-
ima to find the global one? In which way does it depend
on its initial settings? etc. . .

In the following example we used several, numeri-
cal, nonlinear optimization methods to find the closest
fitting MAP(2) to an external point based on the Eu-

Table 2: Result of fitting on (1, 22, 0) by several mo-
ment fitting algorithms

method distance result (n2, n3, γ)

Nelder-Mead 19.0378 (2.005, 3.015, 0.9993)
differential evolution 18.8955 (2.0918, 3.1379, 0.2645)
simulated annealing 19.8389 (1.5756, 2.1694, 0.00069)

random search 19.3223 (1.8448, 2.6963, 0.0431)

OMAM
√

1601
2

≃ 20 ( 3
2
, 2, 0)

decomp. numerical fitting 1 (2, 22, 0)

clidean distance. The investigated optimization meth-
ods are

• Nelder-Mead [12],

• differential evolution [14],

• simulated annealing [16], [10] and

• random search.

All of them have several settings and each of them
needs special attention that we left for the automatic
setup mechanism of Mathematica.

To demonstrate the performance of the investigated
optimization methods we simply take a point on the
(n2, n3, 0) plane, namely (1, 22, 0), to fit to. The results
are given in the first 4 rows of Table 3.1 for each of the
algorithms.

According to our experiences the results in Table 3.1
are typical. The performance of the general purpose
optimization methods are similarly poor. In the rest of
the paper we report only the results of the Nelder-Mead
method among the general purpose optimization meth-
ods, but the other (differential evolution, simulated an-
nealing and random search) exhibit similar properties.
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3.2 Ordered Moment Adjusting
Method (OMAM)

If one knows the exact boundaries of the MAP(2) class
and looks for a MAP(2) fitting of a non MAP(2) mo-
ment set (n2, n3, γ) there are several possibilities. Set-
ting the moments out of the valid range separately gives
the best approximation moment by moment. At the
first sight it seems that this is enough, but doing so
completely ignores the “perpendicular directions of a
gradient defined as a measure in the moment space”.
This latter behavior results in a suboptimal solution of
an optimization problem trying to minimize the given
measure over the moment space in several steps. The
problem of this policy is that the result depends on
the order of the adjustment. We show this through an
example using Algorithm 1 describing OMAM.

Algorithm 1 ordered moment adjusting method

INPUT: v = (n2, n3, γ)
OUTPUT: (D0,D1)
1: for i = 0 to 2 do
2: if (v)i falls out of the feasible range of that “mo-

ment” then
3: adjust it to be on the closer bound given either

in [15] or in [2]
4: else
5: leave (v)i unchanged
6: (D0,D1)← v
7: return (D0,D1)

Having the outer, non MAP(2), point M = (8, 9, 0)
the resulting moment set of the fitting after the loop,
through lines 1 and 5 in Algorithm 1, is M̂1 = (6, 9, 0) .
While if the adjustment of n3 precedes that of n2 then
the resulting MAP will have the coordinates M̂2 =
(8, 12, 0) . This small example shows the importance
of the fitting order of the moments.

The distance of M̂1 from the outer point (M) is

d1 = d
(

M̂1,M
)

= 2 and the distance of M̂2 is

d2 = d
(

M̂2,M
)

= 3. Although d1 < d2 none of them

gives the aimed closest MAP point since the distance

of M̂ =
(
86
13 ,

129
13 , 0

)
is d = d

(

M̂,M
)

= 6√
13

< 2. Here

we note that the above approximate points are on the
open border of the MAP(2), i.e., they are not MAP(2)s
themselves, but they demonstrate clearly the problem
with OMAM.

A possible usage of Algorithm 1 is the case when
the fitting of different moments has different priorities.
Moments with lower priority are then adjusted later.

4 Decomposed numerical fitting
method

Since the problem of global optimization based method
results from the fact that the MAP(2) bounding sur-
face is concave and not differentiable, we try to utilize
the knowledge about the MAP(2) boundaries (see Sec-
tion 2.2).

Technically the MAP(2) boundaries are built up of
ten parts. Here we give the formal description of them
as well as the decomposed numerical fitting method
based on the partitioning.

