Quantitative System Performance

Computer System Analysis Using
Queueing Network Models

Quantitative System Performance

Computer System Analysis Using
Queueing Network Models

Edward D. Lazowska, John Zahorjan,
G. Scott Graham, and Kenneth C. Sevcik

Prentice-Hall, Inc., Englewood Cliffs, New Jersey 07632

Library of Congress Cataloging in Publication Data
Main entry under title:

Quantitative system performance,

Bibliography: p.
Includes index.
1. Electronic digital computers—Evaluation.
2, Digital computer simulation. 3. Queuing theory.
I. Lazowska. Edward D. (date)
QA76.9.E94Q36 1984 001.64'028'7 83-13791
ISBN (-13-746975-6

€ 1984 by Prentice-Hall, Inc., Englewood Cliffs, New Jersey 07632

All rights reserved. No part of this book
may be reproduced in any form or by any
means without permission in writing from
the publisher.

Printed in the United States of America

10 9 8 7 6

ISBN DB-13-746975-k

Editorial/production supervision: Nancy Milnamow
Cover design: Edsal Enterprises

Jacket design: Lundgren Graphics, Ltd.
Manufacturing buyer: Gordon Osbourne

Prentice-Hall International, Inc., London
Prentice-Hall of Australia Pty. Limited, Sydney
Editora Prentice-Hall do Brasil, Rio de Janeiro
Prentice-Hall of Canada Inc., Toronto

Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Prentice-Hall of Southeast Asia Pte. Ltd., Singapore
Whitehall Books Limited, Wellington, New Zealand

Contents

Preface

I. Preliminaries
1. An Overview of Queueing Network Modelling

1. Introduction ... 2

2. What Is a Queueing Network Model? ... 4

3. Defining, Parameterizing, and Evaluating Queue-
ing Network Models ... 9

1.4. Why Are Queueing Network Models Appropriate

Tools? ... 14

Related Techniques ... 14

Summary ... 17

References ... 17

1
1
1

—

2. Conducting a Modelling Study

2.1. Introduction ... 20

2.2. The Modelling Cycle ... 22

2.3, Understanding the Objectives of a Study ... 27
2.4. Workload Characterization ... 30

2.5. Sensitivity Analysis ... 33

2.6. Sources of Insight ... 35

2.7. Summary ... 37

2.8. References ... 39

3. Fundamental Laws

3.1. Introduction ... 40

3.2. Basic Quantities ... 40

3.3. Litnle’s Law ... 42

3.4. The Forced Flow Law ... 47

3.5. The Flow Balance Assumption ... 51
3.6. Summary ... 52

3.7. References ... 53

3.8. Exercises ... 54

vi

Queueing Network Model Inputs and Outputs

4.1. Introduction ... 57

4.2. Model Inputs ... 57

4.3. Model Outputs ... 60

4.4, Multiple Class Models ... 62
4.5, Discussion ... 64

4.6. Summary ... 67

47. Exercises ... 68

II. General Analytic Techniques

5.

Bounds on Performance

5.1. Introduction ... 70

5.2. Asymptotic Bounds ... 72

5.3. Using Asymptotic Bounds ... 77
5.4. Balanced System Bounds ... 86
5.5. Summary ... 92

5.6. References ... 94

5.7. Exercises ... 95

Models with One Job Class

6.1. Introduction ... 98

6.2. Workload Representation ... 99
6.3. Case Studies ... 102

6.4. Solution Techniques ... 108
6.5. Theoretical Foundations ... 119
6.6. Summary ... 121

6.7. References ... 123

6.8. Exercises ... 124

Models with Multiple Job Classes

7.1. Introduction ... 127

7.2. Workload Representation ... 128
7.3. Case Studies ... 129

7.4. Solution Techniques ... 134

7.5. Theoretical Foundations ... 147
7.6. Summary ... 149

7.7. References ... 150

7.8. Exercises ... 150

Contents

57

69
70

98

127

Contents

Flow Equivalence and Hierarchical Modelling

8.1.
8.2.
8.3.
8.4.
8.5.
8.6.
8.7.
8.8.

Introduction ... 152

Creating Flow Equivalent Service Centers ... 155
Obtaining the Parameters ... 158

Solving the High-Level Models ... 159

An Application of Hierarchical Modelling ... 160
Summary ... 173

References ... 174

Exercises ... 175

II1. Representing Specific Subsystems

.

10.

11.

Memory

9.1. Introduction ... 179

9.2. Systems with Known Average Multiprogramming
Level ... 181

9.3. Memory Constraints ... 184

9.4. Swapping ... 196 ,

9.5. Paging... 201

9.6. Case Studies ... 206

9.7. Summary ... 217

9.8. References ... 218

9.9. EXxercises ... 219

Disk 1/0

10.1. Introduction ... 222

10.2. Channel Contention in Non-RPS 1/O Subsys-
tems ... 225

10.3. Channel Contention in RPS 1/O Subsystems ... 230

10.4. Additional Path Elements ... 233

10.5. Multipathing ... 237

10.6. Other Architectural Characteristics ... 242

10.7. Practical Considerations ... 245

10.8. Summary ... 247

10.9. References ... 248

10.10. Exercises ... 250

Processors

11.1. Introduction ... 253

11.2.

Tightly-Coupled Multiprocessors ... 254

vii

152

177
179

222

253

viii

11.3.
11.4.
11.5.

Contents

Priority Scheduling Disciplines ... 256

Variations on Priority Scheduling ... 261

FCFS Scheduling with Class-Dependent Average
Service Times ... 262 '

. FCFS Scheduling with High Variability in Service

Times ... 263

. Summary ... 266
. References ... 268
. Exercises ... 270

IV. Parameterization 273

12. Existing Systems 274

12.1.
12.2.
12.3.
12.4.
12.5.
12.6.
12.7.
12.8.
12.9.

Introduction ... 274

Types and Sources of Information ... 275
Customer Description ... 279

Center Description ... 283

Service Demands ... 288

Validating the Model ... 291

Summary ... 293

References ... 293

Exercises ... 295

13. Evolving Systems 296

14.

13.1.
13.2.
13.3.
13.4.

13.5.
13.6.
13.7.
13.8.
13.9.

}ntroduction ... 296

Changes to the Workload ... 297

Changes to the Hardware ... 300

Changes to the Operating Policies and System
Software ... 303

Secondary Effects of Changes ... 306

Case Studies ... 309

Summary ... 315

References ... 316

Exercises ... 318

Proposed Systems 320

14.1.
14.2.
14.3.
14.4.
14.5.
14.6.

Introduction ... 320
Background ... 321

A General Framework ... 323
Tools and Techniques ... 327
Summary ... 332

References ... 332

Contents

V. Perspective

15.

16.

Extended Applications
15.1. Introduction ... 336

15.2. Computer Communication Networks ... 336

15.3. Local Area Networks ... 339

15.4. Software Resources ... 342

15.5. Database Concurrency Control ... 343
15.6. Operating System Algorithms ... 347
15.7. Summary ... 349

15.8. References ... 351

Using Queueing Network Modelling Software
16.1. [Introduction ... 354

16.2. Components of Queueing Network Modelling

Software ... 354
16.3. An Example ... 360
16.4. Summary ... 369
16.5. Epilogue ... 370
16.6. References ... 372

VI. Appendices

17.

18.

19.

Constructing a Model from RMF Data

17.1. Introduction ... 376

17.2. Overview of MVS ... 377

17.3. Overview of RMF Reports ... 378
17.4. Customer Description ... 383
17.5. Center Description ... 385

17.6. Service Demands ... 386

17.7. Performance Measures ... 388
17.8. Summary ... 390

17.9. References ... 392

17.10. Exercises ... 393

An Implementation of Single Class, Exact MVA

18.1. Introduction ... 395
18.2. The Program ... 395

An Implementation of Multiple Class, Exact MVA

19.1. Introduction ... 398
19.2. The Program ... 398

ix

335
336

354

375
376

395

398

Contents

20. Load Dependent Service Centers 403

20.1.
20.2.
20.3.
20.4.

Index

Introduction ... 403

Single Class Models ... 405
Muiltiple Class Models ... 405
Program Implementation ... 407

409

Preface

This book is written for computer system performance analysts. Its
goal is to teach them to apply queueing network models in their work, as
tools to assist in answering the questions of cost and performance that
arise throughout the life of a computer system.

Our approach to the subject arises from our collective experience in
contributing to the theory of queueing network modelling, in embodying
this theory in performance analysis tools, in applying these tools in the
field, and in teaching computer system analysis using queueing network
models in academic and industrial settings. Some important beliefs
underlying our approach are:

® Although queueing network models are not a panacea, they are the
appropriate tool in a wide variety of computer system design and
analysis applications.

® The single most important attribute of a computer system analyst is a
thorough understanding of computer systems. We assume this of our
readers.

® On the one hand, mathematical sophistication is not required to
analyze computer systems intelligently and successfully using queueing
network models. This is the case because the algorithms for evaluat-
ing queueing network models are well developed.

® On the other hand, the purchase of a queueing network modelling
software package does not assure success in computer system analysis.
This is the case because defining and parameterizing a queueing net-
work model of a particular computer system is a blend of art and sci-
ence, requiring training and experience.

Queueing network modelling is a methodology for the analysis of com-
puter systems. A methodology is a way of thinking, not a substitute for
thinking.

We have divided the book into six parts. In Part I we provide four
types of background material: a general discussion of queueing network
modelling, an overview of the way in which a modelling study is con-
ducted, an introduction to the interesting performance quantities in com-
puter systems and to certain relationships that must hold among them,
and a discussion of the inputs and outputs of queueing network models.

xi

xii Preface

In Part II we present the techniques that are used to evaluate queue-
ing network models — to obtain outputs such as utilizations, residence
times, queue lengths, and throughputs from inputs such as workload
intensities and service demands.

In Part III we explore the need for detailed models of specific subsys-
tems, and the construction of such models for memory, disk I/0, and
processor subsystems.

In Part IV we study the parameterization of queueing network models
of existing systems, evolving systems, and proposed systems.

In Part V we survey some non-traditional applications, such as the
analysis of computer communication networks and database concurrency
control mechanisms. We also examine the structure and use of queueing
network modelling software packages.

In Part VI, the appendices, we provide a case study in obtaining
queueing network parameter values from system measurement data, and
programs implementing the queueing network evaluation techniques
described in Part II.

Case studies appear throughout the book. They are included to illus-
trate various aspects of computer system analysis using queueing network
models. They should not be misconstrued as making general statements
about the relative performance of various systems; the results have
significance only for the specific configurations and workloads under con-
sideration.

We have summarized a number of important modelling techniques in
the form of ‘‘Algorithms’’. Our intention is to provide enough informa-
tion that the reader can understand fully the essential aspects of each
technique. We omit details of significance to the implementation of a
technique when we feel that these details might obscure the more funda-
mental concepts.

It is our experience that practicing computer system analysts are rela-
tively skilled in techniques such as workload characterization, sydtem
measurement, interpretation of performance data, and system tuning, and
are at least acquainted with basic statistical methods and with simulation.
Each of these subjects is well represented in the existing literature, and is
given short shrift in the present book. Much interesting and important
research work concerning queueing network modelling also is given short
shrift; we discuss the one approach to each problem that we feel is best
suited for application. For readers who desire to pursue a topic in greater
detail than we have provided, each chapter concludes with a brief discus-
sion of the relevant literature.

We owe a significant debt to Jeffrey P. Buzen and Peter J. Denning,
who have been instrumental in the development of a pragmatic

Preface xiii

philosophy of computer system analysis using queueing network models.
Their influence is evident especially in our use of the operational frame-
work for queueing network modelling, which conveys much greater intui-
tion than the more traditional stochastic framework.

Jeffrey A. Brumfield, Jeffrey P. Buzen, Domenico Ferrari, Lenny
Freilich, and Roger D. Stoesz have assisted us by reviewing our
manuscript, as have several anonymous reviewers. Our work in computer
system analysis using queueing network models has been supported in
part by the National Science Foundation and by the Natural Sciences and
Engineering Research Council of Canada. We thank our colleagues at the
University of Washington and at the University of Toronto for their
encouragement, and our families and friends for their forbearance.

Edward D. Lazowska, John Zahorjan,
G. Scott Graham, and Kenneth C. Sevcik

Seattle and Toronto

Part 1

Preliminaries

This first part of the book provides four different sorts of background
material as a prelude to our study of quantitative system performance.

In Chapter 1 we survey queueing network modelling, discussing some
example applications and comparing it to more traditional approaches to
computer system analysis with which the reader may be familiar.

In Chapter 2 we use case studies to explore various aspects of con-
ducting a modelling study. Our objective is to provide some perspective
on the ‘‘pieces’ of the process that will be studied in the remainder of
the book.

In Chapter 3 we provide a technical foundation for our work by
defining a number of quantities of interest, introducing the notation that
we will use in referring to these quantities, and deriving various relation-
ships among these quantities.

In Chapter 4 we describe the inputs and the outputs of queueing net-
work models.

Chapter 1

An Overview of Queueing Network Modelling

1.1. Introduction

Today’s computer systems are more complex, more rapidly evolving,
and more essential to the conduct of business than those of even a few
years ago. The result is an increasing need for tools and techniques that
assist in understanding the behavior of these systems. Such an under-
standing is necessary to provide intelligent answers to the questions of
cost and performance that arise throughout the life of a system:

® during design and implementation

— An aerospace company is designing and building a computer-aided
design system to allow several hundred aircraft designers simul-
taneous access to a distributed database through graphics worksta-
tions. Early in the design phase, fundamental decisions must be
made on issues such as the database accessing mechanism and the
process synchronization and communication mechanism. The rela-
tive merits of various mechanisms must be evaluated prior to
implementation.

— A computer manufacturer is considering various architectures and
protocols for connecting terminals to mainframes using a packet-
oriented broadcast communications network. Should terminals be
clustered? Should packets contain multiple characters? Should
characters from multiple terminals destined for the same main-
frame be multiplexed in a single packet?

® during sizing and acquisition

— The manufacturer of a turn-key medical information system needs
an efficient way to size systems in preparing bids. Given estimates
of the arrival rates of transactions of various types, this vendor
must project the response times that the system will provide when
running on various hardware configurations.

1.1. Introduction 3

— A university has received twenty bids in response to a request for
proposals to provide interactive computing for undergraduate
instruction. Since the selection criterion is the ‘‘cost per port”
among those systems meeting certain mandatory requirements,
comparing the capacity of these twenty systems is essential to the
procurement. Only one month is available in which to reach a
decision.

® during evolution of the configuration and workload

— A stock exchange intends to begin trading a new class of options.
When this occurs, the exchange’s total volume of options transac-
tions is expected to increase by a factor of seven. Adequate
resources, both computer and personnel, must be in place when
the change is implemented.

— An energy utility must assess the longevity .of its current
configuration, given forecasts of workload growth. It is desirable to
know what the system bottleneck will be, and the relative cost-
effectiveness of various alternatives for alleviating it. In particular,
since this is a virtual memory system, tradeoffs among memory
size, CPU power, and paging device speed must be evaluated.

These questions are of great significance to the organizations involved,
with potentially serious repercussions from incorrect answers. Unfor-
tunately, these questions are also complex; correct answers are not easily
obtained.

In considering questions such as these, one must begin with a
thorough grasp of the system, the application, and the objectives of the
study. With this as a basis, several approaches are available.

One is the use of intuition and trend extrapolation. To be sure, there
are few substitutes for the degree of experience and insight that yields
reliable intuition. Unfortunately, those who possess these qualities in
sufficient quantity are rare.

Another is the experimental evaluation of alternatives. Experimentation
is always valuable, often required, and sometimes the approach of choice.
It also is expensive — often prohibitively so. A further drawback is that
an experiment is likely to yield accurate knowledge of system behavior
under one set of assumptions, but not any insight that would allow gen-
eralization.

These two approaches are in some sense at opposite extremes of a
spectrum. Intuition is rapid and flexible, but its accuracy is suspect
because it relies on experience and insight that are difficult to acquire and
verify. Experimentation yields excellent accuracy, but is laborious and
inflexible. Between these extremes lies a third approach, the general sub-
ject of this book: modelling.

4 Preliminaries: An Overview of Queueing Network Modelling

A model is an abstraction of a system: an attempt to distill, from the
mass of details that is the system itself, exactly those aspects that are
essential to the system’s behavior. Once a model has been defined
through this abstraction process, it can be parameterized to reflect any of
the alternatives under study, and then evaluated to determine its behavior
under this alternative. Using a model to investigate system behavior is
less laborious and more flexible than experimentation, because the model
is an abstraction that avoids unnecessary detail. It is more reliable than
intuition, because it is more methodical: each particular approach to
modelling provides a framework for the definition, parameterization, and
evaluation of models. Of equal importance, using a model enhances both
intuition and experimentation. Intuition is enhanced because a model
makes it possible to ‘‘pursue hunches’ — to investigate the behavior of a
system under a wide range of alternatives. (In fact, although our objec-
tive in this book is to devise quantitative models, which accurately reflect
the performance measures of a system, an equally effective guide to intui-
tion can be provided by less detailed qualitative models, which accurately
reflect the general behavior of a system but not necessarily specific values
of its performance measures.) Experimentation is enhanced because the
framework provided by each particular approach to modelling gives gui-
dance as to which experiments are necessary inn order to define and
parameterize the model.

Modelling, then, provides a framework for gathering, organizing,
evaluating, and understanding information about a computer system.

1.2. What Is a Queueing Network Model?

Queueing network modelling, the specific subject of this book, is a par-
ticular approach to computer system modelling in which the computer
system is represented as a network of queues which is evaluated analyti-
call. A network of queues is a collection of service centers, which
represent system resources, and customers, which represent users or tran-
sactions. Analytic evaluation involves using software to solve efficiently a
set of equations induced by the network of queues and its parameters.
(These definitions, and the informal overview that follows, take certain
liberties that will be noted in Section 1.5.)

1.2.1. Single Service Centers

Figure 1.1 illustrates a single service center. Customers arrive at the
service center, wait in the queue if necessary, réceive service from the
server, and depart. In fact, this service center and its arriving customers
constitute a (somewhat degenerate) queueing network model.

1.2. What Is a Queueing Network Model? 5

Queue Server

Arriving Departing
customers customers

Figure 1.1 — A Single Service Center

This model has two parameters. First, we must specify the workload
intensity, which in this case is the rate at which customers arrive (e.g., one
customer every two seconds, or 0.5 customers/second). Second, we must
specify the service demand, which is the average service requirement of a
customer (e.g., 1.25 seconds). For specific parameter values, it is possi-
ble to evaluate this model by solving some simple equations, yielding per-
Sformance measures such as utilization (the proportion of time the server is
busy), residence time (the average time spent at the service center by a
customer, both queueing and receiving service), queue length (the average
number of customers at the service center, both waiting and receiving
service), and throughput (the rate at which customers pass through the
service center). For our example parameter values (under certain
assumptions that will be stated later) these performance measures are:

utilization: .625

residence time: 3.33 seconds
queue length: 1.67 customers
throughput: 0.5 customers/second

Figures 1.2a and 1.2b graph each of these performance measures as
the workload intensity varies from 0.0 to 0.8 arrivals/second. This is the
interesting range of values for this parameter. On the low end, it makes
no sense for the arrival rate to be less than zero. On the high end, given
that the average service requirement of a customer is 1.25 seconds, the
greatest possible rate at which the service center can handle customers is
one every 1.25 seconds, or 0.8 customers/second; if the arrival rate is
greater than this, then the service center will be saturated.

The principal thing to observe about Figure 1.2 is that the evaluation
of the model yields performance measures that are qualitatively consistent
with intuition and experience. Consider residence time. When the work-
load intensity is low, we expect that an arriving customer seldom will
encounter competition for the service center, so will enter service
immediately and will have a residence time roughly equal to its service
requirement. As the workload intensity rises, congestion increases, and
residence time along with it. Initially, this increase is gradual. As the

Preliminaries: An Overview of Queueing Network Modelling

Utilization:
1.0 —
=1
2
=
0.0 1 ! ! J
0.0 0.8
Arrivals/second
Residence Time:
10—
'{é
=
Q
(53
3
<
E
5
(=]
5]
=
%
=2
0 1 ! 1 !
0.0 0.8

Arrivals/second

Figure 1.2a — Performance Measures for the Single Service Center

1.2. What Is a Queueing Network Model?

Queue Length:

5 —_
=
T
3
(3]
=
(3]
=
<&
0 1 t 1 J
0.0 0.8
Arrivals/second
Throughput:

¢ 0.8 r

Throughput, customers/second

o
©
-

o
=}
o
[o¢]

Arrivals/second

Figure 1.2b — Performance Measures for the Single Service Center

8 Preliminaries: An Overview of Queueing Network Modelling

load grows, however, residence time increases at a faster and faster rate,
until, as the service center approaches saturation, small increases in
arrival rate result in dramatic increases in residence time.

1.2.2. Multiple Service Centers

It is hard to imagine characterizing a contemporary computer system
by two parameters, as would be required in order to use the model of
Figure 1.1. (In fact, however, this was done with success several times in
the simpler days of the 1960’s.) Figure 1.3 shows a more realistic model
in which each system resource (in this case a CPU and three disks) is
represented by a separate service center.

Departing Disks

customers
——
Arriving
customers
— —_—
I

CPU

Figure 1.3 — A Network of Queues

The parameters of this model are analogous to those of the previous
one. We must specify the workload intensity, which once again is the
rate at which customers arrive. We also must specify the service demand,
but this time we provide a separate service demand for each service
center. If we view customers in the model as corresponding to transac-
tions in the system, then the workload intensity corresponds to the rate at
which users submit transactions to the system, and the service demand at
each service center corresponds to the total service requirement per tran-
saction at the corresponding resource in the system. (As indicated by the
lines in the figure, we can think of customers as arriving, circulating
among the service centers, and then departing. The pattern of circulation
among the centers is not important, however; only the total service
demand at each center matters.) For example, we might specify that

1.3. Defining, Parameterizing, and Evaluating Queueing Network Models 9

transactions arrive at a rate of one every five seconds, and that each such
transaction requires an average of 3 seconds of service at the CPU and 1,
2, and 4 seconds of service, respectively, at the three disks. As in the
case of the single service center, for specific parameter values it is possi-
ble to evaluate this model by solving some simple equations. For our
example parameter values (under certain assumptions that will be stated
later) performance measures include:

CPU utilization: .60

average system response time perceived by users: 32.1 seconds
average number of concurrently active transactions: 6.4
system throughput: 0.2 transactions/second

(We consistently will use residence time to mean the time spent at a ser-
vice center by a customer, and response time to correspond to the intuitive
notion of perceived system response time. Most performance measures
obtained from queueing network models are average values (e.g., average
response time) rather than distributional information (e.g., the 90th per-
centile of response times). Thus the word ‘‘average’ should be under-
stood even if it is omitted.)

1.3. Defining, Parameterizing, and Evaluating Queueing
Network Models

1.3.1. Definition

Defining a queueing network model of a particular system is made
relatively straightforward by the close correspondence between the attri-
butes of queueing network models and the attributes of computer sys-
tems. For example, service centers in queueing network models naturally
correspond to hardware resources and their software queues in computer
systems, and customers in queueing network models naturally correspond
to users or transactions in computer systems.

Queueing network models have a richer set of attributes than we have
illustrated thus far, extending the correspondence with computer systems.
As an example of this richness, specifying the rate at which customers
arrive (an approach that is well suited to representing certain transaction
processing workloads) is only one of three available means to describe
workload intensity. A second approach is to state the number of custo-
mers in the model. (This alternative is well suited to representing batch
workloads.) A third approach is to specify the number of customers and
the average time that each customer ‘‘spends thinking’’ (.e., uses a ter-
minal) between interactions. (This alternative is well suited to represent-
ing interactive workloads.) In Figure 1.4 we have modified the model of

10 Preliminaries: An Overview of Queueing Network Modelling

Figure 1.3 so that the workload intensity is described using this last
approach. Figure 1.5 graphs system response time and CPU utilization
for this model with the original service demands (3 seconds of service at
the CPU and 1, 2, and 4 seconds of service, respectively, at the three
disks) when the workload consists of from 1 to 50 interactive users, each
with an average think time of 30 seconds. Once again we note that the
behavior of the model is qualitatively consistent with intuition and experi-
ence.

- ——
Terminals

CPU

Figure 1.4 — A Model with a Terminal-Driven Workload

As another example of this richness, most computer systems have
several identifiable workload components, and although the queueing net-
work models that we have considered thus far have had a single customer
class (all customers exhibit essentially the same behavior), it is possible
to distinguish between a system’s workload components in a queueing
network model by making use of multiple customer classes, each of
which has its own workload intensity (specified in any of the ways we
have described) and service demands. For example, it is possible to
model directly a computer system in which there are four workload com-
ponents: transaction processing, background batch, interactive database
inquiry, and interactive program development. In defining the model, we
would specify four customer classes and the relevant service centers. In
parameterizing the model, we would provide workload intensities for each
class (for example, an arrival rate of 10 requests/minute for transaction
processing, a multiprogramming level of 2 for background batch, 25
interactive database users each of whom thinks for an average of two
minutes between interactions, and 10 interactive program development

1.3. Defining, Parameterizing, and Evaluating Queueing Network Models 11

CPU Utilization:

CPU utilization

0.0 {
1 25 50

Interactive users

System Response Time:

200 ’—

Response time, seconds

0 | J
235 50

o

Interactive users

Figure 1.5 — Performance Measures for the Terminal-Driven Model

12 Preliminaries: An Overview of Queueing Network Modelling

users each of whom thinks for an average of 15 seconds between interac-
tions). We also would provide service demands for each class at each ser-
vice center. In evaluating the model, we would obtain performance
measures in the aggregate (e.g., total CPU utilization), and also on a
per-class basis (e.g., CPU utilization due to background batch jobs,
response time for interactive database queries).

1.3.2. Parameterization

The parameterization of queueing network models, like their
definition, is relatively straightforward. Imagine calculating the CPU ser-
vice demand for a customer in a queueing network model of an existing
system. We would observe the system in operation and would measure
two quantities: the number of seconds that the CPU was busy, and the
number of user requests that were processed (these requests might be
transactions, or jobs, or interactions). We then would divide the busy
time by the number of request completions to determine the average
number of seconds of CPU service attributable to each request, the
required parameter.

A major strength of queueing network models is the relative ease with
which parameters can be modified to obtain answers to ‘‘what if*’ ques-
tions. Returning to the example in Section 1.2.2:

® What if we balance the I/0 activity among the disks? (We set the ser-

1+2+4

vice demand at each disk to = 2.33 seconds and re-evaluate

the model. Response time drops from 32.1 seconds to 20.6 seconds.)

® What if the workload subsequently increases by 20%? (We set the
arrival rate to 0.2x 1.2 = 0.24 requests/second and re-evaluate ‘the
model. Response time increases from 20.6 seconds to 26.6 seconds.)

® What if we then upgrade to a CPU 30% faster? (We set the service
demand at the CPU to 3/1.3 = 2.31 seconds and re-evaluate the
model. Response time drops from 26.6 to 21.0 seconds.)

Considerable insight can be required to conduct such a modification
analysis, because the performance measures obtained from evaluating the
model can be only as accurate as the workload intensities and service
demands that are provided as inputs, and it is not always easy to antici-
pate every effect on these parameters of a change to the configuration or
workload. Consider the first “‘what if’> question listed above. If we
assume that the system’s disks are physically identical then the primary
effect of balancing disk activity can be reflected in the parameter values of
the model by setting the service demand at each disk to the average
value. However, there may be secondary effects of the change. For exam-
ple, the total amount of disk arm movement may decrease. The result in

1.3. Defining, Parameterizing, and Evaluating Queueing Network Models 13

the system would be that the total disk service requirement of each user
would decrease somewhat. If this secondary effect is anticipated, then it
is easy to reflect it in the parameter values of the model, and the model,
when evaluated, will yield accurate values for performance measures. If
not, then the model will yield somewhat pessimistic results. Fortunately,
the primary effects of modifications, which dominate performance, tend
to be relatively easy to anticipate.

Models with multiple customer classes are more common than models
with single customer classes because they facilitate answering many ‘‘what
if”’ questions. (How much will interactive response time improve if the
volume of background batch is decreased by 50%?) Single class models,
though, have the advantage that they are especially easy to parameterize,
requiring few assumptions on the part of the analyst. Using contem-
porary computer system measurement tools, it is notoriously difficult to
determine correctly resource consumption by workload component, espe-
cially in the areas of system overhead and I/O subsystem activity. Since
single class models can be parameterized with greater ease and accuracy,
they are quicker and more reliable than multiple class models for answer-
ing those questions to which they are suited.

1.3.3. Evaluation

We distinguish two approaches to evaluating queueing network
models. The first involves calculating bounds on performance measures,
rather than specific values. For example, we might determine upper and
lower bounds on response time for a particular set of parameter values
(workload intensity and service demands). The virtue of this approach is
that the calculations are simple enough to be carried out by hand, and the
resulting bounds can contribute significantly to understanding the system
under study.

The second approach involves calculating the values of the perfor-
mance measures. While the algorithms for doing this are sufficiently
complicated that the use of computer programs is necessary, it is impor-
tant to emphasize that these algorithms are extremely efficient.
Specifically, the running time of the most efficient general algorithm
grows as the product of the number of service centers with the number of
customer classes, and is largely independent of the number of customers
in each class. A queueing network model with 100 service centers and 10
customer classes can be evaluated in only seconds of CPU time.

The algorithms for evaluating queueing network models constitute the
lowest level of a queueing network modelling software package. Higher
levels typically include transformation routines to map the characteristics
of specific subsystems onto the general algorithms at the lowest level, a

14 Preliminaries: An Overview of Queueing Network Modelling

user interface to translate the ‘‘jargon’’ of a particular computer system
into the language of queueing network models, and high-level front ends
that assist in obtaining model parameter values from system measurement
data.

1.4. Why Are Queueing Network Models Appropriate
Tools?

Models in general, and queueing network models in particular, have
become important tools in the design and analysis of computer systems.
This is due to the fact that, for many applications, queueing network
models achieve a favorable balance between accuracy and efficiency.

In terms of accuracy, a large body of experience indicates that queue-
ing network models can be expected to be accurate to within 5 to 10% for
utilizations and throughputs and to within 10 to 30% for response times.
This level of accuracy is consistent with the requirements of a wide
variety of design and analysis applications. Of equal importance, it is con-
sistent with the accuracy achievable in other components of the computer
system analysis process, such as workload characterization.

In terms of efficiency, we have indicated in the previous section that
queueing network models can be defined, parameterized, and evaluated at
relatively low cost. Definition is eased by the close correspondence
between the attributes of queueing network models and the attributes of
computer systems. Parameterization is eased by the relatively small
number of relatively high-level parameters. Evaluation is eased by the
recent development of algorithms whose running time grows as the pro-
duct of the number of service centers with the number of customer
classes.

Queueing network models achieve relatively high accuracy at relatively
low cost. The incremental cost of achieving greater accuracy is high —
significantly higher than the incremental benefit, for a wide variety of
applications.

1.5. Related Techniques

Our informal description of queueing network modelling has taken
several liberties that should be acknowledged to avoid confusion. These
liberties can be summarized as follows:

1.5. Related Techniques 15

»

® We have not described networks of queues in their full generality, but
rather a subset that can be evaluated efficiently.

® We have incorrectly implied that the only analytic technique for
evaluating networks of queues is the use of software to solve a set of
equations induced by the network of queues and its parameters.

® We have neglected the fact that simulation can be used to evaluate
networks of queues.

® We have not explored the relationship of queueing network models to
queueing theory.

The following subsections explore these issues.

1.5.1. Queueing Network Models and General Networks of Queues

This book is concerned with a subset of general networks of queues.
This subset consists of the separable queueing networks (a name used for
historical and mathematical reasons), extended where necessary for the
accurate representation of particular computer system characteristics.

We restrict our attention to the members of this subset because of the
efficiency with which they can be evaluated. This efficiency is mandatory
in analyzing contemporary computer systems, which may have hundreds
of resources and dozens of workload components, each consisting of
many users or jobs.

Restriction to this subset implies certain assumptions about the com-
puter system under study. We will discuss these assumptions in later
chapters. On the one hand, these assumptions seldom are satisfied
strictly. On the other hand, the inaccuracies resulting from violations of
these assumptions typically are, at worst, comparable to those arising
from other sources (e.g., inadequate measurement data).

General networks of queues, which obviate many of these assump-
tions, can be evaluated analytically, but the algorithms require time and
space that grow prohibitively quickly with the size of the network. They
are useful in certain specialized circumstances, but not for the direct
analysis of realistic computer systems.

1.5.2. Queueing Network Models and Simulation

The principal strength of simulation is its flexibility. There are few
restrictions on the behavior that can be simulated, so a computer system
can be represented at an arbitrary level of detail. At the abstract end of
this spectrum is the use of simulation to evaluate networks of queues. At
the concrete extreme, running a benchmark experiment is in some sense
using the system as a detailed simulation model of itself.

16 Preliminaries: An Overview of Queueing Network Modelling

The principal weakness of simulation modelling is its relative expense.
Simulation models generally are expensive to define, because this
involves writing and debugging a complex computer program. (In the
specific domain of computer system modelling, however, this process has
been automated by packages that generate the simulation program from a
model description.) They can be expensive to parameterize, because a
highly detailed model implies a large number of parameters. (We will see
that obtaining even the small number of parameters required by a queue-
ing network model is a non-trivial undertaking.) Finally, they are expen-
sive to evaluate, because running a simulation requires substantial com-
putational resources, especially if narrow confidence intervals are desired.

A tenet of this book, for which there is much supporting evidence, is
that queueing network models provide an appropriate level of accuracy for
a wide variety of computer system design and analysis applications. For
this reason, our primary interest in simulation is as a means to evaluate
certain submodels in a study that is primarily analytic. This technique,
known as hybrid modelling, is motivated by a desire to use analysis where
possible, since the cost of evaluating a simple network of queues using
simulation exceeds by orders of magnitude the cost of evaluating the
same model using analysis.

1.5.3. Queueing Network Models and Queueing Theory

Queueing network modelling can be viewed as a small subset of the
techniques of queueing theory, selected and specialized for modelling
computer systems.

Much of queueing theory is oriented towards modelling a complex sys-
tem using a single service center with complex characteristics. Sophisti-
cated mathematical techniques are employed to analyze these models.
Relatively detailed performance measures are obtained: distributions as
opposed to averages, for example.

Rather than single service centers with complex characteristics, queue-
ing network modelling employs networks of service centers with simple
characteristics. Benefits arise from the fact that the application domain is
restricted to computer systems. An appropriate subset of networks of
queues can be selected, and evaluation algorithms can be designed to
obtain meaningful performance measures with an appropriate balance
between accuracy and efficiency. These algorithms can be packaged with
interfaces based on the terminology of computer systems rather than the
language of queueing theory, with the result that only a minimal under-
standing of the theory underlying these algorithms is required to apply
them successfully.

1,7, References 17

1.6. Summary

This chapter has surveyed the questions of cost and performance that
arise throughout the life of a computer system, the nature of queueing
network models, and the role that queueing network models can play in
answering these questions. We have argued that queueing network
models, because they achieve a favorable balance between accuracy and
cost, are the appropriate tool in a wide variety of computer system design
and analysis applications.

1.7. References

This book is concerned exclusively with computer system analysis
using queueing network models. Because of this relatively narrow focus,
it is complemented by a number of existing books. These can be divided
into three groups, distinguished by scope.

Books in the first group, such as Ferrari’s [1978], discuss computer
system performance evaluation in the large.

Books in the second group consider computer system modelling.
Examples include books by Gelenbe and Mitrani [1980], Kobayashi
[1978], Lavenberg [1983], and Sauer and Chandy [1981].

Books in the third group treat a particular aspect of computer system
performance evaluation at a level of detail comparable to that of the
present book: computer system measurement [Ferrari et al. 1983], the
low-level analysis of system components using simple queueing formulae
[Beizer 1978], the analysis of computer systems and computer communi-
cation networks using queueing theory [Kleinrock 1976], and the
mathematical and statistical aspects of computer system analysis [Allen
1978; Trivedi 1982].

Queueing network modelling is a rapidly advancing discipline. With
the present book as background, it should be possible to assimilate future
developments in the field. Many of these will be found in the following
sources:

EDP Performance Review, a digest of current information on tools for
performance evaluation and capacity planning, published by Applied
Computer Research.

Computer Performance, a journal published by Butterworths.

The Journal of Capacity Management, published by the Institute for
Software Engineering.

?

18 Preliminaries: An Overview of Queueing Network Modelling

The Proceedings of the CMG International Conference. The conference
is sponsored annually by the Computer Measurement Group, which
also publishes the proceedings.

The Proceedings of the CPEUG Meeting. The meeting is sponsored
annually by the Computer Performance Evaluation Users Group,
which also publishes the proceedings.

The Proceedings of the ACM SIGMETRICS Conference on Measurement
and Modeling of Computer Systems. The conference is sponsored annu-
ally by the ACM Special Interest Group on Measurement and Evalua-
tion. The proceedings generally appear as a special issue of Perfor-
mance Evaluation Review, the SIGMETRICS quarterly publication.

The ACM Transactions on Computer Systems, a journal published by the
Association for Computing Machinery.

The [EEE Transactions on Computers and the IFEE Transactions on
Software Engineering, two journals published by the Institute of Electri-
cal and Electronics Engineers.

The Proceedings of the International Symposium on Computer Perfor-
mance Modelling, Measurement and Evaluation. The symposium is
sponsored at eighteen month intervals by IFIP Working Group 7.3 on
Computer System Modelling.

Performance Evaluation, a journal published by North-Holland.

[Allen 1978]
Arnold O. Allen. Probability, Statistics, and Queueing Theory with Com-
puter Science Applications. Academic Press, 1978.

[Beizer 1978] N
Boris Beizer. Micro-Analysis of Computer System Performance. Van
Nostrand Reinhold, 1978.

[Ferrari 1978]
Domenico Ferrari. Computer Systems Performance Evaluation.
Prentice-Hall, 1978.

[Ferrari et al. 1983]
Domenico Ferrari, Giuseppe Serrazi, and Alessandro Zeigner. Meas-
urement and Tuning of Computer Systems. Prentice-Hall, 1983.

[Gelenbe & Mitrani 1980]
Erol Gelenbe and Israel Mitrani. Analysis and Synthesis of Computer
Systems. Academic Press, 1980.

[Kleinrock 1976]

Leonard Kleinrock. Queueing Systems — Volume II: Computer Applica-
tions. John Wiley & Sons, 1976.

1.7. References 19

[Kobayashi 1978]
Hisashi Kobayashi. Modeling and Analysis — An Introduction to System
Performance Evaluation Methodology. Addison-Wesley, 1978.
[Lavenberg 1983]
Stephen S. Lavenberg (ed.). Computer Performance Modeling Hand-
book. Academic Press, 1983.
[Sauer & Chandy 1981]
Charles H. Sauer and K. Mani Chandy. Computer Systems Performance
Modeling. Prentice-Hall, 1981.
[Trivedi 1982]
Kishor S. Trivedi. Probability and Statistics with Reliability, Queuing,
and Computer Science Applications. Prentice-Hall, 1982.

Chapter 2

Conducting a Modelling Study

2.1. Introduction

In this chapter we take a broad look at how, when confronted with a
specific computer system analysis problem, to apply the general ‘‘metho-
dology’’ of queueing network modelling. This skill must be developed
through experience — it cannot be absorbed passively. Recognizing this,
we present a set of case studies selected to illustrate significant aspects of
the methodology, sharing with the reader the experience of others.

The success of queueing network modelling is based on the fact that
the low-level details of a system are largely irrelevant to its high-level
performance characteristics. Queueing network models appear abstract
when compared with other approaches to computer system analysis.
Queueing network modelling is inherently a rop-down process. The
underlying philosophy is to begin by identifying the principal components
of the system and the ways in which they interact, then supply any details
that prove to be necessary. This philosophy means that a large number of
assumptions will be introduced and assessed in the process of conducting
a modelling study. Three principal considerations motivate these assump-
tions:

® simplicity

There is a strong incentive to identify and eliminate irrelevant details.
In fact, we will adopt a rather liberal definition of ‘‘irrelevant’ in this
context by generally including any system characteristic that will not
have a primary (as opposed to secondary) effect on the results of the
study. Examples include:

— Although a system may have a large number of identifiable work-
load components, we may be interested in the performance of only
one of them. In this case, we may choose to employ a model with
only two classes, one representing the workload component of
interest and the other representing the aggregate effect of all other
workload components.

20

2.1. Introduction 21

— The primary effect of a CPU upgrade will be a decrease in CPU
service demands. A change in the average paging and swapping
activity per job may also result, but if so, this is a secondary effect.

® adequacy of measurements

The measurement tools available on contemporary computer systems
often fail to provide directly the quantities required to parameterize
queueing network models. Queueing network models require a small
number of carefully selected inputs. Measurement tools, largely for
historical reasons, provide a large volume of data, most of which is of
limited use for our purposes. Considerable interpretation may be
required on the part of the analyst. Examples include:

— Typically, a significant proportion of CPU activity is not attributed
to specific workload components. Since the CPU tends to be a
heavily utilized resource, correct attribution of its usage is impor-
tant to the accuracy of a multiple class model.

— Surprisingly, even determining the multiprogramming level of a
batch workload sometimes is difficult, because some system tasks
(“‘quiescent” or ‘‘operator’’ jobs) may be counted by the measure-
ment tool.

® case of evaluation

As noted in Chapter 1, we must restrict ourselves to a subset of gen-
eral networks of queues that can be evaluated efficiently. To stay
within this subset, we must make compromises in the representation
of certain computer system characteristics. Examples include:

— Extremely high variability in the service requirement at a particular
resource can cause performance to degrade. Direct representation
of this characteristic makes queueing network models costly to
evaluate, though, and examples where it is a major determinant of
performance are rare. It generally is omitted from models.

— Memory admission policies typically are complex, and the memory
requirements of programs differ. The evaluation of a model is con-
siderably eased, though, if we are willing to assume that the
memory admission policy is either first-come-first-served or class-
based priority, and that programs have similar memory require-
ments, at least within each class.

Skill in introducing and assessing assumptions is the key to conducting a
successful modelling study. In general, it is important to be explicit con-
cermning the assumptions that are made, the motivations for their intro-
duction, and the arguments for their plausibility. This allows the
analyst’s reasoning to be examined, and facilitates evaluating the sensi-
tivity of the results to the assumptions.

22 Preliminaries: Conducting a Modelling Study

The material in this chapter has a spectrum of interpretations ranging
from fairly shallow to fairly subtle. The reader with little experience will
find a collection of brief case study descriptions indicating the applicability
of queueing network models. The reader with moderate experience will
learn something of the ways in which queueing network modelling studies
are conducted. The reader with considerable experience will discover
insights concerning various aspects of conducting a modelling study that
can be used to great advantage. Because of this spectrum of interpreta-
tions, we will ask you to review this chapter during Part V of the book.

2.2. The Modelling Cycle

The most common application of queueing network modelling
involves projecting the effect on performance of changes to the
configuration or workload of an existing system. There are three phases
to such a study. In the validation phase, a baseline model of the existing
system is constructed and its sufficiency established. In the projection
phase, this model is used to forecast the effect on performance of the
anticipated modifications. In the verification phase, the actual perfor-
mance of the modified system is compared to the model’s projections.
Taken together, these three phases are referred to as the modelling cycle,
illustrated in Figure 2.1.

The validation phase begins with the definition of the model, which
includes selection of those system resources and workload components
that will be represented, identification of any system characteristics that
may require special attention (e.g., priority scheduling, paging), choice of
model structure (e.g., separable, hybrid), and procedures for obtaining
the necessary parameters from the available measurement data.

Next, the system is measured to obtain workload measures, from which
model inputs will be calculated, and performance measures, which will be
compared to model outputs. In some cases these are the same; for
instance, device utilizations are workload measures (they are used to cal-
culate service demands) and also performance measures (they are used to
assess the accuracy of the model). On the other hand, the multiprogram-
ming level of a batch workload is strictly a workload measure, and system
response time is strictly a performance measure.

The workload measures then are used to parameterize the model, a
step that may require various transformations. The model is evaluated,
yielding outputs. These are compared to the system’s performance meas-
ures. Discrepancies indicate flaws in the process, such as system charac-
teristics that were ignored or represented inappropriately, or model inputs
whose values were established incorrectly. Unfortunately, the absence of

2.2. The Modelling Cycle

23

Existing system

Measurement

Existing system
workload measures

Parameterization

Validation

Original
model inputs

L
|

Modification
analysis

)

Modified
model inputs

Comparison
y

Modified system
workload measures

Verification ———><—Projection

Measurement

Measurement

Existing system
performance measures

3

Model)
definition Comparison

Original
model outputs

Comparison

Modified
model outputs

Comparison
4

Modified system
performance measures

Measurement

Modified system

Figure 2.1 — The Modelling Cycle

such discrepancies does not guarantee that the model will project properly
the effect of system or workload modifications. Confidence in a model’s
predictive abilities may come from two sources. The first is repetitive
validation over a number of measurement intervals, perhaps involving
selected modifications. For example, if the objective of a modelling study
is to assess the benefits of additional memory, it may be possible to
repeat the validation phase while various amounts of existing memory are
disabled. The second is completion of the verification phase, discussed

below.

24 Preliminaries: Conducting a Modelling Study

In the projection phase, model inputs are modified to reflect the antici-
pated changes to the system or workload. This is a complex process, to
which we will devote considerable attention later in the book (Chapter
13). The model then is evaluated. The difference between the modified
model outputs and the original model outputs-‘is the projected effect of
the modification.

