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Abstract

Model checking of Markov chains using logics like CSL or asCSL proves whether a logical formula holds for a state of the

Markov chain. It has been developed in the last decade to a widely used approach to express performance and dependability

quantities for models from a wide range of application areas. In this paper, model checking is extended to prove formulas for

distributions rather than single states. This is a very natural way to express certain performance or dependability measures

that depend on the state of the system rather than on a specific state in the state space of the Markov chain. It is shown

that the mentioned logics can be easily extended from states to distributions and model checking algorithms can also be

easily adopted. Furthermore, new equivalences will be introduced that are weaker than bisimulation but still characterize the

extended logics.
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1 Introduction

Model checking is nowadays widely used in functional and also in quantitative system analysis. The general idea is that one

defines a property that a system should observe or should not observe as a formula in a temporal logic and then proves for

each state or some states of the system, whether the formula holds or does not hold.

The mentioned approach is natural in functional system analysis where model checking is applied to the states of a labeled

transition system (LTS) or automaton and properties are defined in the temporal logic CTL [6]. Model checking can be

applied in a fully automated way after the LTS and the formula have been specified. The corresponding algorithms are

efficient in terms of the size of the LTS which, however, may grow exponentially in terms of the system specification. The

outcome of model checking is a clear decision which states fulfill the required property and which do not fulfill the property.

The situation is different if model checking is extended to quantitative systems analysis as done with logics like CSL

[1, 4, 3]. In this case, Markov chains with labeled states and possibly labeled transitions are considered. In contrast to
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functional properties two quantifications can be introduced. First, it can be required that a property has to hold within some

time interval and it can be defined that a property holds at least or at most for a given probability. In this situation it is often

not natural to prove whether the property or formula holds for a specific state since the state of a stochastic system is usually

given as a probability distribution over the set of states. To give a simple abstract example, we consider some formula that

should hold with a probability of at least p. If we know that the system is with probability q in state 1 where the formula will

hold with probability p1 < p and it is with probability (1−q) in state 2 where the formula holds with probability p2 > p, then

the formula holds if and only if qp1 + (1 − q)p2 ≥ p. This result cannot be achieved with the known approaches where the

outcome is that the formula holds in state 2 and does not hold in state 1. The use of distributions rather than states is natural

in stochastic systems. Two typical examples are:

• One wants to check whether a formula holds in a specific situation, for example in steady state or after a specific event

like a component failure, which cannot be characterized by a single state but by a probability distribution.

• The states of the Markov chain do not correspond to system states since phase type distributions are integrated to

model non-exponential timing. In this case the system state corresponds to a set of states in the Markov chain and if

one knows the time since the phase type distributions has been initiated, a probability distribution over the set of phases

can be computed and it can be decided whether a formula holds for the distribution which means that it holds for the

corresponding abstract system state.

Surprisingly, model checking has, to the best of our knowledge, not been extended to distributions. Distributions contain the

common viewpoint of states, because a distribution assigning probability 1 to a single state corresponds to the proof that the

state fulfills the formula. However, it is in general not possible to prove formulas that are defined for distributions using state

formulas.

In this paper we extend the established logics CSL and asCSL [3] to consider distributions rather than states. This can be

done in a very natural way and allows one to easily adopt model checking algorithms. A side effect is that new equivalence

relations can be defined that preserve logical formulas. It is known that for CSL over states stochastic bisimulation is the

equivalence that characterizes the logic. However, if one considers CSL over distributions, a weaker relation can be defined

which relates distributions and includes the case that a state is related to a distribution over several states. The corresponding

equivalence will be defined and it will be outlined that equivalence is still decidable and a minimal, possibly non-Markovian,

representation can be computed for a Markov chain.

The outline of the paper is as follows. In the next section we briefly review related work. Then we introduce the ba-

sic model class, labeled Markov chains in continuous time. In Section 4 equivalence relations are defined and Section 5

introduces the extended logics, presents basic steps for model checking and shows that equivalent Markov models are indis-

tinguishable under the logical formulas. All proofs are given in the appendix. Some smaller examples are used as running

examples and Section 6 contains results for medium sized examples.
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2 Related Work

In the past labeled Markov processes have been defined in various forms. These definitions include stochastic process

algebras [17] whose underlying stochastic model can be interpreted as a Markov process, stochastic automata [24] and

interactive Markov chains [16] to mention only a few examples. For those Markov processes model checking approaches

have been defined as extensions to the classical model checking of labeled transition systems or automata [6].

Usually model checking means to prove for each state whether a formula holds or does not hold. For performance or

dependability analysis where time-dependent properties have to be analyzed the model is extended by stochastic timing

information resulting in CTMCs. Model checking CTMCs based on the logic CSL has been introduced in [1]. CSL has been

extended in several ways, one extension is asCSL [3] that supports transition labels, while CSL considers only state labels.

Moreover, efficient algorithms have been developed to verify CSL formulas [4]. For more results in this area we refer the

interested reader to the overview papers [5, 20].