4.1 Division of the MAP(2) bounding
surface

The bounding surface of the MAP(2) moments set can
be divided into parts with nice surface properties. In-
deed the definition of the surface in Table 1 already
suggests the evident way of dividing the surfaces into
parts. This division is presented in Table 2 where the
parts are numbered from I to X.

Additionally we define the curve

m2 = 9− 12

n2
. (13)

Subsurfaces III, VIII, IX and X are vertical surfaces
in the (n2, n3, γ) space. In particular

• subsurface III is the vertical bound between sub-
surfaces I and II,

• subsurface VIII is the vertical bound between sub-
surfaces V and VII, along n2 = 2,

• subsurface IX is the vertical bound between sub-
surfaces IV and VII and

• subsurface X is the vertical bound between sub-
surfaces V and VII, along n3 = 3

2n2 for n2 ≥ 4

applying the appropriate constraints on all coordinates.
Figure 2(a) summarizes all the nonvertical surfaces

appearing in Table 2, whilst Figure 2(b) enlarges the
same for subsurfaces I and II. In Figure 2(a) there are
also the lower bounding γ surfaces (subsurfaces I, IV, V
and VI) mapped onto the base plane on which the same
division of the (n2, n3) plane appears as in Figure 1.

4.2 The decomposed numerical fitting
method

Based on the poor performance of the general pur-
pose optimization methods and the structure of the
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Table 3: The MAP(2) bounding subsurfaces

the surface given by its coordinates ID condition(s)
(

n2, n3,−n2(n3−6)+6
3n2−6

)

I 3
2
≤ n2 < 2, l2 ≤ n3 ≤ u2



n2, n3,−
1
2

(

n2+
√

n2
2
−

2n2n3
3

−2

)

2

n2−2



 II 3
2
≤ n2 < 2, l2 ≤ n3 ≤ u2

(n2, l2, γ) III 3
2
≤ n2 < 2, −n2(l2−6)+6

3n2−6
< γ < −

1
2

(

n2+

√

n2
2
−

2n2l2
3

−2

)

2

n2−2
(

n2, n3,−n2(n3−6)+6
3n2−6

)

IV 2 < n2 < 4, 3
2
n2 < n3 < m2









n2, n3,

n2(n3−9)−

√

n2

(

n2

(

18n2+n3(n3−18)−27
)

+24n3

)

+12

n2(n3−9)+

√

n2

(

n2

(

18n2+n3(n3−18)−27
)

+24n3

)

+12









V 2 < n2 < 4, m2 ≤ n3









n2, n3,

n2(n3−9)−

√

n2

(

n2

(

18n2+n3(n3−18)−27
)

+24n3

)

+12

n2(n3−9)+

√

n2

(

n2

(

18n2+n3(n3−18)−27
)

+24n3

)

+12









VI 4 ≤ n2,
3
2
n2 < n3

(n2, n3, 1) VII 2 < n2,
3
2
n2 < n3

(2, n3, γ) VIII 3 < n3,
n3−

√
(n3−3)2−3

n3+
√

(n3−3)2−3
< γ < 1

(

n2,
3
2
n2, γ

)

IX 2 < n2 < 4, 1− n2

2
< γ < 1

(

n2,
3
2
n2, γ

)

X 4 ≤ n2,
n2(n2−6)−

√

n2
2
(n2−2)2+8

n2(n2−6)+
√

n
2
2
(n2−2)2+8

< γ < 1

subsurface IV
subsurface V

subsurface VI

 1.5
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 3.5
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 4.5

 5

n2

 2  3  4  5  6  7  8  9

n3
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(a) All the nonvertical subsurfaces

subsurface I
subsurface II

 1.5  1.6  1.7  1.8  1.9  2

n2 2
 2.2

 2.4
 2.6

 2.8
 3

n3

-1

-0.5

 0

 0.5

 1

γ

(b) The nonvertical subsurfaces for 3
2
≤ n2 < 2

Figure 2: The moment bounds of the set of MAP(2) distribution in the (n2, n3, γ) space
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MAP(2) moments bounding surface it seems reason-
able to decompose the problem into optimization over
nice surfaces and take the best of the obtained solu-
tions. We name this approach decomposed numerical
fitting method.