Finally, in the verification phase, the modified system is measured and
two comparisons are made. First, its performance measures are compared
to the model outputs. Second, its workload measures are compared to
the model inputs. Discrepancies between the projections of the model
and the performance of the system can arise from two sources: the omis-
sion or mis-representation of (retrospectively) significant system charac-
teristics, and the evolution of the system in a way that differs from that
which was anticipated. Understanding and evaluating these sources of
discrepancy is crucial to gaining confidence in queueing network model-
ling as a computer system analysis technique. The accuracy of a model’s
performance projections can be no greater than the accuracy of the work-
load projections furnished as input.

To illustrate the modelling cycle we describe two case studies under-
taken at a computing complex consisting of a number of IBM 370/168s,
370/168-APs (dual processors), and 3033s running the MVS operating
system along with applications such as TSO (interactive processing), IMS
(database management), JES (spooling), and TCAM/VTAM (terminal
management). The objective of each study was to determine the impact
of a significant workload modification.

In the first study, the question under consideration was: ‘‘Can the
workloads presently running on two separate 370/168 uniprocessors be
combined on a single 3033?”” (A 3033 is considered to have 1.6 to 1.8
times the processing power of a 168.) On each of the original systems,
the principal application was an IMS workload. In addition, one of the
systems had a background batch workload, and each had various system
tasks.

In the validation phase, each of the original systems was measured and
modelled. IMS response time was the performance measure of greatest
interest, since response time degradation was the anticipated effect of the
modification.

In the projection phase, a single model was defined in which each of
the original workloads (IMS-1, IMS-2, and batch) was individually
represented, with CPU service demand adjusted to account for the speed
differences of the CPUs. It was assumed that the 1/0 subsystem of the
3033 would be the combination of the I/0 subsystems of the 168s, so I/O
subsystem parameters were not changed in any way.

2.2. The Modelling Cycle 25

performance workload model measurement
measure component output data
IMS-1 43% 40%
. 0 0
CPU utilization | > S i
total T7% 75%
response time IMS-1 0.84 secs. 1.3 secs.
IMS-2 0.79 secs. 0.89 secs.
throughput batch 2 jobs/hr. 1.7 jobs/hr.

Table 2.1 — The Modelling Cycle: Case Study 1

In the verification phase, the workloads were combined on the 3033.
Performance measures were compared to the model outputs. Table 2.1
displays the results, which are typical of those that can be expected in a
study such as this: the projections of the model are sufficiently accurate
to be of great utility in planning, and the discrepancy in utilizations is less
than the discrepancy in response times.

The second study involved the five loosely-coupled systems described
below:

system CPU type workload
1 3033 JES for all systems
2 370/168-AP interactive graphics, batch
3 370/168-AP batch
4 3033 TSO, IMS, batch
5 3033 batch

The question under consideration was ‘‘Can the workload of System 5 be
distributed among the four other systems without significant adverse
effects on performance, allowing System 5 to be released for cost reduc-
tion?”’

In the validation phase, Systems 2 through 5 were measured and
modelled. (System 1 was excluded from the study.)

In the projection phase, the batch multiprogramming level in the
models of Systems 2, 3, and 4 was increased to correspond to the addition
of 27% of the workload of System 5. (Management hoped to place 19%
of System 5’s workload on System 1 and 27% on each of Systems 2, 3,
and 4.) This simple approach was possible because of the similarity of
the batch workloads on the various systems.

In the verification phase, System 5°s workload was distributed among
the remaining systems. For each system individually, performance meas-
ures were compared to the model outputs. In each case, the anticipated

26 Preliminaries: Conducting a Modelling Study

effect of the modification was an increase in the resource consumption of
the batch workload (its multiprogramming level had increased), and a
degradation in the performance of the other workload components.
Tables 2.2, 2.3, and 2.4 display the results for Systems 2, 3, and 4 respec-
tively. Once again, the results are typical of those that can be expected.
When used in studies involving system modification, queueing network
models may project relative performance with greater accuracy than abso-
lute performance. Consider the response time of the interactive graphics
workload in Table 2.2. The original model yielded 4.8 seconds, where 5.2
seconds was measured. The modified model yielded 5.0 seconds. It
makes sense to interpret this as a projected response time degradation of

4% (%ﬁ). In fact, the measured response time degradation was
7.5%.

perf. workload original | original | modified | modified
measure component system model model system
graphics 76% 74% 74% 72%
CPU util. batch 11% 10% 13% 13%
total 87% 84% 87% 85%
resp. time graphics 5.2secs. | 4.8 secs. | 5.0 secs. 5.6 secs.
t’put. batch 28/hr. 27/hr. 35/hr. 30/hr.

Table 2.2 — The Modelling Cycle: Case Study 2, System 2

perf. workload original | original | modified | modified
measure | component | system model model system
CPU util. batch 63% 64% 76% 73%

t’put. batch 101/hr. 104/hr. 130/hr. 120/hr.

Table 2.3 — The Modelling Cycle: Case Study 2, System 3

perf. workload original | original | modified | modified
measure component system model model system
TSO 65% 67% 65% 63%
X IMS 3% 2% 2% 2%
CPU util. batch 15% 15% 21% 20%
total 83% 84% 88% 85%
resp. time TSO 4.3 secs. | 4.4secs. | 5.0secs. | 5.9 secs.

Table 2.4 — The Modelling Cycle: Case Study 2, System 4

2.3. Understanding the Objectives of a Study 27

Although we have presented the modelling cycle in an orderly fashion,
conducting a modelling study is by no means a strictly sequential process.
There are strong dependencies among the various components of the vali-
dation and projection phases. Compatibility must be achieved between
the definition of the model, the measurements used to parameterize the
model, and the techniques used to evaluate the model. Achieving this
compatibility, and reconciling it with the objectives of a particular model-
ling study, is inherently iterative in nature.

2.3. Understanding the Objectives of a Study

It is obvious that the validation phase of a modelling study requires a
thorough understanding of the computer system under consideration.
Perhaps it is less obvious that a thorough understanding of the objectives
of the study is of equal importance. In fact, though, this latter under-
standing is a key component of the top-down philosophy of queueing net-
work modelling. Many system characteristics that would need to be
represented in a fully general model may be irrelevant in a particular
study. Identifying these characteristics leads to a simpler model and a
simpler modelling study.

A typical example of this phenomenon involved a computer manufac-
turer about to announce a new CPU in a minicomputer architectural fam-
ily. During the design of this CPU, extensive low-level performance stu-
dies had been carried out, yielding measures such as the average execu-
tion rate for various instruction mixes. Prospective customers, however,
would be interested in higher-level characterizations such as ‘‘In a specific
configuration, how does it compare to existing CPUs in the architectural
family in terms of the number of users it can support?”’

The manufacturer had a set of fifteen benchmarks that had been used
in the past for this sort of characterization. Each of the benchmarks had
four workload components: editing, file creation, file modification, and a
compile-link-execute sequence. The benchmarks differed in the number
of ‘‘users’ in each workload component. These ‘‘users’’ were generated
by means of remote terminal emulation (RTE), a technique in which the
system of interest is coupled to a second system which simulates interac-
tive users and gathers performance data.

Unfortunately, it was impossible to configure the prototype of the new
CPU with the I/0 subsystem of interest for the purpose of conducting
RTE experiments. Instead, the following strategy was devised:

28 Preliminaries: Conducting a Modelling Study

— Configure an existing, faster CPU in the architectural family with
the I/0 subsystem of interest.

— Conduct RTE experiments on this configuration for each of the
fifteen benchmarks.

— Use a queueing network model to project the performance of each
of these benchmarks when the new, slower CPU is substituted.
Establish the CPU service demand in the model by taking into
account the ratio of the instruction execution rates of the two
CPUs.

Given this strategy, the obvious approach would be to define a rather
general model of the system. The inputs to this model would include the
workload intensities and service demands of each of the four workload
components. The model would be capable of reflecting the different
characteristics of the fifteen benchmarks by suitable adjustments to the
inputs. After this model had been validated, the CPU service demand for
each workload component would be scaled appropriately, and the model
then would be used to project the performance of the benchmarks on the
new system, again by suitable adjustments to the model inputs.

This approach has a significant hidden complexity. The system under
consideration includes a sophisticated memory management policy that
employs both paging and swapping. The amount of service demanded by
each user at the paging and swapping devices is not intrinsic; rather, it
depends upon the particular mix of workload components in each bench-
mark. Thus, the different characteristics of the fifteen benchmarks can-
not be reflected in the model simply by adjusting the workload intensities.
Instead, a general queueing network model of the system would need to
include, as part of its definition, a procedure for estimating variations in
the paging and swapping service demands as functions of the mix of
workload components.

Devising such a procedure certainly is feasible, but it adds consider-
ably to the complexity of the modelling study, and it provides a level of
generality that is not required. Bearing in mind that the objective of this
study was restricted to estimating the relative performance of each of the
fifteen benchmarks on the two configurations, we can achieve a significant
simplification by assuming that the paging and swapping activity of each
user, while sensitive to changes in the mix of workload components, are
insensitive to changes in CPU speed. This assumption allows the paging
and swapping service demands of each workload component to be meas-
ured for each of the benchmarks during the RTE experiments, and pro-
vided as inputs to the queueing network model, rather than being
estimated using a procedure supplied as part of the model definition.

The two approaches to this computer system analysis problem are con-
trasted in Figure 2.2. The assumption on which the simplified approach

2.3. Understanding the Objectives of a Study 29

relies is not valid universally, but any inaccuracies that result are strictly
secondary, and in fact are probably smaller in magnitude than those that
inevitably would arise in attempting to estimate variations in paging and
swapping service demands as functions of the mix of workload com-
ponents. (We will return to this study in Section 2.5, adding further
details.)

Original system Original system

Parameters include
Parameters include “inherent” and

DR

only “inherent”’ % 15 paging and
service demands () swapping service
demands
Az \r \r
Original model Original model
definition and definition and
parameterization parameterization
Adjust CPU v Adjust CPU
service demand (X'15) service demand
\r Alid |
Modified model Modified model
definition and definition and
parameterization parameterization
Evaluate, adjusting
workload,
intensities and e Evaluate
paging.and) L X 15)
swapping service
demands (X 15)
| Nr
Outputs Outputs
Obvious Approach Simplified Approach

Figure 2.2 — Two Approaches to Modelling a CPU Replacement

30 Preliminaries: Conducting a Modelling Study

2.4. Workload Characterization

In discussing the validation phase of the modelling cycle, we identified
measurement as the process of obtaining workload measures for the com-
puter system of interest, and parameterization as the process of transform-
ing those workload measures into the inputs of a queueing network
model. These activities, while not necessarily straightforward, are often
considerably less difficult than workload characterization: the process of
selecting the workload or workloads on which to base the performance
study.

Difficult questions arise even in considering an existing computing
environment: What constitutes a ‘‘typical’®> workload? How should a
measurement interval be selected? Should data from several measure-
ment intervals be averaged? These uncertainties are compounded in con-
sidering an environment that cannot be measured directly (e.g., in con-
templating the movement of an existing workload to a new system, or the
introduction of a new workload to an existing system).

Every approach to computer system analysis — intuition and trend
extrapolation, experimental evaluation of alternatives, or modelling —
requires workload characterization. Strangely, the imprecision inherent in
workload characterization argues for the use of queueing network models.
In principle, greater accuracy might be obtained (at significantly greater
cost) through experimentation or through simulation modelling. In prac-
tice, however, the dominant source of error is apt to lie with the work-
load characterization, even when queueing network models are employed.

The following case study serves three purposes. The first is to illus-
trate the use of queueing network modelling in a situation where bench-
marking is the traditional approach. The second is to demonstrate
hierarchical workload characterization as a way to achieve flexibility. By
this, we mean progressing in an orderly fashion from a high-level charac-
terization (identification of workload components) through an intermedi-
ate level (machine-independent characterizations of each of the com-
ponents) to a low level (service demands). The third is to show that use-
ful insights can be obtained despite serious imprecision in the workload
characterization.

In 1979, a university began a program to acquire medium-scale
interactive computer systems for instructional use. In response to a
request for proposals (RFP), roughly twenty bids were received, most
involving multiple systems. The relative performance of candidate sys-
tems was to be a major factor in the acquisition decision. Two approaches
to evaluating this relative performance were considered. The first was to
construct a multi-user benchmark characteristic of the anticipated work-
load, then use a remote terminal emulator to run that benchmark on each

2.4. Workload Characterization 31

candidate system. The second was to perform limited measurements on
the candidate systems, then use queueing network modelling to compare
performance. The latter approach was appropriate because of the limited
time and manpower available for the study, the large number of candidate
systems, and the high degree of uncertainty that existed concerning the
anticipated workload.

The first step in the study was to characterize the anticipated workload
in high-level terms: What were the identifiable workload components?
What was the relative volume of each component? What were the
significant characteristics of a typical transaction belonging to each com-
ponent ?

Instructional computing previously had been handled in batch mode.
The migration of this function to interactive facilities, and its subsequent
expansion, was to be a multi-year process involving multiple acquisitions.
It was assumed that the initial interactive workload would be similar in
composition to the existing instructional batch workload, with the addi-
tion of an editing component.

Measurements indicated that the existing workload had only two
significant components. Nearly 80% of all transactions were Fortran com-
pilations. Nearly 20% of all transactions were the execution of pre-
compiled library routines to process student-created datasets. A simple
characterization of the compilations was the average number of lines of
source code: roughly 100. A simple characterization of the executions
was their average service demand on the existing system: 4.55 seconds of
CPU service and 5.35 seconds of disk service. (The average size of the
student-created datasets processed by these transactions was 100 lines.)

It was assumed that an editing session would precede each compilation
or execution, so that the overall mix of workload components would be
40% compilations, 10% executions, and 50% editing sessions. Since most
editing would be performed by inexperienced typists using line-oriented
editors to make a small number of changes to a file, it was assumed that
the dominant resource demands would occur in accessing and saving files.
The average size of the file being edited, 100 lines, thus was a simple
characterization of the editing sessions.

The second step in the study was to translate this high-level workload
characterization into parameters for models of each of the candidate sys-
tems. Determining workload intensities was not an issue. Each of the
three workload components was treated as a transaction workload with an
arrival rate equal to the established proportion of the total arrival rate.
Model outputs were tabulated for a range of total arrival rates. Determin-
ing service demands for each workload component on each system (.e.,
the average service required at each device by a transaction belonging to
each workload component) involved running three extremely simple

32 Preliminaries: Conducting a Modelling Study

experiments on each system. For compilations, a 100-line program was
compiled on an otherwise idle system and CPU and disk busy times were
measured. This experiment captured the effects of hardware speed, com-
piler efficiency, and overhead in initiating and terminating compilations.
For executions, the CPU and disk service requirements that had been
measured on the existing batch system were scaled. The scaling factor for
CPU service was obtained by running a single computational benchmark
on the existing system and on each candidate system. The scaling factor
for disk service was obtained using a single Fortran I/O benchmark. For
editing sessions, the default editor available on each candidate system was
used on an otherwise idle system to access a 100-line file, modify a single
line, and save the file. CPU and disk busy times were measured.

Table 2.5 shows the results of these experiments for three candidate
systems: a VAX-11/780, a Prime 750, and a Prime 550. Note the
dramatically different efficiencies observed for the two Fortran compilers
available on the Primes. Note also the relative inefficiency of the inter-
face between the editor and the file system on the VAX.

workload service demand, secs.
system component CPU disk
compilation 2.0 1.0
Digital VAX-11/780 | execution 11.9 10.7
editing session 0.5 0.8
compilation
compiler A 0.8 0.2
Prime 750 compiler B 7.0 1.0
execution 13.7 7.1
editing session 0.15 0.05
compilation
compiler A 1.3 0.75
Prime 550 compiler B 11.3 3.75
execution 27.9 21.4
editing session 0.3 0.1

Table 2.5 — Service Demands for Three Systems

Based on these values, queueing network models of the candidate sys-
tems were parameterized and evaluated. (Representing multiple disks
involved distributing the calculated disk service demand among several
service centers. Parameterization was simplified by the fact that it was
not necessary to consider overhead due to memory contention, which
typically grows with workload intensity. It was a stipulation of the RFP
that systems be overconfigured with respect to memory.) Figures 2.3 and
2.4 show typical results of the study: average response time versus total

2.5. Sensitivity Analysis 33

transaction arrival rate for compilations and executions, respectively, for
the VAX-11/780, the Prime 750 with compiler A, and the Prime 750
with compiler B. Note that the performance of the Prime depends criti-
cally on the choice of compiler, and that this choice affects all users, not
just those doing compilations. (A reminder: these results have
significance only for the specific configurations and workloads under con-
sideration.)

40 ~

Prime 750,
compiler B

VAX 780

Prime 750,
compiler A

Response time, seconds
[}
o
]

0 T I I [
0 1000 - - 2000

Total arrival rate, transactions/hour
Figure 2.3 — Compilation Response Time Versus Total Arrival Rate

Variations can be investigated with ease. The effect of a disk load
imbalance can be explored by shifting the proportion of the service
demand allocated to each service center. The sensitivity of the results to
the workload characterization can be studied; e.g., the relative arrival
rates of the three workloads could be altered.

2.5. Sensitivity Analysis

Every computer system analyst encounters situations in which ques-
tionable assumptions must be introduced. Sensitivity analysis can be used
to determine the extent to which such assumptions cast doubt on the
conclusions of the study. A sensitivity analysis can take many forms.
Two of the most common are:

34 Preliminaries: Conducting a Modelling Study

200 —
Prime 750,
o compiler B
= .
o
3 VAX 780
g Prime 750,
= 100 |~ compiler A
2
5
&
2 L
|4
0 ! | !]
0 1000 2000

Total arrival rate, transactions/hour

Figure 2.4 — Execution Response Time Versus Total Arrival Rate

® The analyst may test the robustness of the results to the assumption in
question. Doing so involves evaluating the model a number of times
for variations in the assumption, and comparing the results.

® The analyst may obtain bounds on the expected performance, by
evaluating the model for extreme values of the assumption.

Inadequate measurement data frequently is the culprit that prompts a
sensitivity analysis. To illustrate the role of sensitivity analysis in coping
with this situation we return to the CPU replacement case study intro-
duced in Section 2.3. As illustrated in Figure 2.2, the approach adopted
entailed fifteen separate experiments, one per benchmark. Each experi-
ment consisted of three phases: the existing system was measured while
executing one of the benchmarks, a queueing network model was con-
structed and validated, and this model was used to project benchmark
performance with the new CPU, by manipulating the CPU service
demand parameter of each workload component.

Difficulty was encountered during the validation phase because a
significant proportion of the system’s I/O activity was not attributed to
specific workload components by the available measurement tools. For
example, it was possible to determine the total number of swaps during a
measurement interval, and also the average disk service demand per
swap, but it was not possible to determine which user or workload com-
ponent was the ‘‘victim’’ of the swap. Had the study been based on a
single class model, this would not have been a problem. However, the
objective was to assess the impact of the CPU replacement on each of the

2.6. Sources of Insight 35

four workload components individually, so a multiple class model was
required.

Various methods of allocating this measured 1/O activity among the
four workload components yielded different values for some of the input
parameters of the model. Not surprisingly, different response time pro-
jections from the model resulted. As an example, for one of the bench-
marks the measured response time for file modification transactions was
10 seconds, while for three different but equally reasonable methods of
allocating measured I/0 activity among the four workload components,
the model projected response times of 6, 7, and 11 seconds. (Similarly
spurious results were obtained from this model for the response times of
the three other workload components.)

Consider the set of inputs for which the model projected a response
time of 6 seconds. When the CPU service demand parameter was
adjusted to reflect the substitution of the slower CPU, this model pro-
jected that response time would be 7.2 seconds. It makes no sense to
claim that the response time for file modification transactions on the new
system will be 7.2 seconds, because the measured response time on the

existing, faster system was 10 seconds. Nor does it make sense to claim

7.2—6.0
6

that response time will increase by 20% (), because there is no

reason to believe that the projected effect of the CPU substitution is
insensitive to the method used to allocate measured I/O activity among
the workload components. We can hypothesize such an insensitivity,
though, and then test this hypothesis. Table 2.6 displays projected
response times for the system with the existing CPU and the new CPU,
for the three approaches to I/0 activity allocation. Although the absolute
response time values differ for the three approaches, the projected per-
centage changes do not. Thus, we can conclude that the effect of the
CPU substitution will be in increase of roughly 20% in the response time
of file modification transactions, from 10 seconds (the measured value) to
12 seconds. (Similar results were obtained for the other three workload
components.)

2.6. Sources of Insight

A major virtue of queueing network modelling is that the modelling
cycle yields many insights about the computer system under study.
These insights occur during workload characterization, model definition,
system measurement, model parameterization, and modification analysis.
It is important to bear in mind that the model outputs obtained during
the projection phase of the modelling cycle are only one of many sources
of insight. Consider the following case study.

36

Preliminaries: Conducting a Modelling Study

method of
allocating
I/0 activity

workload
component

response time, seconds

model of
original CPU

model of
new CPU

projected
change

editing

file creation

A file mod. 6 7.2

compile-link-
execute

editing

file creation

B file mod. 7 8.3

compile-link-
execute

editing

file creation

C file mod. 11

compile-link-
execute

+ 20%

+ 18%

13.1 + 19%

Table 2.6 — Response Times for Three Assumptions

An insurance company decentralized its claims processing by establish-
ing identical minicomputer systems at twenty geographically distributed
sites. As the workload grew, these systems ceased to provide adequate
response, and a two-step capacity expansion program was begun: an
immediate upgrade at every site to one of two software-compatible sys-
tems available from the original vendor, followed by a three year process
of ‘“‘unconstrained’’ system acquisition and software conversion. Queue-
ing network modelling was used to evaluate the alternatives for each step.
In this section, we consider the choice of a ‘‘transition system’’ for each
site.

Working together, the vendor (IBM) and the insurance company had
estimated that performance would ‘‘improve by a factor of 1.5 to 2.0” if
the existing system (a 3790 in each case) were replaced with the less
expensive of the two transition systems (an 8130), and ‘‘improve by a
factor of 2.0 to 3.5 if it were replaced by the more expensive of the tran-
sition systems (an 8140). (Note the considerable ambiguity in these
statements.) The charter of the modelling study was to determine at
which of the twenty sites the more expensive system would be required
in order to achieve acceptable performance during the three-year transi-
tion period.

The information provided in support of the study included measure-
ments of the existing 3790 system taken at several sites under ‘‘live”

2.7. Summary 37

workload, measurements of the 3790 and the more expensive transition
system (the 8140) during benchmark trials in which varying numbers of
clerks entered transactions from scripts, and information from the vendor
comparing the CPU and disk speeds of the three systems. The ‘‘live”
workload tests revealed that although there were three distinct workload
components, one of these, which had been identified in advance as being
of primary interest, was responsible for roughly 75% of the transactions
and 90% of the resource consumption. A single class model was there-
fore deemed appropriate. The benchmark tests confirmed the vendor’s
estimates of relative hardware speeds, although they were too limited (in
terms of the range of workload intensities considered) to yield any insight
about overall performance. From consideration of all of the available
information it was possible to calculate the service demands shown below:

service demands, seconds

system CPU disk
3790 (existing) 4.6 4.0
8130 5.1 1.9
8140 3.1 1.9

As indicated, the two transition systems were equipped with identical
disks that were roughly twice as fast as the disks on the existing system.
The transition systems differed in their CPUs: the 8130 CPU was, in
fact, slightly slower than that of the existing 3790, while the 8140 CPU
was roughly 50% faster.

Now we make a key observation. On the existing system, the work-
load is CPU-bound. Furthermore, since response times are unacceptable,
we can assume that the workload intensity is sufficiently high that the
CPU is approaching saturation. The faster disks of the 8130 are of little
value under these circumstances, while its slower CPU is a significant lia-
bility. Without further examination, we can conclude that replacing the
3790 with the 8130 will cause a degradation in response time.

On the basis of this analysis, the insurance company performed bench-
mark tests on the 8130. These tests confirmed the analysis, with the
result that all sites were upgraded to 8140s. (This study will be con-
sidered further in Chapter 5.)

2.7. Summary

The most challenging aspect of computer system analysis using queue-
ing network models is not the technical details of defining, parameteriz-
ing, and evaluating the models. Rather, it is the process of tailoring the
general ‘“‘methodology” of queueing network modelling to a specific

38 Preliminaries: Conducting a Modelling Study

computer system analysis context. Unfortunately, while the former is
easily taught, the latter is best learned through experience. In this
chapter we have attempted to share with the reader the experience of oth-
ers, by presenting a set of case studies selected to illustrate significant
aspects of the methodology. Among the points that we have emphasized
are:

® Queueing network modelling inherently is a top-down process in
which the low-level details of a system are presumed to be irrelevant
to its high-level performance characteristics.

® Because queueing network models are abstract, many assumptions are
made in conducting a modelling study. These assumptions are
motivated by simplicity, adequacy of measurements, and ease of
evaluation. It is important to be explicit concerning the assumptions
that are made, the motivations for their introduction, and the argu-
ments for their plausibility.

® Conducting a modelling study is an iterative process because of depen-
dencies that exist among the definition of the model, the measure-
ments used to parameterize the model, the techniques used to evalu-
ate the model, and the objectives of a particular modelling study.

® Confidence in a model’s predictive abilities can be acquired through
repetitive validation over a number of measurement intervals, perhaps
involving selected minor modifications.

® This confidence can be reinforced through the verification process:
measuring a modified system, then comparing its performance meas-
ures to the model outputs and its workload measures to the model
inputs.

® When used in studies involving system modification, queueing net-
work models may project relative performance with greater accuracy
than absolute performance.

® A clear understanding of the objectives of a modelling study can con-
tribute to simplicity in the model and in the modelling effort.

® Concentrating on representing the primary effects of a system or work-
load modification also can contribute to simplicity.

® Workload characterization is a challenging, inherently imprecise pro-
cess. Useful insights can be obtained desnite this imprecision.
Characterizing a workload hierarchically helps to achieve flexibility.

® Sensitivity analysis can be used to determine the extent to which ques-
tionable assumptions cast doubt on the conclusions of a study. Two
common forms of sensitivity analysis are testing the robustness of
model outputs to variations of assumptions, and obtaining bounds on
model outputs for extreme values of assumptions.

2.8. References 39

® Valuable insights are gained throughout the modelling cycle, not
merely during the projection phase.

2.8. References

The identification of simplicity, adequacy of measurements, and ease
of evaluation as factors motivating the introduction of assumptions is due
to Kienzle and Sevcik [1979], who also suggested the division of the
modelling cycle into validation, projection, and verification phases.

The MVS case studies described in Section 2.2 were conducted by Lo
[1980]. The CPU performance comparison described in Sections 2.3 and
2.5 was conducted by Myhre [1979]. The system acquisition case study
described in Section 2.4 was conducted by Lazowska [1980]. (Figures 2.3
and 2.4 are taken from this paper.) The insurance claims processing case
study described in Section 2.6 was conducted by Sevcik, Graham, and
Zahorjan [1980].

[Kienzle & Sevcik 1979]
M.G. Kienzle and K.C. Sevcik. A Systematic Approach to the Perfor-
mance Modelling of Computer Systems. Proc. IFIP W.G.7.3 Interna-

tional Symposium on Computer Performance Modelling, Measurement and
Evaluation (1979), 3-27.

[Lazowska 1980]
Edward D. Lazowska. The Use of Analytic Modelling in System
Selection. Proc. CMG X1 International Conference (1980), 63-69.

[Lo 1980]
T.L. Lo. Computer Capacity Planning Using Queueing Network
Models. Proc. IFIP W.G. 7.3 International Symposium on Computer Per-
formance Modelling, Measurement and Evaluation (1980), 145-152.
Copyright ©1980 by the Association for Computing Machinery.

[Myhre 1979]
Scott A. Myhre. A Queueing Network Solution Package Based on
Mean Value Analysis. M.Sc. Thesis, Department of Computer Sci-
ence, University of Washington, February 1979.

[Sevcik et al. 1980]
K.C. Sevcik, G.S. Graham, and J. Zahorjan. Configuration and Capa-
city Planning in a Distributed Processing System. Proc. 16th CPEUG
Meeting (1980), 165-171.

Chapter 3

Fundamental Laws

3.1. Introduction

This chapter provides the technical foundation for much of the
remainder of the book. It has three objectives. The first is to define a
number of quantities of interest and to introduce the notation that we will
use in referring to these quantities. The second is to derive various alge-
braic” relationships among these quantities, some of which, because of
their importance, will be identified as fundamental laws. The third is to
explore thoroughly the most important of these fundamental laws, Little’s
law (named for J.D.C. Little), which states that the average number of
requests in a system must equal the product of the throughput of that
system and the average time spent in that system by a request.

Because of the volume of notation introduced, this chapter may appear
formidable. It is not. The material is summarized in three small tables in
Section 3.6, which we suggest you copy for convenient reference.

3.2. Basic Quantities

If we were to observe the abstract system shown in Figure 3.1 we
might imagine measuring the following quantities:

T, the length of time we observed the system
A, the number of request arrivals we observed
C, the number of request completions we observed

From these measurements we can define the following additional quanti-
ties:

40

3.2. Basic Quantities 41

Arrivals Completions
= —_—

Figure 3.1 — An Abstract System

\, the arrival rate. N\ = i}

If we observe 8 arrivals during an observation interval of 4
minutes, then the arrival rate is 8/4 = 2 requests/minute.

X, the throughput X = —?

If we observe 8 completions during an observation interval of 4
minutes, then the throughput is 8/4 = 2 requests/minute.

If the system consists of a single resource, we also can measure:
B, the length of time that the resource was observed to be busy

Two more defined quantities now are meaningful:

o — B
U, the utilization. U = T
If the resource is busy for 2 minutes during a 4 minute observation

interval, then the utilization of the resource is 2/4, or 50%.

. . _ B

S, the average service requirement per request: =7
If we observe 8 completions during an observation interval and the
resource is busy for 2 minutes during that interval, then on the

average each request requires 2/8 minutes of service.
We now can derive the first of our fundamental laws. Algebraically,

From the three preceding definitions, % = U, T X,

N

5 T C-
and rol = §. Hence:

42 Preliminaries: Fundamental Laws

The Utilization Law: U = XS

That is, the utilization of a resource is equal to the product of the
throughput of that resource and the average service requirement at that
resource. As an example, consider a disk that is serving 40
requests/second, each of which requires .0225 seconds of disk service.
The utilization law tells us that the utilization of this disk must be
40x .0225 = 90%.

3.3. Little’s Law

The utilization law in fact is a special case of Little’s law, which we
now will derive in a more general setting. Figure 3.2 is a graph of the
total number of arrivals and completions occurring at a system over time.
Each step in the higher step function signifies the occurrence of an arrival
at that instant; each step in the lower signifies a completion. At any
instant, the vertical distance between the arrival and completion functions
represents the number of requests present in the system. Over any time
interval, the area between the arrival and completion functions represents
the accumulated time in system during that interval, measured in
request-seconds (or request-minutes, etc.). For example, if there are
three requests in the system during a two second period, then six
request-seconds are accumulated, This area is shaded in Figure 3.2 for an
observation interval of length 7 = 4 minutes. We temporarily denote
accumulated time in system by W. We define:

W

N, the average number of requests in the system: N = -

If a total of 2 request-minutes of residence time are accumulated
during a 4 minute observation interval, then the average number of
requests in the system is 2/4 = 0.5.

R, the average system residence time per request: R = Vel

If a total of 2 request-minutes of residence time are accumulated
during an observation interval in which 8 requests complete, then
the average contribution of each completing request (informally,
the average system residence time per request) is 2/8 = 0.25
minutes.

Algebraically, lT/ = T

3.3. Litle's Law 43

Hence:

Little’s Law: N = XR

That is, the average number of requests in a system is equal to the pro-
duct of the throughput of that system and the average time spent in that
system by a request.

Arrivals

Jobs

Completions

|
|
!
|
!
f
|
|
I
i
[
{
|
|
-
|

oL - ————— e — - —— — —— —]

Time
Figure 3.2 — System Arrivals and Completions

A subtle but important point in our derivation of Little’s law is that
the quantity R does not necessarily correspond to our intuitive notion of
average residence time or response time — the expected time from
arrival to departure. This discrepancy is due to end effects: it is hard to
know how to account for requests that are present just prior to the start
or just after the end of an observation interval. For the time being,
suffice it to say that if the number of requests passing through the system
during the observation interval is significantly greater than the number
present at the beginning or end, then R corresponds closely to our intui-
tion, and if the observation interval begins and ends at instants when sys-
tem is empty, then this correspondence is exact. (End effects arise

44 Preliminaries: Fundamental Laws

elsewhere; for example, considerations similar to those affecting R also
affect our earlier definition of S, the average service requirement per
request.)

Little’s law is important for three reasons. First, because it is so
widely applicable (it requires only very weak assumptions), it will be
valuable to us in checking the consistency of measurement data. Second,
in studying computer systems we frequently will find that we know two of
the quantities related by Little’s law (say, the average number of requests
in a system and the throughput of that system) and desire to know the
third (the average system residence time, in this case). Third, Little’s
law is central to the algorithms for evaluating queueing network models,
which we will introduce in Part II.

Given a computer system, Little’s law can be applied at many different
levels: to a single resource, to a subsystem, or to the system as a whole.
The key to success is consistency: the definitions of population,
throughput, and residence time must be compatible with one another. In
Figure 3.3 we illustrate this by applying Little’s law to a hypothetical
timesharing system at four different levels, as indicated by the four boxes
in the figure.

[~~~ """]
1[Terminals 'I
| |
| |
| |
| |
| |
| |
{ |
[e e bty - {
{ ! Disks ; |
| - ()= |
|
| i |
|
| | — L
| I S — |
| !
! —_— . |
T e e Gttt - I
; I v o N
| I [| |
! I
l | | |
| | BEN
| 1 |
| | E S, ke
) | ,' |
|
R S ——
L o _

Figure 3.3 — Little’s Law Applied at Four Levels

3.3. Litles Law 45

Box 1 is perhaps the most subtle; it illustrates the application of
Little’s law to a single resource, not including its queue. In this example,
population corresponds to the utilization of the resource (there are either
ZEro Oor one requests present at any instant in time; the resource is util-
ized whenever there is one request present;, thus resource utilization is
equal to the proportion of time there is one request present, which is also
equal to the average number of requests present), throughput
corresponds to the rate at which the resource is satisfying requests, and
residence time corresponds to the average service requirement per
request at the resource (remember, queueing delay is not included in this
application of Little’s law;, once a request acquires the resource, it
remains at that resource for its service time). This application of Little’s
law constitutes an alternative derivation of the utilization law. To repeat
the example used previously, suppose that the resource is a disk, that the
disk is serving 40 requests/second (X = 40), and that the average
request requires .0225 seconds of disk service (S = .0225). Then Little’s
law (U = XS) tells us that the utilization of the disk must be
40x.0225 = 90%.

Box 2 illustrates the application of Little’s law to the same resource,
this time including its queue. Now, population corresponds to the total
number of requests either in queue or in service, throughput remains the
rate at which the resource is satisfying requests, and residence time
corresponds to the average time that a request spends at the resource per
visit, both queueing time and service time. Suppose that the average
number of requests present is 4 (N = 4) and that the disk is serving 40
requests/second (X = 40). Then Little’s law (N = XR) tells us that the
average time spent at the disk by a request must be 4/40 = 0.1 seconds.
Note that we can now compute the average queueing time of a request (a
total of 0.1 seconds are spent both queueing and receiving service, of
which .0225 seconds are devoted to receiving service, so the average
queueing time must be .0775 seconds) and also the average number of
requests in the queue (an average total of 4 requests are either queueing
or receiving service, and on the average there are 0.9 requests receiving

service, so the average number awaiting service in the queue must be
3.1).

Box 3 illustrates the application of Little’s law to the central subsystem
— the system without its terminals. Our definition of ‘‘request’ changes
at this level: we are no longer interested in visits to g particular resource,
but rather in system-level interactions. Population corresponds to the
number of customers in the central subsystem, i.e., those users not think-
ing. Throughput corresponds to the rate at which interactions flow
between the terminals and the central subsystem. Residence time
corresponds to our conventional notion of response time: the period of
time from when a user submits a request until that user’s response is

46 Preliminaries: Fundamental Laws

returned. Suppose that system throughput is 1/2 interaction per second
(X = 0.5) and that, on the average, there are 7.5 ‘‘ready’’ users
(N = 17.5). Then Little’s law (N = XR) tells us that average response
time must be 7.5/0.5 = 15 seconds.

Finally, box 4 illustrates the application of Little’s law to the entire
system, including its terminals. Here, population corresponds to the total
number of interactive users, throughput corresponds to the rate at which
interactions flow between the terminals and the system, and residence
time corresponds to the sum of system response time and user think
time. Suppose that there are 10 users, average think time is 5 seconds,
and average response time is 15 seconds. Then Little’s law tells us that

the system throughput must be = 0.5 interactions/second. If we

15+5
denote think time by Z then we can write this incarnation of Little’s law

as N = X(R+Z). As with the utilization law, this application is so ubi-
quitous that we give it its own name and notation, expressing R in terms
of the other quantities:

The Response Time Law: R = -;— A

As an example application of the response time law, suppose that a sys-
tem has 64 interactive users, that the average think time is 30 seconds,
and that system throughput is 2 interactions/second. Then the response

time law tells us that response time must be -62i — 30 = 2 seconds.

In earlier chapters we have noted that throughputs and utilizations
typically are projected with greater accuracy than residence times. We
now are in a position to understand why this must be. Suppose we were
to construct a queueing network model of the system in the previous
example. The number of users (64) and the average think time (30
seconds) would be parameters of the model, along with the service
demands at the various resources in the system. Throughput and
response time would be outputs of the model. Suppose that the model
projected a throughput of 1.9 interactions/second, an error of just 5%.
Since the response time law must be satisfied by the queueing network
model, a compensating error in projected response time must result:

64
1.9 30

Thus the model must project a response time of 3.7 seconds, an error of
85%.

R

3.4. The Forced Flow Law 47

3.4. The Forced Flow Law

In discussing Little’s law, we allowed our field of view to range from
an individual resource to an entire system. At different levels of detail,
different definitions of ‘‘request’ are appropriate. For example, when
considering a disk, it is natural to define a request to be a disk access, and
to measure throughput and residence time on this basis. When consider-
ing an entire system, on the other hand, it is natural to define a request
to be a user-level interaction, and to measure throughput and residence
time on this basis.

The relationship between these two views of a system is expressed by
the forced flow law, which states that the flows (throughputs) in all parts
of a system must be proportional to one another. Suppose that during an
observation interval we count not only system completions, but also the
number of completions at each resource. We define the visit count of a
resource to be the ratio of the number of completions at that resource to
the number of system completions, or, more intuitively, to be the aver-
age number of visits that a system-level request makes to that resource.
If we let a variable with the subscript k refer to the k-th resource (a vari-
able with no subscript continues to refer to the system as a whole), then
we can write this definition as:

G
C

If during an observation interval we measure 10 system comple-
tions and 150 completions at a specific disk, then on the average
each system-level request requires 150/10 = 15 disk operations.

If we rewrite this definition as C, = V, C and recall that the completion
count divided by the length of the observation interval is defined to be
the throughput, then the throughput of resource k is given by:

Vi, the visit count of resource k: V, =

The Forced Flow Law: X, = V. X

An informal statement of the forced flow law is that the various com-
ponents of a system must do comparable amounts of work (measured in
“‘transaction’s worth’’) in a given time interval. As an example, suppose
we are told that each job in a batch processing system requires an average
of 6 accesses to a specific disk, and that the disk is servicing 12 requests
from batch jobs per second. Then we know that the system throughput
of batch jobs must be 12/6 = 2 jobs/second. If, in addition, we are told
that another disk is servicing 18 batch job requests per second, then we
know that each batch job requires on average 18/2 = 9 accesses to this
second disk.

48 Preliminaries: Fundamental Laws

Little’s law becomes especially powerful when combined with the
forced flow law. As an example, suppose that we are asked to determine
average system response time for an interactive system with the following
known characteristics:

25 terminals (N = 25)
18 seconds average think time (Z = 18)
20 visits to a specific disk per interaction (Vg = 20)
30% utilization of that disk (Uyy = .30)
25 millisecond average service requirement per visit
to that disk (S, = .025 secs.)
N

We would like to apply the response time law: R = X Z. We know

the number of terminals and the average think time, but are missing the
throughput. We do, however, know the visit count at one specific disk
(that is, the average number of visits made to that disk by an interactive
request), so if we knew the throughput at that disk we would be able to
apply the forced flow law to obtain system-level throughput. To obtain
disk throughput we can use the utilization law, since we know both utili-
zation and service requirement at this device. We calculate the following
quantities:

Ugjisi
disk throughput: X, = SdSA = ’(')3205 = -12 requests/sec.
disk . - -
KXisk .
system throughput: X = —Vd—y‘ = % = 0.6 interactions/sec.
disk
. N 25
: = = — = = — = 23, .
response time: R Y Z 0.6 18 3.7 secs

Note that we can describe an interaction’s disk service requirement in
either of two ways: by saying that an interaction makes a certain number
of visits to the disk and requires a certain amount of service on each visit,
or by specifying the total amount of disk service required by an interac-
tion. These two points of view are equivalent, and whichever is more
convenient should be chosen. We define:

D,., the service demand at resource k: D, = V.S

If a job makes an average of 20 visits to a disk and requires an
average of 25 milliseconds of service per visit, then that job re-
quires a total of 20x 25 = 500 milliseconds of disk service, so its
service demand is 500 milliseconds at that disk.

From now on we will use S to refer to the service requirement per visit
at resource k, and D, to refer to the total service requirement at that
resource. We define D, with no subscript, to be the sum of the D,: the
total service demanded by a job at all resources.

3.4, The Forced Flow Law 49

Again, consistency is crucial to success. Consider using the utilization
law to calculate the utilization of a resource. We can express throughput
in terms of visits to that resource (X}), in which case service requirement
must be expressed as service requirement per visit (S;). Using the
forced flow law, we can also express throughput in terms of system-level
interactions (X), in which case service requirement must be expressed on
a per-interaction basis (D;). In other words, U, = X, S, = XD,.

In Chapter 1 we observed that service demands are one of the parame-
ters required by queueing network models. If we observe a system for an
interval of length T, we can easily obtain the utilizations of the various
resources, U, and the system-level completion count, C. The service

demands at the wvarious resources then can be calculated as
B, u.r
DA’ = —_— =
C C
be parameterized in terms of the D, rather than the corresponding V,
and S;, since the former typically are much more easily obtained from

measurement data than the latter.

It is fortunate that queueing network models can

As a final illustration of the versatility of Little’s law in conjunction
with the forced flow law, consider Figure 3.4, which represents a
timesharing system with a memory constraint: swapping may occur
between interactions, so a request may be forced to queue for a memory
partition prior to competing for the resources of the central subsystem.
As indicated by the boxes, we once again are going to apply Little’s law at
several different levels. The following actual measurement data was
obtained by observing the timesharing workload on a system with several
distinct workloads:

average number of timesharing users: 23 (N = 23)

average response time perceived by a user: 30 seconds (R = 30)
timesharing throughput: 0.45 interactions/second (X = .45)
average number of timesharing requests occupying memory: 1.9

(MH mem = 1'9)
average CPU service requirement per interaction: 0.63 seconds
(DCPU = 63)

Now, consider the following questions:
® What was the average think time of a timesharing user? Applying the

response time law at the level of box 4 in the figure, R = S Z,
so Z = —24% — 30, or 21 seconds.

® On the average, how many users were attempting to obtain service,
i.e., how many users were not ‘‘thinking’’ at their terminals? Apply-
ing Little’s law at the level of box 3, N mem = AR = .45% 30, or
13.5 users. Of the 23 users on this system, an average of 13.5 were

S0 Preliminaries: Fundamental Laws

|

: Terminals

!

t

i

|

|

|

|

|

|

} r-—-——>"f"™""™>"™>""™""™"™""™"™"™"\[“~""“"™"™"™"/"/"/">"7=/"=/"/"/"/"/"™"7/""7"7/77 i

| e |

r 1

l { | Disks | l

bl | —_—

N N
|

i | r=—=]

P ! | [

Pl '

10 10— |
| !

I 1

! ;Memory: L - e I :

: iqueue | CPU : |

|

P! | by

oo | [

| [| | |

| | |2 | |

| |

o e - ——_———— —

L ..J

4

Figure 3.4 — Little’s Law Applied to a Memory Constrained System

attempting to obtain service at any one time. We know from meas-
urement data that only 1.9 were occupying memory on the average, so
the remaining 11.6 must have been queued awaiting access to
memory.

® On the average, how much time elapses between the acquisition of
memory and the completion of an interaction? Applying Little’s law
at the level of box 2, Ny mem = XRin mems SO Rin mem = 1.9/0.45, or
4.2 seconds. In other words, of the 30 second response time per-
ceived by a user, nearly 26 seconds are spent queued awaiting access
to memory.

® What is the contribution to CPU utilization of the timesharing work-
load? Applying the utilization law to the CPU (box 1),
Ucpy = XDcpy = 45%.63, or 28% of the capacity of the CPU.
Notice that in this application of the utilization law, throughput was
defined in terms of system-level interactions and service requirement
was defined on a per-interaction basis.