To decrease the effort for the analysis of Markov chains in general and in particular for model checking often bisimulation

is used to reduce the state space and to obtain a smaller but equivalent representation of the process. Bisimulation for untimed

systems has been introduced in [23, 22] and was later extended to discrete time Markov chains in [21] and continuous time

Markov chains in [8, 17]. The relation between CSL and bisimulation is derived in [2] and [18] presents several case

studies that studied the effect of bisimulation on model checking. While the approaches for bisimulation mentioned so far all

work at the state level, [13] extended bisimulation to the trace distribution of labeled Markov processes and [14] considers

bisimulations if the initial state is given by a distribution rather than a single state. A model checking approach that extends

CSL to models with phase type distributions is given in [9]. Finally, [12] presented transformations of Markovian and

non-Markovian models that define general equivalence relations and allow for an efficient minimization of those models.

3 Labeled Markov Processes

We consider Markov chains with labeled transitions and states in continuous time following similar models that have been

proposed in the literature over more than two decades [8, 13, 15, 16, 17, 21, 24].
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Definition 1 (Labeled Markov chains) A continuous time labeled Markov chain (CTLMC) is defined by the tuple

CM =
(
S , ϕ,A,Ge(e ∈ A), AP, L

)
,

where

• S = {s0, . . . , sn−1} is a finite set of states,

• ϕ ∈ [0, 1]1,n defines a probability distribution over S ,

• A is a finite alphabet of transition labels,

• Ge ∈ R
n,n
≥0 is for each e ∈ A an n × n transition rate matrix,

• AP is a set of atomic propositions, and

• L : S → 2AP is the state labeling function.

We often identify states by their number, i.e., i means si if the interpretation is clear from the context. Thus, Ge(i, j) is the

rate of a transition from si to s j labeled with e. We assume that in every state transitions with label e are either enabled such

that
∑n

j=1 Ge(i, j) > 0 or disabled such that
∑n

j=1 Ge(i, j) = 0. The model includes CTMCs with only state labels (i.e.,A = ∅).

In this case we write G rather than Ge for the transition matrix. Observe that in contrast to most other definitions of labeled

Markov models, the initial distribution is part of the definition. To define a unique initial state si, vector ϕ = ei is used where

ei is a row vector with 1 in position i and 0 elsewhere. CTLMCs can be completely described by vectors and matrices. Define

for a ∈ AP ra ∈ {0, 1}n,1 with ra(i) = 1 if a ∈ L(si) and 0 if a < L(si). Sometimes we use Ra = diag(ra) which is a n × n

diagonal matrix with ra(i) in position (i, i). (ϕ,Ge(e ∈ A), ra(a ∈ AP)) is a short hand notation for a CTLMC. Sometimes we

skip the setsA and AP, if they are clear from the context or irrelevant.

Transitions in continuous time Markov chains take place after an exponentially distributed duration. An infinite path of a

CTLMC is defined as σ = (s(0), e(0), t(0)), (s(1), e(1), t(1)), . . . where s(h) ∈ S , e(h) ∈ A and t(h) ∈ R≥0 is the time between

the hth and h + 1th transition or the time before the first transition if h = 0. A finite path is given by

σ = (s(0), e(0), t(0)), (s(1), e(1), t(1)), . . . ,

(s(|σ| − 1), e(|σ| − 1), t(|σ| − 1)), s(|σ|)).

σ(h) = (s(h), e(h), t(h)) for h < |σ|, s(h) for h = |σ| and undefined otherwise. σi
h for 0 ≤ h ≤ i ≤ |σ| is the subpath including

the elements h through i.

Let Ḡe = diag(Ge I1) and Ḡ =
∑

e∈A Ḡe be the diagonal matrix of transition rates, then

Dens(σ) =

|σ|−1∏
h=0

e−t(h)Ḡ(s(h),s(h))Ge(h)(s(h), s(h + 1))

defines the value of the probability density for the path σ. Ωi is the set of all paths of length i and Ω is the set of all finite

paths.
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For the definition of equivalent behavior, events and/or state propositions are observed and not detailed states. Thus, a

sequence ς =
(
(a0, e0, t0), . . . , (a|ς|−1, e|ς|−1, t|ς|−1), a|ς|

)
where ah ∈ AP, eh ∈ A and th ∈ R≥0 is a finite observable behavior. If

for a CTLMC A is empty, we simply skip the second component and if states are not labeled we skip the first component.

We define Υ as the set of all finite observable behaviors. For a CTLMC and an observable behavior, the density is given by

Dens(ϕ,Ge,ra)(ς) = ϕ

|ς|−1∏
h=0

Rah e−thḠGeh

 ra|ς| .

Running Examples

The first example is a CTLMC (ϕ,G, ra(a ∈ AP = {a, b})) without transition labels where

G =



0 0 0 µ0

0 0 0 µ1

0 0 0 µ2

λ0 λ1 λ2 0


,

states s0, . . . , s2 are labeled with a and state s3 is labeled with b.

4 Equivalence of Labeled Markov Chains

We first define equivalence of CTLMCs as a natural adoption of trace equivalence for labeled Markov processes [13].

Definition 2 Two CTLMCs (ϕ,Ge(e ∈ A), ra(a ∈ AP)) and (υ,He(e ∈ A), sa(a ∈ AP)) are equivalent if and only if ∀ς ∈ Υ:

Dens(ϕ,Ge,ra)(ς) = Dens(υ,He,sa)(ς).

In the following we define different equivalences for CTLMCs based on the minimal non-Markovian representation of

Markov models developed in [12] and extended to compositional models in [10]. These general equivalence relations are

extensions to bisimulation on distributions as defined in [14].