Similar to the global optimization based fitting
methods in Section 3.1 our fitting algorithm also tries
to minimize the Euclidean distance between the given
outer point and the MAP(2) subspace. The difference
is that here we use the decomposition of the bounding
surface and the associated constraints, i.e., the compu-
tational complexity of the method is the same as the
global optimization based but the probability of finding
the global optimum is enlarged.

Our method utilizes that the Euclidean distance be-
tween an outer point and a region lies on the border of
that region. Accordingly it goes through the bounding
subsurfaces, given in Table 2, finds the minima of the
distance between the actual subsurface and the outer
point and return with the closest point and its distance
from the outer point. This is expressed briefly in Al-
gorithm 2.

Algorithm 2 decomposed numerical fitting

method

INPUT: M = (n2, n3, γ) the outer point
OUTPUT: (D0,D1, d) the closest MAP(2) and its

distance from M
1: d =∞
2: while there is unchecked subsurface do
3: find the closest point (M̃) on the actual surface

from M
4: calculate the Euclidean distance of M̃ and M

d̃ = d(M, M̃)
5: if d̃ < d then
6: d = d̃
7: M̂ = M̃
8: consider the “next” subsurface
9: (D0,D1)← M̂

10: return (D0,D1, d)

5 Fitting high order MAPs with
low order MAPs

There are several modeling situations when the size of
the MAP models needs to be reduced for efficient nu-
merical computations. E.g., there are fitting methods
which generate large MAPs that allow an easy setting
of the required parameters [4]; in queuing network anal-
ysis the size of the traffic descriptors might increase
during the course of the analysis, etc. In these situ-

ations it is necessary to reduce the size of the MAP
eventually.

A possible way for this reduction is to match a
smaller MAP to the low order moments of the large
MAP [8]. It is an efficient approach as long as the low
order moments of the large MAP are inside the mo-
ments bounds of the small one. But when it is not the
case the problems discussed in the previous sections
arise.

In this section we present an alternative approach
for fitting large MAPs with smaller ones. To utilize the
known bounds of the MAP(2) class we assume that the
small MAP is MAP(2), but the approach is applicable
for larger MAPs as well.

Due to the fact that the stochastic process we would
like to approximate is a MAP, whose analytical proper-
ties are known, we can go beyond minimizing moments
based distance measures. We can define distances be-
tween joint densities of finite and also for infinite num-
ber of inter-arrivals.

Equation (1) gives the joint density of the interar-
rival times of a MAP X(t). Having two MAPs of or-
der m and o, with joint densities f(·) and g(·), and
representations (D0,D1) and (G0,G1), and stationary
phase distributions π and γ, respectively, the integral
of the product of their joint densities can be expressed
as

Lfg(n) =

∫

x

f(x1, x2, · · · , xn)g(x1, x2, · · · , xn)dx

=

∫

x

(
πeD0x1D1e

D0x2D1 · · · eD0xnD11)
⊗
(
γeG0x1G1e

G0x2G1 · · · eG0xnG11) dx
=

∫

x

(π ⊗ γ)
(
eD0x1 ⊗ eG0x1

)
(D1 ⊗G1)× . . .

×
(
eD0xn ⊗ eG0xn

)
(D1 ⊗G1) (1⊗ 1) dx

=(π ⊗ γ)

(∫

x1

eD0x1 ⊗ eG0x1dx1

)

(D1 ⊗G1)× . . .

×
(∫

xn

eD0xn ⊗ eG0xndxn

)

(D1 ⊗G1) (1⊗ 1)
= (π ⊗ γ)
︸ ︷︷ ︸

ν

(

− (D0 ⊕G0)
−1

(D1 ⊗G1)
)n

︸ ︷︷ ︸

Nn

(1⊗ 1)
︸ ︷︷ ︸1

=νNn1.
(14)

Here n is the number of considered interarrivals, i.e.,
the number of the considered samples in the two arrival
processes.
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5.1 Computing distances between
MAPs based on L(n)

The compact, and easy to compute form of (14) can
be utilized also in evaluating the distances of MAPs.
Assume that there is a given MAP with representation
(D0,D1) and we are looking for a smaller MAP with
representation (G0,G1). In this case, the optimization
problem of the distance of the joint density functions
of the two MAPs is

min
G0,G1

d
(
f(x), g(x)

)
=

= min
G0,G1

∫

x

(
f(x)− g(x)

)2
dx

= min
G0,G1

(∫

x

f(x)f(x)dx +

∫

x

g(x)g(x)dx

−2
∫

x

f(x)g(x)dx

)

= min
G0,G1

(

Lff (n) + Lgg(n)− 2Lfg(n)

)

.