3.5. The Flow Balance Assumption 51

3.5. The Flow Balance Assumption

Frequently it will be convenient to assume that systems satisfy the
flow balance property, namely, that the number of arrivals equals the
number of completions, and thus the arrival rate equals the throughput:

The Flow Balance Assumption: A4 = C, therefore A = X

The flow balance assumption can be tested over any measurement inter-
val, and it can be strictly satisfied by careful choice of measurement inter-
val.

When used in conjunction with the flow balance assumption, Little’s
law and the forced flow law allow us to calculate device utilizations for
systems whose workload intensities are described in terms of an arrival
rate. In Figure 3.5 we show a queueing network model similar to that
used to represent the VAX-11/780 in the case study described in Section
2.4. There are three devices (a CPU and two disks) and three transaction
classes with the following characteristics:

service demand,

seconds/transaction
transaction arrival rate
class trans./hr. CPU disk 1 disk 2
compilation 480 2.0 0.75 0.25
execution 120 11.9 5.0 5.7
editing session 600 0.5 0.2 0.6

To calculate the utilization of a device in this system we apply the util-
ization law separately to each transaction class, then sum the results. As
an example, consider the CPU. If compilation transactions are arriving to
the system at a rate of 480/hour and each one brings 2.0 seconds of work
to the CPU, then CPU utilization due to compilation transactions must

3468000 X 2.0 = 27%. Similar arguments for execution and editing
transactions yield CPU utilizations of 40% and 8%, respectively. Thus
total CPU utilization must be 75%.

How is it possible to analyze the classes independently without
accounting for their mutual interference? Assuming that the system is
able to handle the offered load (i.e., assuming that the calculated utiliza-
tion of no device is greater than 100%), the flow balance assumption is
reasonable. Thus the throughput of the system will be the same as the
arrival rate to the system. The forced flow law guarantees that the vari-
ous devices in the system will do comparable amounts of work (measured

equal

52 Preliminaries: Fundamental Laws

Departures

3 Ar

Compilations j@

4l

Executions \——» :D Disks
_ CPU
Editing sessions >

Figure 3.5 — Calculating Utilizations Using Flow Balance

in “‘transaction’s worth’’) in a given time. Interference between transac-
tions does not affect this. Rather, it causes an increase in the average
number of transactions resident in the system, which causes a
corresponding increase in response time (by Little’s law). In Part II we
will learn how to quantify the extent of this interference.

3.6. Summary

In this chapter we have defined a number of quantities of interest,
introduced the notation that we will use in referring to these quantities,
and derived various algebraic relationships among these quantities. These
developments are reviewed in the following tables, which we suggest you
copy for convenient reference.

Table 3.1 summarizes the notation that we have established. The
table includes a subscript on those quantities that require one, either
explicit or implicit. In some cases, the quantity must refer to a specific
resource. In other cases, the quantity may rtefer either to a specific
resource or to a specific subsystem. Table 3.2 summarizes the fundamen-
tal laws. Table 3.3 summarizes the additional algebraic relationships
among the various quantities that we have defined. We also have intro-
duced and used the flow balance assumption: 4 = C, therefore A = X,

3.7. References 53

T length of an observation interval
A, number of arrivals observed
C, number of completions observed
A¢ arrival rate
Xy throughput
B, busy time
U, utilization
Sy service requirement per visit
N customer population
R, residence time
Z think time of a terminal user
Vi, number of visits
D, service demand

Table 3.1 — Notation

The Utilization Law: U, = XS, = XD,
Little’s Law: N = XR
The Response Time Law: R = i} - Z

The Forced Flow Law: X, = V. X

Table 3.2 — Fundamental Laws

3.7. References

Buzen and Denning’s operational analysis has heavily influenced our
philosophy in general, and this chapter in particular. Much of the nota-
tion and the identification of laws and assumptions is taken from their
work. Of special note are [Buzen 1976] (from which we have even bor-
rowed the title of this chapter) and [Denning & Buzen 1978].

Little’s law is named for J.D.C. Little, who first proved it in 1961 [Lit-
tle 19611.

54 Preliminaries: Fundamental Laws

A,
M=
C
%o =
B,
U = =
_ B UT
% =7 Ce
G
=T
_ B, U T
b= WS =& = —¢

Table 3.3 — Additional Relationships

[Buzen 1976]
Jeffrey P. Buzen. Fundamental Operational Laws of Computer System
Performance. Acta Informatica 7,2 (1976), 167-182.

[Denning & Buzen 1978]
Peter J. Denning and Jeffrey P. Buzen. The Operational Analysis of
Queueing Network Models. Computing Surveys 10,3 (September
1978), 225-261.

[Little 1961]

J.D.C. Little. A Proof of the Queueing Formula L = A W. Opera-
tions Research 9 (1961), 383-387.

3.8. Exercises

1. Consider the specific computer system with which you are most fami-
liar. How would you calculate the basic service demand D, at the
CPU? At each disk device? How would you calculate the average
number of jobs in memory?

2. Software monitor data for an interactive system shows a CPU utiliza-
tion of 75%, a 3 second CPU service demand, a response time of 15

seconds, and 10 active users. What is the average think time of these
users?

3.8. Exercises 55

3. An interactive system with 80 active terminals shows an average think
time of 12 seconds. On average, each interaction causes 15 paging
disk accesses. If the service time per paging disk access is 30 ms. and
this disk is 60% busy, what is the average system response time?

4. Suppose an interactive system is supporting 100 users with 15 second
think times and a system throughput of 5 interactions/second.

a. What is the response time of the system?

b. Suppose that the service demands of the workload evolve over time
so that system throughput drops to 50% of its former value (i.e., to
2.5 interactions/second). Assuming that there still are 100 users
with 15 second think times, what would their response time be?

c. How do you account for the fact that response time in (b) is more
than twice as large as that in (a)?

5. Consider a system modelled as shown in Figure 3.6. A user request
submitted to the system must queue for memory, and may begin pro-
cessing (in the central subsystem) only when it has obtained a
memory partition.

Tenninals

Central
e subsystem
Memory
queue

Figure 3.6 — A Memory Constrained System

a. If there are 100 active users with 20 second think times, and sys-
tem response time (the sum of memory queueing and central sub-
system residence times) is 10 seconds, how many customers are
competing for memory on average?

Preliminaries: Fundamental Laws

b. If memory queueing time is 8 seconds, what is the average number
of customers loaded in memory?

In a 30 minute observation interval, a particular disk was found to be
busy for 12 minutes. If it is known that jobs require 320 accesses to
that disk on average, and that the average service time per access is 25
milliseconds, what is the system throughput (in jobs/second)?

. Consider a very simple model of a computer system in which only the
CPU is represented. Use Little’s law to argue that the minimum aver-
age response time for this system is obtained by scheduling the CPU
so that it always serves the job with the shortest expected remaining
service time (i.e., the job that is expected to finish soonest if placed in
service).

. Consider the following measurement data for an interactive system
with a memory constraint:

length of measurement interval: 1 hour
average number of users: 80
average response time: " 1second
average number of memory-resident requests: 6
number of request completions: 36,000
utilizations of:
CPU 75%
Disk 1 50%
Disk 2 50%
Disk 3 25%

a. What was throughput (in requests / second)?
b. What was the average ‘‘think time”’?

On the average, how many users were attempting to obtain service
(i.e., not “‘thinking”’)?

d. On the average, how much time does a user spend waiting for
memory (i.e., not ‘“‘thinking’’ but not memory-resident)?

e. What is the average service demand at Disk 17

Chapter 4

Queueing Network Model Inputs and Outputs

4.1. Introduction

We are prepared now to state precisely the inputs and outputs of
queueing network models. We noted in Chapter 1 that, in order to
achieve an appropriate balance between accuracy and cost, we are restrict-
ing our attention to the subset of general networks of queues that consists
of the separable queueing networks, extended where necessary for the
accurate representation of particular computer system characteristics.
Sections 4.2 - 4.4 describe the inputs and outputs of separable queueing
networks. For notational simplicity we first present this material in the
context of models with a single customer class (Sections 4.2 and 4.3), and
then generalize to multiple class models (Section 4.4). In Section 4.5, we
discuss certain computer system characteristics that cannot be represented
directly using the inputs available for separable models, and certain per-
formance measures that cannot be obtained directly from the available
outputs. These motivate the extensions of separable networks that will
be explored later in the book.

4.2. Model Inputs o

The basic entities in queueing network models are service centers,
which represent system resources, and customers, which represent users
or jobs or transactions. Table 4.1 lists the inputs of single class queueing
network models, which describe the relationships among customers and
service centers. In the subsections that follow, these parameters are dis-
cussed in some detail.

4.2.1. Customer Description

The workload intensity may be described in any of three ways, named
to suggest the computer system workloads they are best suited to
representing:

57

58 Preliminaries: Queueing Network Model Inputs and Outputs

The workload intensity, one of:

customer \, the arrival rate (for transaction workloads), or
description N, the population (for batch workloads), or

N and Z, the think time (for terminal workloads)

K, the number of service centers

center .
description For each service center k:
P its type, either queueing or delay
service For each service center k:
demands D, = V.S, the service demand

Table 4.1 — Single Class Model Inputs

® A transaction workload has its intensity specified by a parameter A,
indicating the rate at which requests (customers) arrive. A transaction
workload has a population that varies over time. Customers that have
completed service leave the model.

® A batch workload has its intensity specified by a parameter N, indicat-
ing the average number of active jobs (customers). (N need not be
an integer.) A batch workload has a fixed population. Customers that
have completed service can be thought of as leaving the model and
being replaced instantaneously from a backlog of waiting jobs.

® A terminal workload has its intensity specified by two parameters: N,
indicating the number of active terminals (customers), and Z, indicat-
ing the average length of time that customers use terminals (‘‘think’’)
between interactions. (Again, NV need not be an integer.)

A terminal workload is similar to a batch workload in that its total
population is fixed. In fact, a terminal workload with a think time of zero
is in every way equivalent to a batch workload. On the other hand, a ter-
minal workload is similar to a transaction workload in that the population
of the central subsystem (the system excluding the terminals) varies, pro-
vided that the terminal workload has a non-zero think time. Note that N
is an upper bound on the central subsystem population of a terminal
workload, whereas no upper bound exists for a transaction workload.

We sometimes refer to models with transaction workloads as open
models, since there is an infinite stream of arriving customers. Models
with batch or terminal workloads are referred to as closed models, since
customers ‘‘re-circulate’’. This distinction is made because the algo-
rithms used to evaluate open models differ from those used for closed
models. It highlights the similarity between batch and terminal work-
loads.

4.2. Model Inputs 59

4.2.2. Center Description

Service centers may be of two types: queueing and delay. These are
represented as shown in Figure 4.1.

.D*

Queueing Center Delay Center

Figure 4.1 — Queueing and Delay Service Centers

Customers at a queueing center compete for the use of the server.
Thus the time spent by a customer at a queueing center has two com-
ponents: time spent waiting, and time spent receiving service. Queueing
centers are used to represent any system resource at which users compete
for service, e.g., the CPU and I/O devices. As shown in the figure, a
queueing center is drawn as a queue plus a server.

Because customers in a single class model are indistinguishable, it is
not necessary to specify the scheduling discipline at a queueing center.
The same performance measures will result from any scheduling discip-
line in which exactly one customer is in service whenever there are custo-
mers at the center.

Customers at a delay center each (logically) are allocated their own
server, so there is no competition for service. Thus the residence time of
a customer at a delay center is exactly that customer’s service demand
there. The most common use of a delay center is to represent the think
time of terminal workloads. However, delay centers are useful in any
situation in which it is necessary to impose some known average delay.
For instance, a delay center could be used to represent the delay incurred
by sending large amounts of data over a dedicated low speed transmission
line. As shown in the figure, an icon suggestive of concurrent activity is
used to represent a delay center.

4.2.3. Service Demands

The service demand of a customer at center k, D, is the total amount
of time the customer requires in service at that center. Thus the set of
service demands (one for each center) characterizes the behavior of the
customer in terms of processing requirements. In a single class model,

60 Preliminaries: Queueing Network Model Inputs and Outputs

customers are indistinguishable with respect to their service demands,
which can be thought of as representing the ‘‘average customer’ in the
actual system.

D, can be calculated directly as B,/C (the measured busy time of
device k divided by the measured number of system completions), or
may be thought of as the product of V), the number of visits that a cus-
tomer makes to center k, and S, the service requirement per visit. It is
possible to parameterize queueing network models at this more detailed
level. However, a surprising characteristic of separable queueing net-
works is that their solutions depend only on the product of V) and S, at
each center, and not on the individual values. Thus a model in which
customers make 100 visits to the CPU, each for 10 milliseconds of ser-
vice, is equivalent to one in which customers make a single visit for one
second of service. For simplicity (to reduce the number of parameters
and to facilitate obtaining their values) we generally will choose to
parameterize our models in terms of D,. Note that we deﬁxke D to be

the total service demand of a customer at all centers: D = 2 Dy.
=

4.3. Model Outputs

Table 4.2 lists the outputs obtained by evaluating a single class queue-
ing network model. Comments appear in the subsections that follow.

average system response time
system throughput
average number in system

system
measures

Q=X

U, utilization of center k

center R, average residence time at center k
measures X, throughput of center k
Q, average queue length at center k

Table 4.2 — Single Class Model Outputs

The values of these outputs depend upon the values of all of the
model inputs. It will be especially useful to be able to specify that an out-
put value corresponds to a particular workload intensity value. To do so,
we follow the output with the parenthesized workload intensity: X (N) is
the throughput for a batch or terminal class with population N, Q,(\) is
the average queue length at center k for a transaction class with arrival
rate A, etc.

4.3. Model Outputs 61

4.3.1. Utilization

The utilization of a center may be interpreted as the proportion of
time the device is busy, or, equivalently, as the average number of custo-
mers in service there. (The latter interpretation is the only one that
makes sense for a delay center.)

4.3.2. Residence Time

Just as D, is the total service demand of a customer at center k (in
contrast to S, the service requirement per visit), R, is the total
residence time of a customer at center k (as opposed to the time spent
there on a single visit). If the model is parameterized in terms of V), and
S,, then the time spent per visit at center k can be calculated as R,/ V.

System response time, R, corresponds to our intuitive notion of
response time; for example, the interval between submitting a request
and receiving a response on an interactive system. Obviously, system
response time is the sum of the residence times at the various centers:

K
R = ER"‘
k=1

4.3.3. Throughput

If a model is parameterized in terms of D, then we can obtain system
throughput, X, but do not have sufficient information to calculate device
throughputs, X,. (This is a small price to pay for the convenience that
results from the less detailed parameterization.) If a model is parameter-
ized in terms of V, and S,, then device throughputs can be calculated
using the forced flow law, as X, = V. X.

4.3.4. Queue Length

The average queue length at center k, Q,, includes all customers at
that center, whether waiting or receiving service. The number of custo-
mers waiting can be calculated as Q, — U,, since U, can be interpreted
as the average number of customers receiving service at center k.

QO denotes the average number in system. For a batch class, 0 = N.
For a transaction class, O = XR (by Little’s law). For a terminal class,
O=N—XZ(Q=XR,and R = N/X — Z.) In general, the average
population of any subsystem can be obtained either by multiplying the
throughput of the subsystem by the residence time there, or by summing
the queue lengths at the centers belonging to the subsystem.

62 Preliminaries: Queueing Network Model Inputs and Outputs

4.3.5. Other Outputs

Various other outputs can be computed at some additional cost. As
one example, we occasionally will wish to know the queue length distribu-
tion at a center: the proportion of time that the queue length has each
possible value. We denote the proportion of time that the queue length
at center k has the value i by P[Q,=1].

4.4. Multiple Class Models

4.4.1. Inputs

Multiple class models consist of C customer classes, each of which has
its own workload intensity (\., N,, or N, and Z.) and its own service
demand at each center (D, ;). Within each class, the customers are in-
distinguishable. (Note that we have re-used the symbol C, which denot-
ed customer completions in Chapter 3. Confusion will not arise.)

Multiple class models consisting entirely of open (transaction) classes
are referred to as open models. Models consisting entirely of closed
(batch or terminal) classes are referred to as closed. Models consisting of
both types of classes are referred to as mixed.

The overall workload intensity of a multiple class model is described
by a vector with an entry for each class: X = (A, Ay, ..., A¢) if the
model is open, N = (N;, N,, ..., N¢) if it is closed (in point of fact,
Z. also must be included for terminal classes), and
I= (Nyor\ ,Nyor\,, .., Ncor) if it is mixed.

As was the case for single class models, we do not specify the schedul-
ing discipline at a queueing center. Roughly, the assumption made is that
the scheduling discipline is class independent, i.e., it does not make use of
information about the class to which a customer belongs. The same per-
formance measures will result from any scheduling discipline that satisfies
this assumption, along with the earlier assumption that exactly one custo-
mer is in service whenever there are customers at the center.

Table 4.3 summarizes the inputs of multiple class models. By analogy
to the single class case, we define D, to Il(ae the total service demand of a

class ¢ customer at all centers: D, = 2 D, .
k=1

4.4.2. Outputs

All performance measures can be obtained on a per-class basis (e.g.,
U, and X.) as well as on an aggregate basis (e.g., U, and X). For utili-
zation, queue length, and throughput, the aggregate performance measure

4.4. Multiple Class Models 63

C, the number of customer classes
For each class c:
customer its workload intensity, one of:
description \c, the arrival rate (for transaction workloads), or
N,, the population (for batch workloads), or
N, and Z,, the think ‘ime (for terminal workloads)

K, the number of service centers

center .
. . For each service center k:
description . . ,
its type, either queueing or delay
service For each class ¢ and center k:
demands D. x = V. xScx, the service demand

Table 4.3 — Multiple Class Model Inputs

equals the sum of the per-class performance measures (e.g.,

C
u = 2 U.,). For residence time and system response time, how-
c=1
ever, the per-class measures must be weighted by relative throughput, as
follows:

_ C, RC.XC . & Rc,k‘Xc
k= c‘gl X Rk B cgl X

This makes intuitive sense, and can be demonstrated formally using
Little’s law (see Exercise 2).

Table 4.4 summarizes the outputs of multiple class models. The fol-
lowing reminders, similar to comments made in the context of single
class models, should be noted in studying the table:

® The basic outputs are average values (e.g., average response time)
rather than distributional information (e.g., the 90th percentile of
response time). Thus the word ‘average’’ should be understood even
if it is omitted.

® X, and X, , are meaningful only if the model is parameterized in
terms of V., and S, ;, rather than D, ;.

® To specify that an output value corresponds to a particular workload
intensity value, we follow the output symbol with the parenthesized
workload intensity.

64 Preliminaries: Queueing Network Model Inputs and Outputs

R average system response time
aggregate X system throughput
Q average number in system
system
measures .
R. average class ¢ system response time
per class X. class ¢ system throughput
0O, average class ¢ number in system
U, utilization of center k
aggregate R, average residence time at center k
X, throughput at center k
O, average queue length at center k
center U, , class c utilization of center k
measures ' . .
R, ;. average class ¢ residence time at
per class center
X, class c throughput at center k
Q.. average class ¢ queue length at
center k

Table 4.4 — Multiple Class Model Outputs

4.5. Discussion

The specific inputs and outputs available for separable queueing net-
work models, as just described, are dictated by a set of mathematical
assumptions imposed to ensure efficiency of evaluation. The purpose of
the present section is to consider the practical impact of these assump-
tions on the accuracy of our models. Specifically:

® What important computer system characteristics cannot be represented
directly using separable models?

® Given these apparent inadequacies, how can we explain the success of
separable models in computer system analysis?

® How does the analyst approach the inevitable situations in which
separable models truly are inadequate?

Naturally, complete answers to these questions must await the remainder
of the book. The present section contains a foreshadowing of these
answers, to provide insight and guide intuition. For simplicity, our dis-
cussion will be set largely in the single class context.

4.5. Discussion 65

Departures Disks

CPU

== D D
A

Figure 4.2 — The Canonical Computer System Model

Figure 4.2 illustrates the canonical separable queueing network model
of a centralized system, which appears throughout the book. This model
has the inputs and outputs discussed earlier in this chapter. Service
centers are used to represent the CPU and the active 1/0 storage devices,
e.g., disks. On the one hand, this model bears a close structural resem-
blance to a computer system. On the other hand, there are certain com-
puter system characteristics that cannot be represented directly using the
available inputs, and certain performance measures that cannot be
obtained directly from the available outputs. These include:

® simultaneous resource possession — We have no direct way to express
the fact that a customer may require simultaneous service at multiple
resources. As an example, in order to transfer data to or from disk it
may be necessary to concurrently use the disk, a controller, and a
channel.

® memory constraints — Using a transaction workload, we are assuming
implicitly that an arbitrarily large number of customers can be memory
resident simultaneously. Using a batch workload, we are assuming
implicitly that the multiprogramming level is constant. Using a termi-
nal workload, we are assuming implicitly that all terminal users can be
resident in memory simultaneously. In practice, it often occurs that
the number of simultaneously active jobs varies over time but is lim-
ited by some memory constraint.

66 Preliminaries: Queueing Network Model Inputs and Outputs

® plocking — In systems such as store-and-forward communications net-
works, the state of one resource can affect the processing of customers
at another.

® qadaptive behavior — A timesharing system may dynamically allocate
scratch files to lightly loaded disks. A communications network may
make dynamic routing decisions based on the populations at various
nodes.

® process creation and synchronization — Since the number of customers
in a class must either remain constant (closed classes) or be
unbounded (open classes), it is not possible to represent explicitly a
process executing a fork (spawning a sub-process) when it reaches a
particular point in its computation. Similarly, since customers are
independent of one another it is not possible to model directly syn-
chronization points in the computation of two or more processes.

® high service time variability — In practice, extremely high service burst
length variability can degrade the performance of a system.

® priority scheduling — Since a priority scheduler makes use of class
dependent information, it will yield different performance measures
than the class independent scheduling disciplines assumed in multiple
class queueing network models.

® response time distributions — The list of useful model outputs obtain-
able directly at reasonable cost does not include the distribution of
response times.

How is it, then, that separable queueing network models are successful
at representing the behavior of complex contemporary computer systems,
and at projecting the impact of modifications to their hardware, software,
and workload?

First, consider the process of defining and parameterizing a model of
an existing system. Much of the relevant complexity of the system that
we appear to be ignoring is, in fact, captured implicitly in the measurement
data used to parameterize the model. As an example, consider the effect
of 1I/0O path contention. Our canonical model represents only disks, not
intermediate path elements such as channels and controllers. However,
in parameterizing the model we will set the service demand at each disk
center k, Dy, equal to the measured total disk busy time per job, which
we will calculate as U, T/C (C here is the measured number of comple-
tions). In measuring the disk, we will find it busy not only during seek,
latency, and data transfer, but also during those periods when it is
attempting to obtain a free path. In other words, the effect of I/O path
contention is incorporated indirectly, through the disk service demand
parameters. A model parameterized in this way can be expected to do a
good job of representing the behavior of the system during the measure-
ment interval.

4.6. Summary 67

Next, consider using such a model to project the effect of
modifications. In many cases, indirect representations of system charac-
teristics based on measurement data can be assumed to be insensitive to
the proposed modification. For example, the primary effect of a CPU
upgrade can be represented in a model by adjusting CPU service
demands. Any effect of this modification on disk service demands —
either “‘intrinsic’> demands (seek, latency, and data transfer times) or the
component due to path contention — is strictly secondary in nature. It is
in these cases that separable models prove adequate on their own.

Sometimes, of course, the objective of a study is to answer detailed
questions about modifications that can be expected to affect the indirect
representations of system characteristics. For example, if I/O path con-
tention were known to be a significant problem, an analyst might want to
use a queueing network model to project the performance improvement
that would result from path modifications. In cases such as this, separ-
able models can be augmented with procedures that calculate revised esti-
mates for those portions of various service demands that are indirect
representations of relevant system characteristics. These are the ‘‘exten-
sions’’ alluded to in Chapter 1. This approach achieves the necessary
accuracy, while preserving the ability to evaluate the model efficiently.
Such techniques exist for each of the system characteristics mentioned
earlier in this section.

4.6. Summary

We have enumerated and discussed the inputs and the outputs of
separable queueing network models. These were summarized for the sin-
gle class case in Tables 4.1 and 4.2, respectively, and for the multiple
class case in Tables 4.3 and 4.4, respectively.

We have noted that the availability of inputs and outputs is dictated by
assumptions imposed to ensure the efficient evaluation of the model. We
have considered the practical impact of these assumptions on the accuracy
of the models.

In many cases, separable models are adequate by themselves, because
complex system characteristics are captured implicitly in the measurement
data used to parameterize them. Part II of the book is devoted to evalua-
tion algorithms for models of this sort.

In other cases, separable models must be augmented with procedures
that calculate revised estimates for those portions of various service
demands that are indirect representations of relevant system characteris-
tics. Part III of the book is devoted to such procedures.

68 Preliminaries: Queueing Network Model Inputs and Outputs

4.7. Exercises

1. Consider the system with which you are most familiar:

a. How would you obtain parameter values for a single class model
from the available measurement data?

b. How would you obtain parameter values for a multiple class model
from the available measurement data?

c. What aspects of your system important to its performance seem to
be omitted from the simple single or multiple class models that you
might define?

RCX(‘ . . .

X that is, that the average response time in a

system with multiple job classes is a throughput-weighted average of
the individual average response times.

3. In creating a model of a computer system, there are two extreme posi-
tions we can take as to the workload representation:

c
2. Show that R = 3,
=1

a. assume all jobs are identical, in which case a single class model is
appropriate, or

b. assume each job is significantly different from every other job, and
represent the workload with a class per job.

What are the advantages and disadvantages of each approach?

Part I1

General Analytic Techniques

Part II of the book discusses algorithms for evaluating separable
queueing network models. To evaluate a queueing network model is to
obtain outputs such as utilizations, residence times, queue lengths, and
throughputs, from inputs such as workload intensities and service
demands.

In Chapter 5 we show how to obtain bounds on performance, using
extremely straightforward reasoning and simple computations that can be
performed by hand.

In Chapters 6 and 7 we present more sophisticated algorithms that
yield specific performance measures, rather than bounds. Chapter 6 is
devoted to models with one job class. Chapter 7 extends this discussion
to models with multiple job classes.

In Chapter 8 we introduce flow equivalent service centers, which can be
used to represent the behavior of entire subsystems. Such hierarchical
modelling is one important way to extend separable queueing network
models to represent system characteristics that violate the assumptions
required for separability — characteristics such as those listed at the end
of Chapter 4. Chapter 8 thus forms a bridge to Part III of the book.

69

Chapter 5

Bounds on Performance

5.1. Introduction

We begin this part of the book with a chapter devoted to the simplest
useful approach to computer system analysis using queueing network
models: bounding analysis. With very little computation it is possible to
determine upper and lower bounds on system throughput and response
time as functions of the system workload intensity (number or arrival rate
of customers). We describe techniques to compute two classes of perfor-
mance bounds: asymptotic bounds and balanced system bounds. Asymp-
totic bounds hold for a wider class of systems than do balanced system
bounds. They also are simpler to compute. The offsetting advantage of
balanced system bounds is that they are tighter, and thus provide more
precise information than asymptotic bounds.

There are several characteristics of bounding techniques that make
them interesting and useful:

® The development of these techniques provides valuable insight into
the primary factors affecting the performance of computer systems. In
particular, the critical influence of the system bottleneck is highlighted
and quantified.

® The bounds can be computed quickly, even by hand. Bounding
analysis therefore is suitable as a first cut modelling technique that can
be used to eliminate inadequate alternatives at an early stage of a
study.

® In many cases, a number of alternatives can be treated together, with
a single bounding analysis providing useful information about them
all.

In contrast to the bounding techniques discussed here, the more sophisti-
cated analysis techniques presented in subsequent chapters require con-
siderably more computation — to the point that it is infeasible to perform
the analysis by hand.

Bounding techniques are most useful in system sizing studies. Such
studies involve rather long-range planning, and consequently often are

70

5.1. Introduction 71

based on preliminary estimates of system characteristics. With such
imprecision in knowledge of the system, quick bounding studies may be
more appropriate than more detailed analyses leading to specific estimates
of performance measures. System sizing studies typically involve con-
sideration of a large number of candidate configurations. Often a single
resource (such as the CPU) is the dominant concern, because the
remainder of the system can be configured to match the power of this
resource. Bounding analysis permits considering as one alternative a group
of candidate configurations that have the same critical resource but differ
with respect to the pattern of demands at the other service centers.

Bounding techniques also can be used to estimate the potential perfor-
mance gain of alternative upgrades to existing systems. In Section 5.3 we
indicate how graphs of the bounds can provide insight about the extent of
service demand reduction required at the bottleneck center if it is to be
possible to meet stated performance goals. (Service demand at a center
can be reduced either by shifting some work away from the center or by
substituting a faster device at the center.)

Our discussion of bounding analysis is restricted to the single class
case. Multiple class generalizations exist, but they are not used widely.
One reason for this is that bounding techniques are most useful for capa-
city studies of the bottleneck center, for which single class models suffice.
Additionally, a major attraction of bounding techniques in practice is their
simplicity, which would be lost if multiple classes were included in the
models.

The models we consider in the remainder of this chapter can be
described by the following parameters:

— K, the number of service centers;

— D,x, the largest service demand at any single center;

— D, the sum of the service demands at the centers;

— the type of the customer class (baich, terminal, or transaction);
— Z, the average think time (if the class is of terminal type).

For models with transaction type workloads, the throughput bounds indi-
cate the maximum customer arrival rate that can be processed by the sys-
tem, while the response time bounds reflect the largest and smallest pos-
sible response times that these customers could experience as a function
of the system arrival rate. For models with batch or terminal type work-
loads, the bounds indicate the maximum and minimum possible system
throughputs and response times as functions of the number of customers
in the system. We refer to throughput upper and response time lower
bounds as optimistic bounds (since they indicate the best possible perfor-
mance), and we refer to throughput lower and response time upper
bounds as pessimistic bounds (since they indicate the worst possible per-
formance). While we treat only bounds on system throughput and

72 General Analytic Techniques: Bounds on Performance

response time in the following sections, the fundamental laws of Chapter
3 can be used to transform these into bounds on other performance
measures, such as service center throughputs and utilizations.

5.2. Asymptotic Bounds

Asymptotic bounding analysis provides optimistic and pessimistic
bounds on system throughput and response time in single class queueing
networks. As their name suggests, they are derived by considering the
(asymptotically) extreme conditions of light and heavy loads. The vali-
dity of the bounds depends on only a single assumption: that the service
demand of a customer at a center does not depend on how many other
customers currently are in the system, or at which service centers they
are located.

The type of information provided by asymptotic bounds depends on
whether the system workload is open (transaction type) or closed (batch
or terminal type). We begin with the simpler case, that of transaction
type workloads.

5.2.1. Transaction Workloads

For transaction workloads, the throughput bound indicates the max-
imum possible arrival rate of customers that the system can process suc-
cessfully. If the arrival rate exceeds this bound, a backlog of unprocessed
customers grows continually as jobs arrive. Thus, in the long run, an
arriving job has to wait an indefinitely long time (since there may be any
number of jobs already in queue when it arrives). In this case we say that
the system is saturated. The throughput bound thus is the arrival rate
that separates feasible processing from saturation.

The key to determining the throughput bound is the utilization law:
U, = X, S, for each center k. If we denote the arrival rate to the system
as A, then X, = AV,, and the utilization law can be rewritten as
U. = \D,, where D, is the service demand at center k. To derive the
throughput bound, we simply note that as long as all centers have unused
capacity (i.e., have utilizations less than one), an increased arrival rate
can be accommodated. However, when any of the centers becomes
saturated (i.e., has utilization one), the entire system becomes saturated,
since no increase in the arrival rate of customers can be handled success-
fully. Thus, the throughput bound is the smallest arrival rate A, at
which any center saturates. Clearly, the center that saturates at the
lowest arrival rate is the bottleneck center — the center with the largest
service demand. Let max be the index of the bottleneck center. Then:

5.2. Asymptotic Bounds 73

Umax(x) = /\Dmax <1
SO

1
D max

Nt =

Thus, for arrival rates greater than or equal to 1/D,,, the system is
saturated, while the system is capable of processing arrival rates less than
1/DI?1G\"

Asymptotic response time bounds indicate the largest and smallest
possible response times experienced by customers when the system
arrival rate is A. Because the system is unstable if A > Ay, we limit our
investigation to the case where the arrival rate is less than the throughput
bound. There are two extreme situations:

® In the best possible case, no customer ever interferes with any other,
so that no queueing delays are experienced. In that case the system
response time of each customer is simply the sum of its service
demands, which we denote by D.

® In the worst possible case, n customers arrive together every n/\ time
. . . 7
units (the system arrival rate is —— = A). Customers at the end of

n/x

the batch are forced to queue for customers at the front of the batch,
and thus experience large response times. As the batch size n
increases, more and more customers are waiting an increasingly long
time. Thus, for any postulated pessimistic bound on response times
for system arrival rate A, it is possible to pick a batch size »
sufficiently large that the bound is exceeded. We conclude that there
is no pessimistic bound on response times, regardless of how small the
arrival rate A might be.

These results are somewhat unsatisfying. Fortunately, the throughput
and response time bounds provide more information in the case of closed
(batch and terminal) workload types.

5.2.2. Batch and Terminal Workloads

Figures 5.1a and 5.1b show the general form of the asymptotic bounds
on throughput and response time for batch and terminal workloads,
respectively. The bounds indicate that the precise values of the actual
throughputs and response times must lie in the shaded portions of the
figures. The general shapes and positions of these values are indicated by
the curves in the figures.

74 General Analytic Techniques:

Batch Throughput:

S
I

Bounds on Performance

ma, \\§\\~§\\
X(N) \\\\\\\\\s

Of—

Batch Response Time:

ROV) §\\\\ \\\\\\\\\\\\\\\\\\

I
|
l

|
l I

!

|

|

I

|

|

1
1 N*
N

Figure 5.1a — Asymptotic Bounds on Performance

5.2. Asymprotic Bounds

Terminal Throughput:

N
D+ Z
L 4
Dmax
X(N}
L
D
l N
; NDFZ
| J
I] ! | 1 | S JY BN L [{ |
1 N
N
Terminal Response Time:
A N
ND \
N
RN} ND pare =2

I
I !
| !
| J
f |
| f
| !
S RO TN /% SEUUUE T00 A MU ASUUUN ASUUUE WU AN WU
1 / N

N

Figure 5.1b — Asymptotic Bounds on Performance

78

76 General Analytic Techniques: Bounds on Performance

To derive the bounds shown in the figures, we first consider the
bounds on throughput, and then use Little’s law to transform them into
corresponding bounds on response time. Our analysis is stated in terms
of terminal workloads. By taking the think time, Z, to be zero, we obtain
results for batch workloads.

We begin with the heavy load (many customer) situation. As the
number of customers in the system (N) becomes large, the utilizations of
all centers grow, but clearly no utilization can exceed one. From the utili-
zation law we have for each center k that:

U(N) = X(N) D, <1

Each center limits the maximum possible throughput that the system can
achieve. Since the bottleneck center (max) is the first to saturate, it res-
tricts system throughput most severely. We conclude that:

1
Dmax

Intuitively this is clear, because if each customer requires on average
D,.. time units of service at the bottleneck center, then in the long run
customers certainly cannot be completed any faster than one every D,
time units.

X(V) <

Next consider the light load (few customers) situation. At the
extreme, a single customer alone in the system attains a throughput of
1/ (D+2Z), since eachKinteraction consists of a period of service (of

average length D = EDk) and a think time (of average length Z).
k=1

As more customers are added to the system there are two bounding situa-

tions:

® The smallest possible throughput occurs when each additional custo-
mer is forced to queue behind all other customers already in the sys-
tem. In this case, with N customers in the system, (N¥—1)D time
units are spent queued behind other customers, D time units are
spent in service, and Z time units are spent thinking, so that the
throughput of each customer is 1/(ND + Z). Thus, system
throughput is N/(ND + Z).

® The largest possible throughput occurs when each additional customer
is not delayed at all by any other customers in the system. In this case
no time is spent queueing, D time units are spent in service, and Z
time units are spent thinking. Thus, the throughput of each customer
is 1/(D+ Z), and system throughput is N/(D+ Z).

The above observations can be summarized as the asymptotic bounds on
system throughput:

N < x(V) < min (

1 N
ND + Z Dy > D+ Z

5.3. Using Asymptotic Bounds 77

Note that the optimistic bound consists of two components, the first of
which applies under heavy load and the second of which applies under
light load. As illustrated by Figure 5.1, there is a particular population
size N” such that for all N less than N~ the light load optimistic bound
applies, while for all N larger than N~ the heavy load bound applies.
This crossover point occurs where the values of the two bounds are equal:

D+Z
D max

N =

We can obtain bounds on response time R (N) by transforming our
throughput bounds using Little’s law. We begin by rewriting the previous
equation:

N < N 1 N
ND+Z = RWN) + Z Dyux ' D+Z

Inverting each component to express the bounds on R (N) yields:

)

< min (

D+Z RN)+ Z ND + Z
N) < N < N

max (Dma.\' »

or:
max (D, ND,,,., — Z) < R(N) < ND

5.2.3. Summary of Asymptotic Bounds

Table 5.1 summarizes the asymptotic bounds. Algorithm 5.1 indicates
the steps by which the asymptotic bounds can be calculated for batch and
terminal workloads. (The calculations for transaction workloads are
trivial.) Note that all bounds are straight lines with the exception of the
pessimistic throughput bound for terminal workloads. Consequently, once
D and D,,, are known, calculation of the asymptotic bounds expressed
as functions of the number of customers in the network takes only a few
arithmetic operations. The amount of computation is independent of
both the number of centers in the model and the range of customer
populations of interest.

5.3. Using Asymptotic Bounds

In this section we present three applications of asymptotic bounds: a
case study in which asymptotic bounds proved useful, an assessment of
the effect of alleviating a bottleneck, and an example of modification
analysis.

78 General Analytic Techniques: Bounds on Performance

workload bounds
type
1 . N 1
- < < =
batch 5 S X(N) £ min (D , Dmax)
N
X . Wtz S AW
terminal 1
< .
S min (57 D

transaction | X(\) < 1/ D

batch max (D, ND,,.,,) < R(N) < ND

R terminal max (D, ND,.c — Z) < R(N) < ND

transaction | D < R(\)

Table 5.1 — Summary of Asymptotic Bounds
5.3.1. Case Study

Asymptotic bound analysis was enlightening in the case study intro-
duced in Section 2.6. (That section may be reviewed for additional back-
ground.)

An insurance company had twenty geographically distributed sites
based on IBM 3790s that were providing unacceptable response times.
The company decided to enter a three year selection, acquisition, and
conversion cycle, but an interim upgrade was required. IBM 8130s and
8140s both were capable of executing the existing applications software,
and consequently were considered for use during the three year transition
period. After discussions with the vendor, the company believed that the
use of 8130s would result in performance improving by a factor of 1.5 to
2 over the 3790s, while the use of 8140s would lead to performance
improving by a factor of 2 to 3.5. (No precise statement of the
significance of the ‘‘performance improvement factor’’ was formulated.)

A modelling study was initiated to determine those sites at which the
less expensive 8130 system would suffice. It was known that the 8130
and 8140 systems both included a disk that was substantially faster than
that of the 3790. With respect to CPU speed, the 8130 processor was
slightly slower than the 3790, while the 8140 was approximately 1.5 times

5.3. Using Asymptotic Bounds 79

(Steps are presented assuming a terminal workload; to treat a
batch workload, set Z to zero.)

K
1. Calculate D = > D, and D, = max D, .
k=1 ‘

2. Calculate the intersection point of the components of the op-
timistic bounds:
D+Z

*
N =
D max

3. Bounds on throughput pass through the points:
optimistic bound :

1 .
(0,0)and (1, m)fOl‘fVS N
1 1
,) and (1,
DIHGX DIN(ZX
pessimistic bound

This bound is not linear in N, and so must be cal-
culated for each population of interest using the
equation in Table 5.1.

4. Bounds on average response time pass through the points:

(0)for N > N°

optimistic bound .
(O,D)and (1, D) for N N’
0,—Z)and 1, D,p—Z) for N> N~
pessimistic bound .
(0,0)and (1, D)

Algorithm 5.1 — Closed Model Asymptotic Bounds

faster. Through a combination of this information, ‘‘live’’ measurements
of existing 3790 systems, and benchmark experiments on two of the sys-
tems (3790 and 8140), the following service demands were determined:

service demands, seconds

system CPU disk
3790 (observed) 4.6 4.0
8130 (estimated) 5.1 1.9

8140 (estimated) 3.1 1.9

80 General Analytic Techniques: Bounds on Performance

Terminals

o

CPU Disk

Figure 5.2 — Case Study Model

With the service demands established, a bounding model was used to
assess the performance to be expected from each of the three systems.
Figure 5.2 depicts the queueing network. (Although some sites had two
physical disk drives, the disk controller did not permit them to be active
simultaneously. For this reason, having only a single disk service center
in the model is appropriate.) The parameters are:

— K, the number of service centers (2);

— D, the largest service demand (4.6 seconds for the 3790, 5.1 for
the 8130, and 3.1 for the 8140);

— D, the sum of the service demands (8.6, 7.0, and 5.0, respec-
tively);

— the type of the customer class (terminal);

— Z, the average think time (an estimate of 60 seconds was used).

Applying Algorithm 5.1 to the model of each of the three systems
leads to the optimistic asymptotic bounds graphed in Figure 5.3. (The
pessimistic bounds have been omitted for clarity.) These reveal that, at
heavy loads, performance of the 8130 will be inferior to that of the 3790.
This is a consequence of the fact that the 8130 has a slower CPU, which
is the bottleneck device. Thus, rather than a performance gain of 1.5 to
2, a performance degradation could be expected in moving from 3790s to
8130s whenever the number of active terminals exceeded some threshold.
Figure 5.3 indicates a performance gain in moving from 3790s to 8140s,
although not the expected factor of two or more.

On the basis of the study, additional benchmark tests were done to
re-assess the advisability of involving 8130s in the transition plan. These
studies confirmed that the performance of 8130s would be worse than
that of 3790s when the number of terminals was roughly fifteen or more,

5.3. Using Asymptotic Bounds 81

Throughput:
0.30 — T
3140
XNy o L 3790
y
0.20 |- f/ -
L 8130
0,10 ’—
i | | I i l
S 10 15 20 25 30
N
Response Time:
40 —
30 —
R(N) F
20
}_ 3790
8130
10 / 8140
— ¥
/
L I | ! | L
S 10 15 20 25 30
N

Figure 5.3 — Asymptotic Bounds in the Case Study

82 General Analytic Techniques: Bounds on Performance

and that the performance gain of 8130s over 3790s at lighter loads would
be negligible. Consequently, there was no performance reason to invest
in 8130s for any sites. Eventually the company decided to install 8140s at
all sites during the transition period. Without the simple modelling
study, the company might have ordered 8130s without doing benchmark
tests on them, with disappointing results. (A note of caution: the conclu-
sions reached in this study would not necessarily hold in a context involv-
ing a different workload.)

5.3.2. Effect of Bottleneck Removal

So far we have been most concerned with the bottleneck center, which
constrains throughput to be at most 1/D,,,,. What happens if we allevi-
ate that bottleneck, either by replacing the device with a faster one or by
shifting some of the work to another device? In either case, D, is
reduced and so the throughput optimistic bound, 1/D,,,., increases. A
limit to the extent of this improvement is imposed by the center with the
second highest service demand originally. We call this center the secon-
dary bottleneck, as contrasted with the primary bottleneck.

Consider a model with three service centers (K=3) and a terminal
workload with average think time equal to 15 seconds (Z=15) and ser-
vice demands of 5, 4, and 3 seconds at the centers (D;=35, D,=4, and
D;=3). Figure 5.4 shows the optimistic asymptotic bounds for this
example, supplemented by lines indicating the heavy load optimistic
bounds on performance corresponding to each center. Such a graph pro-
vides a visual representation of the extent of performance improvement
possible by alleviating the primary bottleneck. As the load at the
bottleneck center is reduced, the heavy load optimistic bound on
throughput moves upwards, while the heavy load optimistic bound on
average response time pivots downward (about the point (0, 0) for batch
workloads and about the point (0, —Z) for terminal workloads). The
light load asymptotes also change, but they are much less sensitive to the
service demand at any single center than are the heavy load asymptotes.

An important lesson to be learned is the futility of improving any
center but the bottleneck with respect to enhancing performance at heavy
load. Reducing the service demand at centers other than the bottleneck
improves only the light load asymptote, and the improvement usually is
insignificant. Figure 5.5 compares the effects on the asymptotic bounds
of independently doubling the speed (halving the service demand) at the
primary and secondary bottlenecks for this example system. Observe
that, at heavy load, performance gains only are ev1dent when the demand
at the primary bottleneck is reduced.