Let CM1 = (ϕ,Ge(e ∈ A), ra(a ∈ AP)) and CM2 = (υ,He(e ∈ A), sa(a ∈ AP)) be two CTLMCs with m and n < m states,

respectively. Then the following relations are defined:

1. CM1 ∼ CM2 holds if and only if there exists a matrix V ∈ Rm,n with V I1n = I1m, such that ϕV = υ, ḠV = VH̄,

∀e ∈ A : GeV = VHe and ∀a ∈ AP : RaV = VSa.

2. CM1 ' CM2 holds if and only if there exists a matrix W ∈ Rn,m with W I1m = I1n, such that ϕ = Wυ, WḠ = H̄W,

∀e ∈ A : WGe = HeW and ∀a ∈ AP : WRa = SaW.

If m = n a third relation is defined:

3. CM1 � CM2 holds if and only if there exists a matrix U ∈ Rn,n with U I1 = I1, such that ϕU = υ, ḠU = UH̄,

∀e ∈ A : GeU = UHe and ∀a ∈ AP : RaU = USa.
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(
ζ,De, ra

)
∼(

ζ(1),D(1)
e , r(1)

a

) ∼

' '(
η(2),F(2)

e , s(2)
a

)
�

(
η,Fe, sa

)

(
ζ(2),D(2)

e , r(2)
a

)

(
η(1),F(1)

e , s(1)
a

)

Figure 1: Relation ≈ for CTLMCs

The first relation is a natural extension of strong lumpability [19] and bisimulation for labeled Markov chains [8, 16, 17].

For strong lumpability or bisimulation matrix V contains only elements from {0, 1} which implies that in each row of V

exactly one element equals 1, the remaining elements are 0. Thus, strong lumpability and bisimulation describe a mapping

where one state from the larger state space is mapped on exactly one element in the smaller state space. In the more general

definition used here, a state in the larger state space is represented by a weighted sum of states from the smaller state space.

In a similar way, the second equivalence can be related to weak lumpability of Markov chains [19]. For details we refer to

[11].

The following theorem shows that any of the above equations assures equivalence, a proof is given in the appendix.

Theorem 1 Two CTLMCs CM1 and CM2 that are in one of the relations ∼, ' or � are equivalent.

From [12] it can be concluded that U is non-singular and that the matrices V and W have full rank, such that we can find a

left- and right-inverse, respectively, i.e. V#V = I and WW# = I.

Now, assume that two CTLMCs, (ζ,De, r) with m states and (η,Fe, sa) with n states are given. Then the two processes

are in relation ≈ if the diagram in Figure 1 commutes. For each step in the diagram, an efficient algorithm exists that

computes a minimal equivalent representation according to the required relation. Computation of the matrices V and W and

the corresponding minimal representations can be done with the staircase algorithm from [12] with an effort in O(|A| · m4)

for CTLMCs of order m. Matrix U can be computed with an effort in O(|A| · m3) for processes of order m using algorithms

for the solution of Sylvester equations [7].

The following corollary follows from Theorem 1.

Corollary 1 If two CTLMCs are in relation ≈, then they are equivalent.
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Running Examples

For the first example assume that µ0 , µ1 and let p = (µ2 − µ1)/(µ0 − µ1). Then define matrices

V =



1 0 0

0 1 0

p 1 − p 0

0 0 1


, H =


0 0 µ0

0 0 µ1

λ0 + pλ2 λ1 + (1 − p)λ2 0


and the CTLMC (υ = ϕV,H, sa(a ∈ {a, b})). Assume that the last state is labeled with b and the first two states are labeled

with a. Then (υ = ϕV,H, sa(a ∈ {a, b})) is in relation ∼ to (ϕ,G, ra). Observe that the new process is a CTLMC if and only

if p ∈ [0, 1].

5 Model Checking Labeled Markov Chains

Different logics have been defined for model checking Markov chains with state and transition labels. Usually model checking

means to prove for each state whether a formula holds or does not hold. This viewpoint has been transferred from qualitative

system analysis to quantitative system analysis using transition probabilities or rates. However, if the state is defined in terms

of a distribution rather than a unique state, as it is the case here and in [13], then a formula should hold with respect to a

distribution which does not necessarily mean that it has to hold for all states with non-zero probabilities as shown below.

We consider here the logics CSL [4] for CTLMCs with state labels and asCSL [3] for CTLMCs with state and transition

labels. In all cases we extend the logics to check a formula for a CTLMC with a given initial distribution. By defining an

initial distribution equal to ei, this includes the common case, where a formula is checked for state si. We extend the two

logics CSL and asCSL in the mentioned way resulting in logics dCSL and dasCSL, where the letter d stands for distribution.

We begin with dCSL which is defined over CTLMCs without transition labels such that CM = (µ,G, ra(a ∈ AP)).

Definition 3 (dCSL) A dCSL formula is defined as

Γ ::= DSZp (Φ) | DPZp (Ψ)

where Z∈ {≤,≥}, p ∈ [0, 1], I ⊂ R≥0 is some non-empty interval, Φ is a state formula

Φ ::= tt | a |Φ ∧ Φ | ¬Φ | SZp(Φ) | PZp (Ψ)

and Ψ is a path formula

Ψ ::= ΦUIΦ | XIΦ.

The syntax and semantics of the state and path formulas is as in CSL [1, 4].