(15)

Using (14) for the three terms on the right hand side
of (15) the function that has to be minimized can be
easily computed.

Furthermore, knowing the general canonical form of
the second order MAPs, as given in (11) and (12), with
four variables (a, b, λ1, λ2) the optimization in (15) re-
duces to a four dimensional minimization problem.

5.2 Reducing the MAP order according
to the dominant Eigenvalue of N

Based on the spectral decomposition of N equation
(14) can be rewritten as

Lfg(n) = νNn1 =

s∑

i=1

αi∑

j=0

aijλ
n−j
i , (16)

where λi are the roots, with multiplicity αi, of the min-
imal polynomial of N and aij are the appropriate con-
stants. If the size of the fitted and the original MAPs
are m and o then s ≤ mo. Taking the limit of (16) as
n tends to ∞ we have that

lim
n→∞

Lfg(n) = lim
n→∞

νNn1 = lim
n→∞

s∑

i=1

αi−1∑

j=0

aijλ
n−j
i = cλn

d

(17)

where c =
∑αd−1

j=0 adjλ
−j
d is constant and λd is the

dominant eigenvalue of matrix N, i.e., Lfg(n) ∼ λn
d

as n→∞. Here we assumed that λd is real, which fits
with our experiences.

While in the previous section we assumed a fixed n
for the exponent of (14) here we assume that n→∞.

Let λf , λg and λfg be the dominant eigenvalues cor-
responding to the terms Lff(n), Lgg(n) and Lfg(n)
respectively. Using (17) the optimization problem sim-
plifies to

min
G0,G1

(λf + λg − 2λfg) . (18)

6 Numerical study

Our experiments can be divided into two parts. In the
first part we investigate the performance of our meth-
ods by fitting a MAP(2) on a random five dimensional
MAP with moments falling outside the MAP(2) mo-
ments region. In the second part we apply moment
matching on a random three dimensional MAP with
moments within the MAP(2) moments region. In the
second part we apply the MAP reduction approach of
Section 5 and also verify the moment matching method.
In both cases we compare the cumulative distribution
function, the correlation structure and the queueing be-
havior of the resulting MAP(2) with the original MAP.

The methods can be applied to any experimental
data without any restrictions. In case of decomposed
fitting the goodness of fit is determined by the used dis-
tance measure (here it is the Euclidean distance) while
in case of the MAP reduction technique one should first
fit an arbitrary large MAP to the trace and then the re-
duction can be applied. For our purposes, to show the
efficiency of the algorithms, it is sufficient to evaluate
the approach with random MAPs.

6.1 Fitting a MAP(5)

We apply the proposed methods for fitting a MAP(2)
to the random, five dimensional, MAP with matrix rep-
resentation

D0 =









−3 1 0 0 0
1 −5 0 0 0
0 1 −4 0 0
1 0 0 −2 0
1 0 0 1 −5









,

D1 =









1 0 0 1 0
0 1 1 1 1
1 0 1 0 1
0 0 0 1 0
0 1 1 1 0









.

(19)

The moments of this MAP(5) are (n2 = 1.96161, n3 =
2.88108, γ = −0.237176). This point is outside the
MAP(2) moment region. Its first raw moment is
µ1 = 0.560976.

Once we have (n2 = 1.96161, n3 = 2.88108, γ =
−0.237176) we fit MAP(2) to it using
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• the global optimization with the Nelder-Mead
method, as described in Section 3.1,

• OMAM, as described in Section 3.2,

• the decomposed fitting method, as given in Sec-
tion 4, to fit

– directly the shape parameter (γ), or equiv-
alently the lag-1 correlation coefficient ρ1 =

γ
n2
2

−1

n2−1 ,

– the lag-9 correlation coefficient ρ9 = γ9
n2
2
−1

n2−1
and

– a higher lag, ρ99 = γ99
n2
2

−1

n2−1 , both of them
used to express the shape parameter as γ =
n

√

ρn
n2−1
n2
2

−1
and

– the dominant eigenvalue (λd) of the DTMC
embedded at arrival epochs.