5.3. Using Asymptotic Bounds 83

Throughput:

0.30 |-
Xy F
0.20 |- 1
D,
0.10 |-
! ! : | ! ‘ ! | | |
4 8 12 6 20

Response Time:

40 |—

R(N)

Figure 5.4 — Secondary and Tertiary Asymptotic Bounds

84 General Analytic Techniques: Bounds on Performance

Throughput:

0.30 —
Improving primary
XNy L /‘4

Improving secondary

Original

Response Time:

40 —
30 —
R(N)
20 —
Original
\ Improving primary
10 \/ // v
Improving secondary
T | ! Ll] L |

4 8 12 16 20
N

Figure 5.5 — Relative Effects of Reducing Various Service Demands

5.3. Using Asymptotic Bounds 85

5.3.3. Modification Analysis Example

Here we examine the use of asymptotic bounds to assess the impact of
modifications to an existing system. Consider a simplified interactive sys-
tem for which the following measurements have been obtained:

T = 900 seconds length of the measurement interval
B, = 400 seconds CPU busy

B, = 100 seconds slow disk busy

B; = 600 seconds fast disk busy

C = 200 jobs completed jobs

C, = 2,000 slow disk operations

C; = 20,000 fast disk operations

Z = 15 seconds think time

The service demands per job are D;=2.0, D,=0.5, and D3;=3.0. The
visit counts to the disks are V,=10 and V3=100. The service times per
visit to the disks are S,=.05 and S3=.03. We consider four improve-
ments that can be made to the system. These are listed below, along with
an indication of how each would be reflected in the parameters of the
model:

1. Replace the CPU with one that is twice as fast. D; — 1

2. Shift some files from the faster disk to the slower disk, balancing their
demands. We consider only the primary effect, which is the change in
disk speed, and ignore possible secondary effects such as the fact that
the average size of blocks transferred may differ between the two
disks. The new disk service demands are derived as follows.
V,+ V3 = 110. Because S,=.05 and S;=.03, this is the same as:

V25, V355
—_— + —_—
.05 .03
Since we wish to have D, = V,S, = V3S; = Dy

= 110

D,

1 1 _
o5 T .03] = 10

and D, = D; = 2.06. Dividing by the appropriate service times, we
obtain the new visit counts: V,=41 and V;=69.

3. Add a second fast disk (center 4) to handle half the load of the busier
existing disk. Once again, we consider only the primary effects of the
change. K «— 4, D3 — 1.5, D4 — 1.5

86 General Analytic Techniques: Bounds on Performance

4, The three changes made together: the faster CPU and a balanced load
across two fast disks and one slow disk. Service demands become
D=1, D,=1.27, D;=1.27, and D4=1.27. These were derived in a
manner similar to that employed above. We know that
Vy+ V3 + V4 = 110. To ensure that D, = D; = Dy

VzSz V3 S3 V4 S4

05 03 03— 10
1 1 1]
Drlos T o © .03] = 1o
D,=D;=D, = {%} 110 = 1.27

Figure 5.6 shows the optimistic asymptotic bounds for_the original sys-
tem (labelled ¢‘None’’), for each modification individually (labelled
“(1), «“(2)”, and ““(3)", respectively), and for the three in combination
(labelled ““(1) and (2) and (3)”’). Intuitively, the first change might
appear to be the most significant, yet Figure 5.6 shows that this is not
true. Because the fast disk is the original bottleneck, changes 2 and 3 are
considerably more influential. Note that change 2 yields almost as much
improvement as change 3 although it requires no additional hardware.
The combination of the three modifications yields truly significant results.

The modification analysis done in this section has involved only
asymptotic bounds on performance. In Chapter 13 we will consider
modification analysis once again, using more sophisticated techniques to
evaluate our models.

5.4. Balanced System Bounds

With a modest amount of computation beyond that required for
asymptotic bounds, tighter bounds can be obtained. These bounds are
called balanced system bounds because they are based upon systems that
are ‘“‘balanced’ in the sense that the service demand at every center is
the same, i.e., Dy=D,=D;= ... =Dg. Figures 5.7a and 5.7b show the
general form of balanced system bounds (together with the asymptotic
bounds) for batch (5.7a) and terminal (5.7b) workloads.

We first establish some special properties of balanced systems. We
then show how these properties can be exploited to determine bounds on
performance that complement the asymptotic bounds and lead to more
precise knowledge of system behavior. The derivation of balanced system
bounds is shown for batch workloads only. The reader is asked to work
through the derivation for transaction workloads in Exercise 5. Bounds

5.4. Balanced System Bounds

Throughput:

0.08

0.06

XNV

0.04

0.02

Response Time:

30

20

R(N)

_ Y, (1)and (2) and (3)
_ y/2 (3)
(2)
I None, (1)
| | | I | | I 1 I
8 16 24 32 40
N
None, (1)) 3)
(1) and (2) and (3)
-
F 7
‘ ! | { i . {
8 16 24 32 40

N

Figure 5.6 — Example of the Effects of Various Changes

88 General Analytic Techniques: Bounds on Performance

Batch Throughput:
1
Dnmx I
Y\
Ly
D
1 N* Y
N
Buatch Response Time:
R(N)
|
l
|
D |
D - Dave ; I
D =Dy \ l !
| l I
| |
| | |
i T L 1
1 N NT
N

Figure 5.7a — Balanced System Bounds on Performance

5.4. Balanced System Bounds 89

Terminal Throughput:
N
N-1D

D+2z)+ ——2¢
i / //4; 1+ (Z/D)
N\

\&

o

max

D+Z
X(N) N
] —
0 +2 + N Ve
1 | 1 + (ZIND)
| X N
I ND+2Z
I
Y O A
1 N* N*
N
Terminal Response Time: D NV = DDygy
1 + (ZIND)
ND \
/NDmax _Z
R(N)
(N = DD,
1 +(Z/D)

e e e ——

Figure 5.7b — Balanced System Bounds on Performance

90 General Analytic Techniques: Bounds on Performance

for each of batch, terminal, and transaction workload types are given in
Table 5.2.

The analysis of balanced systems is a special case of the techniques to
be presented in Chapter 6. Formally, this analysis requires that various
assumptions be made about the system being modelled. (These assump-
tions will be described in Chapter 6.) This is in contrast to asymptotic
bounds, which require only that the service demand of a customer at a
center does not depend on how many other customers are currently in
the system or at which centers they are located.

For balanced systems, the techniques to be presented in Chapter 6
have a particularly simple form. The utilization of every service center is
given by:

N

U(N) = ——————
« (V) N+K—1

(We do not attempt to justify this now, either intuitively or formally.) By

the utilization law, system throughput is then:

Y _ __N L

XN = 5° = ¥¥g=1 X D,

where D, is the service demand at every center.

Let D,v> Dawe, and D,,;,, denote respectively the maximum, average,
and minimum of the service demands at the centers of the model we
wish to evaluate. We bound the throughput of that system by the
throughputs of two related balanced systems: one with service demand
D,.» at every center, and the other with service demand D, at every
center:

N 1

N 1
< <L X
NtKk—1 XD, S YW < o3 Xp

min

These inequalities hold because, of all systems with K centers, N custo-
mers, and maximum service demand D,,., the one with the lowest
throughput is the balanced system with demand D,,. at each center.
Similarly, of all systems with K centers, N customers, and minimum
demand D,,,, the one with the highest throughput is the balanced system
with demand D,,, at each center. Corresponding bounds on average
response times are:

(N+K—=1) D,y € R(N) < (N+K—1) D,y

5.4. Balanced System Bounds 91

Tighter balanced system bounds can be obtained by constraining not
only the maximum service demand, D,,;., but also the total demand, D
(or equivalently, the averagekdemand, D,,.). Of all systems with a given

total service demand D = E D,, the one with the highest throughput

(and the lowest average response time) is the one in which all service
demands are equal (.e., D, = D/K, k =1, ..., K). This confirms our
intuition that the increase in delay resulting from an increase in load is
greater than the decrease in delay resulting from an equivalent decrease
in load. Therefore, optimistic bounds are given by:

N1 N
N+K—1 " D, D + (N—1) Dy,

X(V) <

and:
D+ (N—-1)D,, < R(N)

Note that the optimistic balanced system bound intersects the heavy load
component of the optimistic asymptotic bound (at a point that we will
denote by N*). Beyond this point, the balanced system bound is defined
to coincide with the asymptotic bound.

Analogously, of all systems with total demand D and maximum
demand D,,,, the one with the lowest throughput has D/D,,. centers
with demand D,,,., and zero demand at the remaining centers. (The fact
that D/D,,. may not be an integer hampers intuition, but not the vali-
dity of the bounds.) Therefore, pessimistic bounds are:
N % 1 — N)
D -1 D max D+ N—-1)D max

< XWV)

and:
R(N) S D+ (N=1) D

Table 5.2 summarizes the balanced system bounds for batch, terminal,
and transaction workloads. Algorithm 5.2 indicates how these bounds can
be calculated for batch and terminal workloads. (The calculations for
transaction workloads are trivial.) For batch workloads, the bounds on
average response time are straight lines. Also, the optimistic bound on
average response time for terminal workloads is a straight line. However,
balanced system bounds on throughput and the pessimistic balanced sys-
tem bound on response time for terminal workloads are not linear in N,
and thus must be computed separately for each value of N of interest.

92 General Analytic Techniques: Bounds on Performance

workload bounds
type
N
<
D+ (N—DDpp X
batch
< min (L , N)
Dmax D + (N—I)Dave
N
< X(N)
X D+ 7+ (N_I)Dmax =
. 1+ Z/(ND)
terminal 1 N
< .
S e S, . DD
1+ z/D
transaction | X(\) < 1/ D,
max (MDyer » D + (N—1)D,,,) < R(N)
batch
< D + (N_l)Dmax
(N=1)D,,
R| max (ND .. — Z , D + I+—Z/“D‘e) < RWN)
ermina . (N=1)D,,.
= 1 + Z/(ND)
. D D
— < <
transaction SV RO\ < T \D._

Table 5.2 — Summary of Balanced System Bounds

5.5. Summary

In this chapter we have introduced techniques for obtaining bounds on
the performance measures of systems. The bounds are summarized in
Tables 5.1 and 5.2, and procedures for calculating them are given in
Algorithms 5.1 and 5.2. Asymptotic bounds and balanced system bounds
are important for a number of reasons:

5.5. Summary

93

Calculate the asymptotic bounds using Algorithm 5.1.

Determine the point at which the optimistic balanced system
bound intersects the optimistic asymptotic bound. For a
batch workload:

Nt = D — Dge
Diax = Dave
For a terminal workload:

(D+Z)? — D D,

(D+Z) Dmax - D Dave

Nt =

The optimistic balanced system bound need be calculated
only from 1 to N7* since it is defined to coincide with the
asymptotic bound beyond N*.
Calculate balanced system bounds on average response time.
For a batch workload, the bounds are lines through the
points:
optimistic bound :
(0, D—D,,)and (1, D)
pessimistic bound :
(0,D—-D,,)and (1, D)
For a terminal workload, the bounds are lines through the
points:
optimistic bound :
‘D(JW.’
- —_— D
0, D 1_{_Z/D)and (1, D)
pessimistic bound :
The pessimistic bound for terminal workloads is

not linear in N, so must be calculated for each po-
pulation of interest using the equation in Table 5.2.

Calculate balanced system bounds on throughput for the
range of N of interest using the equations in Table 5.2.
(Again, these are not linear in N.)

Algorithm 5.2 — Closed Model Balanced System Bounds

94 General Analytic Techniques: Bounds on Performance

® Because they are so simple to calculate, even by hand (they require
only a few arithmetic operations once D and D,,,. are known), they
are a quick way to obtain a rough feel for the behavior of a system.

® They reveal the critical influence of the bottleneck service center.
Changes to the system that do not affect the bottleneck center do not
alter the heavy load bounds on performance. Hence, throughput
curves for all systems with bottleneck demand D, are constrained to
lie below the line 1/D,,,.. To improve performance beyond this limit,
it is necessary to reduce the demand at the bottleneck center in some
way.

® Diagrams that show secondary bottlenecks as well as the primary one
provide insight into the extent of improvements realizable by various
modifications to the system that reduce the demand on the primary
bottleneck.

® In the early phases of system design and system sizing, bounding stu-
dies offer the advantage that a group of configurations may be able to
be treated as a single alternative. This is the case because of the criti-
cal influence of the bottleneck center, noted above.

Using fundamental laws, bounds on center utilizations and
throughputs can be calculated from the asymptotic and balanced system
bounds on system throughput. The system throughput bounds of Tables
5.1 and 5.2 are transformed into bounds on center k utilization simply by
multiplying through by D, (since the utilization law states that
U.(N) = X(N) D,). Similarly, bounds on center k throughput are
obtained by multiplying through by V., (due to the forced flow law:
X, (N) = X(N) V).

In the chapters that follow, we present methods for calculating specific
values of performance measures rather than bounds. These values will
form smooth curves that are asymptotic to the light and heavy load
optimistic asymptotic bounds and to the pessimistic balanced system
bounds.

5.6. References

Muntz and Wong [1974] carried out the first study devoted specifically
to the asymptotic properties of closed queueing networks. Denning and
Kahn [1975] obtained related results independently. Denning and Buzen
[1978] describe asymptotic analysis in discussing bottlenecks as part of
operational analysis. Beizer [1978] also includes bounding analysis as part
of his performance evaluation methodology. Balanced system bound
analysis was developed by Zahorjan et al. [1982]. The case study of Sec-
tion 5.3.1 was carried out by Sevcik et al. [1980]. ’

5.7. Exercises 95

[Beizer 1978]
Boris Beizer. Micro-Analysis of Computer System Performance. Van
Nostrand Reinhold, 1978.

[Denning & Buzen 1978]
Peter J. Denning and Jeffrey P. Buzen. The Operational Analysis of

Queueing Network Models. Computing Surveys 10,3 (September
1978), 225-261.

[Denning & Kahn 1975]
Peter J. Denning and Kevin C. Kahn. Some Distribution Free Proper-
ties of Throughput and Response Time. Report CSD-TR-159, Com-
puter Science Department, Purdue University, May 1975.

[Muntz & Wong 1974]
R.R. Muntz and J.W. Wong. Asymptotic Properties of Closed Queue-
ing Network Models. Proc. 8th Princeton Conference on Information
Sciences and Systems (1974).

[Sevcik et al. 1980]
K.C. Sevcik, G.S. Graham, and J. Zahorjan. Configuration and Capa-
city Planning in a Distributed Processing System. Proc. 16th CPEUG
Meeting (1980), 165-171.

[Zahorjan et al. 1982]
J. Zahorjan, K.C. Sevcik, D.L. Eager, and B.I. Galler. Balanced Job

Bound Analysis of Queueing Networks. CACM 25,2 (February 1982),
134-141.

5.7. Exercises

1. In a system serving both batch jobs and terminal users, the following
observations were made during a 30 minute interval:

active terminals 40

think time 20 seconds
interactive response time 5 seconds

disk service time per access 20 milliseconds
disk accesses per batch job 100

disk accesses per terminal interaction 5

disk utilization 60%

a. What is batch throughput?

b. Using only the information given above, calculate the maximum
batch throughput possible if interactive response times of 15
seconds are to be achievable. What assumption must you make in
answering this question?

96 General Analytic Techniques: Bounds on Performance

2. Consider an interactive system with a CPU and two disks. The follow-
ing measurement data was obtained by observing the system:

observation interval 30 minutes
active terminals 30

think time 12 seconds
completed transactions 1,600

fast disk accesses 32,000

slow disk accesses 12,000

CPU busy 1,080 seconds
fast disk busy 400 seconds
slow disk busy 600 seconds

a. Determine the visit counts (V}), service times per visit (S;), and
service demands (D,) at each center.

b. Give optimistic and pessimistic asymptotic bounds on throughput
and response time for 5, 10, 20, and 40 active terminals.

Consider the following modifications to the system:

1 Move all files to the fast disk.

2: Replace the slow disk by a second fast disk.

3: Increase the CPU speed by 50% (with the original disks).

4. Increase the CPU speed by 50% and balance the disk
load across two fast disks.

c. For the original system and for modifications 1 through 4, graph
optimistic and pessimistic asymptotic bounds on throughput and
response time as functions of the number of active terminals.

d. For the original system and for modification 3, specify the max-
imum number of terminals that can be active such that the asymp-
totic bounds do not preclude the possibility of an 8 second average
response time.

e. If 40 terminals were active on the original system, how much
would the CPU have to be speeded up so that the bounds would
not rule out the possibility of achieving 10 second average response
times?

f. If 80 terminals were active on the original system, what minimum
modifications to the system would be required so that the bounds
would not rule out the possibility of achieving 15 second average
response times?

3. An installation with a CPU intensive workload is considering moving
from a centralized system with a single large CPU to a decentralized
system with several smaller CPUs,

5.7. Exercises 97

a. Suppose that 10 processors each 1/10-th the speed of the large pro-
cessor can be operated at the same cost as the large processor. Use
asymptotic throughput and response time bounds to investigate the
conditions under which such a change clearly would be beneficial
or detrimental (considering performance issues only).

b. Suppose that 15 processors each 1/10-th the speed of the large pro-
cessor can be operated at the same cost. How does this affect your
answer to (a)?

4. Consider a model with three service centers and service demands
D, = § seconds, D, = 4 seconds, and D; = 3 seconds.

a. Graph the optimistic and pessimistic asymptotic throughput and
response time bounds for this model with a batch workload.

b. On the same graphs, include balanced system bounds for the
model.

c. What is the relationship between the two sets of bounds in terms
of the range of possible values to which they restrict performance
measures? What is their relationship in terms of computational
effort?

d. Repeat your calculations for a terminal class with 15 second think
times.

5. The assumptions introduced in deriving balanced system bounds for
transaction workloads do not result in an improvement over the
asymptotic bound for system throughput, we still have
X(\) < 1/D,,... However, they do yield an improved response time
bound. The key to this improvement is the equation:

D,

R, (V) Ty

‘ 1— UMW)

a. Using this equation, derive optimistic and pessimistic response time
bounds based on balanced systems in which the service demands at
all centers are set to D,,;, (optimistic) and D,,,, (pessimistic).

b. Derive improved bounds by using the fact that the sum of the ser-
vice demands in the original system is D. (Check your results
against Table 5.2.)

c. Compute the value of A, for a system with three service centers
with service demands of 8, 4, and 2 seconds. Sketch the two sets
of response time bounds you just derived for arrival rates A
between 0 and \,,.

Chapter 6

Models with One Job Class

6.1. Introduction

In this chapter we examine single class queueing network models. Single
class models are refinements of bounding models that provide estimates of
performance measures, rather than simply bounds. For instance, instead
of determining that the throughput of a certain system is between 1.1 and
2.0 jobs/minute (for a given population size), a single class model would
provide an estimate of the actual throughput, such as 1.7 jobs/minute.

In single class models, the customers are assurined to be indistinguish-
able from one another. Although single class models always are
simplifications, they nonetheless can be accurate representations of real
systems. There are a number of situations in which a single class model
might be used:

® increased information — The results of a bounding study might not
provide sufficiently detailed information. Single class models are the
next step in a progression of increasingly detailed models.

® single workload of interest — The computer system under consideration
may be running only a single workload of significance to its perfor-
mance. Therefore, it may not be necessary to represent explicitly the
other workload components.

® homogeneous workloads — The various workload components of a
computer system may have similar service demands. A reasonable
modelling abstraction is to consider them all to belong to a single cus-
tomer class.

Conversely, there are a number of situations in which it might be
inappropriate to model a computer system workload by a single customer
class. These situations typically arise either because distinct workload
components exhibit markedly differing resource usage, or because the
aim of the modelling study requires that inputs or outputs be specified in
terms of the individual workload components rather than in terms of the
aggregate workload. Typical instances of each are:

98

6.2. Workload Representation 99

® nultiple distinct workloads — On a system running both batch and
timesharing workloads, the batch workload might be CPU bound while
the timesharing workload is I/0 bound. A queueing network model
with a customer population consisting of a single class representing an
“‘average’’ job might not provide accurate projections, since jobs in the
actual system do not behave as though they were nearly indistinguish-
able.

® class dependent model inputs — In a mixed batch/timesharing system,
the timesharing workload is expected to grow by 100% over the next 2
years, while the batch workload is expected to grow by only 10%.
Since in a single class model there is only a single class of ‘‘average”’
customers, it is not possible to set the input parameters such that
workload components exhibit differing growth rates. Thus, a single
class model is not an appropriate representation.

® class dependent model outpurs — In a batch environment running both
production and development programs, projections about the time in
system of each workload component, rather than just an estimate of
“‘average’ time in system, might be desired. Since there is only one
class of customers in a single class model, outputs are given in terms
of that class only, and it is difficult to interpret these measures in
terms of the original classes of the system. Thus a multiple class
model is required.

Systems having workloads with substantially differing characteristics, as
exhibited by the examples above, may be modelled more reasonably by
multiple class than by single class queueing networks. These more
sophisticated models are discussed in Chapter 7.

The next two sections of this chapter deal with the practical application
of single class queueing networks as models of computer systems. Sec-
tion 6.2 discusses the use of the workload intensity parameter to mimic
the job mix behavior of a computer system. Section 6.3 describes a
number of case studies in which single class models have been employed.

This discussion of the practice of single class models is followed by a
discussion of their theory. In Section 6.4 the algorithms required to
evaluate the models are developed and illustrated with examples. Section
6.5 presents the theoretical underpinnings upon which the models rest.

6.2. Workload Representation

The workload representation of a single class queueing network model
is given by two model inputs: the set of service demands, and the workload
intensity. In using a single class model, one inherently makes the assump-
tion that all jobs running in the system are sufficiently similar that their

100 General Analytic Techniques: Models with One Job Class

differences do not have a major effect on system performance. Thus, cal-
culating the set of service demands is fairly straightforward, as only a sin-
gle set is required. (In contrast, with multiple class models one first must
decide how many classes to represent, and then must calculate a distinct
set of service demands for each class.)

Establishing the workload intensity has two aspects: selecting an
appropriate workload type (transaction, batch, or terminal), and setting
the appropriate workload intensity parameter(s) for that type. Selecting
an appropriate workload type typically is straightforward, since the three
workload types of queueing network models correspond directly to the
three predominant workload types of computer systems. One technical
distinction that arises is that between open models (those with transaction
classes) and closed models (those with batch or terminal classes). Since
the number of customers that may be in an open model at any time is
unbounded, while the number of customers that may be in a closed
model is bounded by the population of the closed class, the response
times of open models tend to be larger than those of corresponding
closed models with the same system throughput. This occurs because in
open models the potential for extremely large queue lengths exists, while
in closed models, because of the finite population, it does not. This
difference usually is significant only when some device in the system is
near saturation.

This brings us to the question of how to set the workload intensity
parameter. In queueing network models, the workload intensity is a fixed
quantity (an arrival rate, a population, or a population and a think time).
In contrast, in a computer system the workload intensity may wvary.
Despite this discrepancy, queueing network models are useful in a wide
variety of situations:

® heavy load assumption — It may be interesting to study the behavior of
a system under the maximum possible load. By hypothesis, the load is
sufficiently heavy that there always are jobs waiting to enter memory.
Thus, when one job completes and releases memory, it immediately is
replaced by another job. The workload therefore is represented as a
batch class with a constant number of customers equal to the max-
imum multiprogramming level of the system.

® jnon-integer workload intensity — The measurement data for a system
might show that the average multiprogramming level (or active
number of terminal users) is not an integer. Some algorithms for
evaluating queueing network models allow non-integer customer
populations. Other algorithms do not. For the latter, the model can

6.2. Workload Representation 101

be evaluated for the neighboring integer workload intensity values and
the non-integer solution obtained by interpolation. For instance, if the
measured multiprogramming level were 4.5, the solutions of the
model with batch populations of 4 and 5 could be computed, and their
average taken as the projection for 4.5 customers.

® workload intensity distribution — Measurement data might provide a dis-
tribution of observed workload intensities, e.g., proportions of time
P[N=n] that there were n active terminal users on the system. This
distribution could be used to weight the solutions obtained for a model
with each observed number of users. Table 6.1 gives an example.

PIN=n] | Ucpy(n) | X(n) | R(n)
0 0 0
.032 .0525 187
.062 1031 | 1.546
.092 1515 | 2.273
119 1974 | 2.961

Lo~ Ol
— W W N =

4
Upy = D PIN=nlUcpy(n) = .0645

n=1

R(n)| = 2.492

R =3 g((n)P[N=n]
=1 3 X()H)PIN=/]
J=1

Table 6.1 — Use of Distributional Information

® sizing studies — Because the solutions of single class models can be
obtained extremely quickly, it is feasible to evaluate a model for a
large number of workload intensities. Thus, questions such as ‘“What
is the maximum transaction arrival rate that can be supported with
average response time below 3 seconds?”’ can be answered by varying
the arrival rate of a model (e.g., setting A = 1, 2, ...) and observing
the reported response times.

® robustness studies — Similarly, since it often is the case that workload
growth cannot be forecast accurately, it generally is useful to evaluate
a model for a range of workload intensities surrounding the expected
one. This allows the analyst to assess the impact on projected perfor-
mance of a growth in the workload that exceeds expectations.

102 General Analytic Techniques: Models with One Job Class

6.3. Case Studies

Three applications of single class queueing network models are
described in this section. The first is a classic study in which an
extremely simple model gave surprisingly accurate performance projec-
tions. The second is an application in which the effects of modifying cer-
tain hardware and software characteristics were investigated. The third
illustrates a recent use of a single class model for capacity planning.

6.3.1. A Model of an Interactive System

We first consider what may be the earliest application of queueing net-
work modelling to computer systems. We include this study despite its
age (it was performed in 1965) because of its historical interest and
because it demonstrates vividly that extremely simple models can be
accurate predictors of performance.

The system under study was an IBM 7094 running the Compatible
Time-Sharing System (CTSS). CTSS was an experimental interactive sys-
tem based on swapping. Only a single user could be ‘‘active’ at a time.
The entire system — CPU, disks, and memory — was ‘‘time-sliced”
among users as a unit.

Terminals

- D -
System

Figure 6.1 — Interactive System Model

The purpose of the study was to investigate the response time
behavior of the system as a function of the number of users. To do so,
the model of Figure 6.1 was constructed. It contains a terminal workload,

6.3. Case Studies 103

representing the user population, and a single service center representing
the system (CPU and disks). This single service center representation is
sufficient because, with only one user active at a time, there can be no
overlap in processing at the CPU and the disks (individual users on this
system did not exploit this capability). Thus, in terms of average
response time, it does not matter (in the model) whether a user spends
time at the CPU or the disks, but simply that the appropriate amount of
time transpires.

Notice that by using a single service center to represent the system,
we have solved a simple memory constraint problem. Had the model
contained separate CPU and disk service centers, it would have been less
accurate because it would have allowed customers to be processing at
both simultaneously, while in the actual system this was not possible.
This technique of collapsing a number of service centers into a single ser-
vice center to represent memory constraints can be extended in quite
powerful ways, as will be explained in Chapter 9.

The model was parameterized from measurements taken during sys-
tem use, which provided average think time, average CPU and disk pro-
cessing times, and average memory requirement. The service demand at
the system service center was set equal to the sum of the measured pro-
cessing times and the disk service required for swapping a job of average
size. The number of customers in the model then was varied, and
response time estimates for each population were obtained. Figure 6.2
compares the model projections with measured response times.

4

e Projected

4 Measured

Response time

Online users

Figure 6.2 — Measured and Projected Response Times

104 General Analytic Techniques: Models with One Job Class

6.3.2. A Model with Modification Analysis

In this case study a single class model was used to evaluate the
benefits of several proposed changes to a hardware and software
configuration. The system under consideration was an IBM System/360
Model 65] with three channels. Channels one and two were connected to
8 and 16 IBM 2314-technology disks, respectively. Channel three was
connected to a drum, which was used exclusively by the operating sys-
tem. Because the use of this drum was overlapped entirely with the pro-
cessing of user jobs, it was omitted from the model. (Customers in the
model represent user jobs, which never visited the drum.)

The model of this system is shown in Figure 6.3. It is parameterized
by specifying service demands for the CPU, disks, and channels, as well
as the workload type and intensity. The model differs from our ‘‘stan-
dard”” model (cf. Section 4.5) because of the inclusion of service centers
representing the channels. In general, a model of this sort can lead to
significant error (as will be explained shortly). However, because of the
characteristics of this system, good accuracy was obtained.

: s D T
:@] Channel |

8 disks

16 disks

:D Channel 2

Figure 6.3 — System Model

The base CPU service requirement per job was estimated by dividing
the total CPU busy time (both system and user time) over the measure-
ment interval by the number of jobs that completed in the interval.
Thus, system CPU overhead (such as that required to handle CPU
scheduling and user I/0) was allocated equally among all jobs.

6.3. Case Studies 105

Parameterizing the I/0 subsystem (the disks and channels) was more
complicated. The disk technology of the system required that both the
disk and the channel be held during rotational latency (the period during
which the data is rotating to the read/write heads of the disk) and data
transfer, while seeks could proceed at each disk independently of its chan-
nel. In the model, the channel service demands were set to the sum of
the average latency and data transfer times, while the disk service
demands were set to the average seek time. Thus, all components of I/0
service time were represented exactly once. (If all three components of
service were represented at the disks, customers in the model would
experience latency and transfer service twice, and projected performance
measures would be seriously in error.)

There is a danger in representing multiple component I/O subsystems
in this manner. Unlike the actual system, no customer in the model ever
holds both a disk and a channel simultaneously. Thus, there is the
potential for artificial parallelism in the model, since a disk center that
logically is being used for the latency and transfer portion of one job’s
service might be used at the same time to seek by another job. Account-
ing for this inaccuracy in general is a difficult problem. (Chapter 10
discusses 1/0 modelling in more detail.) However, in the case of this
particular system, the effect of the potential parallelism in the model was
negligible because the utilizations of the disk devices were fairly well bal-
anced, and the total number of disks was much larger than the average
multiprogramming level. Thus, the probability that a customer would
require service from a disk already in use by another customer was small,
and consequently so was the amount of artificial parallelism.

Measurement of the system showed that the average multiprogram-
ming level varied significantly during the measurement interval. To
account for this variability, the model was evaluated once for each
observed multiprogramming level. Performance projections were
obtained by weighting the distinct solutions by the percentage of time the
corresponding multiprogramming levels were observed in the system.

The purpose of the modelling study was to evaluate the effects of the
following proposed changes to the system:

® Replace eight of the 2314-technology disks on one channel with six
IBM 3330 disks. The effect of this change was reflected in the model
by altering the service demands of the affected channel and disk ser-
vice centers, since 3330s seek and transfer data faster than 2314s, and
also have rotational position sensing (RPS) capability, which allows the
disk to disconnect from the channel during rotational latency, recon-
necting only when the required sector is about to come under the
read/write heads.

106 General Analytic Techniques: Models with One Job Class

® Replace extended core storage (ECS) with faster memory. This would
result in an effectively faster CPU, since the processing rate was lim-
ited by the memory access time. As most of the programs executed
out of ECS were system routines, the effect of this change was
reflected in the model by reducing the portion of the CPU service
demand corresponding to supervisor state (system) processing.

® Implement an operating system improvement. This improvement was
expected to reduce overhead by 8%. Thus this change was reflected in
the model by decreasing the portion of the CPU serv1ce demand
corresponding to operating system processing. -

The model was parameterized to reflect various combinations of the
proposed system improvements, and the effect on user (problem state)
CPU utilization was noted. (The use of Ucpy as the performance metric
is an odd aspect of this study, since Ugpy can be made to increase simply
by slowing down the processor. More typical metrics are system
throughput and system response time.) The operating system improve-
ment alone was projected to yield a 5% increase in Ugpy. In conjunction
with the ECS replacement, the gain was projected to be 25%. When the
operating system improvement was combined with the disk upgrade, a
similar 25% gain was projected. This pair of modifications actually was
implemented; subsequent measurements showed that Ugqp; had increased
by about 20%, even though the basic CPU service demand had dimin-
ished due to an unanticipated change in the workload. Thus, the model
provided a close projection of true system behavior.

This example shows that quite simple models can be used to answer
performance questions of interest. It is important to notice how little of
the detail of the computer system is represented in the model; only those
aspects of the system that were crucial to performance and under con-
sideration for modification were represented. For example, there is no
explicit representation of memory in the model. This simplicity is a great
advantage of queueing network models.

6.3.3. Capacity Planning

The purpose of this study was to evaluate the impact on response time
of an anticipated 3% quarterly growth in the volume of the current work-
load. The system was an Amdahl 470 with 8 MB of main store, 16 chan-
nels, and 40 disks. The system was running IBM’s MVS operating sys-
tem and IMS database system, running a transaction processing workload.
IMS was supporting five message processing regions: areas of main
memory allocated and scheduled by IMS, each of which can accommodate
one user request. If more than five requests were outstanding, the
remainder queued for an available region.

6.3. Case Studies 107

Many different transaction types existed in the system. However, they
were increasing in volume at about the same rate, so a single class model
was sufficient to investigate the performance question of interest. (If
various transaction types had been growing at differing rates, a multiple
class model would have been required.) The model of the system is
shown in Figure 6.4. It contains a single transaction workload, represent-
ing the aggregate of all the transaction types in the system, a memory
queue, reflecting the fact that only five message processing regions were
available, a CPU service center, and 40 disk service centers.

Departures
—_—
A

Arrivals] D
A

Memory CPU
queue

:O__»

40 disks

Figure 6.4 — System Model

Because this model contains a memory queue, it is not separable, and
so cannot be evaluated directly by the techniques to be introduced later in
this chapter. In Chapter 9 we discuss general methods for evaluating
models of this type. For now, it is sufficient to observe that the solution
of an open model with a saturated memory queue is roughly equivalent to
the solution of a corresponding closed model in which the open class of
customers has been replaced by a closed class with multiprogramming
level equal to maximum possible number of simultaneously active jobs.
This model is separable, so can be evaluated easily.

Parameters for the model were obtained from information gathered by
software monitors:

® The arrival rate of customers was set equal to the measured transac-
tion arrival rate.

108 General Analytic Techniques: Models with One Job Class

® The service demand at the CPU was set equal to:
Depy = Uepy T/ C

where Ucpy was the measured CPU utilization, T was the length of
the measurement interval, and C was the number of transactions that
completed during the interval.

® The service demand at each disk k was set equal to:
Dk = Uk T/ C

Notice that because of the way the service demands were calculated,
both overhead and inherent service requirements were included. In the
case of the CPU, this means that both user and system processing time
were accounted for. In the case of the disks, this means that seek, rota-
tional latency, data transfer, and any time lost because of I/O path con-
tention were included. This approach to accounting for overhead can be
quite useful when it is anticipated that the ratio of overhead to useful pro-
cessing time will be relatively insensitive to the proposed modifications
being investigated. The advantage of this approach is the simple way in
which service demands can be computed. (For example, we do not need
to determine the duration of each component of disk service time.) The
disadvantage is that anticipated changes in the ratios of overhead to
inherent service times cannot be modelled without more detailed infor-
mation. For the modifications considered in this study, it was not felt
that this was a significant drawback.

Having set the parameters, the model was evaluated to obtain
response time projections. Figure 6.5 graphs projected response time
against year for four different memory sizes: the existing configuration,
adequate to support five message processing regions, and expanded
configurations supporting six, seven, and eight message processing
regions. On the basis of this study, it was concluded that, with the addi-
tion of memory, the system would be adequate for at least two years.

6.4. Solution Techniques

The solution of a queueing network model is a set of performance
measures that describe the time averaged (or long term) behavior of the
model. Computing these measures for general networks of queues is
quite expensive and complicated. However, for separable queueing net-
work models, solutions can be obtained simply.

The specific procedures followed to analyze separable queueing net-
works differ for open and closed models. We consider each in turn.

6.4. Solution Technigues 109

Number of
processing
regions =

Response time

1 1 1 !
1Q79 1Q80 1Q81 1Q82

Quarter and year

Figure 6.5 — Projected Response Times

6.4.1. Open Model Solution Technique

For open models (those with transaction workloads), one of the key
output measures, system throughput, is given as an input. Because of
this, the solution technique for these models is especially simple. We list
here the formulae that apply for each performance measure of interest.

® processing capacity

The processing capacity of an open model, \,,, is the arrival rate at
which it saturates. This is given by:

1 _ 1
mkax D, Dax

Asat =

In the derivations that follow, we assume that A < A;.

® throughput
By the forced flow law, if A customers/second enter the network, then
the system output rate must also be \ customers/second. Similarly, if

each customer requires on average V), visits to device k, the
throughput at device kK must be A V), visits/second. Thus:

110 General Analytic Techniques: Models with One Job Class

® ytilization

By the utilization law, device utilization is equal to throughput multi-
plied by service time. Thus:

U, W) = X,(\) Sy = AD,
(In the case of delay centers, the utilization must be interpreted as the
average number of customers present.)
® residence time
The residence time at center k, Ry (\), is the total time spent at that
center by a customer, both queueing and receiving service. For ser-

vice centers of delay type, there is no queueing component, so Ry (\)
is simply the service time multiplied by the number of visits:

R,(\) = V.S, = D, (delay centers)

For queueing centers, R, is the sum of the total time spent in service
and the total time spent waiting for other customers to complete ser-
vice. The former component is V,S,. The latter component is the
time spent waiting for customers already in the queue when a custo-
mer arrives. Letting 4, (\) designate the average number of custo-
mers in queug as seen by an arriving customer, the queueing com-

ponent is V|4, (\)S;|. (By assumption, to be discussed in Section

6.5, the expected time until completion of the job in service when a
new job arrives is equal to the service time of the job.) Thus, for
queueing centers the residence time is given by:

R = Vk[Sk + SkAk()\)]
- D,\.[l + Ak(x)]

An implication of the assumptions made in constructing separable net-
works is that the queue length seen upon arrival at center k, 4, (), is
equal to the time averaged queue length O, (\), giving:

Re) = D[1+0.00)]
which, using Little’s law to re-express O, is:
R\ = Dk[1+ARk(A)]
= D (queueing centers)
1—- U, (\)

This equation exhibits the intuitively appealing property that as
Uk (:\)_'0, Ry ()\)_‘D/‘-, and as U/((A)_'l, Ry (?\)—'oo

6.4. Solution Techniques

® queue length
By Little’s law: O, (A\) = AR, (\)
U (delay centers)

= U. (\)

FE=ACS) (queueing centers)

® system response time

111

System response time is the sum of the residence times at all service

centers:

RO = iRk \)

k=1

® qverage number in system

The average number in system can be calculated using Little’s law, or

by summing the queue lengths at all centers:

Q) = AR = ﬁQA’(?\)

k=1

These formulae are summarized as Algorithm 6.1.

processing capacity © Asg = 1/ Dypax
throughput - X(\) = X
utilization : U, (\) = AD,

D, (delay centers)
residence time © R, (\) = D,
=00 (queueing centers)
k

queue length : Q. (\) = AR, (\)
U, (\) (delay centers)

U: ()

T 0.0 (queueing centers)

K
system response time : R(\) = > R¢(\)
K=1

K
average number in system : Q(\) = AR(\) = ZQk \)
K=1

Algorithm 6.1 — Open Model Solution Technique

112 General Analytic Techniques: Models with One Job Class

Open Model Example

Figure 6.6 shows a simple open model with three service centers, and
illustrates the calculation of various performance measures. (All times
are in seconds.)

6.4.2. Closed Model Solution Techniques

The technique we use to evaluate closed queueing networks (those
with terminal or batch classes) is known as mean value analysis (MVA).
It is based on three equations:

® [Linle’s law applied to the queueing network as a whole :
N

X(N) e
Z+ 3 R(N)
k=1

6.1)

where X (N) is the system throughput and R, (N) the residence time
at center k, when there are N customers in the network. (As usual, if
the customer class is batch type, we take Z = 0.) Note that system
throughput can be computed from input parameter data if the device
residence times R, (N) are known.

e Linle’s law applied to the service centers individually :
Ok (N) = X(N)R((N) (6.2)

Once again, the residence times must be known before Little’s law can
be applied to compute queue lengths.

® The service center residence time equations

Dy (delay centers)

R, (N) = D, [H—Ak (N)] (queueing centers)

(6.3)

where 4, (N) is the average number of customers seen at center k
when a new customer arrives.

Note that, as with open networks, the key to computing performance
measures for closed networks is the set of 4, (N). If these were known,
the R, (N) could be computed, followed by X (N) and the Q, (N). In the
case of open networks we were able to substitute the time averaged queue
lengths, O (N), for the arrival instant queue lengths, 4, (V). In the case
of closed networks, this substitution is not possible. To see that A4, (V)
does not equal Q, (N) in closed networks, consider the network consist-
ing of two queueing service centers and a single customer with a service

6.4. Solution Techniques 113

Model Inputs:
Verv =
Scru =
Dcpy =

Model Structure:

121

Voisk1 = 70 Vpiskz = 50

.005 SDiSkl = .030 SDiskZ = .027
0.605 DDl'Skl =21 DDisk2 = 1.35

Arrivals
I

A = 0.3 jobs/sec.

Departures D
—_—

CPU

Selected Model Outputs:

Nt =

Xepy (3)
Ucpy (.3)

Repy(3)

Ocpy(.3)

R(3) =

0(3) =

1

D max

1 .
o1 .476 jobs/sec.
ANVepy = (3)(121) = 36.3 visits/sec.

Dcpy _ 605
1— Uepy (3) .818

= .740 secs.

Uepy(3) 182 _ .
1= Uy (3) . 818 _ -2220obs

RCPU(-3) + RDiskl('3) + RDi5k2(’3)
740 + 5.676 + 2.269 = 8.685 secs.

AR(\) = (.3)(8.685) = 2.606 jobs

Figure 6.6 — Open Model Example

114 General Analytic Techniques: Models with One Job Class

demand of 1 second at each center. Since there is only one customer, the
time averaged queue lengths at the service centers are simply their utili-
zations, so Q,(1) = O,(1) = 1/2. However, the arrival instant queue
lengths 4,(1) and A4,(1) both are zero, because with a single customer in
the network no customers could possibly be in queue ahead of an arriving
customer. In general, the key distinction is that the arrival instant queue
lengths are computed conditioned on the fact that some customer is arriv-
ing to the center (and so cannot itself be in the queue there), while the
time averaged queue lengths are computed over randomly selected
moments (so all customers potentially could be in the queue).

As mentioned above, evaluating a model requires that we first com-
pute the 4, (N). There are two basic techniques, exact and approximate.
We emphasize that this distinction refers to how the solution relates to
the model, rather than to the computer system itself. The accuracy of the
solution relative to the performance of the computer system depends pri-
marily on the accuracy of the parameterization of the model, and not on
which of the two solution techniques is chosen.

We next examine each of the two solution methods, beginning with
the exact technique.

6.4.2.1. Exact Solution Technique

The exact MV A solution technique is important for two reasons:
® [t is the basis from which the approximate technique is derived.

® There are no known bounds on the inaccuracy of the approximate
technique. While typically it is accurate to within a few percent rela-
tive to the true solution, it cannot be guaranteed that in any particular
situation the results will not be worse.

The exact solution technique involves computing the arrival instant
queue lengths A, (V) exactly, then applying equations (6.1)-(6.3). The
characteristic of closed, separable networks that makes them amenable to
this approach is that the A, (N) have a particularly simple form:

A(N) = Q(N—1) (6.4)

In other words, the queue length seen at arrival to a queue when there
are N customers in the network is equal to the time averaged queue
length there with one less customer in the network. This equation has an
intuitive justification. At the moment a customer arrives at a center, it is
certain that this customer itself is not already in queue there. Thus, there
are only N—1 other customers that could possibly interfere with the new
arrival. The number of these that actually are in queue, on average, is
simply the average number there when only those N—1 customers are in
the network.

6.4. Solution Techniques 115

The exact MV A solution technique, shown as Algorithm 6.2, involves
the iterative application of equations (6.1)-(6.4). These equations allow
us to calculate the system throughput, device residence times, and time
averaged device queue lengths when there are »n customers in the net-
work, given the time averaged device queue lengths with #—1 customers.
The iteration begins with the observation that all queue lengths are zero
with zero customers in the network. From that trivial solution, equations
(6.1)-(6.4) can be used to compute the solution for one customer in the
network. Since the time averaged queue lengths with one customer in
the network are equal to the arrival instant queue lengths with two custo-
mers in the network, the solution obtained for a population of one can be
used to compute the solution with a population of two. Successive appli-
cations of the equations compute solutions for populations 3,4, ..., N.

for k<=1 to K do Q, — 0
for n—1to N do

begin
D, (delay centers)
for k—1to K do R, — D,(1 + O) (queueing centers)
X — i
Z+ JR
k=1

for k<—1to K do Q, — XR,
end

Algorithm 6.2 — Exact MVA Solution Technique

O- O~~~

Figure 6.7 — Single Class Solution Population Precedence

Figure 6.7 illustrates the precedence relations of the solutions required
to apply the exact MVA solution technique. As just described, the solu-
tion of a closed model with N customers requires the solution with N —1
customers, which requires the solution with N—2 customers, etc. Thus,

116 General Analytic Techniques: Models with One Job Class

the full solution requires N applications of equations (6.1)-(6.4). Since
each of the N applications of the equations requires looping (several
times) over the K service centers, the computational expense of the solu-
tion grows as the product of N with K. The space requirement, in con-
trast, is about K locations, since the performance measures for the net-
work with » customers can be discarded once they have been used to cal-
culate the performance measures for n+1 customers. Note that all solu-
tions between 1 customer and N customers are computed as by-products
of the N customer solution. Thus, there is no additional expense
involved in obtaining these intermediate solutions (although of course
some additional space is required if all of them are to be retained). This
is an important characteristic of the solution technique that will be
exploited in Chapter 8 when we discuss flow equivalent service centers.