For a state distribution formula Φ and state s ∈ S , s |= Φ or s 6|= Φ holds. Let rΦ be a vector with rΦ(i) = 1 if si |= Φ and 0

otherwise. As before RΦ = diag(rφ). Furthermore we define for some transition matrix of a CTLMC G and a state formula
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Φ a matrix G[Φ] as the matrix that results from G when all states where Φ does not hold are made absorbing. This means

that G[φ] (i•) = (0, . . . , 0) if si 6|= Φ and G[φ] (i•) = G (i•) if si |= Φ1.

Then for some distribution µ,

µ |= DSZp (Φ) ⇔ µrΦ Z p. (1)

For µ = ei, Z = ≥ and p = 1, µ |= DSZp (Φ) is equivalent to si |= Φ which shows that for any CSL formula an equivalent

dCSL formula exists.

To handle path formulas we define in accordance to [4] γ(σ, h) = t(h), the time spent between the h−1th and hth transition

at path σ and a@t = s(h) where
∑h−1

j=1 t( j) ≤ t and
∑h

j=1 t( j) > t. The latter sum is, of course, only defined for paths of a

length ≥ h. The following two sets are defined

Ωi(Φ1U
IΦ2) =

{
σ|s(0) = si ∧ ∃t ∈ I : a@t |= Φ2∧

∀t′ < t : a@t′ |= Φ1
}

Ωi(XIΦ) =
{
σ|s(1) |= Φ ∧ γ(σ, 0) ∈ I

}
Under appropriate measurability conditions the probability of an arbitrary path from Ωi(·) is well defined (see [4]) and can

be computed from the following equations

qΦ1U
[t1 ,t2]Φ2

= et1(G[Φ1]−Ḡ[Φ1])RΦ1 e(t2−t1)(G[Φ1∧¬Φ2]−Ḡ[Φ1∧¬Φ2])rΦ2 (2)

for t1 > 0

qΦ1U
[0,t2]Φ2

= et2(G[Φ1∧¬Φ2]−Ḡ[Φ1∧¬Φ2])rΦ2 for t1 = 0 (3)

qX[t1 ,t2]Φ = e−t1Ḡ
∫ t2

t=t1
e−tḠGrΦdt

where I = [t1, t2] with 0 ≤ t1 ≤ t2. Observe that for dCSL transitions are not labeled such that we can write G rather than Ge.

The vectors qΦ1U
[t1 ,t2]Φ2

and qXt1 Φ can be computed efficiently using uniformization as shown in [4].

Distribution µ observes the distributional path formulas, if the following equations hold.

µqΦ1U
[t1 ,t2]Φ2

Z p ⇔ µ |= DPZp

(
Φ1U

[t1,t2]Φ2

)
µqX[t1 ,t2]Φ Z p ⇔ µ |= DPZp

(
Xt1Φ

)
Observe that the major effort to verify µ |= DPZp (. . .) is required to compute the vectors q. in (2,3). After the vectors are

available at most one inner product has to be computed. This means that the asymptotic effort to verify dCSL formulas is the

same than the effort to verify CSL formulas.

The following theorem shows the relation between ≈ and dCSL formulas, the proof can be found in the appendix.

Theorem 2 Let CM1 = (ϕ,G, ra(a ∈ A)) and CM2 = (υ,H, sa (a ∈ A)) be two CTLMCs with CM1 ≈ CM2, then for any

dCSL formula Γ:

ϕ |= Γ ⇔ υ |= Γ.

1Observe that the definition of G[Φ] corresponds to G[¬Φ] in [4] such that the equations syntactically differ but have the same semantics.
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Finally, we consider the extension of asCSL to dasCSL which follows the same ideas used for the definition of dCSL.

Definition 4 (dasCSL) A dasCSL formula is defined as

Γ ::= DSZp (Φ) | DPZp (Ψ)

where Z∈ {≤,≥}, p ∈ [0, 1], I ⊂ R≥0 is some non-empty interval, Φ is a state formula

Φ ::= tt | a |Φ ∧ Φ | ¬Φ | SZp(Φ) | PZp (Ψ)

and Ψ is a path formula

Ψ ::= αI

which is formally defined below.

For the definition of path formulas we follow [3]. α is a program that specifies properties which have to hold for finite paths.

Programs are specified by the following grammar

α ::= ε | (Φ, e) |α;α |α ∪ α |α∗

where Φ is a dasCSL state formula and e ∈ A ∪ {
√
},
√

is a symbol that does not belong to A. We define α0 = ε and

αi = α;αi−1 for i ≥ 1. Symbol ; denotes the concatenation of two programs and α∗ the Kleene star, the n-fold sequential

composition for arbitrary n > 0.

The set of paths Ω(α) that fulfill the program α can be defined inductively from the following sets of finite paths

Ω(ε) =
{
σ | |σ| = 0

}
Ω(Φ, e) =

{
σ | s(0) |= Φ ∧ e(0) = e

}
Ω(Φ,

√
) =

{
σ | s(0) |= Φ ∧ |σ| = 0

}
Ω(α1;α2) =

{
σ | ∃h ∈ {0, 1, . . . , |σ| − 1} :

σh
0 ∈ Ω(α1) ∧ σ|σ|h ∈ Ω(α2)

}
Ω(α1 ∪ α2) =

{
σ | σ ∈ Ω(α1) ∪Ω(α2)

}
Ω(α∗) =

{
σ | ∃h ≥ 0 : σ ∈ Ω(αh)

}
A path σ belongs to the set Ω(αI), if σ ∈ Ω(α) and

∑|σ|−1
h=0 t(h) ∈ I.