• The joint density function fitting for the exponent
n = 10, as given in Section 5.1, and

• the dominant eigenvalue based joint density func-
tion fitting, as presented in Section 5.2.

The resulting moment triples are summarized in Ta-
ble 3. We note that the MAP reduction procedure
results in different first raw moment while in the mo-
ment based fittings method we can set the original one,
µ1 = 0.560976.

It can be seen in Table 3 that all the fitting methods
give quite close results in terms of the Euclidean dis-
tance. And as we expected the decomposed moment
fitting (eg) and OMAM (ma) give significant good re-
sults.

For further investigations we first determine the
corresponding matrix representations for all the fit-
ted MAP(2)s using the four element basic moment set
(µ1, n2, n3, γ).

D
(nm)
0 =

(
−1.698 0.0006

0 −1.877

)
D

(nm)
1 = ( 0 1.698

1.876 0.0006 )

(20)

D
(ma)
0 =

(
−2.069 0.944

0 −2.069

)
D

(ma)
1 = ( 0 1.125

0.903 1.167 )
(21)

D
(eg)
0 =

(
−2.093 1.002

0 −2.098

)
D

(eg)
1 = ( 0 1.091

0.955 1.143 )
(22)

D
(r9)
0 =

(
−1.763 6.553×10−5

0 −1.802

)

D
(r9)
1 = ( 0 1.7633

1.802 0 )

(23)

D
(r99)
0 =

(
−1.787 0.008

0 −1.787

)
D

(r99)
1 = ( 0 1.779

1.787 0 )
(24)

D
(ed)
0 =

(
−2.095 0.714

0 −2.096

)
D

(ed)
1 = ( 1.382 0

0.557 1.538 )
(25)

D
(lh)
0 =

(
−1.733 0.121

0 −5.939

)
D

(lh)
1 = ( 1.612 0

3.317 2.622 )
(26)

D
(ld)
0 =

(
−1.7137 0.162

0 −4.7576

)
D

(ld)
1 = ( 1.551 0

2.367 2.391 )
(27)

Once we have the matrix representation we can
calculate the fitted parameters. In case of meth-

ods (r9), (r99) these are ρ
(r9)
9 = −0.000120081 and

ρ
(r99)
99 = 3.20821×10−6, respectively, while the original

MAP(5) has the parameter values ρ9 = 0.0000320486
and ρ99 = 1.41312× 10−33. The bad match of the cor-
relation parameters are caused by their very low values
and accordingly the limited numerical accuracy which
attracts our attention to the numerical stability of the
decomposed fitting method for low values although it
seems more accurate than the global optimizations in
the same space.

In case of the fitting method (ed) the dominant
eigenvalue of the DTMC embedded at arrival epochs
is fitted. For the original MAP(5) it is λd = 0.484103
and for the fitted MAP(2) it is γ = 0.484102 which is
a very good match.

PH(2) fitting The cumulative distribution function
(CDF) of the PH marginal distributions for the original
MAP(5) and for all the fitted MAP(2)s are calculated
using their matrix representations in (19) and in (20)
through (27) and their stationary phase distributions
as

F (x) = 1− πeD0x1, (28)

where π is the stationary phase distribution after an
arrival and D0 is the transient generator of the PH
marginal of the MAP. The resulting MAP(2)s fit the
MAP(5) reasonably well, the CDFs show a good match
with the original one in Figure 3(a). Figure 3(b) shows
that (nm) fits best the body and (eg), (ed), (lh) and
(ld) the tail of the distribution.