When Algorithm 6.2 terminates, the values of R, X, and Q, (all for
population N) are available immediately. Other model outputs are ob-
tained by using Little’s law. Here is a summary:

system throughput: X

system response time: N/ X — Z
average number in system: N — XZ
device k throughput: XV,
device k utilization: XD,
device k queue length: O

device k residence time: R,

Closed Model Example (Exact Solution)

Table 6.2 shows the computation of the solution of the network of
Figure 6.6 with the transaction class replaced by a terminal class. There
are three centers, with service demands Dcpy = .605 seconds,
Dpige1 = 2.1 seconds, and Dp,y, = 1.35 seconds. The terminal class has
three customers (N=3) and average think time of 15 seconds (Z=15).
The algorithm begins with the known solution for the network with zero
customers, and calculates the R, (n), X(n), and Q,(n) for each succes-
sively larger population », up to three.

In studying Table 6.2, note that the sum of the queue lengths at the
three centers does not equal the customer population. This is the case
because we are dealing with a class of terminal type, and some of the cus-
tomers are ‘‘thinking’’. (Algorithm 6.2 accounts for this by the inclusion
of the think time, Z, in one of its equations.) We can calculate the aver-
age number of ‘‘thinking’ customers by subtracting the average number
in system, O = N — XZ, from the total customer population, N, yield-
ing XZ (which equals zero for a batch class).

6.4. Solution Techniques 117

k n=0 n=1 n=2 n=3

CPU - 605 .624 .644
R, | Diskl - 2.1 2.331 2.605
Disk?2 - 1.35 1.446 1.551
X - .0525 .1031 1515
CPU 0 0318 .0643 .0976
Or | Diskl 0 1102 .2403 .3947
Disk?2 0 .0708 .1490 .2350

Table 6.2 — Exact MVA Computation

Model outputs can be computed from the results for N=3:

X3 = 152

R(3) = 3/.152 — 150 = 4.74

QB) = N—XBZ = 3— (152015 = .72
Xeppy(3) = XB)Vepy = (152)(121) = 18.39
Uepy(3) = X(B)Depy = (152)(.605) = .092
Qcpy (3) .098

chu(3) = .64

6.4.2.2. Approximate Solution Technique

The key to the exact MV A solution technique is equation (6.4), which
computes the arrival instant queue length for population » based on the
time averaged queue length with population #—1. The nature of the
algorithm is a direct consequence of this relationship.

By replacing equation (6.4) with an approximation:
A4 = 0.V

for some suitable function 4, a more efficient, iterative algorithm can be
obtained. (The function # actually might depend on values other than
O« (N). For instance, the approximation we will propose shortly also
depends on N. However, we use this notation for simplicity, and to sug-
gest that the key requirement is the value of Q,(N).) The accuracy of
the algorithm depends, of course, on the accuracy of the function / that
is used. (A particular choice for # will be presented shortly.)

This general approach is outlined in Algorithm 6.3. It is seen easily
that the time and space requirements of this algorithm depend on the
number of centers but are independent of the customer population of the
network being evaluated (except indirectly; the number of iterations
required for convergence may be affected by the population). This can be

118 General Analytic Techniques: Models with One Job Class

a substantial improvement over the exact MV A technique, which requires
time proportional to the product of the number of centers and the
number of customers.

1. [Initialize: Oy (N) — % for all centers k.

2. Approximate: A4, (N) — h[Qk(N)] for all centers k.

(The choice of an appropriate function 4 is discussed in the
text.)

3. Use equations (6.3), (6.1), and (6.2) in succession to com-
pute a new set of O, (N).

4. If the Q,(N) resulting from Step 3 do not agree to within
some tolerance (e.g., 0.1%) with those used as inputs in Step
2, return to Step 2 using the new Q,(N).

Algorithm 6.3 — Approximate MVA Solution Technique

Crucial to this faster solution technique is the function A4. Unfor-
tunately, no function / is known that is exact for all separable networks.
Instead, an approximation must be used. A particularly simple and rea-
sonably accurate approximation is:

~ h[Qk(N)]
N

~ Lo.w 6.5)

Equation (6.5) estimates the arrival instant queue length by approximat-
ing its exact value, the queue length with one fewer customer. This

e . . Ok
approximation is based on the assumption that the ratios - - and

0c(N=1) | N
“N=1 are equal for all k, i.e., that the amount that each queue
length is diminished by the removal of a single customer is equal to the
amount that customer contributes to the queue length. In general, this
assumption is quite accurate. In particular, it is asymptotically correct for
very large N, and trivially correct for models with only a single customer
(since it predicts that arrival instant queue lengths are zero). Thus, the
approximation is guaranteed to be good at the two extremes. Experience
with the technique has demonstrated that it also gives remarkably good
results for intermediate populations. Since this error is well within the
bounds of other discrepancies inherent in the computer system analysis

6.5. Theoretical Foundations 119

process (e.g., the accuracy of parameter values), the approximate MVA
technique is satisfactory as a general solution technique.

Closed Model Example (Approximate Solution)

Table 6.3 lists the successive approximations for the device queue
lengths obtained by applying this approximate solution technique to the
same example used previously with the exact solution technique. The
stopping criterion used was agreement in successive queue lengths within
.001. The exact solution of the model is listed in the table for com-
parison. (Note once again the apparent anomaly caused by the fact that
the class in this model is of type terminal. We initialize by distributing
the customers equally among the three centers. As the iteration
progresses, customers ‘‘disappear’’ from the table. At the conclusion of
the iteration, the difference between the full customer population and the
sum of the queue lengths at the centers represents the average number of
users ‘‘thinking’’.)

iteration | QOcpy Obpisk1 Opisk2 X R
0 1.00 1.00 1.00
1 .1390 4826 .3102 | .1379 | 6.7583
2 .0988 .4150 2436 | .1495 | 5.0659
3 .0972 .4043 2366 | .1508 | 4.8950
4 .0972 4024 2359 | .1510 | 4.8732
5 .0973 14021 .2359 | .1510 | 4.8700
exact | 976 | 3947 | 2350 | .1515 | 4.8020
solution

Table 6.3 - Approximate MVA Computation

6.5. Theoretical Foundations

Separable queueing network models are a subset of the general class of
queueing network models obtained by imposing restrictions on the
behavior of the service centers and customers. The name ‘‘separable”
comes from the fact that each service center can be separated from the
rest of the network, and its solution evaluated in isolation. The solution
of the entire network then can be formed by combining these separate
solutions. In an intuitive sense, a separable network has the property that
each service center acts (largely) independently of the others.

There are five assumptions about the behavior of a model that, if
satisfied, guarantee that the model is separable. These are:

120 General Analytic Techniques: Models with One Job Class

® service center flow balance — Service center flow balance is the exten-
sion of the flow balance assumption (see Chapter 3) to each individual
service center: the number of arrivals at each center is equal to the
number of completions there.

® one step behavior — One step behavior asserts that no two jobs in the
system ‘‘change state’ (i.e., finish processing at some device or arrive
to the system) at exactly the same time. Real systems almost certainly
display one step behavior.

The remaining three assumptions are called homogeneity assumptions.
This name is derived from the fact that in each case the assumption is
that some quantity is the same (i.e., homogeneous) regardless of the
current locations of some or all of the customers in the network.

® routing homogeneity — To this point we have characterized the
behavior of customers in the model simply by their service demands.
A more detailed characterization would include the routing patterns of
the jobs, that is, the patterns of centers visited. Given this more
detailed view, routing homogeneity is satisfied when the proportion of
time that a job just completing service at center j proceeds directly to
center k is independent of the current queue lengths at any of the
centers, for all j and k. (A surprising aspect of separable models is
that the routing patterns of jobs are irrelevant to the performance
measures of the model. Thus, we will continue to ignore them.)

® device homogeneity — The rate of completions of jobs from a service
center may vary with the number of jobs at that center, but otherwise
may not depend on the number or placement of customers within the
network.

® homogeneous external arrivals — The times at which arrivals from out-
side the network occur may not depend on the number or placement
of customers within the network.

These assumptions are sufficient for the network to be separable, and
thus to be evaluated efficiently. However, the specific solution algorithms
we have presented thus far require one additional assumption, which is a
stronger form of the device homogeneity assumption:

® service time homogeneity — The rate of completions of jobs from a ser-
vice center, while it is busy, must be independent of the number of
customers at that center, in addition to being independent of the
number or placement of customers within the network.

The weaker of the two assumptions, device homogeneity, permits the rate
of completions of jobs from a center to vary with the queue length there.
Centers with this characteristic are called /oad dependent centers. A delay
center is a simple example of a load dependent center, since the rate of
completions increases in proportion to the number of customers at the

6.6. Summary 121

center. Service time homogeneity asserts that the rate of completions is
independent of the queue length. Centers with this characteristic are
called load independent. The queueing centers we have described so far
are examples of load independent centers. The particular versions of the
MVA algorithms presented in this chapter are applicable only to networks
consisting entirely of load independent and delay centers. In Chapters 8
and 20 we discuss the modifications necessary to accommodate general
load dependent centers.

Although the assumptions above are necessary to prove mathemati-
cally that the solution obtained using Algorithm 6.2 is the exact solution
of the model, they need not be satisfied exactly in practice for separable
models to provide good results. Experience has shown that the accuracy
of queueing network models is extremely robust with respect to violations
of these assumptions. Thus, while no real computer system actually
satisfies the homogeneity assumptions, it is rare that violations of these
assumptions are a major source of inaccuracy in a modelling study. More
typically, the problems encountered in validating a model result from an
insufficiently accurate characterization by the model at the system level,
usually because of inaccurate parameter values for service demands or
workload intensities. The only important exceptions to this are cases in
which the limitations on the structure of the model imposed by the
assumptions required for separability prohibit representation of aspects of
the computer system important to performance (for example, the model-
ling of memory constraints or priority scheduling). In these cases, we
would like models that are as easy to construct and to evaluate as separ-
able networks, but that also represent the ‘‘non-separable’’ aspects of the
computer system. In Part III of this book we show that collections of
separable models evaluated together (typically iteratively) provide just
such tools. Thus, separable models not only are adequate simple models
of computer systems, but also are the basic building blocks out of which
more detailed models can be constructed.

6.6. Summary

In this chapter we have examined the construction and evaluation of
single class, separable queueing network models. Separable models have
the following desirable characteristics:

® cfficiency of evaluation — Performance projections can be obtained
from separable models with very little computation. General networks
of queues require so much computation to evaluate that they are not
practical tools.

122 General Analytic Techniques: Models with One Job Class

® qaccuracy of results — Separable models provide sufficiently accurate
performance projections for the majority of modelling studies. We
have described a number of case studies to illustrate this point. For
the most part, the inaccuracy inherent in establishing parameter values
and in projecting workload growth dominates the inaccuracy inherent
in separable models. Thus, there is little motivation to look for more
accurate models.

® direct correspondence with computer systems — The parameters of separ-
able models (service centers, workload types, workload intensities, and
service demands) correspond directly to a high level characterization
of a computer system. Thus, it is easy to parameterize these models
from measurement data in constructing a baseline model, and it is
relatively simple to alter the parameters in an intuitive way to reflect
projected changes to the computer system in the model.

® generality — In cases where the restrictions required in the construc-
tion of separable models exclude an important aspect of a computer
system from being represented in an individual separable model, col-
lections of separable models can be used. Thus, separable models are
the basic tool that we will use throughout the book as we extend our
models to include increasingly detailed aspects of computer systems.

We have studied single class separable models in this chapter because
they form a natural bridge between the bounding models of Chapter 5
and the more detailed multiple class models of Chapter 7. Important
characteristics of single class models in this regard are:

® ability to project performance — Single class models contain sufficient
detail that performance estimates, rather than performance bounds,
can be projected.

® simplicity — Single class models are the simplest models for which this
is true: the simplest to define, parameterize, evaluate, and manipu-
late. In light of this, they are the models of choice in situations where
they are sufficiently detailed to answer the performance questions of
interest. '

® pedagogic value — The more detailed multiple class models presented
in Chapter 7 are considerably more cumbersome notationally than sin-
gle class models, but actually are very simple extensions of these
models. Thus, an understanding of single class models aids in under-
standing the definition, parameterization, and use of multiple class
models.

In the next chapter we extend our modelling capabilities to accommo-
date systems containing several distinct workload components, which we
represent using multiple class, separable queueing rietwork models.

6.7. References 123

6.7. References

Single class models originally were viewed in the stochastic setting.
Jackson [1963] described networks of exponential queues and showed
that their solution was separable. Gordon and Newell [1967] obtained
similar results for closed networks, and showed that the state probabilities
have a simple solution known as ‘‘product form”’.

Buzen [1973] introduced the first efficient evaluation algorithm for
closed models. Reiser and Lavenberg [1980] developed the exact mean
value analysis algorithm described here. The fact that
A, (N) = O, (N—1) in separable queueing networks was established by
Sevcik and Mitrani [1981], and independently by Lavenberg and Reiser
[1980]. The approximate MVA algorithm is based on work by Bard
[1979] and Schweitzer [1979]. Chandy and Neuse [1982] and others sub-
sequently have developed related approximations.

The case studies of Sections 6.3.1, 6.3.2, and 6.3.3 were carried out by
Scherr [1967], Lipsky and Church [1977], and Levy [1979], respectively.
Scherr’s monograph is the source of Figure 6.2, and Levy’s paper the
source of Figure 6.5.

Denning and Buzen [1978)] discuss the homogeneity assumptions in
greater detail than we have presented.

[Bard 1979]
Yonathan Bard. Some Extensions to Multiclass Queueing Network
Analysis. In M. Arato, A. Butrimenko, and E. Gelenbe (eds.), Perfor-
mance of Computer Systems. North-Holland, 1979.

[Buzen 1973]
Jeffrey P. Buzen. Computational Algorithms for Closed Queueing Net-
works with Exponential Servers. CACM 16,9 (September 1973), 527-
531.

[Chandy & Neuse 1982]
K. Mani Chandy and Doug Neuse. Linearizer: A Heuristic Algorithm
for Queueing Network Models of Computing Systems. CACM 25,2
(February 1982), 126-133.

[Denning & Buzen 1978]
Peter J. Denning and Jeffrey P. Buzen. The Operational Analysis of
Queueing Network Models. Computing Surveys 10,3 (September
1978), 225-261.

[Gordon & Newell 1967]
W.J. Gordon and G.F. Newell. Closed Queueing Networks with
Exponential Servers. Operations Research 15 (1967), 244-265.

124 General Analytic Techniques: Models with One Job Class

[Jackson 1963]
J.R. Jackson. Jobshop-like Queueing Systems. Management Science
10 (1963), 131-142.

[Lavenberg & Reiser 1980]
S.S. Lavenberg and M. Reiser. Stationary State Probabilities of Arrival
Instants for Closed Queueing Networks with Multiple Types of Custo-
mers. Journal of Applied Probability (December 1980).

[Levy 1979]
Allan I. Levy. Capacity Planning with Queueing Network Models: An
IMS Case Study. Proc. CMG X International Conference (1979), 227-
232.

[Lipsky & Church 1977]
L. Lipsky and J.D. Church. Applications of a Queueing Network
Model for a Computer System. Computing Surveys 9,3 (September
1977), 205-222. Copyright © 1977 by the Association for Computing
Machinery.

[Reiser & Lavenberg 1980]
M. Reiser and S.S. Lavenberg. Mean Value Analysis of Closed Mul-
tichain Queueing Networks. JACM 27,2 (April 1980), 313-322.

[Scherr 1967]
Allan L. Scherr. An Analysis of Time-Shared Computer Systems.
Research Monograph No. 36, MIT Press, 1967. Copyright © 1967 by
the Massachusetts Institute of Technology.

[Schweitzer 1979]
P. Schweitzer. Approximate Analysis of Multiclass Closed Networks
of Queues. Proc. International Conference on Stochastic Control and
Optimization (1979).

[Sevcik & Mitrani 1981]
K.C. Sevcik and I. Mitrani. The Distribution of Queueing Network

States at Input and Output Instants. JACM 28,2 (April 1981), 358-
371.

6.8. Exercises

1. Suppose we wish to plot response time estimates obtained from a
separable single class queueing network model for all populations from
50 to 75 online users:

a. If the exact solution technique were used, how many applications
of the algorithm would be required to compute performance meas-
ures for all 26 populations?

6.8. Exercises 125

b. Using the approximate solution technique, how many applications
of the algorithm would be required?

Suppose that users of this system overlapped the preparation of each
request with the processing of the previous request, so that effective
think time varied with system response time, and thus with the user
population. (For instance, average think time might be 10 seconds
with 50 active users, and 8 seconds with 65 active users.)

c. Under this assumption how many applications of each algorithm
would be required?

d. Why would it be incorrect simply to modify Algorithm 6.2 (the
exact solution technique) so that the think time, Z, was a function
of the user population?

2. Exercise 4 in Chapter 5 asked you to graph asymptotic and balanced
system bounds for a simple model in two cases: batch and terminal
workloads. Use Algorithm 6.2 to compute throughput and response
time for these cases for values of N from 1 to 5. Use Algorithm 6.3
for N=5 and N=10. Compare these results with the bounds
obtained previously.

a. How much additional effort was required to parameterize the single
class model in comparison with the bounding models?

b. How do the techniques compare in terms of computational effort?

How do the results of the techniques differ in terms of their useful-
ness for projecting performance? In terms of your confidence in
the information that they provide?

3. Implement Algorithm 6.3, the approximate mean value analysis solu-
tion technique. Repeat Exercise 2 twice: once using this implementa-
tion, and once using the Fortran implementation of Algorithm 6.2
(exact mean value analysis) contained in Chapter 18. Compare the
results.

4. Modify the program given in Chapter 18 to allow delay centers, and to
allow classes of transaction type.

5. Use the modified program, as follows:

a. Evaluate a model with three centers with service demands of 8, 5,
and 4 seconds, and a transaction class with arrival rate .1
requests/second.

b. Using the response time obtained in (a), calculate an appropriate
think time for use in an equivalent model with the transaction class
replaced by a terminal class with 10 users.

126 General Analytic Techniques: Models with One Job Class

c. Evaluate the model constructed in (b).

d. Explain the differences between the performance measures obtained
in (a) and (c).

6. Use the arrival instant theorem to show that in a balanced model (one
in which the service demands at all centers are equal to D, = D/K),
system throughput is given by:

N 1
= —_X —_—
X N+K-—1 D,
(This result is the basis of balanced system bounds, as presented in
Chapter 5.)

7. Both the exact and the approximate MV A algorithms involve four key
equations (6.1 through 6.4).

a. For each of these four equations, provide. an intuitive justification
in a few words,

b. In a few sentences, describe how the exact MV A algorithm is con-
structed from these four components.

c. In a few sentences, describe how the approximate MVA algorithm
is obtained from the exact algorithm.

Chapter 7

Models with Multiple Job Classes

7.1. Introduction

Multiple class models, like single class models, provide.estimates for
performance measures such as utilization, throughput, and response time.
The advantages of multiple class models over single class models include:

® Qutputs are given in terms of the individual customer classes. For
example, in modelling a transaction processing system, response times
for each of a number of transaction types could be obtained by includ-
ing each type as a separate class. With a single class model, only a
single estimate for response time representing the average over all
transaction types could be obtained.

® For systems in which the jobs being modelled have significantly
different behaviors, such as systems with a mixture of CPU and I/O
bound jobs, a multiple class model can provide more accurate results.
This means that some systems can be modelled adequately only by
multiple class models, since the single class assumption that jobs are
indistinguishable is unacceptable.

The disadvantages of multiple class models relative to single class models
include:

® Since there are multiple customer classes in the model, multiple sets
of input parameters (one set per class) are required. The data gather-
ing portion of the modelling process therefore is more tedious.

® Most current measurement tools do not provide sufficient information
to determine the input parameters appropriate to each customer class
with the same accuracy as can be done for single class models. This
not only complicates the process of parameterization, but also means
that the potentially greater accuracy of a multiple class model can be
offset by inaccurate inputs.

® Multiple class solution techniques are somewhat more difficult to
implement, and require more machine resources, than single class
techniques.

127

128 General Analytic Techniques: Models with Multiple Job Classes

For the most part, these disadvantages result from inadequate modelling
support software, and thus should become less significant as queueing
network modelling becomes more widespread. The first two disadvan-
tages can be eliminated by measurement tools that are designed with
knowledge of the information required to establish a model. The third
disadvantage is significant only if one is developing queueing network
modelling software. Commercially available software packages are capable
of evaluating multiple class models. Thus, once the model inputs have
been obtained, it is no more difficult to deal with a multiple class model
than with a single class model.

7.2. Workload Representation

As illustrated in Chapter 4, the inputs of multiple class models largely
correspond to those of single class models. The major additional con-
sideration is the specification of scheduling disciplines. Since customers
in single class models are indistinguishable, the scheduling disciplines at
the various service centers are characterized entirely as being either delay
or queueing. However, in multiple class models, customers are distin-
guishable, and so the choice of scheduling discipline can be important.

There are a large number of scheduling disciplines that can be
represented in (separable) multiple class queueing network models. For
practical purposes, however, the following disciplines have proven to be
sufficient:

® first-come-first-served (FCFS) — Under FCFS scheduling, customers
are served in the order in which they arrive. Although this is the sim-
plest of scheduling disciplines to implement, it is difficult to model
analytically. To do so, it is necessary to impose the restriction that all
customer classes have the same service requirement at each visit to
the service center in question (S,,). It is possible, however, for
different customer classes to require different total numbers of visits
to the service center (Vc,k)’ thus providing for distinct service
demands there (D.,). A FCFS center might be appropriate to
represent a disk containing user files for a number of classes. Since
the basic operations performed at the device by the various classes are
the same, it is reasonable to assume that the average service times
across classes are nearly equal. The actual number of file accesses for
a customer of each class can be represented in the model by appropri-
ate values of the V, , for each class c.

7.3. Case Studies 129

® processor sharing (PS) — Processor sharing is an idealization of round
robin (RR) scheduling. Under RR, control of the processor circulates
among all jobs in the queue. Each job receives a quantum of service
before it must relinquish control to the next job in the queue, re-
joining the queue at its tail. Under PS, the length of the quantum is
effectively zero, so that control of the processor circulates infinitely
rapidly among all jobs. The effect is that jobs are served simultane-
ously, but each of the » jobs in service receives only 1/n-th of the full
power of the processor. For example, each of three jobs at a processor
shared, 3 MIPS (million instructions per second) CPU would receive
service at a rate of 1 MIPS. PS often is appropriate to model CPU
scheduling in systems where some form of RR scheduling actually is
employed.

® Jast-come-first-served preemptive-resume (LCFS) — Under this discipline
an arriving job preempts the job in service (if any) and immediately
begins service itself. When a job completion occurs, the most recently
preempted job resumes service at the point at which it was inter-
rupted. LCFS might be used to model a CPU in a system where the
frequency with which high priority system tasks are dispatched is high
enough that LCFS is a reasonable approximation.

® delay — As in single class models, multiple class delay centers are
used to represent devices at which residence time consists entirely of
service (there is no queueing delay).

Although the first three disciplines seem quite different, the performance
measures obtained from a model will be the same regardless of which is
used. In most cases, we therefore distinguish only between queueing and
delay disciplines, without being more specific.

7.3. Case Studies

In this section we present three simple case studies where multiple
class separable queueing network models were used to obtain perfor-
mance projections. The first examines the difference in performance pro-
jections provided by single and multiple class models. The second illus-
trates the principal advantage of multiple class models over single class
models, namely the ability to specify inputs and outputs in terms of indi-
vidual classes. The third demonstrates the successful use of a multiple
class model to evaluate a loosely-coupled multiprocessor system.

130 General Analytic Techniques: Models with Multiple Job Classes

7.3.1. Contrast with Single Class Models

In this case study we will construct single class and multiple class
models of a hypothetical system, and will use these models to project the
effects on response times of a CPU upgrade. Our purpose is to illustrate
the qualitative differences between the projections that can be obtained
from single and multiple class models.

The hypothetical system has two resources, a CPU and a disk. There
are two workload components, one batch and the other interactive.
Measurements provide the following information (times are in seconds):

Bogen.cru = 600 Biyeracrive. cpy = 47.6
Byaten.oist: = 54 Biyeractive Disk = 428.4

parch = 600 Cinreractive = 476
Nbatch =10 Nv{'nzeramve =25
parch = 0 Zineracive = 30

To construct a single class model of this system, we define a single
“‘average’’ customer class, in essence by imagining that the measurement
data did not distinguish on the basis of workload type. Our model will
have two service centers (CPU and Disk) and a single, terminal class.
This class will have 35 customers with think times of 13.271 seconds

(—L x 30). Service demands will be .602 seconds at the CPU

600+476 -
600+47.6 . 544-428.4
(—————1076) and .448 seconds at the disk (———1076).

The multiple class model will have two service centers and two classes:
a batch class of 10 customers, and a terminal class of 25 customers with
think times of 30 seconds. Batch service demands will be 1.0 and .09
seconds at the CPU and disk, respectively. Interactive service demands
will be .10 and .90 seconds at the CPU and disk, respectively.

Table 7.1 shows the outputs for the single class and multiple class
models, for the base system and for an upgraded system in which the
CPU speed is increased by a factor of five. The single and multiple class
models agree well for the base system. They differ considerably for the
system with the CPU upgrade, however, even when the projections of the
single class model are compared to the “‘overall” projections of the multi-
ple class model. For example, the multiple class model shows an overall
throughput of 5.26 for the system with the upgraded CPU, compared with
2.11 for the single class model. Further, while the single class model pro-
jects a 60% improvement in average response time, the multiple class
model projects an 80% improvement for batch jobs, but a 200% degrada-
tion for interactive users.

These differences can be accounted for by the nature of the workload.
In the single class model, each ‘‘average’’ job requires a significant

7.3. Case Studies 131

single class
overall
base upgrade

X 1.64 | 211
R 8.07 3.32
Uepy | 985 254

Qcpy | 10.70 .34
Upisk L7133 .946
Opisk 2.58 6.63
multiple class
overall batch interactive
base upgrade base upgrade | base upgrade
X 1.66 5.26 .93 4.64 .74 .62
R 7.52 3.16 10.79 2.16 3.40 10.57
Ucpy 1.000 .943 .926 .928 .074 .015
Ocpy | 10.57 5.28 9.72 5.20 .85 .08
Upisk 752 .979 .084 418 .668 .561
Opisk 2.37 11.02 .28 4.80 2.09 6.22

Table 7.1 — Single and Multiple Class Results

amount of disk processing, and so the speedup of the CPU has a limited
effect due to the performance constraint imposed by this secondary
bottleneck. In the multiple class model, the batch class is heavily CPU
bound, while the interactive class is heavily I/0 bound. Thus, increasing
the speed of the CPU greatly increases the batch throughput but is of lit-
tle direct benefit to the interactive class. Further, because of the
increased batch throughput, the interactive class suffers increased com-
petition from the batch class at the disk center, and thus experiences a
performance degradation.

In summary, this example illustrates two important points regarding
the use of queueing network models:

® A model can project effects that intuition might not recognize. In this
case, we have the counter-intuitive result that performance can
degrade with a CPU upgrade.

® Single class models of systems with significantly heterogeneous work-
loads may give misleading results, both because the performance pro-
jections for the ‘‘average’ job may be inaccurate, and because it is not
possible to obtain projections for specific classes from the average
results.

132 General Analytic Techniques: Models with Multiple Job Classes

7.3.2. Modelling Workload Growth

The system studied here was a Digital Equipment Corporation PDP-10
running a special-purpose software package layered on the TOPS-10
operating system. The objective of the study was to project response
times as the number of online users increased and as the number of users
that simultaneously could be memory resident was altered. Although
benchmarking using a remote terminal emulator (RTE) was possible, a
queueing network modelling approach was chosen. This decision was
motivated by the fact that projections for a large number of system
configurations were required, and timely results with rough (say, 30%)
accuracy were more desirable than the more accurate but considerably
more time consuming results possible using benchmarking.

The system workload was divided into three components, primarily on
the basis of similarity of resource usage. The first component consisted
of users running jobs, the second of users executing system utility func-
tions (such as printing or plotting), and the third of users editing. All
classes were represented as terminal workloads. Service demands for
these three classes were obtained by monitoring an RTE experiment
involving a representative (although synthetic) jobstream. This base
model was validated by comparing model outputs with measurements
taken during the RTE experiment. Agreement was good, so the study
proceeded to the projection phase.

class model actual
R Ucru R Ucpu
running jobs 9.97 10.91
Benchmark 1 | utility 122.8 99.27
50 users editing 63.4 77.8
total 63.4 77.8
running jobs 9.2 11.7
Benchmark 2 | utility 63.6 70.3
70 users editing 1.83 2.03
total 97.5 100.0

Table 7.2 — Performance Projections

To assess the impact of workload growth on response times, the work-
load intensities of the three classes were increased to reflect various larger
user populations. The model then was evaluated to obtain performance
projections. For several specific user populations, additional RTE experi-
ments were conducted to assess the accuracy of the model. Table 7.2
compares the model results with those obtained during RTE experiments
for two user populations. The accuracy is reasonably good, despite the

7.3. Case Studies 133

extremely simple model used. (Response time improves as the user
population increases because of an increase in main memory size that was
represented in the model and implemented in the actual configuration.
This additional memory resulted in reduced swapping. Techniques for
modelling swapping are presented in Chapter 9.)

7.3.3. A Multiprocessing System

The configuration under consideration consisted of two Cyber 173 sys-
tems with private memories and disk subsystems, plus a set of shared
disks supporting a Federated File System (FFS). The Cyber systems
were used both to process local workloads and to process FFS requests
from remote sites. The purpose of the study was to assess the impact of
an expected growth in the batch components of the systems’ workloads.
Figure 7.1 shows the model that was employed.

10 =1
:@ D—’D_*

FFS

CPUs Controllers Disks

Figure 7.1 — The Multiprocessing System Model

Measurements obtained from software monitors were used to
parameterize the model. Service demands were calculated for five work-
load components: system A interactive, system A batch, system B
interactive, system B batch, and FFS accesses by remote systems. All
workload components initially were represented using transaction classes,
with the FFS arrivals split evenly between systems A and B. An attempt
at validating this model showed reasonably accurate throughputs and utili-
zations, but poor estimates for queue lengths and response times. It was
observed that the model projected that on average thirteen jobs would be
active simultaneously in each system. However, it was known that

134 General Analytic Techniques: Models with Multiple Job Classes

system limitations permitted a maximum of five memory resident jobs.
Because of this, the batch and interactive workload components of each
system were converted to classes of batch type in the model, with work-
load intensities corresponding to the measured multiprogramming levels.
This change resulted in nearly identical throughputs and utilizations and
improved device residence time estimates, and so was adopted as the
‘“‘validated”” model. (This study points out the possible danger in using
simple models with transaction classes when studying systems that have
memory constraints. A more satisfactory model for memory constrained
systems is presented in Chapter 9.) N

The increase in the batch workloads was represented by increasing the
workload intensities of the corresponding classes in the model, with all
other parameters remaining unchanged. These were adjusted so that the
estimated model throughput of batch jobs matched the anticipated offered
workload. Response time estimates from this model were obtained as
indications of the ability of the systems to handle the increased workload.
It was projected that the systems would be able to handle the maximum
expected batch volumes and still provide adequate interactive and FFS
response times.

7.4. Solution Techniques

The solution techniques for multiple class models yield values for per-
formance measures such as utilization, throughput, response time, and
queue length, for each individual customer class. These techniques are
natural extensions of the single class solution techniques. As in the sin-
gle class case, the details of the solution technique depend on the types of
the workloads (open or closed). This dictates the organization of our dis-
cussion.

7.4.1. Open Model Solution Technique

Let C be the number of classes in the model. Each class ¢ is an open
class with arrival rate A,. We denote the vector of arrival rates by
A= (A1, Ay, ..., Ac). Because the throughputs of the classes in open
models are part of the input specification, the solution technique for these
models is quite simple. We list below the formulae to calculate perfor-
mance measures of interest.

® processing capacity

A system is said to have sufficient capacity to process a given offered
load A if it is capable of doing so when subjected to the workload over

7.4. Solution Technigues 135

a long period of time. For multiple class models, sufficient capacity
exists if the following inequality is satisfied:

C
mgx[EACD&k] < 1

c=1

This simply ensures that no service center is saturated as a result of
the combined loads of all the classes. In the derivations that follow,
we will assume that this inequality is satisfied.

® throughput

By the forced flow law the throughput of class ¢ at center k as a func-
tion of A is:

X i) = A Vs

® utilization

From the utilization law:
UC\kG\.) = XC‘/\' (X) Sc,k =)\ch.k

® residence time
As with single class models, residence time is given by:

_ D, i (delay centers)
Rc,k ()\) = .
De.k [H_A‘s"' O\)] (queueing centers)

where Ac,,\.(X) is the average number of customers seen at center k by
an arriving class ¢ customer. The intuition behind this formula is
similar to that for single class models. For delay centers, a job’s
residence time consists entirely of its service demand there, ¥, S, .
The explanation of the formula for queueing centers depends on the
scheduling discipline used. For FCFS centers, the residence time is
simply the sum of an arriving job’s own service time, V. ,S, s, and
the service times of the jobs already present at the arrival instant,

Ve k| Ack (X)S..«|, since at FCFS centers all classes must have the

same service time at each visit. For PS centers, the residence time is
the basic service requirement, V. ;S.., “inflated” by a factor
representing the service rate degradation due to other jobs competing
in the same queue, 1+4,, (X). For LCFS centers the equation has
no simple intuitive explanation, but nonetheless is valid.

136 General Analytic Techniques: Models with Multiple Job Classes

An implication of the assumptions made in constructing separable net-
works is that the queue length seen on average by an arriving custo-
mer must be equal to the time averaged queue length. Thus, for
queueing centers:

Reu® = Doy[1+0,)]
where QO (X) is the time averaged queue length at center k& (the sum

over all classes). Applying Little’s law:

Rc,k (X) = c .k

J=1

C
1+ EAJ-RJ-_,\.(X)]

Notice now that the right hand side of the above equation depends on
the particular class ¢ only for the basic service demand D, ,. Thus,

Rc k 6\.) Dc k Dj k
———— must equal = giving R, , (X) = === R, (X). Substi-
Rj‘k 6\’) Dj,k)k chk c.k

tuting into the equation above and re-writing, we have:

D,
RN = + (queueing centers)

1-3 U, XN
j=1
® queue length

Applying Little’s law to the residence time equation above, the queue
length of class c at center k&, Q. x \N), is:

Qc,k (X) = }\cRc,k (X)

| U) (delay centers)
U, (N

= | —&K % (queueing centers)

1— EC: Ui)

J=1

® system response time

The response time for a class ¢ customer, R.(X), is the sum of its
residence times at all devices:

R(’ (X) = i Rc,k (X)
k=1

7.4. Solution Techniques 137

® gverage number in system

The average number of class ¢ customers in system can be calculated
using Little’s law, or by summing the class ¢ queue lengths at all
centers:

0.0) = NRD) = 30.,.(
k=1

These formulae are summarized as Algorithm 7.1.

C
processing capacity . max [2 Ae D k] < 1
k c=1 ‘

throughput - X.(X) = X,
utilization © Uyt X) = \eDex

D., (delay)
residence time : R, (X) = o)
‘ = - (queueing)
1— 30,0
i=1
queue length : Q. . (X) = AcRe x (X)
Ui) (delay)
- U,
‘C"‘) (queueing)
1= U,

J=1

) K
system response time : R.(X) = E Rex)
k=1

K, _
average number in system : Q,(X) = A\.R.(X) = 2 Qe V)
k=1

Algorithm 7.1 — Open Model Solution Technique

Open Model Example

Figure 7.2 shows a simple open model with two customer classes and
two service centers, and illustrates the calculation of various performance
measures. (All times are in seconds.)

138 General Analytic Techniques: Models with Multiple Job Classes

Model Inputs:

Vicrv = 10 Vipisk =9 Va.cru =5 Ve.pisk = 4

Sqcru =110 Sy pigc = 1/3 Sgcpv = 2/5 Sgpisk = 1

Dycry =1 Dy pisk = 3 Dg cpy =2 Dppg = 4
A4 = 3/19 jobs/sec. © A = 2/19 jobs/sec.

Model Structure:

s\

Departures

{

—_— = e _—
s :@ :D_
CPU - Disk
Class B
Selected Model Outputs:
XA.CPU(X) = >\A VA,CPU = %XIO = 1‘58j0bS/7SeC.
Ui,crvX) = NyDycpy = 13_9><1 = .158
D
RycruN) = BA’CPU' = 12}19 =-1.58 secs.
1- 2 Uj.CPU(X)
j=4
Uy .cpuX) /19
Qucrv) = g’CPU - = (3219 i = .25 jobs
1= 2 Uy (V) e TRET)
ng Jj,CPU 19 19
RiX) = RycpvN) + Rypx(X) = % + 32—7 = 30.08 secs.

Figure 7.2 — Open Model Example

7.4. Solution Techniques 139

7.4.2. Closed Model Solution Techniques

A closed, multiple class model consists of C classes, each of which has
a_ fixed population. We denote the workload intensity by
N = (Ny, ..., No), where N, is the class ¢ population size. Because the
throughputs of closed classes are not provided as inputs, obtaining solu-
tions for closed models is somewhat more complicated than for open
models. The solution technique used is an extension of the single class
mean value analysis (MVA) algorithm. Like its single class counterpart,
multiple class MV A relies on three key equations:

® For each class, Little’s law applied to the queueing network as a whole

— _. N
X.(N) = KC - (7.1)
Z. + X R (V)
k=1
® For each class, Little’s law applied to the service centers individually
0.x(N) = X.(N) R.,(N) (1Y
It also is useful to consider the total queue length at center k:
— C —
Qk (N) = 2 Qc,k (N)
c=1
® [or each class, the service center residence time equations
D, . (delay centers)
R (N) = ’ (7.3)

D, « [1 + A (N)] (queueing centers)

where 4, 4 (N) is the arrival instant queue length at center k£ seen by
an arriving class ¢ customer.

We note that performance measures can be computed using the above
equations once the 4., (N) are known.

As with single class models, there are two approaches to the evalua-
tion of closed models, exact and approximate. (We emphasize again that
the word ‘‘exact” refers to how the solution relates to the model, not
how the solution of the model relates to the system being modelled.) As
with the single class MV A algorithms, the two methods differ in how the
arrival instant queue lengths are computed.

140 General Analytic Techniques: Models with Multiple Job Classes

7.4.2.1. Exact Solution Technique

To obtain an exact solution of a closed model, one must compute the
values of the A, ,(N) exactly. Given these values, equations (7.1)-(7.3)
can be applied to compute the full solution of the model. The key to the
exact MVA solution technique is the multiple class generalization of the
relationship used in the single class case:

A (N) = O(N—1,) (7.4)

where N—1. is population N with one class ¢ customer removed. Intui-
tively, the queue length seen upon arrival to a center is equal to the time
averaged queue length at the center with the arriving customer removed
from the network.

Beginning from the trivial solution of the network with the empty
population 0 (Q,(0) = 0 for all centers k), equation (7.4) can be used,
along with equations (7.1)-(7.3), to construct iteratively the solutions for
increasing populations, culminating in performance measures for the
population of interest, N. Note that in general the solution for each
population # requires as input C solutions, one for each population
n—1., ¢c=1,.., C. Figure 7.3 illustrates this by showing the pre-
cedence relations of the solutions required to evaluate a network with 3
class A customers and 2 class B customers: the solution of the empty
network is required to compute solutions with populations consisting of a
single customer, (1A,0B) and (0A,1B), which then can be used to com-
pute solutions for populations with two customers, etc. As a result of
these complex dependencies, the time and space requirements of the
multiple class algorithm are significantly greater than those of the single
class algorithm. They are proportional to:

c
time: CK JJ(N.+1) arithmetic operations

c=1

C
space:. K JI (N,+1) storage locations
e
where c¢,,.. is the index of the class with the largest population. A
significant implication of these time and space requirements is that it can
be impractical to compute the exact solution of networks with more than
a few customer classes. For example, the solution of a network with 10
centers and 5 classes of 10 customers each requires more than 8,000,000
arithmetic operations and 145,000 storage locations. (In contrast, a single
class model with 10 centers and 50 customers requires roughly 500 arith-
metic operations and 10 storage locations.) This is the motivation for the
approximate solution technique to be described in the next section.

7.4. Solution Techniques 141

(34, 2B)
/ \
(34, 18) (24, 2B)
(34, 0B) (24, 1B) (14, 2B)
(24, 0B) (14, 1B) (04, 2B)
(14, 0B) (04, 18)
\ /

(04, 08)

Figure 7.3 — Precedence of Intermediate Solutions

for k—1to K do Q,(0) — 0
C
for n—=1to 3 N, do

c=1
for each feasible population %@ = (n; , ..., nc) with n total
customers do
begin
for c—1to C do
for k~—1to K do

D.., (delay)
Rc,k — e
Dc.k[l + O(n—1,)] (queueing)
ne
forc—=1to Cdo X, — ———F——
Z.+ YRy
k=1

C
for k—11to K do O, (@) — > X.R.,
c=1

end

Algorithm 7.2 — Exact MVA Solution Technique (Closed Models)

142 General Analytic Techniques: Models with Multiple Job Classes

The exact MVA solution technique appears as Algorithm 7.2. When
this algorithm terminates, the values of R, , X, and Qy (all for popula-
tion N) are available immediately. Other model outputs are obtained by
using Little’s law. Here is a summary:

class ¢ system throughput: X.

class ¢ system response time: N,/ X, — Z.
average number of class ¢ in system: N, — X, Z.
class ¢ throughput at device k: XV, 4

class ¢ utilization of device : X.D,

class ¢ queue length at device k: X Ry

class ¢ residence time at device k: R.

Closed Model Example (Exact Solution)

Table 7.3 shows the computation required by the MV A solution of a
closed model corresponding to the open model of Figure 7.2. The open
classes have been replaced by batch classes, each with one customer.
Other parameter values are the same.

population vectors
(0A,0B) (1A,0B) (0A,1B) (1A,IB)

Ry cru - 1 - 4/3
RA,DisA‘ - 3 - 5
Rp.cou - - 2 5/2
Rp pisk - - 4 7
X, - 1/4 - 3/19
Xg - : 1/6 2/19
O cru 0 1/4 - 4/19
Ou Disk 0 3/4 . 15/19
Op.cpu 0 - 1/3 5/19
Op Dik 0 . 2/3 14/19

Table 7.3 — Exact MVA Computation

7.4.2.2. Approximate Solution Technique

Because the exact solution technique can require excessive time and
space for large numbers of classes, the approximate solution technique
often is the only one that can be used in practice. Moreover, since the
approximate technique is quite accurate, it is useful as a general tech-
nique, even for networks that could be solved exactly.

7.4. Solution Techniques) 143

The multiple class approximate solution technique is a straightforward
extension of the single class approximation. Equations (7.1)-(7.3) are
employed, but the arrival instant queue lengths are estimated iteratively.
The estimates are obtained based on the time averaged queue lengths at
the service centers with the full customer population. Thus, the approxi-
mate solution technique does not require that one first compute solutions
for all populations between the zero population and the full population,
but instead iterates at the full population. An initial guess for time aver-
aged queue lengths is made to start the iteration. The approximating
function is applied to this guess, and the resulting approximate arrival
instant quéue lengths are used in equation (7.3). Applications of equa-
tions (7.2) and (7.1) result in new estimates for time averaged queue
lengths, which then can be used to begin the next step of the iteration.
The iteration continues until successive estimates of time averaged queue
lengths are sufficiently close. The approximate solution technique is sum-
marized as Algorithm 7.3.

. N
1. Set Q. (N) — x for all ¢,k.

2. Approximate AC,,\.(N) by hc[Ql,k(‘V)' Y s ch‘k'(N)], for all
¢, k. (The choice of A, is discussed in the text.)

3. Apply equations (7.1)-(7.3) to compute a new set of Q, ; (N)
for all ¢ k.

4. If the QC,;\.(N) resulting from Step 3 do not agree to within
some tolerance (e.g., 0.1%) with those used as inputs in Step
2, return to Step 2 using the new Q, , (N).

Algorithm 7.3 — Approximate MVA Technique (Closed Models)

The significant advantage of this method over the exact technique is
that it iterates on solutions of the network with the full customer popula-
tion NV, rather than building up from the solution for the empty network.
The approximation therefore requires much less storage than the exact
technique, since it maintains the solution of the network for only one
population (N). In particular, the storage requirement is proportional to
the product of C and K. The savings in time are harder to quantify
because of the iterative nature of the approximate algorithm, although
empirically these savings are considerable. The number of operations
required per iteration is proportional to the product of C and K. (In
other words, the populations of the classes are not a consideration.) Less
than two dozen iterations typically are required for convergence to less
than a 0.1% change in queue lengths. The accuracy of the technique

144 General Analytic Techniques: Models with Multiple Job Classes

typically is within a few percent of the exact solution for throughputs and
utilizations, and within 10% for queue lengths and residence times.

As noted, the approximate solution technique is built upon estimates
for the arrival instant queue lengths at each device for each class that
depend only on information obtained from the solution of the network
with the full population. A particular estimate for the function /4, that
has been used successfully is:

Ac,k(]_v.) = Qk(N_lc)
~ 1[0 . .. 0 (W)

N, — — C, —
[N : QM(N)] + ZQM(N) (7.5)
4 Jj=1
VETS
Comparing equation (7.5) to the exact formula (7.4), it is evident that
the assumption made in the approximation is that the removal of a custo-
mer from the network does not affect the placement of customers in
other classes, and reduces queue lengths in its own class in proportion to
their original size. Equation (7.5) has worked well in practice. More
sophisticated estimates also have been used, although these are somewhat
more difficult to implement and require more machine resources, in
terms of both time and space.

An important benefit of the approximate technique is that non-integer
multiprogramming levels easily are incorporated in the model. One sim-
ply sets N, to the (non-integer) multiprogramming level and applies the
approximation. No interpolation between separate integer solutions is
required.