Since programs are regular expressions they can be equivalently characterized as the language of a finite acceptor. This

acceptor can be transformed into a deterministic acceptor which means that for each path σ, there exists a unique run of the

acceptor and the path is accepted if it ends in a final state. Details of the construction of the acceptor for a program α and a

CTLMC CM can be found in [3].

For some program α and CTLMC CM letDA = (Z,B, δ, z0,F ) where

• Z is a finite set of states,

• B is an alphabet of transition labels of the form (Φ, e) where Φ is a state formula for CM and e ∈ A,
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• δ : Z × B → Z is the (deterministic) transition function,

• z0 ∈ Z is the unique initial state,

• F ⊂ Z is the set of final states,

be a deterministic automaton that accepts exactly the paths of CM that result in a successful run of program α. Observe that
√

does not appear as transition inscription here. The generation of the deterministic automaton including the elimination of
√

is described in [3].

To check µ |= DPZp

(
αI

)
, we build the composed automaton DA × CM

(
CM =

(
S , ϕ,A,Ga, AP, L

))
without transition

labels which can be interpreted as a CTLMC without transition labels. We build the automaton on the complete state space

Z × S which might contain unreachable states and is not necessary for model checking but helps to prove the preservation of

formulas by the previously proposed equivalence relations.

The composed automaton is

CM
′ = DA× CM =

(
Z × S , υ, ∅,F, AP′, L′

)
where

• υ =
(
ϕ, 0, . . . , 0

)
,

• F is a matrix of order |Z| · |S | × |Z| · |S | which is built by |Z| × |Z| submatrices Fz,z′ of order |S | × |S | where Fz,z′ =∑
(Φ,e):δ(Φ,e)=z′

RΦGe,

• AP′ = AP ∪ { f in} with f in < AP,

• L′(z, s) =

 L(s) if z < F ,

L(s) ∪ { f in} if z ∈ F .

Then model checking can be performed using standard methods for the new CTLMC. Let r f in be a vector with 1 in position

i if si = (s, z), z ∈ F and 0 otherwise. If I = [0, t], then vector

qαI = et(F[¬ f in]−F̄[¬ f in])r f in (4)

is computed by a transient analysis and

ϕ |= DPZp

(
αI

)
⇔ υqαI Z p. (5)

For I = [t1, t2] with 0 < t1 ≤ t2, vector qαI is computed in two steps which are explained in [3]. We first compute the vector

q̂αI = e(t2−t1)(F[¬ f in]−F̄[¬ f in])r f in (6)

by a transient analysis. This corresponds to the second step described in [3]. Then

qαI = et1(F−F̄)q̂αI (7)

is computed and used in (5) to check the formula. Again the asymptotic effort to check a dasCSL formula for distribution µ

is the same than the effort to check the same formula in asCSL for a single state because the evaluation of (6) and (7) requires

11



much more time than the computation of the final result by an inner product (dasCSL) or by selecting a single element

(asCSL).

Theorem 3 Let CM1 = (ϕ,G, ra(a ∈ A)) and CM2 = (υ,H, sa(a ∈ A)) be two CTLMCs with CM1 ≈ CM2, then, for any

dasCSL formula Γ:

ϕ |= Γ ⇔ υ |= Γ.

The proof can be found in the appendix.

6 Examples

6.1 An M/M/1 Queue

We consider a simple M/M/1 queue with capacity 5 as a running example to present dasCSL model checking. Arrivals occur

with rate λ = 1, the service rate is µ = 2. The CTLMC corresponding to the system is shown in Fig. 2. We use two transition

s0 s1 s2 s3 s4 s5

λ, a

µ, a

λ, a

µ, a

λ, a

µ, a

λ, a

µ, a

λ, a

µ, a

λ, b

Figure 2: CTLMC of Queueing example

labels a and b. a is used for normal transitions where either a customer arrives or is served, b is used for customers that are

lost due to a full queue. The atomic proposition empty is associated with state s0. The other states are labeled with busy.

We analyze the system for two different scenarios regarding the initial distribution of the queue length. The distribution

µ1 = [0.4, 0.3, 0.2, 0.1, 0, 0] models a normal load, while distribution µ2 = [0.1, 0.15, 0.2, 0.3, 0.15, 0.1] models a high load.

Then, dasCSL is used to investigate the probability that at most 2 customers are lost before the empty state is reached

again within the next t time units. The deterministic automaton describing the mentioned property is shown in Fig. 3. It

q0 q1 q2 q3

empty, a

busy, a
·, b

busy, a

empty, ·

·, b

busy, aempty, ·

·, b

·

Figure 3: Deterministic Automaton

accepts inputs that violate the property mentioned above, i.e. sequences with more than two blocked customers before the

empty state is reached. The composed automaton has a 24 × 24 matrix F. The submatrices are given by Fq0,q0 = Ga,

Fq0,q1 = Fq1,q2 = Fq2,q3 = Gb, Fq1,q0 = Fq2,q0 = RemptyGa, Fq1,q1 = Fq2,q2 = RbusyGa and Fq3,q3 = Ga + Gb. All other

12



submatrices are zero. With these matrices we evaluated Eq. 4 for different values for t between 0 to 600. The probabilities p

for that µi |= DP≤p

(
α[0,t]

)
is fulfilled are shown in Fig. 4.
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Figure 4: Results for the Queueing Example

6.2 A PH/PH/1 Queue

As second example we consider a finite capacity queue with 2-phase hyperexponential arrival and service time distributions.