Lag-k fitting The correlation structure of all the
original and the fitted MAPs are calculated by the
consecutive evaluation of (4) and is depicted in Fig-
ure 3(c). Those methods which find a correlation pa-
rameter close to 1 result in a very slow correlation de-
cay, these are the decomposed fitting method based

10



Table 4: Result of fitting M = (1.96161, 2.88108,−0.237176) by all the considered fitting algorithms

result

method abbr. distance µ1 (n2, n3, γ)

global optimization (nm) 0.7750 (2.00498, 3.0149,−0.999348)
ordered moment adjusting method (ma) 0.0178 (1.96161, 2.89884,−0.237176)

decomposed fitting of γ (eg) 0.0067 (1.95541, 2.88361,−0.237174)
decomposed fitting of ρ9 (r9) 0.7731 (2.00024, 3.00072,−0.999963)
decomposed fitting of ρ99 (r99) 0.7686 (1.99999, 2.99997,−0.995528)
decomposed fitting of λd (ed) 0.7213 (1.95541, 2.88361, 0.484102)

joint density based (lh) 0.6723 0.566744 (2.0254, 3.04949, 0.410575)
dominant eigenvalue of (lh) (ld) 0.7198 0.569103 (2.032, 3.06588, 0.454837)
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Figure 3: The comparison of cumulative distribution functions of the PH marginals and the correlation functions
of the processes

higher correlation fittings, i.e., (r9) and (r99), and the
Nelder-Mead method based global optimization (nm).
The decomposed fitting method based γ fitting (eg) fits
the first lag correlation well since it is closely related
to ρ1 but all the other correlation coefficients are fitted
badly. The reason is that this MAP(5) does not have
geometrically decaying correlation structure. In case of
(ed) the dominant eigenvalue is matched, but if n2 < 2,
which is the case now, the calculation of the correlation
coefficient contains a minus sign, see (6), thus the lag-k
curve is reflected to the x-axis.

Figure 3(c) together with Figure 5(c) points out that
the MAP(2) set has geometrically decaying correlation
function, as given in (6), i.e., it is only possible to cap-
ture a geometric correlation structure.

Queueing behavior The queue length distributions
generated by MAP arrivals are observed in an in-
finite buffer system with deterministic service time
(MAP/D/1 queueing system) for two utilization lev-
els, ρ = 0.3 and ρ = 0.7, in Figure 4. The utilization of
the system is set through D, the deterministic service
time, as ρ = D

µ1
.

The queueing behavior of the MAP(5) and the fitted
MAP(2)s with utilization level ρ = 0.3 are depicted in

Table 5: The mean queue lengths of the different sce-
narios

ρ

0.3 0.7

MAP(5) 0.365512305 1.524539289
(nm) 0.364296716 1.518172962
(eg) 0.362108709 1.488329671
(r9) 0.364158514 1.516371585

(r99) 0.364150473 1.51627773
(ed) 0.361219149 1.45877668
(lh) 0.367979806 1.558582197
(ld) 0.368298067 1.57042874

Figure 4(a) and all the MAP(2)s fit the original well.

For ρ = 0.7, depicted in Figure 4(b), all the fit-
ting procedures fit the original queue length distribu-
tion well. Table 6.1 summarizes the mean queue length
for all the original and the fitted MAPs in case of both
utilization levels.
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Figure 4: The queueing behavior of the MAPs

6.2 Matching inside the MAP(2) mo-
ments region

The MAP(3) with matrix representation

D0 =





−0.1198 0.0008 0.0002
0 −0.7509 0.0022
0 0 −1.8641



 ,

D1 =





0, 0915 0.025 0.0023
0.0022 0.6589 0.0876

1.71× 10−5 0.2432 1.6209





(29)

has moments inside the MAP(2) moments region:
(n2 = 3.00618, n3 = 10.0002, γ = 0.773409). The first
raw moment is µ1 = 0.999279.

For further investigation the matrix representation
of the fitted MAP(2)s are

D
(eg)
0 =

(
−0.1648 0.0368

0 −1.1109

)
D

(eg)
1 = ( 0.128 0

0.0046 1.1063 )

(30)

D
(lh)
0 =

(
−0.7455 0.109

0 −1.8626

)
D

(lh)
1 = ( 0.6365 0

0.22 1.6426 )
(31)

D
(ld)
0 =

(
−0.7486 0.11

0 −1.8634

)
D

(ld)
1 = ( 0.6386 0

0.221 1.6425 ) .
(32)

Using the matrix representations in (29) and in (30)
through (32) we can determine the important param-
eters of the MAPs. The CDF is plotted in Figure 5(a)
and the relative errors of the CDF in Figure 5(b).