Closed Model Example (Approximate Solution)

Table 7.4 shows the intermediate and final values for the example
given in Section 7.4.2.1 (Table 7.3), calculated using the approximate
solution technique. The iteration was halted when the maximum change
in all queue length estimates was less than .001.

7.4.3. Mixed Model Solution Technique

Mixed queueing network models are those in which some classes are
open and some are closed. Such models may be constructed, for
instance, to model a mixed batch and transaction processing system. We
denote the workload intensity vector of the entire model by
I= (Niori;,Nyorhy, .., Neoric). Mixed models are evaluated
using Algorithm 7.4.

7.4. Solution Technigues 145

iteration class performance measure
O..crv | Oc.pisk X, R,
0 A .500 500
B .500 .500
: A 250 750 | .167 | 6.000
B 333 667 | .111 | 9.000
5 A 211 790 | .158 | 6.333
B 263 737 | .105 | 9.500
] A 195 805 | .154 | 6.474
B 253 747 | .104 | 9.579
4 A 193 807 | .154 | 6.495
B 249 751 | .104 | 9.610
s A 192 .808 | .154 | 6.508
B 248 752 | .104 | 9.614
“exact A 211 789 | .158 | 6.333
solution B 1263 737 | .105 | 9.500

Table 7.4 — Approximate MVA Computation

An important aspect of queueing phenomena is illustrated by Step 2 of
Algorithm 7.4. In that step, the performance measures of the closed
classes of a mixed model are computed by creating a model that consists
only of closed classes; the open classes have been eliminated. The effect
of the open classes on closed class performance measures is represented
by ‘‘inflating” the service demands of the closed classes at all devices.
The “‘inflation factor” used is 1— U{p) ,, wWhich is the percentage of time
that the processor is not in use by the open classes. In essence, this fac-
tor indicates the effective speed of the processor as seen by the closed
classes, given that some of its time is allocated to other (in this case
open) classes. For example, if a 3 MIPS (million instructions per second)
CPU is utilized 33% by transactions constituting an open class in the
model, it appears to be a 2 MIPS CPU to the other classes. Dividing all
service demands by .67 to create the closed model of Step 2 simply
reflects the fact that more processing time is required on the effectively
slower processor. This technique of inflating service times, which often is
referred to as load concealment, will be used repeatedly in later chapters to
reduce the complexity of models by eliminating customer classes while
still incorporating their effects on performance.

146 General Analytic Techniques: Models with Multiple Job Classes

Let {O} be the set of open classes and {C} the set of closed
classes.

1. For each center k, obtain its utilization by each open class:

Ur,k (7) = >\ch,/\' c € {O}
and its total utilization by all open classes:
U{O].A’ (7) = 2 >\ch,/\'
c € {0}

This simply is an application of the forced flow law and the
utilization law to each open class.

2. Solve the closed model consisting of the K centers and the
closed customer classes (but no open classes). The service
demand D, of each class ¢ € {C} at each center k in the
closed model is set to:

D*k — Dc,k
- I—U{O]‘/‘- (7)

where D, ; is the service demand of class ¢ at center k in the
original mixed model. The throughputs, queue lengths, and
residence times obtained from the solution of this model are
the performance measures for the corresponding closed classes
in the mixed model. Utilizations can be computed by applying
the utilization law to the original set of service demands D, ;.

c € {c}

3. Residence times and queue lengths for the open classes can be
computed using the performance measures of the closed
classes:

D« [1 + Qicl (ﬂ]
l_U{o}‘k(D
0. = XR. (D c € {0}

where Q{C},/\.(_D is the total queue length of all closed classes
at center k obtained from the solution of the closed model in
Step 2.

Rc,k (—D =

c € {0}

Algorithm 7.4 — Exact MVA Solution Technique (Mixed Models)

7.5. Theoretical Foundations 147

Mixed Model Example

Figure 7.4 shows a mixed model with four classes and two centers.
Classes 4 and B are open, while classes C and D are closed. As shown
in the figure, the solution of the model is obtained in three steps
corresponding to those of Algorithm 7.4.

7.5. Theoretical Foundations

As with single class models, certain assumptions about the behavior of
a model are necessary to the mathematical proof that the solution
obtained by the MVA procedure gives the exact performance measures
for that model. With only one exception, the assumptions required in the
multiple class case are straightforward extensions of those required in the
single class case:

® service center flow balance — The number of arrivals of each class at
each center is equal to the number of completions of that class there.

® one step behavior — Only a single customer can move (arrive to or
depart from a service center) at a time.

® routing homogeneity — Given a more detailed view of customer
behavior that includes the routing patterns of customers, routing
homogeneity is satisfied if the proportion of time that a customer of
class ¢ leaving center j proceeds directly to center k depends only on
¢, /, and k, and is independent of the number of customers or their
classes currently at any of the centers, for all ¢, j, and k.

® device homogeneity — This is the one assumption whose extension
from the single class case is less than straightforward. In the single
class case, we allowed the rate of completions of jobs from a center to
vary in an arbitrary manner with the number of jobs at that center
(although the rate could not otherwise be dependent on the number
or placement of customers within the network). In the multiple class
case, we do not allow completely arbitrary variation in completion rate
as a function of population. Specifically, let #» be the total number of
customers at center k, n. be the number of class ¢ customers there,
and w. « (n,n.) be the completion rate of class ¢ customers at center k
with those queue lengths. Device homogeneity is satisfied when:

n
/-Lc,k(na”c) = 76 Mk (1,1) ak(n)

for all ¢ and k, where g, (n) is a positive constant for fixed k and .
This assumption will be discussed further in Chapter 8.

148 General Analytic Techniques: Models with Multiple Job Classes

Model Inputs:

DD,CPU =
DD,Disk = 4/3

JVD =1

Dycpy =1/4 Dpcpy =1/2 Dccpy = 1/2
Dypsk =1/6 Dppg =1 D¢ pisk = 1
A =1 xg = 1/2 Ne =1
Model Structure:
Departures
Iy
Class C
Class D
Class B % D
Class A —
CPU
Evaluation:

1. Compute the total utilization of the devices by the open classes:
Uio,ceu(D) = N4Dy.cpy + NgDg.coy = .5

Uio).oiss D = MyDypix + X8 Dg_pisk

667

2. Solve the closed model obtained by deleting the open classes and

inflating the service demands of the closed classes:

. S . 1
Decrv = 155 = 1 Dpcry = 725 = 2
. 1 . 1.333
DC,DiSk = T__66_7 = 3 DD.DI'S/(= 1_.667 = 4

This model is equivalent to the closed model solved in the example of
Section 7.4.2, so the same performance measures will result, e.g.,
CPU queue lengths are .211 and .789 for classes C and D,

3. Using the queue lengths of the closed classes, compute the perfor-

mance measures of the open classes. For example:

_ 25 (1+1.0) S5 (1+1.0)0 _

Ricrv =773 1-.5 2.0

=10 Rpcpy =

Figure 7.4 — Example Mixed Network

7.6. Summary 149

® homogeneous external arrivals — The rate of arrival of customers of
each class is independent of the number and class of the customers
currently in the system or the placement of those customers.

While these assumptions are sufficient for the model to be separable (and
thus to be efficiently evaluated), the solution techniques that have been
presented so far require one additional restriction:

® service time homogeneity — The completion rate of class ¢ customers at
center k times the ratio of the total number of customers at k to the
number of class ¢ customers at k is constant for all fixed ¢ and k
(i.e., when a,(n) =1 for all k,n).

This last assumption ensures that all service centers are load independent,
which means that the rate of service is independent of the current state of
the queue at the device. Somewhat more complicated models can be
constructed using load dependent service centers, whose service rates
depend on their queue lengths. These will be discussed in Chapter 8.

7.6. Summary

In this chapter we have focused on multiple class, separable queueing
network models. We are interested in separable networks because they
are reasonably accurate models of computer systems and can be solved
efficiently; more general models require excessively large amounts of
time and space. Exact solutions of separable models with a few customer
classes, and accurate approximate solutions of models with many custo-
mer classes, can be obtained with modest machine resources.

The major advantage of multiple class models over single class models
is also the main drawback. By identifying distinct workload components,
output performance measures for each can be given separately. At the
same time, input parameter values are required for each individual class.
This typically requires considerable additional effort over that for a single
class model, as measurement tools often do not provide sufficient infor-
mation about resource consumption by classes.

While certain restrictive assumptions are required to construct separ-
able models, it often is the case that separable models accurately project
the behavior of complex computer systems despite these restrictions. In
cases where aspects of a computer system important to its performance
cannot be represented directly, variations on simple separable models
must be used. These variations are the subject of Part III.

150 General Analytic Techniques: Models with Multiple Job Classes

7.7. References

Almost all work with multiple class models has been conducted in the
stochastic setting. The work of Baskett et al. [1975], which describes
separable models for open, closed, and mixed workloads, is probably the
most referenced paper in the area of queueing network models. Chandy
et al. [1977] describe the stochastic properties required for a network to
be separable.

The case studies in Sections 7.3.1, 7.3.2, and 7.3.3 were reported by
Denning and Buzen [1978], Sanguinetti and Billington [1980], and
Lindzey and Browne [1979], respectively.

[Baskett et al. 1975]
Forest Baskett, K. Mani Chandy, Richard R. Muntz, and Fernando G.
Palacios. Open, Closed, and Mixed Networks of Queues with
Different Classes of Customers. JACM 22,2 (April 1975), 248-260.

[Chandy et al. 1977]
K. Mani Chandy, John H. Howard, Jr., and Donald F. Towsley. Pro-
duct Form and Local Balance in Queueing Networks. JACM 24,2
(April 1977), 250-263,

[Denning & Buzen 1978]
Peter J. Denning and Jeffrey P. Buzen. The Operational Analysis of
Queueing Network Models. Computing Surveys 10,3 (September
1978), 225-261. Copyright © 1978 by the Association for Computing
Machinery.

[Lindzey & Browne 1979]
G.E. Lindzey, Jr. and J.C. Browne. Response Analysis of a Multi-
Function System. Proc. ACM SIGMETRICS Conference on Simulation,
Measurement and Modeling of Computer Systems (1979), 19-26. Copy-
right ©1979 by the Association for Computing Machinery.

[Sanguinetti & Billington 1980]
John Sanguinetti and Richard Billington. A Multi-Class Queueing
Network Model of an Interactive System. Proc. CMG XI International
Conference (1980), 50-55. a

7.8. Exercises

1. What is the principal advantage of multiple class models over single
class models? The principal disadvantage?

7.8. Exercises 151

2. Evaluate the open model example of Figure 7.2 by hand with the fol-
lowing independent changes:

a. Both arrival rates halved.
b. D4 cry doubled.

3. Extend the solution of the closed network shown in Table 7.3 to the
case of two class 4 and two class B customers. Check your results
against those obtained using the multiple class, exact MVA implemen-
tation in Chapter 19.

4, Construct an ‘‘equivalent’ single class model to the model of Figure
7.2. Compare the performance measures of the single class model to
the aggregate measures of the multiple class model.

S. In evaluating a model with a one transaction and one batch class, the
solution technique involves the removal of the transaction class and
the ‘‘service time inflation” of the batch class. This procedure yields
an exact solution.

Investigate the use of service time inflation to remove a batch class
from a model. Consider a model with two batch classes and five
centers. Class A has service demands 1, 2, 2, 2, 2 at the five centers,
while class B has service demands 3, 1, 1 1, 1.

a. Use the software in Chapter 19 to obtain solutions to the model
with populations 2 4 ,2B), (24,8 B),and (2 4, 16 B).

b. For each population V, construct an approximate model with
respect to class A by removing the class B customers from the
model, and inflating the class 4 service demand at each center k
by 1 — UB,((V) Compare the results for response time and sys-
tem throughput with those obtained in (a). How do you derive
sensible utilizations for class A from this approximate model?

c. Give an intuitive explanation for the differences observed using the
two class model of (a) and the single class approximation of (b).

6. Implement the approximate MVA solution technique (Algorithm 7.3)
for models with two closed (batch or terminal) classes.
C
7. Argue that O (KCJJ(N.+1)) is the correct expression for the time

c=1
complexity of Algorithm 7.2.

8. Argue that O (KC) is the correct expression for the time complex-
ity of Algorithm 7.3 (assuming that the number of iterations does not
depend upon X or C).

Chapter 8

Flow Equivalence and Hierarchical Modelling

8.1. Introduction

The models studied in previous chapters were simple both in their
construction and in the techniques required for their evaluation. Often it
is useful to construct more sophisticated models so that additional details
of the computer system may be represented. In this chapter we discuss a
technique for doing so, hierarchical modelling. Hierarchical modelling is
the process of partitioning a large model into a number of smaller submo-
dels. Each of these submodels then is evaluated, and the individual solu-
tions are combined to obtain the solution of the original model. The
recombination is performed using a special type of service center called a
Sfow equivalent service center (FESC).

Consider the model shown in Figure 8.1, which represents two single-
CPU systems with a shared I/0 subsystem. In the general case, there is
an arbitrarily defined subsystem, called the aggregare, which interacts with
the other service centers in the network, called collectively the comple-
ment or complementary network. The aggregate itself may or may not be
representable as a network of service centers. In the case of this exam-
ple, the complement represents the CPUs, while the aggregate represents
the complex I/0 subsystem. A key step in the hierarchical approach is to
replace the entire aggregate by a single service center that mimics its
behavior, thus reducing the size of the network to be solved.

From the perspective of the service centers in the complement, the
aggregate can be thought of as a black box whose behavior is character-
ized by the residence time there (i.e., the time interval from when a cus-
tomer enters the aggregate until that customer departs the aggregate) and
by the rate and pattern by which customers leave the aggregate to return
to the complement (i.e., the departure process of the aggregate). As long
as customers experience an appropriate delay at the aggregate, and the
departure process of the aggregate is correct, the service centers in the
complement are unaffected by the actual construction of the aggregate.
Therefore, any representation of the aggregate that results in appropriate
inter-departure times is sufficient to obtain the solution of the network

152

8.1. Introduction 153

Aggregate

Figure 8.1 — Example Loosely-Coupled Multiprocessor Model

(with respect to the service centers in the complement). In particular,
the performance measures obtained for the complementary network will
be the same regardless of whether the aggregate is represented as a large
number of service centers or as a single service center.

It is this realization that leads to the concept of flow equivalent service
centers. An FESC is a single service center that, from the point of view
of the complementary network, behaves identically to the aggregate itself.
This means that the FESC must (minimally) cause the same average
delay to customers passing through it as those customers would experi-
ence had they actually proceeded through the detailed representation of
the aggregate. (In general, for an FESC to be exact, it must mimic the
actual distribution of interdeparture times from the aggregate, not just the
average. However, such detailed FESCs are too cumbersome to be of
practical use, so we limit ourselves to FESCs that match only average
residence time and throughput.) Since the FESC is a single service
center, while the detailed representation of the aggregate presumably is
much more complex, the use of FESCs is attractive because it leads to
much simpler models.

FESCs are the keys to hierarchical modelling. Hierarchical modelling
(often called hierarchical decomposition) is the process of modelling a sys-
tem using multiple levels of models. The model at the highest level,
level 0, consists of a number of FESCs, each of which represents some
portion of the computer system being modelled. The level below that,

154 General Analytic Techniques: Hierarchical Modelling

level 1, consists of a number of models, each a more detailed representa-
tion of a subsystem represented in level 0 as an FESC. Each of the level
1 models itself may contain FESCs. In general, the characteristics of the
FESCs at level / are determined by solving models at level /41, until
finally some level is reached at which all models are fully detailed, i.e.,
contain no FESCs. Figure 8.2 shows a possible decomposition scheme.
(Notationally, FESCs are distinguished by an arrow through the server,
suggesting variability.)

Level O

Level 1 "

Level 2

Figure 8.2 — Model Decomposition

Although the definition of the models normally proceeds from level 0
to level L, the evaluation of the models must occur in the opposite direc-
tion, i.e., from level L to level 0. Eventually the level 0 model is
evaluated, and performance projections for the computer system being
modelled are obtained from its solution.

There are two key requirements in hierarchical modelling beyond the
original need to define the levels of models. The first is to find a suitable
structure for FESCs. Our goal is to create a single service center that can
replace an entire subsystem. Thus, we expect this center to be more
complicated than the service centers we have seen so far, which represent
only single resources. Intimately related to the problem of finding a suit-
able representation for the level / FESCs is the problem of obtaining

8.2. Creating Flow Equivalent Service Centers 155

parameter values for them from the submodels at level /+1. These
issues are considered in Sections 8.2 and 8.3.

The second requirement of the hierarchical modelling process is to
evaluate models containing FESCs. As mentioned above, we should
expect FESCs to be more complicated than the types of centers we have
seen so far. Correspondingly, we should expect the solution techniques
required to evaluate models containing them to be more complicated.
This issue is addressed in Section 8.4.

8.2. Creating Flow Equivalent Service Centers

In general, it is not possible to find FESCs that produce exact results
for the complementary network. However, reasonably accurate approxi-
mations can be obtained. Figure 8.3 shows a typical situation in which an
FESC might be used. The enclosed subsystem (the aggregate) would be
replaced by the FESC.

Aggregate

Figure 8.3 — Example Application of an FESC

The purpose of the FESC is to mimic the behavior of the aggregate.
This behavior, as viewed by the complementary subnetwork, is the flow
of customers out of the aggregate and into the complement. An approxi-
mation for this flow can be obtained by making the decomposability
assumption that the average rate at which customers depart the aggregate
depends only on the state of the aggregate, where the state is defined by
the customer population within the aggregate. Thus, the state is

156 General Analytic Techniques: Hierarchical Modelling

independent of the placement of the customers at the various service
centers. (For example, the state of an aggregate might be (2 class 4 , 1
class B). The total number of customers of each class is represented, but
information about the location of each customer in the aggregate is
ignored.) An aggregate therefore can be defined completely by a listing
of its throughputs as a function of its possible customer populations.

The assumption that the output rate of the aggregate depends only on
the customers in it implies the assumption that the aggregate achieves
local equilibrium between successive interactions with the complement.
Local equilibrium means that the behavior of the aggregate is indepen-
dent of its starting condition. This situation occurs if, after an arrival to
the aggregate, many transitions of customers between service centers in
the aggregate occur before another arrival from the complement takes
place. Local equilibrium is most likely achieved when the service centers
in the aggregate all have service rates that are considerably faster than the
service rates of the centers in the complement.

It is desirable that the aggregate achieve local equilibrium because in
that case the average departure rate from the aggregate with a given
population in it will be nearly the equilibrium throughput, regardless of
the initial placement of those customers. This is exactly the assumption
made in reducing the aggregate to a single service center whose state is
described entirely by the number of customers present. If the aggregate
did not achieve equilibrium, its output rate would depend on its initial
configuration of customers, and so the single server representation would
be deficient.

Flow equivalent service centers are represented in queueing network
models using load dependent service centers. A load dependent service
center can be thought of as a service center whose service rate (the
reciprocal of its service time) is a function of the customer population in
its queue. For instance, a delay center can be thought of as a load depen-
dent service center that has service rate u with one customer in the
queue, and service rate np with n customers in the queue (in a single
class model). In contrast, a queueing service center is load independent
it has service rate u regardless of the number of customers in its queue.

An FESC for an aggregate is a load dependent service center with ser-
vice rates u. (%) equal to the throughputs X. (%) of the aggregate for all
populations 7 and classes ¢. (We will discuss methods for obtaining
these rates in Section 8.3.) Because the FESC mimics the behavior of the
aggregate, it can be used to replace the detailed description of the aggre-

gate in the model with little effect on the performance measures obtained.

For single class models, a state of an aggregate is described simply by
the number of customers anywhere within it, since customers are indis-
tinguishable. A flow equivalent service center is formed by calculating

8.2. Creating Flow Equivalent Service Centers 157

throughputs X (n) of the aggregate as a function of the number # of cus-
tomers in the aggregate. These are used to create a load dependent ser-
vice center with service rates u(n) = X(n).

In the case where the workload is transaction type, a rather subtle
problem can occur with the specification of the FESC. For these models,
there is no limit to the number # of customers that might exist in the
aggregate. Thus, an infinite number of throughput values seem to be
required to specify the FESC. While this is the case in theory, in practice
the situation is less bleak. Because real computer systems do not experi-
ence unbounded numbers of jobs in their queues, only a finite (and usu-
ally small) number of rates are required even for transaction type classes.
Typically, distinct rates are specified for all » less than some given
number »n* (which depends on the computer system being modelled).
Rates for all larger » are then assumed to be equal to the rate with n*
customers. FESCs that have rates of this sort are said to have limited load
dependent behavior. We will see specific applications of limited load
dependence in Part III of this book.

In applying FESCs to multiple class models, the state of an aggregate
is defined by a vector @ = (n,, ..., n¢) giving the number of customers
of each class present. Thus, the flow equivalent service center
corresponding to a specific aggregate is the load dependent service center
with output rate for class ¢, u, (%), equal to X, (77). Since the output rate
of the FESC for each class must equal that of the aggregate, the
““scheduling discipline’” at multiple class FESCs cannot be a traditional
one. (For example, if an FESC were scheduled FCFS, only the class
currently in service at the FESC would exhibit the proper output rate,
since all other classes would have output rates of zero.) Instead, an
artificial scheduling discipline, called composite queueing, is used so that all
classes receive service at once. One can think of the FESC as having C
distinct queues, one for each customer class. These queues are served in
parallel, with the class ¢ queue being served at rate u. (@) when the
population of the C queues is given by # = (n,, ..., #c).

As with single class models, specifying rates for an FESC in a network
that contains transaction type job classes can present problems in theory,
because of the apparently unbounded number of rates required. In prac-
tice, though, FESCs with limited load dependent behavior are sufficient,
and so models with transaction type classes pose no real problems.

A problem associated with multiple class FESCs that does not arise in
the single class case is that the number of populations for which
throughputs must be detercmined grows very quickly with the number of

classes. In particular, CH (N.+1) throughputs are required for a net-

work with a (closed) populatlon of N, class ¢ customers (a throughput

158 General Analytic Techniques: Hierarchical Modelling

C
for each of the C classes, for each of the H(NC+1) possible aggregate
c=1
populations). A network with five classes of ten customers each, for
instance, requires nearly one million distinct throughputs. Fortunately,
this problem can be dealt with in some cases by choosing an appropriate
method for calculating the necessary load dependent throughputs (see
Section 8.3).

It is important to keep in mind that while the hierarchical modelling
process appears to give an exact representation of the model, in general it
is only an approximation. The approximation arises in describing an
entire subsystem by a single service center. In doing so, information
regarding the placement of customers at the centers of the subsystem is
lost, and so the FESC does not have sufficient information to mimic the
subsystem exactly. In many situations, however, the resulting inaccuracy
is negligible.

8.3. Obtaining the Parameters

The parameters required to specify an FESC are the load dependent
service rates for each class as functions of the possible queue populations.
As indicated previously, the rates for level / models generally are
obtained from the solution of the corresponding level /+1 models. How-
ever, there are a number of different ways in which a level /+1 model
can be evaluated:

® measurements — In some cases, it may be possible to observe the sub-
system that is to be aggregated, and to obtain measurements of its
throughput as a function of the number of customers present. For
instance, one might measure the throughput of a channel/string pair
as a function of the number of outstanding requests to that string.
These measured throughputs then could be used directly to set the
service rates of an FESC. ' '

® queueing network models — The level [FESC might be representable at
level /41 as a queueing network consisting of load independent ser-
vice centers (and possibly some FESCs with service rates set by solu-
tions of lower-level models). This level /41 model can be evaluated
analytically, and the throughputs predicted from its solution used to
set the service rates of the level / FESC.

® simulation — If some aspects of the aggregate make it difficult to
evaluate analytically, a simulation of the aggregate can be performed
to obtain the required load dependent throughputs.

8.4. Solving the High-Level Models 159

® special purpose analytic methods — Models peculiar to a particular sub-
system, such as a complex I/O subsystem, might be developed and
solved analytically. The outputs of these models could be load depen-
dent throughputs, which then would be used to define the FESC
required in the next higher-level model.

In most cases we advocate the use of queueing network models for estab-
lishing the parameters of FESCs, for the same reasons that we advocate
their use in general: a combination of reasonable accuracy and ease of
use. Additioncally, this approach has the overwhelming advantage of pro-

ducing all CJJ (N.+1) rates required to parameterize the FESC with a
c=1

single solution of the low-level model. (Remember that the exact MVA

solution algorithm produces solutions for all populations from 0 to NV as a

by-product of obtaining the solution at population N.)

Having obtained the parameters of the level / FESCs, we now must
evaluate the level / model. As this model is simply one of the low-level
models defining a level /—1 FESC, it is clear that we can use any of the
preceding techniques to perform this analysis. However, for the reasons
outlined above, it generally is the case that the second method (queueing
network models) is used. In the next section we look in more detail at
the process of applying this technique.

8.4. Solving the High-Level Models

The most obvious approach to evaluating high-level models is to apply
the analytic techniques developed in previous chapters. In Chapter 20 we
present extensions to the MV A solution technique that allow the efficient
evaluation of networks containing load dependent service centers. Unfor-
tunately, this approach is applicable only to separable queueing network
models. Non-separable high-level models can arise when some non-
separable aspect of the original model (such as a priority scheduled ser-
vice center) is represented directly in the high-level model, or when the
load dependent service centers have arbitrary service rate functions.

For the moment, let us assume that the original network to be
analyzed is separable, so that the first of these two problems cannot arise.
In this case, if we wish to evaluate the higher-level model using efficient
analytic techniques, we require certain restrictions on the load dependent
service rates of each FESC. In particular, it must be possible to describe
the service rates of each FESC by a C dimensional matrix
gl0:N,, 0:N, , ..., 0:N¢], such that the service rate of class ¢ with popu-
glny, .., ne—=1, ..., ncl

g[nl 9 rer s nC]

lation 7, w.(7), is equal to , with the initial

160 General Analytic Techniques: Hierarchical Modelling

condition that g[0 , ..., 0]=1. A simple example of plausible throughput
rates for a two-class aggregate that violate this condition is:

LLA(HA=1,HB=O) = 1/2
wp(n, =0, ng=1) = 1/3
,U,A(n4=1,n8=1) = 3/10
wglng=1, ng=1) = 2/9

The first two rates require that g[1,01=2 and £[0,11=3 (remembering
that g[0,0] is equal to 1). The last two rates are incompatible, since the
rate for class 4 requires that g[1,1] be 10, while the rate for class B
requires that it be 9.

While general techniques for estimating the service rates of FESCs do
not lead to separable higher-level models, analyzing the lower-level
models as separable networks (the second approach of Section 8.3) is
guaranteed to do so. Based on this fact, an efficient strategy for use in
the hierarchical modelling of separable networks is summarized as Algo-
rithm 8.1. While the primary motivation for this strategy is its low com-
putational requirement, it happens that when the original model is separ-
able, this algorithm produces the exact solution.

In cases where the original model is not separable, Algorithm 8.1 must
be modified slightly. If the non-separable aspect of the model is included
in one of the lower-level models, then the step of the algorithm that
solves that submodel must be modified, as the MV A solution technique
is not applicable. Similarly, since the throughputs obtained from a non-
separable submodel do not result in a separable FESC, the step of the
algorithm dealing with the solution of the high-level model must be
modified. If the non-separable aspects of the original model do not
appear in any low-level models, but only in the higher-level model, only
the step dealing with the solution of this model must be altered. An
approach to solving non-separable models that can be used in place of
MVA in applying Algorithm 8.1 is given in Section 8.5. That approach
results in approximate solutions of the original model. However, experi-
ence has shown that such approximations usually are quite accurate.

8.5. An Application of Hierarchical Modelling

To this point we have been concerned with separable queueing net-
work models. The principal advantage of separable networks over more
general networks is that their solutions can be obtained very quickly.
However, the conditions required for separability impose some restric-
tions that at times can result in insufficiently accurate models. There are
three approaches that can be taken in such a case. One is to combine the
solutions of a number of separable networks (possibly with some iteration

8.5. An Application of Hierarchical Modelling 161

Given a closed, separable model with K centers and population
N, let centers 1 through A4 represent the aggregate, and centers
A1 through K the complement.

1. Create a low-level model by setting the service demands of
centers 4A+1 through K to zero for all classes. This is
equivalent to creating a model with centers 1 through 4.

2. Evaluate this (separable) model with population N, using the
exact MVA solution technique. Obtain system throughputs
X, (%) for all classes ¢ and all populations from no customers
to the full population M.

3. Create a high-level model consisting of centers 4-+1 through
K, an FESC representing centers 1 through A, and customer
population N. The service rate of the FESC for class ¢ when
the customer population in its queue is % should be X, (7).

4. Evaluate this high-level model using the extension to MVA
described in Chapter 20. The solution of this model is an ap-
proximation to the solution of the original K center network.
System performance measures for all customer classes, and
performance measures for centers A +1 through K, are ob-
tained as the results of this solution. Performance measures
for centers 1 through 4 can be computed by combining infor-
mation from the solutions of the high- and low-level models.
For instance, the average queue length at center XK in a single
class model with population N can be estimated as:

N n

Oxk(N) = 3 | PlOresc=n] 3, PlOx=10resc=n]

n=1 Jj=1
where P[Qrrsc=n] is the probability that the queue length at
the FESC is n (obtained from the high-level model), and
PlQx=j0resc=n] is the probability that center K has
queue length j given that there are » customers in the aggre-
gate (obtained from the low-level model).

Algorithm 8.1 — A Hierarchical Decomposition Solution Technique
for Separable Models

to acquire necessary parameters) to obtain an estimate of the performance
of the system. The second is to create a non-separable model. A
modification of the MVA solution algorithm that reflects the non-
separable aspects of the model then is used to obtain approximate

162 General Analytic Techniques: Hierarchical Modelling

performance measures. (Thus, we have an ‘‘exact” model but an
approximate analysis technique.) Both of these approaches are used in
Part III of this book. The final approach is to use a non-separable queue-
ing network model and an analysis technique that yields the exact solu-
tion of the model. The price paid for this increased accuracy is that the
solution requires a massive amount of computation.

In this section, we discuss the use of hierarchical modelling to
decrease the cost of evaluating non-separable queueing network models.
Our point of view is that we have determined that a non-separable queue-
ing network model is required because of the need to represent a particu-
lar computer system characteristic, and are seeking a feasible means to
evaluate this model. By judicious choices of aggregates, a large non-
separable model can be replaced by a much smaller model, by substitut-
ing single FESCs for various subsystems of service centers. This (still
non-separable) reduced model can be evaluated feasibly using one of the
accurate but computationally expensive solution techniques for non-
separable models. Thus, we have an approximate solution technique that
allows explicit representation of very general features of computer sys-
tems and still is efficient enough to be practical.

In the next two subsections we examine two specific general solution
techniques, one analytic and the other simulation.

8.5.1. Global Balance

The general analytic technique used to evaluate closed, non-separable
networks is called global balance. The global balance solution technique
involves creating and solving the large sets of linear equations that
describe the behavior of these models. This technique is impractically
expensive in most cases because of the enormous number of equations
and unknowns involved. Global balance requires one equation per state
of the network, where a state is (roughly) a placement of customers at
the service centers. A model with K centers and C classes therefore has
at least:

C

II

¢c=1

N.+K—1
K—1

n

equations and unknowns, where denotes the number of ways of

choosing p objects from n. Systems of equations of this size are
unmanageable even for apparently modest X, C, and N. For instance, a
network with 6 service centers, 5 classes, and 5 customers in each class
has more than 10'? states, and so cannot be solved directly using global
balance.)

8.5. An Application of Hierarchical Modelling 163

The implication of the rapid growth in the size of the state space with
the size of the model is that global balance can be applied only to very
small models. Approximate solutions of large, general models can be
obtained, however, by a combination of global balance and hierarchical
decomposition. A large model is broken into pieces, each of which can
be analyzed independently. These individual solutions then are combined
into a single model using FESCs, and the solution of this much smaller
model is obtained via global balance.

As an example, Figure 8.4 shows a mode! with three service centers (a
CPU and two I/0O devices) and two customer classes. Both I/O devices
are queueing devices, while the CPU is scheduled with priority given to
class 4 over class B. (An arriving class 4 customer goes into service
immediately if there are no class 4 customers at the center, and queues
behind those class 4 customers otherwise.) Because of the priority
scheduling, the model is not separable, and thus cannot be evaluated
using the MVA techniques of Chapter 7.

Disk1
e
CPU
O—
Disk2
Via,cru = 16 Vi pisk1 = 15 Va pisk2a =

Ny=1 Sycpyp=15 Sa.pisk1 = 20 Sa.pisk2 =
Dy cpy = 240 Dy pig1 = 300 D, Disk2 =

Ve,cry = 11 VB, pisk1 = Ve .piska = 6
Ng =2 Spcpy =13 Sg,pisk1 = 20 Sg.pisk2 = S0
Dgcpy =143 Dppik1t = 80 Dp pisk> = 300

Figure 8.4 — Global Balance Model

0
=0
0

Recall that the service demand of class ¢ at center k, D, , is the pro-
duct of the visit count, V., and the service requirement per visit, S. .
In separable models, we speak only of the D, , because the performance
measures are identical for all combinations of V. x and S, , that have the

164 General Analytic Techniques: Hierarchical Modelling

same product D, ,. In non-separable models, different combinations of
Ver and S, with the same product D, , will in general yield different
results. Thus, in order to specify the non-separable model in Figure 8.4,
we have had to provide the V., and S.,. We assume that each job
begins and ends service at the CPU, so for each class the CPU visit count
is one greater than the sum of the disk visit counts. This information will
be used only in obtaining the exact solution to the model; our hierarchi-
cal approximation will consider the model at the level of service demands.

This example is small enough that global balance could be applied
directly. In general, however, this will not be the case. Yet, since prior-
ity scheduling has an important influence on the performance of the sys-
tem, it is necessary to represent it in the model. We do so here by apply-
ing global balance to the smaller model created by replacing all centers
other than the CPU with an FESC. (Other techniques for modelling
priority scheduling are presented in Chapter 11.) The resulting two
center model (the priority CPU and the FESC) then can be evaluated
using global balance, and this solution used as an estimate for the perfor-
mance measures of the system. The entire process is outlined below:

® jsolate the I/0 subsystem — A model consisting of only the I/0O subsys-
tem is created (see Figure 8.5). Each class has a service demand at
the CPU of zero, and a service demand at each disk as indicated in
Figure 8.4.

Disk2

Figure 8.5 — Isolated I/O Subsystem Model

8.5. An Application of Hierarchical Modelling 165

® cvaluate the low-level model — The low-level model just created is
evaluated for every population that it could contain in the full net-
work. Since this submodel is separable, the standard MVA technique
can be applied. The performance measures of interest are the popula-
tion dependent throughputs for each class:

n

4 B X (@) X5 (7)
0 1 0 100263
0 2 0 00316
1 0 00333 0

1 1 00275 .00217
1 2 00255 100293

These give the rate at which customers leave the aggregate and return
to the CPU for each customer population in the aggregate, and thus
are the parameters required to form an FESC.

® create the high-level model — The high-level model (Figure 8.6) con-
sists of the original CPU service center and an FESC representing the
I/0 subsystem. At the CPU, each class has the service demand indi-
cated in Figure 8.4. The FESC has the population-dependent service
rates shown in the preceding table (e.g., .00275 for class 4 and .00217
for class B when one customer of each class is present). Remember
that the FESC is scheduled using composite queueing, so that all cus-
tomer classes are in service simultaneously and independently. Thus,
service rates of .00275 for class 4 and .00217 for class B mean that a
class A4 customer will leave (on average) in 363.6 (= 1/.00275) time
units and a class B customer in 460.8 (= 1/.00217).

Figure 8.6 — The High-Level Model

® cvaluate the high-level model — Since the high-level model contains a
priority scheduled CPU service center, it cannot be solved using MVA
(which pertains only to separable networks). However, the high-level
model is small, and so can be solved by the global balance technique.
We obtain:

166 General Analytic Techniques: Hierarchical Modelling

X, = .0016 Xz = .0020
Qs.crv = 396 Op.cpu = .838

The exact solution of the model of Figure 8.4, obtained by an expen-
sive direct application of global balance, is:

X, = .0016 Xz = 0020
Qa.crv = 373 Qg cpu = 790

Note that the performance measures obtained using the hierarchical
approach are only approximations, although both the low- and high-level
models were solved exactly. This is because the behavior of the I/0 sub-
system cannot be replicated exactly by the FESC, since information
regarding the location of customers in the I/O subsystem is discarded.

The motivation for using an FESC in this example is that global bal-
ance can be applied to the resulting small high-level model, but (in more
general cases) not to the original, large model. Use of the global balance
technique was required because of the non-separable aspect of priority
queueing in the model. In the following section we give a more detailed
description of the global balance solution technique. The technique is
described both in general terms, and more specifically as applied to the
problem above. One should keep in mind that the global balance tech-
nique can be applied in many more situations than those involving prior-
ity scheduling. However, in all cases, the network to be solved must be
quite small.

Details of Global Balance

The global balance solution technique can be used to compute the
solutions of fairly general networks of queues. The technique is based on
analyzing transitions of the system from one ‘‘state’’ to another.

We define a state of a service center in a queueing network model to be
an ordering of customers in its queue. For example, the feasible states of
a service center in a network with two class 4 customers and one class B
customer are

(44B) (4B4) (BAA) (44) (4B) (B4) (4) (B) ()

The state of a service center provides information about which customers
are in service and which are waiting. In some cases the state description
need not contain information about the ordering of customers in the
queue. For instance, if the queue above were scheduled with priority to
class 4 over class B, there would be no need to list the order of custo-
mers since it is certain that class A will be served first.

We define a stare of a queueing network to be a composite of the states
of all of its service centers. ~Intuitively, the state of a queueing network

8.5. An Application of Hierarchical Modelling 167

contains all the information necessary to determine the behavior of the
model at the moment.

We define the state space of a queueing network to be the set of feasi-
ble states. For instance, the state space of a model with two service
centers and a single customer class of 3 customers is:

(3;00 ;1) (1,2 (©;3)

Here, the first number in each pair represents the number of customers
at center one, and the second the number at center two. In general, the
set of feasible states of a queueing model is determined by the number of
customers of each class in the network, the service centers that each class
visits, and the scheduling disciplines of the various centers.

We define a state transition to be the movement of the model from
one of its states to another, caused by the movement of a customer
within the model. For instance, if the model above were in state (3 ; 0),
it would move to state (2 ; 1) when one of its customers completed ser-
vice at center one and proceeded to center two. A common assumption
made in analyzing queueing networks is that they exhibit one step
behavior: each state transition involves the movement of exactly one cus-
tomer. Thus, the network can move from state (3 ; 0) to state (2 ; 1),
but not (directly) to state (1;2). One step behavior is a reasonable
assumption since it is very unlikely that any two jobs of the computer sys-
tem can change locations at precisely the same time.

We define the state transition rate associated with a particular state
transition to be the instantaneous rate at which that transition occurs,
given that the network is in the starting state. For instance, if center one
in the model above has a service time of 2 (a service rate of .5), and cus-
tomers always alternate between centers 1 and 2, the rate associated with
the transition from (3;0) to (2;1) is .5. In general, state transition
rates depend on the service time of the moving customer at the center it
departs, and the likelihood that a customer leaving this center proceeds
immediately to another specific center. For single class models we have:

(nys s m+1lyoym=15 osng) = (nyy oy s oy 1y ey Ng)

with rate u;p;;, where u; is the service rate of center / and p;; is the
proportion of time that a customer leaving center / proceeds directly to
center J.

Given an arbitrary queueing network model, one can compute its state
space, associated state transitions, and state transition rates from the
model inputs. The solution of a model thus described can be obtained by
making the state space flow balance assumption that the rate of flow of the
network into any state must equal the rate of flow of the network out of
that state. (This assumption is much like the flow balance assumption of

168 General Analytic Techniques: Hierarchical Modelling

Chapter 3 applied to the network at the state space level.) The rate of
flow out of a state S is the proportion of time spent in S multiplied by
the sum of the state transition rates out of S. The rate of flow into a
state S is the sum over every state of the network of the proportion of
time spent in that state times the state transition rate from that state to S.

Finally, we define the Aow balance equations to be the equations
obtained by setting the total rate of flow into a state equal to the total rate
of flow out of that state. The flow balance equations are a set of simul-
taneous linear equations in which the unknowns are the proportions of
time spent in each possible network state. The global balance solution
technique for queueing network models involves creating and solving
these flow balance equations. Note that there is a single equation per
state. Thus the complexity of global balance grows combinatorially with
the size of the network, since the size of the state space does so.

As a particular example of the global balance technique we consider
the solution of the high-level model of Figure 8.6.

® create the state space — Because the CPU uses priority scheduling,
there is no need to include the order of customers in the queue there
as part of the state description. Similarly, because the FESC uses
composite queueing, the two customer classes act largely indepen-
dently there and so queue ordering is not important. The model thus
has six states. Using the notation (x;y) to indicate the state of the
network with the CPU in state x and the FESC in state y, the state
space of the model is:

statel: (4BB ;) state2: (4B ; B) state3: (BB A)
stated: (4 ; BB) state5: (B ; AB) state6: (; ABB)

® calculate the state transition rates — Each transition is caused by the
movement of a customer from the CPU to the FESC or from the
FESC to the CPU. The transition rate is equal to the rate at which
this customer receives service at the origin center when in the origin
state, multiplied by the proportion of time that this customer moves
directly to the other (destination) center upon completion at the origin
center.

Because of the simple nature of the high-level model that we are con-
sidering, customers always move to the CPU upon completion at the
FESC, and to the FESC upon completion at the CPU. Thus,
PA.CPU.FESC = PB,CPU.FESC = DPa.FESC.CPU = PBFESC.cPy = 1. As a
result, for example, the transition rate from state (B;A4B) to state
(AB;B), which involves the movement of a class 4 customer from
the FESC to the CPU when one customer of each class is present at
the FESC, is .00275 x 1 = .00275. Figure 8.7 shows the state transi-
tion diagram for this model.

8.5. An Application of Hierarchical Modelling

0.00417
—————
(;ABB) (4:BB)
) 0.00255
0.00699 | | 0.00293 0.00316
i 0.00417 '
(B:AB) (4B:B)
A 0.00275
0.00699 to.oozw 0.00263
0.00417 J
(BB;A) (ABB;)
0.00333

169

Figure 8.7 — The State Transition Diagram

® create the flow balance equations — The flow balance equations are

obtained by setting flow in equal to flow out.

The resulting set of

equations do not determine a unique solution. Therefore, an arbitrary
equation is discarded and replaced by an equation that ensures that the
sum of the proportions of time spent in the states is one. In matrix
notation, the balance equations for this example are:

—.00417 .00263 .00333
0 —.00680 ... 0
00417 0 —.01032
0 0 0
0 00417 .00699
1 1 1

solving sets of simultaneous linear equations.
can be used on small systems.

0 0 0
00316 .00275 0

0 00217 0
—.00733 0 .00255

0 —.01191 .00293

1 1

P(state 1)
P(state 2)
P (state 3)
P(state 4)
P(state 5)
P(state 6)

— O O O O O

solve the flow balance equations — There are standard algorithms for

Gaussian elimination

More sophisticated, iterative tech-

niques may be required for larger models. The solution of the system
of equations above gives the proportions of time spent in each state:

P(state 1)
P (state 2)
P(state 3)

.161 P(state 4)
125 P(state 5)
.104 P(state 6)

instance, class A’s CPU utilization is given by:

Uscpy = Plstate 1) + P(state 2) + P(state 4)

110
183
317

compute performance measures — Performance measures may be calcu-
lated from the proportions of time spent in the various states.

For

396

170 General Analytic Techniques: Hierarchical Modelling

8.5.2. Hybrid Modelling

Hybrid modelling is a joint simulation/analytic solution technique that
attempts to combine the best aspects of each. Simulation is used so that
aspects of the computer system leading to non-separable models can be
represented. Analytic techniques are used for efficiency.

To understand the relationship of hybrid modelling to the analytic
techniques that are the primary concern of this book, we first must
present a brief examination of the simulation approach to modelling. We
have chosen to describe a particular type of simulation, that of probabilis-
tic, event driven simulation. While other approaches are possible, event
driven simulation is the most useful in computer system performance
analysis.

Simulation techniques are experimental in nature. However, rather
than running a physical experiment with real hardware and workload
components (i.e., a benchmark experiment), the functional operation of
the physical system is represented in software. The software maintains a
simulation clock, which keeps track of the simulated elapsed time of the
experiment. The software also keeps track of the state of each simulated
physical device. States typically include information about which simu-
lated jobs are in service or queued at each device, and information about
the completion time of the operation in progress at each device. The
software drives the simulation by selecting the event that should occur
soonest, updating the simulation clock to the time of that event, and
changing the state of the simulation to correspond to the occurrence of
the event. This change of state might include the scheduling of new
events at future simulation times. “For instance, suppose that at simula-
tion time 104.35 seconds, the next event that should occur is the comple-
tion of the job in service at the CPU at time 104.50 seconds. The simula-
tion would advance the clock to 104.50 seconds, remove the job from the
CPU queue, and enqueue that job at the device where it would next
require service. It would also place a new job in service at the CPU
(assuming that there were waiting jobs), pick a service time for that job
according to some probability distribution that was an input parameter of
the model (say 0.23 seconds), and schedule the departure of that job for
some future simulation time (in this case at 104.73 seconds). The final
task of the simulation driver is to record performance statistics about the
simulation experiment. For instance, the driver might maintain a count
of the total number of simulated seconds during which the simulated
CPU was busy. At the end of the experiment, the ratio of that quantity
to the final value of the simulation clock would be the estimate for CPU
utilization.