The inter-arrival time distribution function has an initial state vector (0.95227, 0.047733) and phase rates (1.5236, 0.076373)

(i.e., a 2-phase hyperexponential distribution with mean 1.25 and squared coefficient of variation 10). For the service time

distribution we choose a 2-phase hyperexponential distribution with initial state vector (0.97559, 0.024405) and phase rates

(1.99512, 0.04881) (i.e., a distribution with mean 1 and squared coefficient of variation of 20). The queue has a maximal

capacity of 10 and we add an additional absorbing state that is entered, if a customer arrives to a fully occupied queue. States

can be described by a triple (i, j, k) where i ∈ {−1, 0, . . . , 10}. i = −1 defines the absorbing state, and i = 0, . . . , 10 describes

the number of customers in the queue. j indicates the phase of the hyperexponential distribution for the arrivals and becomes

0 for i = −1. Similarly, k indicates the phase of the hyperexponential distribution for the service and becomes 0 for i = −1 and

i = 0. Thus, the state space consists of 43 states, 2 states where the queue is empty, 40 states with 1 through 10 customers in

the queue and one absorbing state indicating an overflow. We assume that the two states describing the empty queue observe

an atomic proposition empty and the absorbing state observes atomic proposition full. Transitions are not labeled.

The goal is now to compute DP>p

(
¬ emptyU[0,t] f ull

)
which equals the probability that a customer is lost before the

system becomes empty. We assume that the analysis begins immediately after the first customer arrived to an empty system.

Thus, the system can be in one of four states (1, 1, 1), (1, 1, 2), (1, 2, 1) and (1, 2, 2). This implies that the initial distribution

can be easily computed from the two initial vectors of the hyperexponential distributions. Naturally, this defines a distribution

and not a single state. Table 1 shows the probabilities p for which the formula holds for different values of t, for the initial

distribution and for the different states in which the system can be in for population 1. Obviously, p depends heavily on

the state and model checking of the isolated states does not answer the question whether the formula holds for the system

13



t (1, 1, 1) (1, 1, 2) (1, 2, 1) (1, 2, 2) initial dist.

5 3.349e-03 2.157e-01 3.876e-15 1.036e-11 8.124e-03

10 1.166e-02 8.904e-01 8.013e-15 6.147e-09 3.152e-02

20 1.820e-02 9.679e-01 8.110e-15 2.209e-06 3.941e-02

50 1.976e-02 9.680e-01 8.110e-15 1.276e-03 4.086e-02

100 1.977e-02 9.680e-01 8.110e-15 3.112e-02 4.090e-02

500 1.977e-02 9.680e-01 8.110e-15 3.449e-01 4.127e-02

Table 1: Value of p for whichDP>p

(
¬ emptyU[0,t] f ull

)
holds for the PH/PH/1 queue.

or does not hold. Whereas it holds with some probability between the extreme values for the states when the distribution is

considered. Standard CSL cannot be used to express the required property.

6.3 The Workstation Cluster

The workstation cluster is a widely used benchmark in stochastic model checking [18]. The model describes two clusters of

workstations connected via a backbone net and each cluster itself is realized by a star topology with a central switch and N

workstations. The system provides premium service as long as at least N connected workstations are available and minimum

service if at least dN/2e connected workstations are available. We assume that states are labeled with min if they provide

minimum but not premium service, they are labeled with prem if they provide premium service. As shown in [18] stochastic

bisimulation can be applied to reduce the state space of the model by a factor of approximately two, a further reduction with

the equivalence relation presented here is not possible.

A typical formula for the analysis of the workstation cluster isDS≥p

(
minU[0,t] prem

)
which states that the system delivers

minimum service and recovers within t units of time to a state where premium service is provided without reaching a state

where the service level drops below minimum. Typically one would like to analyze the formula starting from the point where

the service drops from premium to minimum.

The formula can be checked for CM =
(
S , ϕ, ∅,G, {min, prem, none}, L

)
where G − Ḡ is the generator matrix of the

CTMC described by the workstation cluster. Let ϕ̄(G−Ḡ) = 0 be the stationary vector of the CTMC which is for the example

unique since the CTMC is ergodic. Then the initial vector for the mentioned situation is computed as

ϕ(i) =


0 if min < L(si)∑

j: prem ∈L(s j ) ϕ̄( j)G( j,i)∑
k: prem ∈L(sk )

∑
l: min∈L(sl ) ϕ̄(k)G(k.l) if min ∈ L(si)

Then the until formula can be evaluated as described above.