Based on the relative error diagram we could say
that the MAP reduction performs better as expected.

Once more the lag correlation structure is investi-
gated, as given in Figure 5(c) where two important
things can be concluded. The moment based decom-
posed fitting method matches the correlation structure

Table 6: The mean queue lengths of the different sce-
narios

ρ

0.3 0.7

MAP(3) 0.400511251 2.69909765
(eg) 0.373380958 1.851639028
(lh) 0.393725813 2.433117353
(ld) 0.393397716 2.421863393

in this case, i.e., the input MAP(3) has geometric de-
caying correlation structure. The two MAP reductions
give exactly the same result which means that the tail
fitting in Section 5.2 is capable of performing similarly
as the joint density function based fitting method. And
another important conclusion of Figures 5(a), 5(b) and
5(c) is that even if the lag correlation structure is not
captured that accurately the marginal distribution can
be captured well. This shows the independence of the
marginal distribution and the correlation structure in
practice.

Finally, we observed the queueing behavior of the
processes in the same MAP/D/1 system as in the
previous section with utilization levels ρ = 0.3 and
ρ = 0.7 depicted in Figures 6(a) and 6(b), respectively.
The mean queue lengths of the original, the match-
ing and the joint density based fittings are summa-
rized in Table 6.2. The “relatively bad” results of the
moment distance based fitting/matching confirms that
the Euclidean (or any equivalent) measure minimiza-
tion based moment fitting/matching technique cannot
capture all the important properties of a process in any
arbitrary case.

In this experiment the decomposed fitting method
could not fit the queue length distribution neither in
case of lower nor in case of higher utilization levels.
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This confirms the previous conclusions that the practi-
cally exact fitting of the lag correlation structure does
not ensure a better fit of the queue length distribution
in this scenario.

7 Conclusion

We proposed to add two technical details to the exist-
ing MAP fitting methodology. The first one is to im-
prove the efficiency of moments distance optimization
procedures with a decomposition to nice components
of the MAP bounding surface. The other proposal is
to compute the distance of joint distribution functions
of MAPs by efficiently computable matrix expressions.

We developed fitting procedures based on these pro-
posals and evaluated their properties. Our experiences
verified the expected advantages. The decomposed nu-
merical fitting method reduces the numerical instabil-
ity of the global optimization procedures applied for
the whole boundary and the density function based dis-
tance measure resulted in an numerically efficient well
behaving approximation.

During this paper we utilized the special results
available currently only for the MAP(2) class. The
proposed procedures are directly applicable for higher
order MAPs when the analytical description (canonical
form, moment bounds) of those classes become known.

References

[1] Andrea Bobbio, András Horváth, and Miklós
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[9] András Horváth and Miklós Telek. Markovian
modeling of real data traffic: Heuristic phase type
and MAP fitting of heavy tailed and fractal like
samples. In Performance Evaluation of Complex

Systems: Techniques and Tools, pages 405–434,
2002.

[10] Scott Kirkpatrick, Charles D. Gelatt, and Mario P.
Vecchi. Optimization by simulated annealing. Sci-
ence, 220:671–680, May 1983.

[11] G. Latouche and V. Ramaswami. Introduction to

Matrix-Analytic Methods in Stochastic Modeling.
Series on statistics and applied probability. ASA-
SIAM, 1999.

[12] John Ashworth Nelder and Roger Mead. A sim-
plex method for function minimization. The Com-

puter Journal, 6(4):308–313, 1965.

[13] Takayuki Osogami and Mor Harchol-Balter. Nec-
essary and sufficient conditions for representing
general distributions by Coxians. In Proceedings

of the 12th International Conference on Modelling

Tools and Techniques for Computer and Commu-

nication System Performance Evaluation, pages
182–199, September 2003.

[14] Rainer Storn and Kenneth Price. Differential evo-
lution - a simple and efficient adaptive scheme for
global optimization over continuous spaces. Tech-
nical report.

[15] Miklós Telek and Armin Heindl. Moment bounds
for acyclic discrete and continuous phase-type dis-
tributions of second order. In Proceedings of UK

Performance Evaluation Workshop, 2002.

14
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