It should be clear from this description that a simulation is capable of
representing nearly arbitrary amounts of detail of the operation of the real

8.5. An Application of Hierarchical Modelling 171

system. Of course, as more detail is incorporated, the size and expense
of the simulation increase. Thus, to be useful, some amount of abstrac-
tion is required in forming the simulation model. For instance, a simula-
tion model of a computer system might be identical to the queueing net-
work models we have been examining (meaning that the input parame-
ters of the simulation model and the queueing network model are the
same). Alternatively, the simulation model might include more detail,
such as a more accurate representation of a priority scheduling discipline
used at the CPU. Finally, models with a large amount of detail (and very
little abstraction) might include information about memory reference pat-
terns (for use in determining page fault rates) or instruction mix (for use
in determining effective CPU speed). Thus, simulation models are a
superset of the queueing models with which we are concerned. Their
advantage is their ability to incorporate detail. Their disadvantage is their
expense: the computation required to obtain reliable performance esti-
mates, the effort required to obtain the more detailed information needed
to parameterize the more detailed models, and the effort required to gain
insight into the critical parameters affecting performance in a model with
a large number of inter-dependent parameters.

With this characterization of simulation in mind, we can proceed with
the description of the basic hybrid modelling technique. Given a (non-
separable) model of a system to be analyzed, isolate a subsystem (an
aggregate of service centers) that can be solved conveniently in isolation.
Create a flow equivalent service center to represent the submodel (by
solving the submodel analytically to obtain the population dependent
throughputs), and replace the subsystem by its FESC in the original
model. Finally, solve this reduced model using simulation. Of course, it
is possible to reverse the roles of simulation and queueing network
modelling in this scheme (so that the low-level model is solved by simu-
lation, and the high-level model analytically). This might be done, for
instance, to model a complex I/O subsystem component of a large com-
puter system, the remainder of which can be represented adequately as a
separable queueing network.

In essence, this technique is identical to that of the previous subsec-
tion, with simulation substituted for global balance. Our motivation for
proposing it also is the same: we have a powerful model solution tech-
nique (simulation) that we would like to employ, but the technique is too
inefficient computationally for general use.

The inefficiency of simulation as a solution method is an effect of the
statistical nature of the technique. Since simulation depends on observa-
tions of essentially random behavior sequences, many such sequences
must be observed before we can have any confidence in the results (since
any small number of sequences might be atypical). Thus, simulation is
inherently expensive. This problem is compounded in cases where the

172 General Analytic Techniques: Hierarchical Modelling

events being simulated happen at significantly differing rates. For exam-
ple, consider a model in which the I/O subsystem is represented in detail,
and from which we would like to obtain system throughput. Suppose that
for each I/0 request, we simulate individually the I/O path selection,
.cylinder seek, rotational latency, path reconnect, and data transfer times.
Further, suppose that the effect of data transmission errors is represented
by simulating each transferred byte (so that errors can be inserted). In
this case we have events occurring at rates varying from relatively slow
(job completions in the system) to relatively fast (byte transfers). As
mentioned before, to obtain any statistical confidence in the results for
system throughput, many job completions must be observed (say 1000, as
an example). Suppose each job performs 100 I/O operations on average.
This means 100,000 I/O operations must be simulated. Now suppose
each I/0 operation transfers 4,000 bytes of information. This implies the
simulation of 400,000,000 byte transfers. Obviously such a simulation
will require immense machine resources.

Hybrid modelling can be used to best advantage in situations like the
above where there are large time scale differences in the rates at which
various events take place. Typically, the subsystem containing the events
occurring the most frequently is modelled analytically, and the load
dependent throughputs obtained from the solutions are used to create an
FESC. This FESC replaces the subsystem, and the resulting model is
simulated. Activity in the subsystem therefore is represented by the
arrival and departure of customers from the FESC, which must occur at
the same rate as events in the remainder of the model (since that is
where the customers come from). Thus, this model can be simulated
(relatively) efficiently.

Consider using a model to evaluate the performance of various long
term scheduling policies (memory admission policies). Let the model
consist of service centers representing the significant hardware resources
(CPU, disks, etc.), a memory queue, and three customer classes. One
class represents CPU bound jobs, one I/0O bound jobs, and one balanced
jobs. The scheduling policies to be evaluated use information about the
current memory resident job mix to select a waiting job from one of the
three classes, in an attempt to maximize system throughput.

Because of the memory queue and complicated memory admission
policies to be considered, this model is not separable and so cannot be
solved analytically (although perhaps the technique of the previous sec-
tion could be applied successfully). A pure simulation approach would be
very expensive, if not infeasible, because of the time scale difference
between the rate at which long term scheduling decisions must be made
and the rate at which events occur within the central subsystem. Thus, a
hybrid approach is recommended. The central subsystem (CPU and I/0
subsystem) model is isolated, yielding a separable model. This model is

8.6. Summary 173

solved analytically for each feasible mix of customers of the three classes.
Finally, a simulation of the memory admission policies is performed, with
the time between job completions selected according to the rates of the
FESC formed from the solutions of the central subsystem model solved
previously. In essence, we use simulation to analyze a model consisting
simply of the memory queue and an FESC representing the remainder of
the computer system, with the parameters (service rates) of the FESC
obtained by an analytic solution of the submodel the FESC replaces.

In an actual experiment with this technique applied to this problem,
the maximum relative percentage difference between the hybrid tech-
nique and a simulation-only technique was 7%, while the simulation-only
model took 56 times longer to execute. Given this combination of accu-
racy and efficiency, the hybrid technique is the approach of choice.

8.6. Summary

The key concept of this chapter is hierarchical decomposition, the pro-
cess of splitting one model into a number of smaller submodels, each of
which then can be analyzed in isolation. The solution of the original
model is formed by combining the solutions of the submodels.

The submodels are combined using flow equivalent service centers.
FESCs mimic the behavior of the submodels they represent by modelling
the average output rates of these submodels as functions of their custo-
mer populations. Thus, FESCs are represented as load dependent service
centers in the model.

The output rates of FESCs can be obtained in a number of ways, but
by far the most important of these is the representation of the submodel
as a queueing network model, which is solved by a single application of
mean value analysis. Where this technique is applicable, it yields all the
output rates for all populations of interest, and ensures that the FESC
produced has analytically nice properties that allow efficient solutions of
models that incorporate it. In some cases, however, this approach to
solving the low-level model is not appropriate. (For instance, the param-
eter values of the low-level model might depend on the customer popula-
tion. In this case the required load dependent rates cannot be obtained
by a single application of MVA.) For these models, the load dependent
rates used to parameterize the FESC generally will not lead to an
efficiently analyzable higher-level model. We will deal with this problem
in Part III of this book, when we use FESCs as tools in analyzing increas-
ingly more sophisticated models of computer systems.

An important specific use of hierarchical modelling is the efficient
approximate solution of non-separable queueing networks. There are two

174 General Analytic Techniques: Hierarchical Modelling

important approaches to solving these models: global balance, and simu-
lation. Both techniques can require excessive computation for all but
very small models. Thus, to employ these techniques (and so to use the
modelling constructs they allow) one must restrict the model size.
Hierarchical modelling is useful in this respect because the large models
that naturally arise in modelling computer systems can be reduced using
flow equivalent service centers to models of manageable size.

In Part III of this book we examine a number of specific components
of computer systems that must be represented in a performance model.
In many cases we are confronted with characteristics of computer systems
that cannot be modelled directly using separable networks. Hierarchical
modelling and flow equivalent servers are the keys to successful models
in many of these cases.

8.7. References

Flow equivalent service centers were shown to yield exact solutions
for single class separable networks by Chandy et al. [1975]. Sauer and
Chandy [1975] first presented their use as an approximation.

The global balance solution technique is a classical approach to the
solution of Markovian systems (see [Cox & Miller 1965], for example).
Sauer and Chandy [1981] present this material in the computer system
modelling context.

The utility of the hybrid modelling approach of Section 8.5.2 was
pointed out by Schwetman [1978] and Tolopka and Schwetman [1979].
For other case studies employing hybrid modelling, see [Browne et al.
1975] and [Lindzey & Browne 1979].

[Browne et al. 1975]
J.C. Browne, K.M. Chandy, R.M. Brown, TW Keller D.F. Towsley,
and C.W. Dissley. Hierarchical Techniques for Development of Real-
istic Models of Complex Computer Systems. Proc. IEEE 63,6 (June
1975), 966-975.

[Chandy et al. 1975]
K.M. Chandy, U. Herzog, and L.S. Woo Parametric Analysis of
Queueing Networks. IBM Journal of Research and Development 19,1
(January 1975), 50-57.

[Cox & Miller 1965]

D.R. Cox and H.D. Miller. The Theory of Stochastic Processes. Wiley,
1965.

8.8. FExercises 175

[Lindzey & Browne 1979]
G.E. Lindzey, Jr. and J.C. Browne. Response Analysis of a Multi-
Function System. Proc. ACM SIGMETRICS Conference on Simulation,
Measurement and Modeling of Computer Systems (1979), 19-26.

[Sauer & Chandy 1975]
C.H. Sauer and K.M. Chandy. Approximate Analysis of Central
Server Models. IBM Journal of Research and Development 19,3 (May
1975), 301-313. :

[Sauer & Chandy 1981]
C.H. Sauer and K.M. Chandy. Computer Systems Performance Model-
ing. Prentice-Hall, 1981.

[Schwetman 1978]
H.D. Schwetman. Hybrid Simulation Models of Computer Systems.
CACM 219 (September 1978), 718-723.

[Tolopka & Schwetman 1979]
S.J. Tolopka and H.D. Schwetman. Mix-Dependent Job Scheduling -

An Application of Hybrid Simulation. 1979 National Computer Confer-
ence Proceedings, AFIPS Volume 48 (1979), AFIPS Press, 45-49.

8.8. Exercises

1. Modify the Fortran program of Chapter 18 to accommodate flow
equivalent service centers. (The modifications required are described
in Chapter 20.)

2. Use Algorithm 8.1 to evaluate a (separable) single class model consist-
ing of a CPU center with service demand 10, and four disk centers
with service demands 4, 3, 3, and 2. The customer class should be
terminal type with 20 active users and 30 second think times. In
applying the algorithm, treat the four disk centers as the aggregate,
and the CPU center as the complementary network. Use the software
created in answering Exercise 1 (extended to accommodate terminal
classes) to analyze the high-level model that you construct. Compare
the solution you obtain by applying hierarchical decomposition to that
obtained by simply solving the full five-center network using MVA.

3. Use the global balance technique to solve the example model from
Section 6.4.2.1. This exercise should illustrate dramatically the com-
putational advantage of separable models (which can be solved using
MVA) over general networks of queues (which require a global bal-
ance analysis to obtain the exact solution).

176

General Analytic Techniques: Hierarchical Modelling

4, Figure 8.7 shows the state transition diagram for the model illustrated
in Figure 8.6. There are two centers: a preemptive-priority-scheduled
CPU, and an FESC representing the I/0 subsystem. There are two
classes: A, the high-priority class, with one customer, and B, the
low-priority class, with two customers.

a

b
C
d

. Why is there no state (BA;B)?
. Why is there no transition from state (BB;A) to state (4B;B)?

Why is there no transition from state (4BB;) to state (4B;B)?

. At what rate does class B depart the FESC when one class 4 and

one class B customer are present there?

Part 111

Representing Specific Subsystems

Many successful modelling studies are conducted without venturing
beyond the techniques described in Part II. In other words, the system
characteristics considered in these studies are restricted to those that can
be represented directly using the parameters of separable queueing net-
works.

There are, of course, situations in which the analyst will wish to
represent a specific subsystem in greater detail than is possible within the

confines of separable networks. Techniques for doing so are the subject
of Part III.

The efficient evaluation that is characteristic of separable networks is
mandatory in analyzing contemporary computer systems. For this reason,
non-separable networks typically are evaluated by ‘‘mapping’’ them onto
(perhaps several) separable networks. Since this mapping necessarily is
approximate, the techniques for doing so traditionally have been referred
to as approximate solution techniques. This phrase is not really meaningful,
though, since we use approximate techniques to evaluate even separable
networks, and since any queueing network model is only an approximate
representation of an actual system.

As yet there is no unifying theory underlying these techniques. There
is, however, a small set of ideas on which they are based. Among these
ideas are:

® iteration — making an initial guess at the value of a parameter, then
iteratively refining this value, in a manner analogous to that of the
MVA-based iterative approximate solution techniques for separable
networks, described in Chapter 6;

® Joad concealment — representing the effect of a workload component
or system characteristic indirectly, by ‘‘inflating’’ the service demands
of those workload components that are represented explicitly, in a
manner analogous to the calculation of performance measures for
closed classes in mixed separable networks, described in Chapter 7,

177

178 Representing Specific Subsystems

® decomposition — evaluating a subsystem in isolation, perhaps using a
heuristic, and incorporating the results of this analysis in a flow
equivalent service center that can be included in a high-level model,
as described in Chapter 8.

Not all of the techniques are fully general. We will see that homogeneity
assumptions frequently are introduced in some aspect of a model to facili-
tate the detailed representation of a subsystem. As a specific example, in
order to evaluate multiple class memory constrained queueing networks
we will assume that the throughput of each class is dependent only on its
own central subsystem population and the average central subsystem
population of every other class.

We have organized our discussion into three chapters, which consider
the representation of memory, disk I/0, and processors. Just as with the
algorithms for evaluating separable queueing networks presented in Part
II, the techniques presented in Part III generally will be incorporated in a
queueing network analysis package at a level not visible to the analyst.
While it is possible to use these techniques without understanding them,
achieving such an understanding is important for two reasons: so that
they can be used confidently and appropriately, and so that the analyst
can devise related techniques when confronted with novel situations.
Some examples of such novel applications will be given in Part V.

Chapter 9

Memory

.
It
I

9.1. Introduction

Memory and its management affect the performance of computer sys-
tems in two major ways. First, almost every system has a memory con-
straint: a limit on the number of ‘“‘threads of control’ that can be active
simultaneously, imposed by the availability of memory. A memory con-
straint places an upper bound on the extent to which prccessing resources
(CPUs, disks, etc.) can be utilized concurrently, aad thus on the
throughput of the system. Second, there is overhiead associated with
memory management. As an example, swapping a user between primary
memory and secondary storage places service demands on the I/0 subsys-
tem (and the CPU, as well). To the extent that the operating system
devotes processing resources to the management of mem.ory, the progress
of “‘useful’”” work is impeded.

Although memory seldom was mentioned explicitly .n Parts I and II,
specific implicit assumptions were made in each example:

® When we described the intensity of a workload by its population N (a
closed model with a batch workload), we were assum.ing that the sys-
tem had a memory constraint, that this constraint could be expressed
in terms of a specific number of jobs (.e., that all jobs required the
same amount of memory), and that there was a sufficient backlog of
work that the system was continuously operating at its maximum mul-
tiprogramming level.

® When we described the intensity of a workload by its population N
and average think time Z (a closed model with a terminal workload),
we were assuming that the system had a fixed number of interactive
users, and that enough memory existed to accommodate as many of
these users as might concurrently require it (.e., that there was no
memory constraint).

179

180 Representing Specific Subsystems: Memory

® When we described the intensity of a workload by its arrival rate A (an
open model with a transaction workload), we were again assuming that
there was no memory constraint. The assumption in this case is in
fact somewhat more extreme than in the case of a terminal workload,
because there is no bound on the central subsystem population of a
transaction workload.

In each case we either ignored overhead due to memory management or
included an average value in the service demands of every customer.

These simple assumptions about system behavior are encountered fre-
quently in modelling studies because they satisfy the conditions required
for queueing network models to be separable, i.e., directly amenable to
the efficient evaluation techniques described in Part II. The fact that
these studies are successful indicates that the assumptions, if not strictly
correct, are at least robust:

® In an actual computer system, the multiprogramming level of a batch
workload may vary over time for many reasons: the amount of
memory available to the batch workload may vary, or the memory
requirements of individual batch jobs may differ, or the backlog of
work may drop below the memory constraint. However, usually it is
possible to validate a model using a single multiprogramming level
that represents the time-weighted average of the observed multipro-
gramming levels. Projecting performance for a modified workload or
configuration requires that the analyst estimate the effect of the
modification on this average multiprogramming level.

® Although there are times in almost every interactive system when a
user must wait for access to memory, these times may be so infre-
quent that the existence of the memory constraint can be ignored in
constructing a model. A modification to the workload or configuration
may affect the distribution of the number of users desiring memory,
so the validity of the assumption must be checked in modelling such a
modification. Doing so usually is not difficult.

® Although detailed paging behavior is difficult to model, many operat-
ing systems succeed in maintaining an average page transfer rate that
is relatively insensitive to variations in configuration and workload. In
such cases it is not difficult to characterize a customer’s service
demand at the paging device.

Of course, these simple assumptions are not always adequate. In this
chapter we will extend the flexibility with which we represent memory
and its management in queueing network models. The organization of
the chapter reflects our belief that the throughput-limiting effect of a
memory constrai.t is the primary effect of memory on performance, while
the overhead associated with memory management is a significant secon-
dary effect. The chapter has five principal sections. First, we explore

9.2. Systems with Known Average Multiprogramming Level 181

some of the subtleties that can arise in the simple case of a system with a
known average multiprogramming level. Next, we show how to represent
the effect on system throughput of a memory constraint that is some-
times, but not continuously, reached. Then, we describe how to
represent overhead due to swapping (Section 9.4) and paging (Section
9.5). Finally, we use case studies to relate these techniques to one
another, supplementing the examples presented in each section.

9.2. Systems with Known Average Multiprogramming
Level i

This section serves to illustrate that subtleties can arise even in model-
ling the apparently straightforward case of a batch workload with a known
average multiprogramming level.

XNV +1)
X(N)

/’/i
X(N-1) -~ ?\

XN = 1)+ XN + 1)
2

Throughput

|
|
!
|
J
|
!
!

N-1 N N +1
Figure 9.1 — Throughput Versus Multiprogramming Level

In all but the simplest of systems, the multiprogramming level of a
workload (the number of active threads of control) is not constant, but
varies over time due to factors such as competition for memory from
other workloads, differences in the memory requirements of jobs, and the
availability of jobs. As the multiprogramming level of a workload varies,
so does its throughput. The relationship of throughput to multiprogram-
ming level is illustrated qualitatively by the curve in Figure 9.1. At low
multiprogramming levels, the marginal increase in throughput due to an
additional active job is relatively large, since this job causes a relatively
large increase in the concurrent activity of various processing resources.

182 Representing Specific Subsystems: Memory

As the multiprogramming level increases, the marginal increase in
throughput becomes relatively small, because little additional concurrency
is realized. (Figure 9.1 assumes that the overhead due to a job can be
included as a component of its service demands, and is insensitive to
multiprogramming level.)

Imagine that we observe such a workload for a period of time and
measure its average multiprogramming level, N. For the sake of argu-
ment, let N be an integer. Now, consider two cases:

e [f the system had operated at a constant multiprogrhmming level of ¥
during the entire observation interval, then its throughput would have
been X(NV), as indicated in the figure.

® [f the system had operated at a constant multiprogramming level of
N—1 during the first half of the interval and at a constant multipro-
gramming level of N+1 during the second half, then its throughput

would have been X(N—1) during the first half of the interval,

X(N+1) during the second half, and X(N—1) _; X(N+1) over all,

which, as shown in the figure, is less than X (V).

Clearly, if the system actually had operated as in the latter case but a
queueing network model of the system is evaluated at the average mul-
tiprogramming level N, a discrepancy will result. This discrepancy often
is small; systems almost inevitably are modelled successfully using an
average multiprogramming level, which almost inevitably represents a
time-weighted average of several different multiprogramming levels
encountered during an observation interval. However, if greater accuracy
is required, the model can be analyzed at each of the observed multipro-
gramming levels and a weighted average of the results taken. This
approach can be applied to multiple class models as well as single class
models. Naturally, though, the incentive to be satisfied with the results
of an analysis at average workload intensities increases with the number
of combinations that would have to be considered to do otherwise.

Here is an example based on actual data collected during a benchmark
test of a system with three distinct workloads, each of batch type. As
shown in Table 9.1, the multiprogramming levels of these workloads
varied in a way that partitions the benchmark into three time periods.
These periods are described by the first three lines of the table, which
show the elapsed time (in seconds) at which the transitions between
periods occurred, the duration of each period (again in seconds), and the
proportion of the total observation interval due to each period.

In order to parameterize a queueing network model, we need not only
the workload intensities, as shown in Table 9.1, but also the service
demands. These service demands, calculated from measurements taken
during the benchmark, are shown in Table 9.2, ' ’

9.2. Systems with Known Average Multiprogramming Level 183
quantity period 1 period 2 period 3 average
time interval 0-1268 | 1268 - 1734 | 1734 - 2108
duration 1268 466 374
proportion of total .602 221 177
workload 1 2 2 3 2.18
MPL | workload 2 1 0 0 0.60
workload 3 2 3 0 1.87

Table 9.1 — Variation in Multiprogramming Level (MPL)

devi service demand, seconds/job
evice workload 1 | workload 2 | workload 3
CPU 12.906 1.315 0.632
disk 1 4,133 0.325 0.004
disk 2 8.580 0 0
disk 3 7.549 0.081 0.305
disk 4 0.424 0.001 0.181
disk S 4.896 0.053 0.198
disk 6 6.437 0 0
disk 7 3.651 0 0
disk 8 0 0.082 0.888
disk 9 3.057 0.087 0.049
disk 10 4.980 0.141 0.080

Table 9.2 — Service Demands

First we consider a three class model of this system which we evaluate
three times, using the three sets of multiprogramming levels correspond-
ing to the three time periods of the benchmark. The results are shown in
Table 9.3.

quantity period 1 | period 2 | period 3 | average
CPU utilization 925 782 557 825
throughput wkid. 1 1.343 1.475 2.498 1.58
. S0 wkid. 2 14.71 0 0 8.86
jobs/minute | L1143 | 2971 | 44.14 0 27.6

Table 9.3 — Model Outputs for Three Time Periods

The alternative is to evaluate the same three class model once, using
the average multiprogramming levels for each workload. Table 9.4 com-
pares measurement data, the model using the average multiprogramming
level, and the model representing the three time periods.

184 Representing Specific Subsystems: Memory

model results
quantity i;tll:;l average MPL variable MPL
value | discrep. | value | discrep.
CPU utilization .820 .819 0 825 + 1%
eput. wkid. 1 1.59 1.51 - 5% 1.58 — 1%
.) wkld. 2 8.77 8.72 — 1% 8.86 + 1%
jobs/min. | L\iq'3 | 270 | 289 | +7% | 276 | + 2%

Table 9.4 — Measurements Versus Two Modelling Approaches

Two summary comments, the first of which is technical, the second
philosophical:
® As we have observed in other contexts (e.g., Chapter 4), average
response time must be calculated in a different and less obvious way
than average throughput, queue length, and utilization. These latter
quantities are obtained by weighting the performance measure for each
period by the relative length of that period. For example:

U . . duration of period p
U aE// (U during period p) roral duration of

periods p observation interval

Average response time, on the other hand, is obtained by weighting
the performance measure for each period by the relative number of
jobs completed during that period:

(X during p) x (duration of p)

R = > (R during p) x

p > (X during p) x (duration of p)
periods p all
periods p

® We observe frequently in queueing network modelling that significant
increases in effort (both in data collection and in analysis) yield only
small increases in accuracy. This is perhaps the most important point
illustrated by this example.

9.3. Memory Constraints

Since the throughput-limiting effect of a memory constraint is the pri-
mary effect of memory on performance, its accurate representation can be
important. We have noted that separable queueing network models allow
the direct representation of certain extreme cases, such as a memory con-

9.3. Memory Constraints 185

straint that is continuously reached (batch workloads) and a memory con-
straint that is never reached (terminal or transaction workloads). Unfor-
tunately, the interesting general case of a memory constraint that is
sometimes, but not continuously, reached, is an instance of simultaneous
resource possession, which violates the conditions required for separability.
Fortunately, rather elegant techniques exist for the indirect representation
of such a memory constraint in separable models. These techniques are
the subject of the present section.

Our approach is based on the concepts of flow equivalence and
hierarchical modelling, as described in Chapter 8. As shown in boxes 1
and 2 of Figure 9.2, we initially are confronted with a queueing network
model that is non-separable because of the existence of a memory queue.
First, we decompose the model into two parts: the central subsystem plus
the memory queue (box 2) and the external environment (box 1). Next, we
define a load dependent service center (shown in box 3) that is flow
equivalent to 2 from the point of view of the external environment. We
do this using a separable subsystem model, which can be evaluated
efficiently. Finally, we analyze a high-level model consisting of this FESC
and the external environment (1 and 3 taken together). The joint
analysis of 1 and 3, which again can be carried out efficiently, will yield
nearly the same results as the joint analysis of 1 and 2, which cannot.

This hierarchical analysis coincides nicely with the users’ view of the
system. Referring again to Figure 9.2, each customer can be in one of
two principal states: thinking (.e., at the terminals; equivalently, within
box 1) or ready (.e., desiring to compute; equivalently, within box 2).
The primary concern of a user is the average time spent in the ready state
(box 2), which corresponds to average response time. It happens that,
because of the memory constraint, ready customers can be in one of two
sub-states: waiting (i.e., in the memory queue; equivalently, above the
dashed line in box 2) or active (i.e., memory resident and competing for
the processing resources of the central subsystem; equivalently, below the
dashed line in box 2). This influences the completion rate of customers
— the rate at which customers flow from box 2 back to box 1 — and thus
average response time. The objective of our analytic approach is to define
an FESC that characterizes this completion rate as a function of the cus-
tomer population within box 2. This characterization will account for
competition within the central subsystem (@.e., below the dashed line in
box 2), and also for the effect of the memory constraint on the actual
population of the central subsystem.

We first discuss single class memory constrained systems, and then
extend our discussion to the multiple class case.

Representing Specific Subsystems: Memory

186

Terminals

| | Memory queue

Disks

|

Figure 9.2 — Modelling a Memory Constrained System

9.3. Memory Constraints 187

9.3.1. The Single Class Case

We assume that customers have indistinguishable memory require-
ments, as well as service demands. We denote the memory constraint by
M. If a customer becomes ready when there are fewer than M other
ready customers (i.e., when there are N—M or more thinking custo-
mers) then that customer becomes active immediately. If a customer
becomes ready when there are M or more other ready customers (and
thus M active customers fully occupying memory) then that customer
must wait until memory becomes available.

Our task is to.define an FESC for the central subsystem plus the
memory queue. As noted in Chapter 8, a load dependent service center
has a throughput that varies with its queue length. The queue length at
the FESC in box 3 corresponds to the number of ready customers — the
number of customers anywhere within box 2. In the actual system, how
does throughput vary with the number of ready customers? The answer
to this question is displayed qualitatively in Figure 9.3 both with the
memory constraint (the solid curve) and without (the dashed curve).
Once the memory constraint is reached (once there are M ready custo-
mers), no further increase in throughput results from an increase in the
number of ready customers. Why is this the case? Because these addi-
tional ready customers are not active, but rather are waiting (for
memory). This is made explicit by Table 9.5, in which X (n) denotes the
throughput of the central subsystem with a population of » customers.

Without memory
constraint - -
-
-
- ==
=
a
=)
=
e \
ﬁ With memory
constraint
] I !
M-1 M M+ 1

Number of ready users

Figure 9.3 — Throughput Versus Number of Ready Customers

188

Representing Specific Subsystems: Memory

ready active
FESC queue length customers | customers throughput
1 1 1 X(@1)
2 2 2 XQ)
M=1 M=1 M=1 X(M—1)
M M M X (M)
M+1 M+1 M X(M)
N N M X(M)

Table 9.5 — Throughput of a Memory Constrained System

It is a simple matter to determine X (n). We define a low-level model
consisting of the processing resources comprising the central subsystem.
We evaluate this model for each feasible customer population #, i.e., for
each number of active customers from 1 to M. For each population, we
note the throughput. These throughputs are the X (#n) that are used to
define the FESC used in the high-level model. This is stated more pre-
cisely in Algorithm 9.1.

1. Define a low-level model consisting of the service centers
representing the processing resources that comprise the cen-
tral subsystem.

2. Evaluate this model, which is separable, for each feasible po-
pulation, »n =1, .., M. Note the load dependent
throughputs, X (n).

3. Create a load dependent service center that is flow
equivalent to the central subsystem plus the memory queue,
by setting its throughput with queue length n, n(n), to:

X(n)
uln) = [X(M)

4. Define a high-level model consisting of this FESC and the
external environment: if a terminal workload, then N custo-
mers with think time Z; if a transaction workload, then an
external arrival rate A. Evaluate this model, which is separ-
able.

Algorithm 9.1 — Single Class Memory Constrained Systems

9.3. Memory Constraints 189

As an example application of this algorithm, consider a small
timesharing system with a CPU, two disks, and 512K bytes of memory.
An average interaction requires 3 seconds of CPU service, 4 seconds of
service at one of the disks, 2 seconds of service at the other disk, and
100K bytes of memory. The operating system requires 150K bytes of
memory, so that at most 3 users can be memory-resident simultaneously.
There are 15 users, with average think times of 60 seconds. We wish to
know:

— the average response time

— the average number of ready users

— the average number of active users

— the distribution of memory partition occupancy

— the average time spent queued awaiting access to memory

— the utilization of each processing resource

— the improvement in response time that would result if 256K of
memory were added

We begin by analyzing the central subsystem for 1, 2, and 3 active users.
This low-level model has three centers with service demands of 3, 4, and
2 seconds per interaction respectively. We obtain the load dependent
throughputs shown below:

throughput,
population interactions/sec.
1 0.1111
2 0.1636
3 0.1930

Next we define a high-level model with N = 15 customers, Z = 60
seconds, and a load dependent center that is flow equivalent to the central
subsystem plus the memory queue, defined as follows:

queue length throughput
1 0.1111
2 0.1636
3 0.1930
4 0.1930
15 0.1930

We evaluate this model, obtaining the basic outputs shown in Table 9.6.
Interactive response time is available directly: 25.7 seconds. So is the
average number of ready customers: 4.5. From the queue length distri-
bution at the FESC we see that 3.8% of the time the central subsystem is
idle, 8.6% of the time there is a single active customer, 12.2% of the time
there are two active customers, and 75.4% of the time there are three

190 Representing Specific Subsystems: Memory

throughput: 0.175 interactions/second
average residence time at the FESC: 25.7 seconds
average queue length at the FESC: 4.5
queue length distribution at the FESC:

queue length probability

.038
.086
122
137
.142
135
117
6 228

VO'\U'IL(.»JI\)'—-‘D

Table 9.6 — Basic Outputs

active customers (i.e., 3 or more ready customers). Thus the average
number of active customers is 2.6. Substituting this into Little’s law,
N = XR, we find that the average time spent in the central subsystem
once a memory partition has been obtained is 2.6/0.175 = 14.9 seconds.
Thus a customer spends 25.7—14.9 = 10.8 seconds awaiting access to
memory. To calculate device utilizations we employ the utilization law,
U, = XD,. At the CPU, utilization must be 0.175x 3.0 = 52.5%. At
the two disks, utilization must be 70% and 35%, respectively.

To assess the impact of additional memory we calculate FESC rates for
4, 5, and 6 customers in the central subsystem. (Three additional users
can be accommodated by the new configuration.) The FESC now will
have the characteristics shown below:

queue length throughput

0.1111
0.1636
0.1930
0.2110
0.2226
0.2305
0.2305

DN e A R L B

15 0.2305

When we analyze a high-level model consisting of 15 users and this
FESC, we obtain a response time of 20.7 seconds, a 20% improvement.

9.3. Memory Constraints 191

The utility of the technique described in Algorithm 9.1 arises both
from its accuracy and from its efficiency. Its accuracy is due to the fact
that the terminals and the central subsystem are decomposable: the rate
at which customers interact in the central subsystem is much greater than
the rate at which they flow between the thinking and ready states. Its
efficiency is due to two factors:

® The load dependent throughputs used in defining the FESC can be
obtained efficiently. In this case, the model of the central subsystem
is a single class separable queueing network.

® The resulting high-level model can be analyzed efficiently. In this
case, it also is a single class separable queueing network.

This approach to analyzing single class memory constrained systems epi-
tomizes the use of flow equivalence and hierarchical modelling to evalu-
ate non-separable queueing networks efficiently.

9.3.2. Multiple Classes with Independent Memory Constraints

Here we consider a system with C customer classes, ¢ =1, ..., C,
having independent memory constraints M,. (The classes may be
thought of as differing not only in their workload intensities and service
demands, but also possibly in their memory requirements.) There is an
obvious generalization of Algorithm 9.1 to this case:

— Define a multiple class low-level model consisting of the service
centers representing the processing resources that comprise the
central subsystem.

— Evaluate this model for each feasible population vector,
7= (n;,ny,..,nc),0< n < M, Notethe ‘“population vec-
tor dependent”’ throughputs of each class, X, (7).

— In a manner analogous to Algorithm 9.1, use these throughputs to
define a multiple class FESC.

— Define a multiple class high-level model consisting of this FESC
and the external environment of each class. Evaluate this model.
Unfortunately, this generalization possesses neither of the efficiency pro-
perties of its single class counterpart:
® Obtaining the throughputs needed to parameterize the FESC requires

evaluating the low-level model for every feasible populatlon vector.
The cost of this is proportional to:

CK f[(MC+1)

c=1

192 Representing Specific Subsystems: Memory

® The resulting high-level model is not separable, so can be evaluated
only by the global balance technique, which is prohibitively expensive
unless there are few classes and the memory constraints are small.

To circumvent these difficulties we introduce two homogeneity assump-

tions :

® We assume that the throughput of class ¢ when its own central sub-
system population is #n. depends only on the average central subsystem
populations of the other classes.

® We assume that each class sees the other classes as though their cen-
tral subsystem populations were independent of one another.

The former assumption allows us to determine the load dependent
throughputs of any class by analyzing a C class queueing network in
which the populations of the other classes are fixed at their average values.
These average values are determined from the high-level model; the
high- and low-level models are solved iteratively, terminating when suc-
cessive estimates are sufficiently close. The latter assumption allows us to
define a separate FESC for each class. In essence, we analyze C separ-
able single class high-level models, rather than a single non-separable C
class high-level model.

The result is Algorithm 9.2. This algorithm is applicable to models in
which some of the C classes are unconstrained. For ease of expression,
we denote the number of constrained classes by C' < C and order the
classes so that the constrained classes have indices ¢ =1, ..., C. The
algorithm is a good example of the introduction of homogeneity assump-

tions in order to facilitate evaluation.

9.3.3. Multiple Classes with Shared Memory Constraints

Algorithm 9.2 assumed that each class was subject to a memory con-
straint that was independent of the behavior of the other classes. Here
we generalize that algorithm to shared memory constraints: constraints
on the total number of customers in memory (or in a region of memory),
rather than on the populations of the individual classes. The only
significant change to Algorithm 9.2 will be in the calculation of the . (1)
in Step 3.2.

Let there be F domains, or shared regions of memory. Each memory
constrained class is assigned to a domain. To simplify the discussion we
will assume that all domains are shared; dedicated domains are, of course,
a special case of shared domains. Let M; be the capacity of domain f,
i.e., the number of customers that can reside in that domain. (We tem-
porarily assume that the classes assigned to a particular domain have
indistinguishable memory requirements.)

9.3. Memory Constraints 193

1. Obtain initial estimates of the average central subsystem cus-
tomer population for each memory constrained class, 7. for
¢c=1,..,C. To do so, ignore all memory constraints in
the original C class model, yielding a separable queueing
network. Evaluate this network. For each memory con-
strained class ¢, set 7, to the minimum of M, and the aver-
age class ¢ central subsystem population in the uncon-
strained model.

2. In preparation for the iteration, modify the original model by
changing each of the C memory constrained classes into a
batch class with population equal to #.. Leave the uncon-
strained classes in their original form. The result is a C class
separable queueing network. (The non-integer customer po-
pulations of the constrained classes are naturally suited to
the MV A-based iterative approximate solution technique.)

3. For each memory constrainedclassc =1, ..., C:

3.1. Replace the n, class ¢ customers with each feasible po-
pulation of class ¢, n. =1, ..., M.. Evaluate the

queueing network, obtaining the throughput of class c,
X. (n,).

3.2. Create an FESC, a single class load dependent service
center whose throughput with queue length n, p, (n), is
defined by:

X, (n) n=1,.., M
pel) =1y o) n> M

3.3. Define and evaluate a single class separable high-level
model consisting of this FESC and the external environ-
ment of class ¢ (N and Z, or A\). Obtain the queue
length distribution at the FESC. (We let P[Qpgsc=1l
denote the probability that the queue length at the
FESC is i.) Use this to calculate a new estimate for the
average central subsystem population of class c:

.. continued ..

Algorithm 9.2 — Multiple Classes, Independent Memory Constraints

194 Representing Specific Subsystems: Memory

.. continued ..

M, M,
n, = ;1 i PlQpgsc=il + [1 — 26 PlQpesc=i] | M,

4. Repeat Step 3 until successive estimates of the 7. for each
constrained class are sufficiently close.

5. Obtain performance measures for the constrained classes
from the C high-level models evaluated during the final
iteration. Obtain performance measures for the uncon-
strained classes by solving the queueing network defined in
Step 2 using the final estimates of the 7, for the constrained
classes.

Algorithm 9.2 — Multiple Classes, Independent Memory Constraints

Our approach is to view a domain shared by several classes as several
smaller domains, each used by a single class. The memory constraint on
a specific class will be determined iteratively, by considering the average
central subsystem populations of its competitor classes: all other classes
sharing the domain, in the case of FCFS domain scheduling; all other
classes of greater or equal priority sharing the domain, in the case of
priority domain scheduling. This approach is embodied in Algorithm 9.3,
parts of which are abbreviated because of their similarity to Algorithm
9.2.

Algorithm 9.3 can be used to evaluate models in which the classes
sharing a specific domain have distinct memory requirements. This
requires straightforward modifications to the functions M, and §,,
defined in the algorithm. Once modified in this way, the algorithm can
also be used to evaluate single class memory constrained models in which
customers differ in their memory requirements. This is accomplished by
defining a single domain shared by several ‘‘artificial’’ classes. Each of
these artificial classes corresponds to those customers with a specific
memory requirement. Each has service demands identical to those of the
“‘real’’ class, and a workload intensity adjusted to reflect the proportion of
customers having the corresponding memory requirement.

9.3. Memory Constraints | 195

1. Obtain initial estimates of 7, for ¢ = 1, ..., C. To do so,
ignore all memory constraints in the original C class model.
Evaluate the resulting separable network. For each memory
constrained class ¢, set 7, to the minimum of the average
class ¢ central subsystem population in the unconstrained
model and a ‘“‘proportionate share’’ of its domain, calculated
as:

&p

MF(C) x
&
¢ plus its com —

i€ petitor classes

where F(c) is a function that gives the domain to which
class c is assigned (Mpg(., is thus the capacity of the domain
to which class ¢ is assigned), and «; is the average class i
central subsystem population in the unconstrained model.

2. In preparation for the iteration, modify the original model by
changing each of the C memory constrained classes into a
batch class with population equal to 7. '

3. For each memory constrained class ¢ = 1, ..., C:

3.1. Replace the iz, class ¢ customers with each feasible po-
pulation of class ¢, n,. Evaluate the queueing network
obtaining the throughput of class ¢, X.(n.). Feasible

populations are integers from 1 to lMF(C) — d J,
where:

5, = 2 ;
¢’s compe — -

€ titor classes

Also evaluate the network at the non-integer population
Mee) — 8.

3.2. Create an FESC, a single class load dependent service
center whose throughput with queue length #, w. (n), is
defined by:

X. (n) n < Mre) — 3
e (l’l) o ch(MF(c)_ac) n > le(c) — &

.. continued ..

Algorithm 9.3 — Multiple Classes, Shared Memory Constraints

196 Representing Specific Subsystems: Memory

.. continued ..

3.3. Define and evaluate a single class separable high-level
model consisting of this FESC and the external environ-
ment of class ¢ (N and Z, or A). Obtain the queue
length distribution at the FESC. Use this to calculate a
new estimate for the average central subsystem popula-
tion of class c¢:.

[Mpy = 8¢ J
n, = z i P[OQrgse=1 +
i=1
l ’WF(L’) — &]

1 - > PlOQresc=1l | (Mpiy — 3,)
/=0

4. Repeat Step 3 until successive estimates of the #n, for each
constrained class are sufficiently close.

5. Obtain performance measures as in Algorithm 9.2.

Algorithm 9.3 — Multiple Classes, Shared Memory Constraints

9.4. Swapping

In Section 9.3 we developed techniques for representing the
throughput-limiting effect of a memory constraint. While concentrating
on this primary effect of memory on performance, we allowed ourselves
to ignore the problem of explicitly representing swapping.

On the one hand, swapping devices are no different than other I/0
devices: they can be included in a model, and their service demands can
be calculated by multiplying device utilization by the length of the meas-
urement interval, then dividing this result by the number of interactions
during that interval. In this sense, swapping activity has been included
implicitly in all of the models we have constructed. On the other hand,
we presently have no way of projecting changes to this service demand
that might result from system or workload modifications. Service demand
at the swapping device is not an intrinsic property of an interaction, like
service demand at the CPU or at a file device. The analyst typically
knows how to modify intrinsic parameters to reflect system changes. On
the other hand, the influence of system modifications on the level of

9.4. Swapping 197

swapping activity is something we would like to learn from our model,
rather than provide as an input. If the system modifications under con-
sideration can be expected to influence significantly the level of swapping
activity, then the modelling approach must include a procedure for
estimating swapping device service demand.

The explicit representation of swapping is the subject of the present
section. The techniques we develop will use the algorithms of Section 9.3
as a basis, since we wish to represent the effect of the memory constraint
in addition to the overhead of memory management. For the sake of
simplicity, the algorithms in this section will be expressed for the case of
a single workload of terminal type (N customers with think time Z), and
a single swapping device. Generalization to multiple workloads and mul-
tiple swapping devices is possible.

9.4.1. Swapping to a Dedicated Device

We first consider memory constrained systems with a single workload
of terminal type, in which the swapping device is dedicated in the sense
that activity there does not affect the throughput of the central subsys-
tem. (The analytic simplicity resulting from this assumption will become
apparent.) The basis of our approach is Algorithm 9.1. As shown in Fig-
ure 9.4, we modify the high-level model of that algorithm to include a
center representing the swapping device, in addition to the FESC
representing the central subsystem. The only new issue that we must
confront is determining the service demand at the former center.

Terminals

Swapping
device

FESC

Figure 9.4 — High-Level Model for Swapping to a Dedicated Device

198 Representing Specific Subsystems: Memory

An interaction’s service demand at the swapping device, D,,,, will be
equal to the product of two terms: the probability that a swap precedes
an interaction, P[swap], and the service time for a swap in and subse-
quent swap out (both must occur), Sewap. Sswap 18 readily determined, but
knowledge of the swapping policy of an operating system is necessary to
estimate P[swap]. Here is an approach that can serve as a starting point.
As in Algorithm 9.1, let there be N customers, M of whom can occupy
memory simultaneously. We identify three cases:

e If N < M then no swapping will occur. Thus P[swap] = 0.

® If N > M then there will be some swapping. Let Q.4 be the aver-
age number of ready customers. If Q.4 = M then a swap will pre-
cede every interaction. This is the case because we assume that only
ready customers will be occupying memory, so a customer making a
transition from the thinking state to the ready state will never be
memory resident. Thus P[swap] = 1. (This clearly is an approxima-
tion, since we consider only the average number of ready customers.)

® If N > M and Qg < M then a swap will sometimes but not always
precede an interaction. On the average there are N — Q.4 thinking
customers. Of these, M — Q.4 are memory resident. So a custo-
mer leaving the thinking state requires a swap with probability:

M - Qready - N-—M
N - Qready N — Qready

The first of these three cases can be identified easily, since N and M
are basic inputs. To distinguish between the second and third cases we
need to know Q4 , the average number of ready customers. This is an
output of the model, not an input. Iteration is required, as described in
Algorithm 9.4. (In the case that N < M, the swapping device can be
ignored, and Algorithm 9.1 can be applied directly. For completeness,
however, we include this case in Algorithm 9.4.)

From examination of the algorithm, our reliance on the assumption
that the swapping device was dedicated should become evident. We con-
structed a flow equivalent representation of the central subsystem prior to
iterating, and did not modify this representation subsequently. This
requires that the load dependent throughputs of the central subsystem be
independent of the level of swapping activity.

Plswap]l = 1 —

9.4.2. Swapping to a Shared Device

Especially in smaller systems, the swapping device also is apt to be
used for other activities. To the extent that swap traffic impedes these
activities (and vice versa), the analysis performed in the previous subsec-
tion will be invalid. Here, we will represent in our model this contention

9.4. Swapping 199

1. As in Algorithm 9.1, define a load dependent server that is
flow equivalent to the central subsystem.

2. Define a high-level model consisting of the workload (N
users with think time Z), the FESC from Step 1, and a
center representing the swapping device. Initially, set the
service demand at this last center, Ds,y,,, to zero.