7 Conclusions

We presented an extended approach for model checking Markov models with labeled transitions and states. In contrast

to known approaches, distributions rather than single states are considered. It is shown that common logics can be easily
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extended to adopt this viewpoint and that the approach allows one to extend equivalence relations that preserve logical

formulas beyond bisimulation. The use of distributions can be applied to prove properties of a system that hold after specific

events that have been observed but do not necessarily imply that the system is in a specific state. Examples are arrivals or

departures of customers, failure of components or even the steady state distribution conditioned on some subset of the state

space. It is quite natural to ask whether a system fulfills a formula in such a situation which is possible with the extended logics

proposed here but cannot be analyzed with standard approaches for model checking. Standard model checking algorithms

can be easily adopted for the extended logics whereas the introduction of the new equivalence relations is a real extension

of bisimulation at state level since bisimulation no longer characterizes the smallest system that is indistinguishable under a

formula. The latter aspect will be investigated in the future.

It is, of course, possible to extend the approach to other logics that have been proposed in a Markovian setting and also to

discrete time models. Furthermore, compositionality of the approach should be considered in the future.
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Appendix

Proof of Theorem 1

We show the proof for relation ∼. Let CM1 = (µ,Ge(e ∈ A), ra(a ∈ AP)) of order m and CM2 = (ψ,He(e ∈ A), sa(a ∈ AP))

of order n be in relation CM1 ∼ CM2. Then

RaGeV = RaVHe = VSaHe

for all a ∈ AP, all e ∈ A. Observe that RaV = VSa implies ra = Vsa since

RaV I1 = Ra I1 = ra and RaV I1 = VSa I1 = Vsa.

Observe that
etḠV =

∞∑
h=0

tḠh

h! V =
∞∑

h=0

tḠhV
h!

= V
(
tI + t

(
H̄

))
+
∞∑

h=2

tḠhV
h! = V

∞∑
h=0

tH̄h

h!

= VetH̄e .

(8)

17



Using Eq. 8 we have for an arbitrary observable behavior ς ∈ Υ that

Dens(ψ,He,sa)(ς) = ψ

|ς|−1∏
h=0

Sah e−thH̄Heh

 sa|ς|

= µV

|ς|−1∏
h=0

Sah e−thH̄Heh

 sa|ς|

= µRah e−thḠGeh V

|ς|−1∏
h=1

Sah e−thH̄Heh

 sa|ς|

= µ

|ς|−1∏
h=1

Rah e−thḠGeh

 Vsa|ς|

= µ

|ς|−1∏
h=1

Rah e−thḠGeh

 ra|ς|

For the proofs of ' and � the relations

WetḠ = etH̄W and etḠU = UetH̄

can be shown similarly to Eq. 8. Then the proofs follow immediately by observing

WRaGe = SaWGe = SaHeW and RaGeU = RaUHe = USaHe.

Proof of Theorem 2

We have to prove the theorem for the 3 equivalences used in Fig. 1. If each equivalence preserves the result of dCSL formulas,

then the same holds for relation ≈. The detailed proof for relation ∼ will be presented, the proofs for ' and � are very similar.

For the following proofs we consider CM1 = (ϕ,G, ra) of order m and CM2 = (υ,H, sa) of order n (< m) that are in

relation ∼ which implies ϕV = υ, GV = VH and RaV = VSa. We first prove the theorem for state formulas Φ that do not

contain an until or next operator.

If Φ = tt, then RΦ = Rtt = Im and ImV = VIn. Observe that the first identity matrix is of order m and the second of order

n. If Φ = a ∈ AP, then RaV = VSa = VIn[a] by assumption.

Now assume that RΦ1 V = VRΦ1 and RΦ2 V = VRΦ2 , then R¬Φ1 = I − RΦ1 and RΦ1∧Φ2 = RΦ1 · RΦ2 such that

R¬Φ1 V = ImV − RΦ1 V = VIn − VRΦ1 = VR¬Φ1 ,

RΦ1∧Φ2 V = RΦ1 RΦ2 V = RΦVSΦ2 = VSΦ1 SΦ2 = VSΦ1∧Φ2 .

Consequently, the relations between the matrices holds for all formulas built from the logical composition of atomic propo-

sitions.

We continue with the analysis of SZp(Φ) and assume RΦV = VSΦ which implies rΦ = VsΦ. Then let ϕ̄ = limt→∞ ϕet(G−Ḡ)

and ῡ = limt→∞ υet(H−H̄). Since GV = VH and ḠV = VH̄ the relation

lim
t→∞

υet(H−H̄) = lim
t→∞

ϕet(G−Ḡ)V
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can be easily shown in a similar way as Eq. 8. Therefore, also ϕ̄V = ῡ holds. This implies

ϕ̄rΦ = ϕ̄VsΦ = ῡsΦ and ϕ |= SZp(Φ) ⇔ υ |= SZp(Φ).

Now we consider the path formula Φ1U
[t1,t2]Φ2. According to (2) we have

q1
Φ1U

[t1 ,t2]Φ2
= et1(G[Φ1]−Ḡ[Φ1])RΦ1 et(G[Φ1∧¬Φ2]−Ḡ[Φ1∧¬Φ2])rΦ2 ,

q2
Φ1U

[t1 ,t2]Φ2
= et1(H[Φ1]−H̄[Φ1])SΦ1 et(H[Φ1∧¬Φ2]−Ḡ[Φ1∧¬Φ2])sΦ2 .

We assume that RΦi V = VSΦi holds for i = 1, 2, i.e. formulas Φ1,Φ2 have already been evaluated and equivalence has been

proved. Since (G − Ḡ)V = V(H − H̄) we also have

(G[Φi] − Ḡ[Φi])V = RΦi (G − Ḡ)V = VSΦi (H − H̄) = V(H[Φi] − H̄[Φi])

and (
G[Φ1 ∧ ¬Φ2] − Ḡ[Φ1 ∧ ¬Φ2]

)
V = V

(
H[Φ1 ∧ ¬Φ2] − Ḡ[Φ1 ∧ ¬Φ2]

)
.

Then
q1

Φ1U
[t1 ,t2]Φ2

= et1(G[Φ1]−Ḡ[Φ1])RΦ1 et(G[Φ1∧¬Φ2]−Ḡ[Φ1∧¬Φ2])rΦ2

= et1(G[Φ1]−Ḡ[Φ1])RΦ1 et(G[Φ1∧¬Φ2]−Ḡ[Φ1∧¬Φ2])VsΦ2

= et1(G[Φ1]−Ḡ[Φ1])RΦ1 Vet(H[Φ1∧¬Φ2]−H̄[Φ1∧¬Φ2])sΦ2

= Vet1(H[Φ1]−H̄[Φ1])SΦ1 et(H[Φ1∧¬Φ2]−H̄[Φ1∧¬Φ2])sΦ2

= Vq2
Φ1U

[t1 ,t2]Φ2

which implies

ϕq1
Φ1U

[t1 ,t2]Φ2
= ϕVq2

Φ1U
[t1 ,t2]Φ2

= υq2
Φ1U

[t1 ,t2]Φ2

and

ϕ |= DPZp

(
Φ1U

[t1,t2]Φ2

)
⇔ υ |= DPZp

(
Φ1U

[t1,t2]Φ2

)
.

Finally, we analyze XI(Φ) and define

q1
X[t1 ,t2]Φ

= e−t1Ḡ
∫ t2

t=t1
e−tḠGrΦ dt and q2

X[t1 ,t2]Φ
= e−t1H̄

∫ t2

t=t1
e−tH̄HsΦ dt.

Then

q1
X[t1 ,t2]Φ

= e−t1Ḡ
∫ t2

t=t1
e−tḠGrΦ dt =e−t1Ḡ

∫ t2

t=t1
e−tḠGVsΦ dt

= e−t1Ḡ
∫ t2

t=t1
Ve−tH̄HsΦ dt =e−t1ḠV

∫ t2

t=t1
e−tH̄HsΦ dt

= Ve−t1H̄V
∫ t2

t=t1
e−tH̄HsΦ dt =Vq2

X[t1 ,t2]Φ

which implies

ϕq1
X[t1 ,t2](Φ) = ϕVq2

X[t1 ,t2](Φ) = υq2
X[t1 ,t2](Φ)
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and

ϕ |= DPZp

(
X[t1,t2](Φ)

)
⇔ υ |= DPZp

(
X[t1,t2](Φ)

)
A recursive application of the transformations implies that the identities hold for all state and path formulas. The proofs

for the relations ' and � are again similar. Since the equivalence between dCSL formulas holds for all transformations, it

also holds along the diagram in Fig. 1.

Proof of Theorem 3

Again we show the proof for ∼, the proofs for the remaining relations are similar. We consider CM1 = (ϕ,G, ra) of order

m and CM2 = (υ,H, sa) of order n (≤ m) with CM1 ∼ CM2 which implies the existence of a matrix V such that ϕV = υ,

GV = VH and RaV = VSa. It is sufficient to show equivalent behavior on path formulas, as the rest follows from Theorem 2.

We consider a dasCSL path formula αI . For the path formula first a non-deterministic program automata is generated which

depends only on α. Then from the non-deterministic automaton and the CTLMC a deterministic automaton is generated.

The construction depends only on the accepting paths of the CTLMC (see [3, Sect. 6.1]) which means that for automata in

relation ≈ the same deterministic automaton is generated since the paths are identical due to the equivalence of the processes.

Thus, we obtain a finite acceptor DA = (Z,B, δ, z0,F ). The satisfiability properties of αI in CM1 and CM2 depend on the

composed automata CM′1 = DA×CM1 =
(
Z × S 1, υ1, ∅,F1, AP′, L′

)
and CM′2 = DA×CM2 =

(
Z × S 2, υ2, ∅,F2, AP′, L′

)
.

Let ϕ |= DPZp

(
αI

)
. We want to show that it is equivalent to υ |= DPZp

(
αI

)
. For this, we consider the matrix

V′ =



V 0 · · · 0

0 V · · · 0
...

...
. . .

...

0 · · · 0 V


.

It is easy to see that F1V′ will be a matrix consisting of submatrices which have the form
∑

(Φ,a):δ(Φ,a)=z′ RΦGaV for z, z′ ∈ Z.

By assumption, we know that this is equal to
∑

(Φ,a):δ(Φ,a)=z′ RΦVHa = V
∑

(Φ,a):δ(Φ,a)=z′ SΦHa, so we get F1V′ = V′F2. Also

by assumption we get υ1V′ = V′υ2. For label vectors t1
a in CM1 and t2

a in CM2, it is also easy to see that they are products of

Z and ra and respectively, Z and sa; thus, we also have T1
aV′ = V′T2

a. Thus, it follows that the product automata are bisimilar,

and thus, ϕ |= DPZp

(
αI

)
⇐⇒ υ |= DPZp

(
αI

)
.
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