3. Evaluate this model. Obtain Q. , the average number of
ready customers. This is equivalent to Qrgsc, the average
queue length at the FESC. Use Q,.q, to calculate a revised
estimate for a customer’s service demand at the swapping
device, as follows:

Dswap = Ssmzp X P[Swap]

where:
Plswap] =
0 NEM
1 N>M and Qreaqy =2 M
N=M N>M and Quey <M
N— Qready

4. Based on the discrepancy between the current and previous
estimates for D,,,, decide whether to repeat Step 3 or to
terminate.

Algorithm 9.4 — Swapping to a Dedicated Device

due to swapping. As before, an iterative analysis will be required. We
will broaden the scope of the iteration to include the calculation of the
load dependent throughputs, which now will vary with our estimate of
swapping activity.

In generalizing Algorithm 9.4 a conceptual problem arises: Should the
service center representing the swapping device appear in the high-level
model (where swapping logically occurs) or in the low-level model
(because by assumption this device also is used for file activity, which
logically belongs in the low-level model). Fortunately this problem is not
of practical concern, because only slight differences in results will occur.
We choose to return to the high-level model used in Algorithm 9.1, and
to represent all activity at the swapping device, both swapping activity and
file activity, in the low-level model.

200 Representing Specific Subsystems: Memory

The low-level model, then, will consist of as many centers as there are
processing resources. The service demand at most of these centers will
be an intrinsic property of the workload, determined from measurement
data. At the center representing the swapping device, however, the ser-
vice demand will have two components: one due to file activity, deter-
mined from measurement data, and one due to swapping activity, deter-
mined iteratively as in Algorithm 9.4. The analysis is conducted as stated
in Algorithm 9.5.

1. Define a low-level model consisting of the service centers
representing the processing resources that comprise the cen-
tral subsystem. At the center representing the swapping
device, the service demand will have two components: one
due to file activity, determined from measurement data, and
one due to swapping activity, determined iteratively. Initial-
ly, assume that this latter component is equal to zero.

2. As in Algorithm 9.1, evaluate this low-level model for each
feasible population, create an FESC, and define and evaluate
a high-level model.

3. Asin Algorithm 9.4, use the value of Q,,, obtained from
the high-level model to calculate a revised estimate for the
swapping activity component of the service demand at the
swapping device. Based on the discrepancy between this es-
timate and the previous one, decide whether to repeat Steps
2 and 3 or to terminate.

Algorithm 9.5 — Swapping to a Shared Device

As an example, we return to the simple system considered in Section
9.3.1. Assume that the disk with an intrinsic service demand of 4
seconds also is used for swapping, and that the service time for a one-way
swap of a 100K program is 150 msec.

On the first iteration we assume that no swapping occurs, so we evalu-
ate the same low-level model used in Section 9.3.1, obtaining the same
load dependent throughputs. We then construct and evaluate the same
high-level model used in Section 9.3.1, obtaining the same value for the
average number of ready users, 4.5. Now, we iterate. Since Qg = M
(the memory capacity was three customers in the example), we assume
that a swap precedes each interaction. The service demand at the swap-
ping device is equal to the sum of the intrinsic service demand there (4.0
seconds) and the service demand due to swapping. This latter service
demand equals the product of the one-way swap service time (0.15

9.5. Paging 201

seconds), the probability that a swap precedes an interaction (1), and 2
(to account for the outswap that also must occur): 0.3 seconds. Total
service demand at the swapping device is thus 4.3 seconds. We once
again evaluate the low-level model for populations from 1 to 3, obtaining
load dependent throughputs of 0.1075, 0.1577, and 0.1851, respectively.
Using these rates to define a flow equivalent server, we again evaluate the
high-level model, obtaining:

throughput: 0.170 interactions/second
average interactive response time: 28.0 seconds
average number of ready users: 4.8

Since our revised estimate for Q,.qq, still is greater than the capacity of
memory, we still estimate that a swap precedes every interaction, and
further iteration is unnecessary. As we would expect, throughput and
response time are slightly worse than in Section 9.3.1, where swapping
activity was ignored.

9.5. Paging

Most computer programs exhibit locality of reference: although a pro-
gram may have a large address space, only a small portion of that address
space will be referenced during any short time interval. Virtual memory
systems exploit this property by allocating to each program an amount of
(physical) primary memory that is smaller than the program’s (virtual)
address space, then using a combination of hardware and software to
translate virtual addresses into physical addresses and to transfer portions
of the virtual address space between primary memory and disk.

There are two principal advantages to virtual memory: the system can
accommodate programs whose virtual address spaces are larger than the
amount of physical memory that is attached to the CPU, and the number
of concurrently active programs can be larger than would otherwise be
possible. There is also a disadvantage: CPU and I/O resources must be
devoted to the management of the virtual memory.

Virtual memory systems may employ paging, or segmentation, or both.
Our focus in this section will be on paging. We consider the system’s
physical memory to be divided into some number of fixed-size page
frames, and the address space of each program to be divided into some
number of pages of the same fixed size. The operating system must make
decisions on both a system level (How many programs should be allowed
to compete for memory resources? How many page frames should be
allocated to each of these programs?) and on a program level (Which
pages should occupy the page frames allocated to a program? Altemna-
tively, which page should be removed from primary memory in order to

202 Representing Specific Subsystems: Memory

accommodate a non-resident page that has just been referenced?) The
[/0 associated with moving pages between primary memory and disk in
response to page faults is the aspect of system behavior whose modelling
we will study in this section.

Modelling paging has much in common with modelling swapping. The
fundamental issue is to determine the contribution of memory manage-
ment activity to service demands. If it is not anticipated that the system
modifications under consideration will have a significant effect on service
demands at the paging devices, then these service demands can be taken
from measurement data. As with swapping, though, the influence of sys-
tem modifications on the level of paging activity is something we would
like to learn from our model, rather than provide as an input. Paging
activity is especially difficult to forecast because it is highly dependent on
the characteristics of individual programs and on their interactions with
each other through the memory management policies of the operating
system.

Consider a simple example: a small multiprogrammed virtual memory
system supporting a batch workload. Processing resources include a CPU
at which jobs require an average of 3 seconds of service, two file disks at
which jobs require an average of 8 and 2 seconds of service, respectively,
and a paging disk.

Service demand at the paging disk is determined by considering in
more detail the configuration of the system, the policies of the operating
system, and the characteristics of the jobs. The system has 512 page
frames of physical memory, 300 of which are available to user jobs. The
operating system allocates memory on an equipartition basis: a multipro-
gramming level is selected and the available page frames are divided
equally among the jobs. The memory reference characteristics of jobs and
the page replacement policy of the operating system interact with one
another in a manner that is reflected by the program lifetime function,
shown in Figure 9.5. This function shows, for a single job, the average
number of milliseconds of CPU service that elapse between page faults
for various numbers of allocated page frames.

Suppose we are asked to model the performance of this system at mul-
tiprogramming levels of 2 through 8. A separate analysis must be con-
ducted for each multiprogramming level. Each analysis must begin by
determining the service demand at the paging disk. Consider a multipro-
gramming level of 5. Because 300 page frames are available for users, the
equipartition policy will allocate 300/5 = 60 page frames to each of the 5
jobs. The lifetime function tells us that at this memory allocation a job
will experience an average of one page fault every 9 milliseconds of CPU
processing. Since the average CPU service requirement of a job is 3
seconds, a job, on the average, will experience 3000/9 = 333 page faults.

9.5. Paging 203

S 10+
&P
Q
5
E -
Q
=)
<
3
g 5
=
1 | | x |
0 50 100 150

Memory allocation, page frames

Figure 9.5 — Program Lifetime Function

Suppose we know that an average of 12.5 milliseconds of paging disk ser-
vice is required to process a single page fault. Then on the average each
job will place a service demand of 333 .0125 = 4.16 seconds on the pag-
ing disk. The resulting queueing network model will have a population of
5 customers, and four service centers with service demands of 3, 8, 2,
and 4.16 seconds.

Figures 9.6, 9.7, and 9.8 show respectively system throughput in
jobs/minute, average job response time in seconds, and device utiliza-
tions, each as a function of multiprogramming level.

This example illustrates the techniques used to analyze paging sys-
tems. The difficulties that arise in such studies are related to the availa-
bility of data from which to parameterize the model. The example was
very much simplified in this respect. For instance:

® [t is extremely difficult to acquire paging lifetime data for a program.
Doing so requires detailed tracing of the execution of the program in
the context of the page replacement policy used by the operating sys-
tem.

® The paging characteristics of a program are likely to vary as the pro-
gram passes through different phases of execution, with each phase
requiring a different lifetime function.

204 Representing Specific Subsystems: Memory

Throughput, jobs/minute

3 | | | I |

2 3 4 5 6 7 8

Multiprogramming level

Figure 9.6 — Throughput Versus Multiprogramming Level

Response time, secconds

0 | l | | | |
4 5 6 7 8

Multiprogramming level

e}
w

Figure 9.7 — Response Time Versus Multiprogramming Level

9.5. Paging 208

1.0 —

File disk 1
0.80 —, -

0.60)
Paging disk

Utilization

0.40 CPU

0.20 / \
File disk 2

0.00 i l l I | |
2 3 4 5 6 7 8

Multiprogramming level

Figure 9.8 — Device Utilizations Versus Multiprogramming Level

® The paging characteristics of different programs will be dissimilar.

® Since different programs exhibit different paging characteristics,
operating systems typically do not employ an equipartition strategy.
At the very least, a different number of physical page frames will be
allocated to each program.

® More likely, the operating system will change the number of physical
page frames allocated to a program over the life of that program.
Thus the number of programs that can be accommodated in memory
simultaneously will vary with time.

® As the number of jobs that can be accommodated in memory varies,
preemptive swapping may be employed. The swapping policy in a vir-
tual memory system may be quite complex.

In practice, analysts using queueing network models to study virtual
memory systems ignore many of these subtleties by making homogeneity
assumptions similar to those we have encountered in other contexts. For
example, it is common to consider only the average number of page
frames allocated to a program, to assume that this average is the same for
all programs belonging to the same class, and to assume that this average
is largely independent of the load on the system. Studies incorporating
such homogeneity assumptions generally are successful even in projecting
the effect of modifications to the memory subsystem, e.g., the addition of
memory. In the next section we will consider two such studies.

206 Representing Specific Subsystems: Memory

9.6. Case Studies

In this section we consider two successful case studies in which queue-
ing network models were used to explore the effects of modifications to
the memory subsystems of virtual memory systems. In the first study, a
very simple model was used to evaluate the effects of increased paging
device speed and of additional memory on the performance of an early
IBM virtual memory system. In the second study, a more sophisticated
model was used to evaluate workload and configuration changes to a Digi-
tal Equipment Corporation VAX/VMS system.

9.6.1. A Simple Model of an Early IBM Virtual Memory System

This study is from the early days of computer system analysis using
queueing network models. At the time it was conducted, techniques for
efficiently evaluating separable queueing networks (Chapters 6 and 7) and
for representing memory subsystems using flow equivalence and hierarch-
ical modelling (Chapters 8 and 9) were not widely known. This stimu-
lated a number of clever ‘‘short cuts’’. The study serves to illustrate that
useful results can be obtained for complex systems even in the presence
of rather extreme simplifications. The system under consideration had
the following characteristics:

— a small number of interactive users

— a CPU-intensive workload

— a large number of disks

— a low ratio of think time to response time (i.e., slow response)
— a paging virtual memory system

— a multiprogramming level limited to three to avoid thrashing

Figure 9.9 shows the model that was used in the study. It has one
customer class. Each customer cycles through periods of thinking, (possi-
bly) queueing for memory, and alternating bursts of CPU and 1/0 ser-
vice. Because the multiprogramming level was limited to three and there
were many possible paths to the I/O devices, little or no I/O queueing
took place. This allowed the model to be simplified by representing the
I/0 subsystem as a single delay center. (The authors of the study prob-
ably evaluated the model by hand. Representing the large number of
disks by a single delay center saved much tedious computation. Given a
queueing network analysis package, it would be equally easy to represent
all disks explicitly. This would be a ‘‘safer’’ procedure, since it would not
rely on the assumption that no I/0 queueing takes place.)

Because of the memory queue, the model is not separable. Even
without the FESC approach described earlier in this chapter, though, it is
possible to obtain accurate results in two extreme cases. The first is that

9.6. Case Studies : 207

Tertninals

I/O subsystem

Memory
queue CPU

-0

Figure 9.9 — The Model

memory utilization is low, so that little or no memory queueing takes
place. This would occur, for instance, if response times were so short
that most users spent the majority of their time thinking. Thus, the
number of users in memory simultaneously would be small, and the
chance that a user ever would need to queue for memory would be negli-
gible. In this extreme case the memory queue could be ignored entirely,
yielding a separable model.

The other extreme is that memory is utilized nearly 100%, so that the
multiprogramming level of the system remains constant at its maximum.
This was in fact the case in the system under consideration. This analyti-
cally fortunate situation allowed the model to be evaluated as follows:

e From the full model of Figure 9.9, extract the central subsystem (the
queueing center representing the CPU and the delay center represent-
ing the I/0 subsystem).

® FEvaluate this central subsystem model with appropriate service
demands and with a fixed population equal to the maximum multipro-
gramming level (in this case, three). Obtain throughput, X.

® Apply the response time law (N and Z must be provided).

For the system under consideration, evaluation of the central subsystem
model gave a throughput of .395 interactions/second. From measure-
ments, the number of interactive users was 10 and their average think
time was 4 seconds. Applying the response time law:

R = E—Z = i—4 = 21.3 seconds

X 395
The measured response time was 21.0 seconds.

208 Representing Specific Subsystems: Memory

Two changes to the configuration were being considered in an attempt
to reduce the effect of the severe memory contention being experienced:
upgrading the paging disks to drums, and adding memory. The upgrade
to drums can be reflected in the model by adjusting the service demand at
the delay center representing the I/O subsystem. The part of this service
demand due to paging activity must be reduced to account for the elimi-
nation of the seek portion of data access (the drums have fixed heads)
and for a decrease in the latency and data transfer portions (the drums
have higher rotation speed than the disks). These adjustments can be
estimated rather easily. Once a new service demand has been calculated,
the evaluation can be carried out as before.

Representing the addition of memory is somewhat more challenging,
since this modification affects paging activity (and thus the service
demand at the delay center) in a manner that is not easily estimated. The
addition of memory was studied for two cases: using the additional
memory to increase the maximum multiprogramming level while main-
taining the current number of page frames allocated to each active user,
and using the additional memory to increase the number of page frames
allocated to each active user while maintaining the current maximum
multiprogramming level. To model the first case, it was determined that
the additional memory would allow two more users to be active while
maintaining the current memory allocation per user. Since the memory
allocation per user would remain fixed, it was postulated that the page
fault count of each user would be unaffected by the increase in the mul-
tiprogramming level. The memory addition was therefore modelled by
increasing the number of customers in the central subsystem model from
three to five and evaluating as before.

The other case, increasing the memory allocation to the three active
users, can be expected to reduce the number of page faults per user. The
service demand at the delay center in the model must be adjusted to
reflect this. To estimate each user’s service demand due to paging in the
new environment, an experiment was conducted in which the maximum
multiprogramming level of the existing system was reduced to two. (It
had been determined that the number of page frames available to each of
two active users on the existing configuration would be roughly the same
as the number of page frames available to each of three active users on
the proposed configuration.) I/0O subsystem service demand was calcu-
lated from measurements during this experiment. The memory addition
was modelled by using this value and a customer population of three,
evaluating as before.

9.6. Case Studies 209

It is important to note a limitation arising from the fact that the
evaluation technique assumes the central subsystem runs continuously at
the maximum multiprogramming level. If response times improve
significantly, this assumption may no longer be valid. Should this occur,
the model may yield optimistic results. For any particular set of parame-
ter values, the validity of the assumption can be checked by computing
the average number of customers competing for memory (the average
number of ready customers). If there are, on average, at least as many
ready customers as can be accommodated in memory, the results of the
model can be expected to be accurate. The average number of ready cus-
tomers can be computed by applying Little’s law to the central subsystem
plus the memory queue. For the model of the original system:

feady = XR = .395 X 21.3 = 8.4 customers

The previous paragraph points out that proposed system modifications
can have side effects that invalidate assumptions made by the particular
evaluation technique in use. It is also possible for modifications to have
side effects that invalidate measurements used to calculate model inputs.
In the system described here, the user think time was measured as 4
seconds. This low value probably was due in part to the poor response
time of the system: while one request was processing, users had time to
prepare their next. If a system modification resulted in significantly
improved response times, the think time would likely increase because of
a reduction in this overlap.

Much of the success of a modelling study depends on the analyst’s
ability to anticipate significant side effects.

9.6.2. A Model of VAX/VMS

This section presents a queueing network model of Digital Equipment
Corporation’s VAX/VMS system. Memory management in VMS
includes swapping, paging, and a shared cache of page frames. The ques-
tions addressed by this modelling study relate to workload and
configuration changes that can be expected to affect paging and swapping
behavior. The configuration is a small one, making homogeneity assump-
tions risky. For these reasons, the example serves to integrate a number
of the techniques presented in this chapter, and we will examine it in
considerable detail. The model is of an early release of VMS and does
not reflect certain major changes in the system that have occurred since
that time. The study predates the development of the algorithms for
evaluating multiple class memory constrained queueing networks
described in Section 9.3, so an alternative technique was employed.

210 Representing Specific Subsystems: Memory

9.6.2.1. Essentials of the System

As noted, memory management in VMS is accomplished through a
combination of swapping, paging, and a shared cache of page frames.

A physical memory requirement, the resident set size, is associated with
each process. An active process is guaranteed a number of page frames
equal to its resident set size. Should a page fault occur in a process
already using its entire allocation of page frames, a FIFO page replac--
ment policy is used to select a page for removal from the resident set.

Since VMS makes no attempt to adjust processes’ resident set sizes in
response to observed behavior, an efficient allocation of page frames
among active processes is unlikely. Since FIFO is a notoriously bad page
replacement policy, an efficient choice of resident set membership is
equally unlikely. To compensate for these shortcomings, VMS maintains
a cache of page frames that is shared among the active processes. When
a page is removed from a process’ resident set it is added to this shared
page cache. A fault on a page held in the cache can be resolved without
disk I/0. Therefore we must distinguish between a page fault, which may
not result in 1/0, and a paging transfer, in which a page is retrieved from
disk in response to a page fault. (Actually, pages are clustered for
efficiency, and several pages are transferred in a single paging transfer.)
The maximum and minimum sizes of the shared page cache are regulated
by system parameters. If the cache exceeds its maximum size, pages are
purged FIFO until the cache reaches its minimum size. Thus, as shown
in Figure 9.10, physical memory can be divided logically into four parts:
page frames permanently allocated to VMS, page frames containing
processes’ resident sets, page frames belonging to the shared page cache,
and unallocated page frames.

Before a process that is swapped out can become active, it must be
allocated sufficient page frames to accommodate its resident set. If
enough unallocated page frames are not available, some other process
must first be swapped out. Typically this process would correspond to an
interactive user in the think state. The swapping rate at saturation is
regulated by the quantum: a ready process is riot eligible to be swapped
out until it has acquired one quantum of CPU service.

One final detail. In point of fact, unallocated page frames are added to
the shared page cache: the cache is allowed to grow until it reaches a size
equal to the larger of its maximum size parameter and the number of
page frames left over after VMS and the memory-resident processes have
taken their toll. Cache pages that have been modified are written to disk
when the maximum size parameter is reached, but the images of these
pages are allowed to remain in memory and, if accessed, can be made
available without disk I/O. The concept of an unallocated page frame
principally is of use in understanding the swapping policy.

9.6. Case Studies 211

Unallocated

Shared page cache

Process 5

Process 4.

Process 3
Processes’

resident sets

Process 2

Process 1

Process 0

VMS

Figure 9.10 — A Logical View of Memory in VAX/VMS

9.6.2.2. The Queueing Network Model

The configuration under study is a small one: 512K bytes of memory
and a single disk used for swapping, paging, and file activity. The work-
load is a benchmark consisting of one batch job (repeated compilation of
a 10,000 line program) and 7 simulated interactive users each performing
a specific task (compilation, execution, editing, trivial commands). The
study involves validating a model of the base system, using this model to
project the effect of specific modifications to the workload (eliminating
the interactive users and running the batch job in isolation) and to the
configuration (doubling the amount of physical memory), and finally
making these modifications and comparing the results with the projections
of the model. Four aspects of the system are of special interest in the
context of the current chapter:

® There is a memory constraint.

® The proposed system modifications can be expected to affect the pag-
ing behavior of the system, which therefore must be modelled expli-
citly.

® The proposed system modifications also can be expected to affect the
level of swapping activity, so this also must be modelled explicitly.

212 Representing Specific Subsystems: Memory

® The single disk means that swapping activity can be expected to inter-
fere with the throughput of paging and file I/0.

The basis of the analysis is the familiar two-level hierarchical model: a
low-level model that is evaluated at each feasible population in order to
define an FESC for use in a high-level model. The low-level and high-
level models are described in the following paragraphs.

The Low-Level Model

The low-level model has two service centers, representing the CPU
and the disk, and two customer classes, representing the batch job and
the interactive users. In the actual system there was a single batch job-
stream that was locked into memory to reduce swapping activity, so in the
low-level model the batch class has a constant multiprogramming level of
one. In the actual system the seven interactive users had various resident
set sizes, but the differences were small and on the average six interactive
users could be accommodated in addition to the batch job. So in the
low-level model there will be from zero to six customers in this class.

For each class, measurement data yields CPU service demand and the
file activity component of disk service demand. Since we wish to explore
system modifications that will affect paging and swapping behavior, we
must develop techniques to estimate for each class the components of
disk service demand due to these activities.

First, consider paging activity. Recall that each VMS process has a
fixed allocation of page frames when it is memory resident. Because of
this, the number of page faults sustained by a process will be insensitive
to system load. However, the proportion of those page faults that result
in disk I/0 will vary with load, since this proportion is related to the
number of page images in the shared page cache belonging to the process
in question, which in turn depends on the number of processes actively
using the cache. Thus the key to representing paging activity is estimat-
ing the effectiveness of the shared page cache.

We can measure the average number of page faults per interaction and
we can calculate the average disk service time per paging transfer. We
expect both of these quantities to be insensitive to the proposed
modifications. The effectiveness of the shared page cache is reflected in
the ratio of page faults to paging transfers. We can calculate this ratio for
the benchmark measurement interval. In order to project performance
under system modifications, we make the assumption that this ratio is
linearly related to the average number of cache page frames available to
each process actively using the cache. As an example, during the bench-
mark an average interaction caused 158 page faults and the ratio of page
faults to paging transfers was 4:1. Thus an average interaction caused

9.6. Case Studies 213

158/4 = 39.5 paging transfers. The average number of active processes
was eight: six interactive users, the batch job, and VMS (portions of
which are pageable). Our assumption makes it possible to estimate that if
the average number of active processes were three, the ratio of page
faults to paging transfers would be 4 X 8/3 = 10.7, and an interaction
would cause 158/10.7 = 14.8 paging transfers. Our assumption also
allows us to estimate that if the size of the shared page cache were dou-
bled by the addition of memory (with three active processes), the ratio of
page faults to paging transfers would become 10.7x2 = 21.4, and an
interaction would cause 158/21.4 = 7.4 paging transfers. Multiplying the
average number of paging transfers per interaction by the average disk
service time per paging transfer yields the paging activity component of
disk service demand.

Next, consider swapping activity. The approach presented in Algo-
rithm 9.5 is suitable except in the case that the average number of ready
users exceeds the memory constraint. In this case, VMS will swap once
per interaction plus once per quantum. The number of swaps per interac-
tion due to the latter can be approximated by dividing the CPU service
requirement per interaction by the quantum length.

The High-Level Model

We begin the analysis of the system by establishing initial values for
the average numbers of ready and active interactive customers. These
values allow us to estimate disk service demand due to paging (the aver-
age number of active customers is used for this) and swapping (the aver-
age number of ready customers is used for this). Given disk service
demand, we can evaluate the low-level model. We do so for each feasible
interactive population (the batch population is always one), obtaining load
dependent throughputs which we use to construct an FESC.

The high-level model consists of this FESC and the workload (N cus-
tomers with think time Z). Evaluation of this model yields revised esti-
mates for the average numbers of ready and active interactive customers.
If these revised estimates differ substantially from those used in the pre-
vious evaluation of the low-level model, we iterate using the new values.

Interactive response time and throughput, and thus the contribution of
interactive users to device utilizations, can be determined directly from
the high-level model. Batch throughput is calculated by taking the sum
of the batch throughput at each interactive population (obtained from the
low-level analysis) weighted ky the proportion of time each of those
interactive populations is encountered (obtained from the high-level
analysis). Average batch response time and the batch contribution to
device utilizations then can be determined by application of Little’s law.

214 Representing Specific Subsystems: Memory

9.6.2.3. Use of the Model

In this section we illustrate the use of the model in some detail. Table
9.7 displays certain measured characteristics of the benchmark.

average interaction:

0.74 CPU seconds
158 page faults
12.4 file I/0 operations

batch job:

330 CPU seconds
101386 page faults
918 file I/0O operations

Table 9.7 — Measured Characteristics
of the Benchmark Jobstream

Table 9.8 displays certain system parameters relating to paging activity
that were measured during the benchmark.

63.4 page faults per second
55.8 pages transferred per second
15.9 paging transfers (physical 1/0s) per second

Table 9.8 — Paging Activity Measures

Based upon knowledge of device characteristics, the average number
of bytes transferred per swap and per file operation, and the page I/0
clustering factors evident from Table 9.8, we calculate the I/O service
times shown in Table 9.9.

.150 seconds per two way (in-out) swap
.037 seconds per file I/0
.039 seconds per paging transfer

Table 9.9 — I/0O Operation Service Times

9.6. Case Studies 218

First we calculate service demands for interactive users. The CPU ser-
vice demand is .74 seconds. The disk service demand due to file I/0 is
12.4X .037 = .46 seconds. From Table 9.8, the ratio of page faults to
paging transfers is 63.4/15.9 = 3.99. Thus an average interaction will
cause 158/3.99 = 39.6 paging transfers, with a resulting disk service
demand of 39.6x.039 = 1.54 seconds. In the benchmark, interactive
think times were set to zero. (The system under study had extremely
long response times, so users often typed ahead.) Thus there were
always 7 ready and 6 active interactive users. We use the third com-
ponent of the swapping approximation: each interaction requires
1 + .74/1 = 1.74 swaps (the quantum length was 1 second), so interac-
tive disk service demand due to swapping is 1.74%.150 = .26 seconds.
Total disk service demand is therefore .46+1.56+.26 = 2.26 seconds.

Next we consider the batch job. CPU service demand is 330 seconds.
Disk service demand due to file I/O is 918x.037 = 34 seconds. Each
batch job will cause 101386/3.99 = 25410 paging transfers, with a result-
ing service deinand of 25410x .039 = 991 seconds. Since the batch job
is not swapped, its total disk demand is 34+991 = 1025 seconds.

Because there are always 7 ready and 6 active interactive users, we can
take a short cut, analyzing the low-level model only one time, with a
population of 1 batch job and 6 interactive users. With the exception of
interactive response time, all interesting system performance measures
can be obtained directly from the results of this analysis. Interactive
response time is calculated as in the previous case study, by applying the
response time law with N=7, Z=0, and X equal to the throughput
obtained from the evaluation. Table 9.10 displays both observed and pro-
jected performance measures.

performance measure observed | projected
total CPU utilization .30 .32
swapping rate (swaps/sec.) 72 .64
interactive

throughput (int’s./min.) 22.2 22.2

response time (secs.) 18.9 19.0
batch

throughput (jobs/min.) .0091 .0082

Table 9.10 — Original System

Next, we explore the effect of eliminating the interactive workload,
running the batch job in isolation. The swapping rate will be zero. The
cache will be shared by VMS and the batch job, rather than among 8
processes. It will expand to occupy the space vacated by the interactive
users, increasing in size from 150 to 450 pages, a factor of 3. Our linear

216 Representing Specific Subsystems: Memory

approximation to the effectiveness of the shared page cache estimates that
the ratio of page faults to paging transfers will be
3.99 X 3 x 8/2 = 47.9. We therefore calculate that the batch job’s disk
service demand due to paging will be 101386/47.9 x .039 = 82.5
seconds, and that its total disk service demand will be 34+82.5 = 116.5
seconds. We evaluate the low-level model once, with a single batch job.
Table 9.11 displays both observed and projected performance measures.

performance measure observed | projected
total CPU utilization .68 73
batch

throughput (jobs/min.) 124 133

Table 9.11 — Batch Only

Finally, we explore the effect on the original workload of doubling the
size of memory. Once again, the swapping rate will be zero. All seven
interactive users will be memory resident, so the page cache will be
shared by 9 rather than 8 active processes. The size of the cache will
increase from 150 to 1125 pages, a factor of 7.5. The linear approxima-
tion to the effectiveness of the shared page cache estimates that the ratio
of page faults to paging transfers will be 3.99 X 7.5 X 9/8 = 33.7.
Interactive disk service demand due to paging will be
158/33.7 X .039 = .183 seconds, and total interactive disk service
demand will be .46+ .183 = .643 seconds. Batch disk service demand
due to paging will be 101386/33.7 X .039 = 117 seconds, and total batch
disk service demand will be 34+117 = 151 seconds. We simply can
evaluate the low-level model with a single batch job and 7 interactive cus-
tomers. Table 9.12 displays both observed and projected performance.

performance measure observed | projected
total CPU utilization .89 .95
interactive

throughput (int’s./min.) 55. 65.7

response time (secs.) 7.6 6.38
batch

throughput (jobs/min.) .040 .026

Table 9.12 — Additional Memory

The projected performance measures shown in Tables 9.10 - 9.12 are
sufficiently accurate to be useful. The discrepancies are reasonable when
we consider the magnitude of the system modifications, the crudeness of

9.7. Summary 217

the linear approximation to shared page cache effectiveness, and the

absence of any consideration of the effect of paging and swapping rates on
CPU overhead.

9.7. Summary

Memory and its management affect the performance of computer sys-
tems in two major ways. The existence of a memory constraint can
impose a bound on the multiprogramming level, and thus the
throughput, of a system. The overhead associated with memory manage-
ment can impede the progress of ‘‘useful’” work. In this chapter we have
presented techniques for representing these effects, techniques which
extend the flexibility of separable queueing network models.

It never is possible to represent every detail of an operating system’s
memory subsystem in a queueing network model. However, nor is it
necessary or desirable to do so. This latter point is a philosophical corner-
stone of computer system analysis using queueing network models, and
cannot be overemphasized. In each particular modelling study — for
each configuration, workload, and set of questions to be investigated — it
is imperative to identify the essential characteristics of the system — those
that can be expected to have primary effects on performance — and to
represent these and only these in the model. A large body of case study
literature testifies to the success of this approach.

In closing this chapter, we should mention two related points. First,
the fact that we have organized Part III on a ‘‘subsysiem’ basis rather
than on a ‘“‘technique’ basis means that the broad applicability of certain
techniques is not emphasized. As an example, Algorithm 9.1 for evaluat-+
ing single class memory constrained subsystems is applicable to any sub-
system in which there is a population constraint. (See Exercise 2.)

The second related point is a brief mention of cache memory: rela-
tively small, fast memory sometimes interposed between the CPU and
primary memory, which is managed by hardware and firmware in a
manner not unlike the paging that may occur one level removed in the
memory hierarchy. The effect of cache memory is usually included in a
queueing network model simply as an adjustment to the service demand
at the CPU. This is consistent with the decomposition approach, since
memory references occur extremely frequently relative to other events.
The analyst must be aware that a statement about the instruction execu-
tion rate of a machine with a cache must necessarily rely on some
assumption about the cache hit ratio, and that this assumption should be
verified, probably by benchmark.

218 Representing Specific Subsystems: Memory

9.8. References

The implications of the fact that throughput is convex with respect to
multiprogramming level were noted by Dowdy, Gordon, and Agre
[Dowdy et al. 1979].

Brandwajn [1974] first analyzed single class memory constrained sys-
tems using a decomposition approach, although he did not couch the
analysis in the simple terms of an FESC. Lazowska and Zahorjan [1982]
and Brandwajn [1982] independently developed the extension to multiple
classes. An interesting alternative for evaluating single class models with
non-homogeneous memory requirements was suggested by Brown,
Browne, and Chandy [Brown et al. 1977].

The iterative analysis of swapping behavior presented in Section 9.4 is
due to Lazowska [1979]. The analysis of a paging system presented in
Section 9.5 comes from Graham and Lazowska [1978].

The case study of the early IBM virtual memory system was conducted
by Boyce and Warn [1975]. Lazowska [1979] performed the VAX/VMS
case study. Hodges and Stewart [1982] use the same techniques to
analyze a more recent version of VAX/VMS; this system is described in
detail by Levy and Eckhouse [1980]. A good overview of memory
management in general, and of paging and segmentation in particular, is
provided by Denning and Graham [1975].

[Boyce & Warn 1975]
J.W. Boyce and David R. Warn. A Straightforward Model for Com-
puter Performance Prediction. Computing Surveys 7,2 (June 1975),
73-93. Copyright © 1975 by the Association for Computing
Machinery.

[Brandwajn 1974]
Alexandre Brandwajn. A Model of a Time-Sharing System Solved
Using Equivalence and Decomposition Methods. Acta Informatica 4,1
(1974), 11-47.

[Brandwajn 1982]
Alexandre Brandwajn. Fast Approximate Solution of Multiprogram-
ming Models. Proc. ACM SIGMETRICS Conference on Measurement
and Modeling of Computer Systems (1982), 141-149.

[Brown et al. 1977]
R.M. Brown, J.C. Browne, and K.M. Chandy. Memory Management
and Response Time. CACM 20,3 (March 1977), 153-165.

[Denning & Graham 1975]
Peter J. Denning and G. Scott Graham. Multiprogrammed Memory
Management. Proc. IEEE 63,6 (June 1975), 924-939.

9.9. EXxercises 219

[Dowdy et al. 1979]
Lawrence W. Dowdy, Karen D. Gordon, and Jonathan R. Agre. On
the Multiprogramming Level in Closed Queuing Networks. Technical
Report TR-831, Department of Computer Science, University of
Maryland, November 1979. '

[Graham & Lazowska 1978]
G. Scott Graham and Edward D. Lazowska. Quark: A Performance
Evaluation Package for an Operating Systems Course. Technical
Report 78-04-01, Department of Computer Science, University of
Washington, April 1978.

[Hodges & Stewart 1982]
Larry F. Hodges and William J. Stewart. Workload Characterization
and Performance Evaluation in a Research Environment. Proc. ACM
SIGMETRICS Conference on Measurement and Modeling of Computer
Systems (1982), 39-50.

[Lazowska 1979]
Edward D. Lazowska. The Benchmarking, Tuning and Analytic
Modelling of VAX/VMS. Proc. ACM SIGMETRICS .Conference on
Simulation, Measurement and Modeling of Computer Systems (1979),
57-64. Copyright © 1979 by the Association for Computing
Machinery. '

[Lazowska & Zahorjan 1982]
Edward D. Lazowska and John Zahorjan. Multiple Class Memory
Constrained Queueing Networks. Proc. ACM SIGMETRICS Confer-

ence on Measurement and Modeling of Computer Systems (1982), 130-
140.

[Levy & Eckhouse 1980]
Henry M. Levy and Richard Eckhouse, Jr. Computer Programming and
Architecture: The VAX-11. Digital Press, 1980.. o

9.9. Exercises

1. Suppose that in the example of Section 9.2 the observed average mul-
tiprogramming levels of the three classes had been 2.60, 0.40, and
1.75, but that no additional information was available (i.e., you did not
know the actual distribution of multiprogramming mixes).

a. How could you analyze this system using approximate MVA?

b. How could you analyze this system using exact MVA?

220 Representing Specific Subsystems: Memory

2. Consider a Control Data 6000-series batch computer system consisting
of a CPU, K—1 disks, and P peripheral processors, with a fixed mul-
tiprogramming level of N jobs. A job desiring disk service first must
contend for access to any one of the PPs. Once allocated, the PP is
held while the job contends for and uses the specific disk on which its
data resides. At the conclusion of the I/O activity, both the disk and
the PP are released, and the job enters the CPU queue. Thus,
although there may be N jobs and K—1 disks, at most P jobs can be
using disks simultaneously. The actual number may be less than P,
either because fewer jobs desire disk service, or because several jobs
desire access to the same disk.

a. Draw an analogy between this modelling problem and the single
class memory constraint problem discussed in Section 9.3.

b. Analyze a system in which there are 10 jobs, a CPU at which each
job has a service demand of 50 seconds, 3 PPs, and 5 disks at
which each job has service demands of 20, 25, 30, 35, and 40
seconds, respectively. Report CPU utilization, disk utilizations,
and average job response times. (Use the Fortran program in
Chapter 18, extended to accommodate FESCs as described in
Chapter 20.)

c. Analyze the same system ignoring the PP constraint. (That is,
represent the system using a separable single class model with 6
centers and 10 jobs.) What error in job response times results
from this assumption? How about CPU utilization?

3. Re-work the example of Section 9.3.1 for the following values of think
time:

a. 10 seconds
b. 180 seconds

Simpler approaches to modelling memory constraints do not require
the use of FESCs. The case study in 9.6.1 presents one such
approach. Another approach is simply to ignore the memory con-
straint, which causes the model to be separable and thus amenable to
the standard MV A algorithms.

c. For think times of 10, 60, and 180 seconds in this example, how
well do you think each of the simpler approaches will work?

d. Test your intuition by applying both approaches in these three
cases, and comparing the results to those obtained using the more
accurate flow equivalent technique.

9.9. Exercises 221

4. Some computer systems do not impose a fixed limit on the number of
jobs that can be loaded in memory, but instead load jobs in a FCFS
manner until either there are no jobs left to be loaded or no memory
in which to load them.

a. In the case where all jobs can be thought of as belonging to a single
class, how can Algorithm 9.2 be used to model such systems?

b. If jobs in the system have widely differing memory requirements
(e.g., many small jobs but occasional very large jobs), we may wish
to model the system using multiple job classes. In this case, how
can Algorithm 9.3 be used?

5. In Section 9.5 a technique was described for modelling the primary
effect of the change in page fault rate with system load (or
equivalently with main memory allocation per job): the change in the
service demand at the paging device. An important secondary effect is
a change in CPU overhead per job due to page fault handling.

a. How would you reflect this secondary effect in the model (.e.,
what parameters would you change) ?

b. How would you determine appropriate parameter values for a
specific system?
6. Suppose that a system contains a number of disks dedicated to swap-
ping, and a number dedicated to paging.

a. What modifications to the techniques of this chapter need to be
made for such systems?

b. What additional measurement information would be required to
parameterize such models?

c. In the absence of such measurements, what reasonable guesses
could you make to allow you to analyze the model?

Chapter 10

Disk I/0

10.1. Introduction

Processor and primary memory technology has moved forward rapidly
in recent years. Comparable advances have not occurred in the design of
I/0 subsystems. As a result, I/O subsystems are playing an increasingly
critical role in computer system performance. Queueing network models
of disk I/0 subsystems are the subject of the present chapter.

In any study involving queueing network models, the analyst must
begin by determining which system devices should be represented as ser-
vice centers in the model, and what the service demands at these centers
should be. With these parameters as input, the computational algorithms
described in Part II use Little’s law to calculate the effect of resource con-
tention, yielding performance measures such as utilizations, throughputs,
residence times, and queue lengths. Most postulated modifications to the
system or to the workload are represented in the model as modifications
to the service demands.

The ‘‘canonical”” queueing network model that we have used
throughout the book consists of service centers representing the CPU and
the individual disk devices. Such a model is a very abstract representa-
tion of the contemporary IBM disk I/O subsystem configuration illus-
trated in Figure 10.1. The architectural complexity of this subsystem
results from difficult compromises between cost and performance. At one
extreme, requiring the CPU to monitor directly all phases of I/0 activity
would lead to poor performance (although low cost). At the other
extreme, endowing each disk with sufficient intelligence to transfer data
in a fully independent manner would lead to high cost (although good
performance). The obvious approach is to introduce some number of
shared devices of varying intelligence (channels, controllers, string heads,
etc.) on the path between the CPU and the disks.

How is it that a simple model, which does not represent explicitly the
many I/O path elements, can validate? The answer is that, typically, the
effects of these ‘‘details’ are captured in the disk service demands

222

10.1. Introduction 223

Channels

Controllers

Heads of Disks
string

Figure 10.1 — A Contemporary IBM I/0 Subsystem

224 Representing Specific Subsystems: Disk I/0

obtained from measurement data. There are three intrinsic components
of disk service time: seek (the time required to position the arm to the
correct cylinder), latency (the time required for the start of the data
record of interest to rotate under the heads) and transfer (the time
required for the actual transfer of data). In addition, though, a disk is
““held” by a customer during a contention period when data cannot be
transferred due to the absence of a path back to the CPU. Thus, the
result of I/0 path contention is an effective disk service time (the sum of
seek, latency, transfer, and contention times) that is longer than the
intrinsic disk service time (the sum of seek, latency, and transfer times).
Disk busy times increase correspondingly, and so the effect of I/O path
contention is reflected in the disk service demand parameter of the
queueing network model, which is calculated as Dy = By /C (C here
is the number of system completions).

How can our canonical model be used to project performance for
modified environments? The answer to this question is at once very sim-
ple and very complex. On the one hand, many postulated system and
workload modifications can be represented by appropriate adjustments to
the service demand parameters of the model. For example, the primary
effect of a 50% CPU upgrade can be represented by dividing all CPU ser-
vice demands by 1.5: a customer that required six seconds of service on
a 2 MIPS (million instructions per second) CPU will require four seconds
of service on a 3 MIPS CPU. Similarly, the primary effect of adding I/0
paths and reallocating disks can be represented by reducing the disk ser-
vice demands, because I/O path contention can be expected to decrease.
Unfortunately, it is difficult to quantify the amount of this reduction.
The purpose of the I/O modelling techniques to be discussed in this
chapter is to allow the analyst to deal with parameters that are meaning-
ful: channels, controllers, strings, paths, disks, intrinsic I/O service
requirements, etc. These techniques serve to translate a modification
expressed in terms of these parameters into an appropriate modification
of the disk service demands.

Our study will progress by introducing ever greater levels of detail into
our models. Before proceeding, two remarks:

® For concreteness we will use terminology derived from IBM systems
in this chapter. The architectural characteristics that we address and
the modelling techniques that we develop, however, are equally appli-
cable to systems of other manufacturers.

® The fact that the computer system under study has a complex I/O sub-
system, such as that illustrated in Figure 10.1, does #not mean that
sophisticated I/O subsystem modelling techniques are required. In
undertaking any study, the analyst must think carefully about the
questions under consideration. If the primary effects of the postulated

10.2. Channel Contention in Non-RPS 1/O Subsystems 225

modifications can be represented by straightforward adjustments of
disk service demands (or by no adjustment, as might be the case for a
CPU upgrade), then sophisticated I/0 subsystem modelling techniques
are not called for.

10.2. Channel Contention in Non-RPS 1I/0 Subsystems

In this section we develop a technique to represent the effect of chan-
nel contention in an I/O subsystem with disks that do not perform rota-
tional position sensing (RPS). (RPS will be explained in the next sec-
tion.) Customers cycle through such a system (illustrated in Figure 10.2)
as follows:

— queue for the CPU

— when the CPU is available, use it

— queue for access to a specific disk

— when that disk is available, seek

— still holding the disk, queue for access to the channel (contention)

— when the channel is available, use both it and the disk to search for
(latency) and transfer data.

Two preliminary remarks:

® In fact, momentary access to elements of the I/O path is required to
initiate a disk seek. It is customary (and justified, based on experi-
ence) to ignore this in modelling disk I/O subsystems; we will do so
throughout this chapter.

® Recall that topology is irrelevant in separable queueing networks; the
crucial issue is our choice of service demands, not our placement of
the channel relative to the disks in our figures.

CPU Channel Disks

Figure 10.2 — A Highly Simplified I/O Subsystem

226 Representing Specific Subsystems: Disk I/0

As noted in the previous section, it is a straightforward matter to con-
struct a queueing network model of a non-RPS disk I/O subsystem that,
given parameters derived from measurements over a specific interval,
accurately reproduces the performance observed during that same inter-
val. Each disk should be represented individually, with service demand
equal to measured disk busy time divided by measured system comple-
tions (in the single class case). The relative contributions of seek,
latency, transfer, and contention times are unimportant.

In using the model to project performance for modified environments,
it may be necessary to adjust not only the intrinsic service demands at the
disks (for example, the substitution of a disk with a higher data transfer
rate would result in a smaller transfer time component), but also the
channel contention component (this same substitution would result in a
decrease in channel holding times, and thus in channel contention).
Note that conducting such a modification analysis imposes two require-
ments beyond those imposed by validating a baseline model:

® Jt may be necessary to deduce the relative contributions of seek,
latency, transfer, and contention times in the measured disk busy
times. '

® [t may be necessary to estimate the changes in each of these com-
ponents that will result from the proposed modifications.

The emphasis in this section, and in the chapter as a whole, is on the
most interesting aspect of these requirements: we will develop tech-
niques that, given information about the intrinsic service requirements of
requests at each disk (the seek, latency, and transfer times), will estimate
the contention times experienced by requests associated with the various
disks, and thus the effective service demands at the disks. In developing
our techniques, we will assume that seek, latency, and transfer times are
known. (A later section will discuss how to deduce these values from
typical measurement data.) In using these techniques to project perfor-
mance for a modified environment, the analyst would adjust the intrinsic
service demands (e.g., transfer times) directly, relying on the algorithms
to estimate revised contention components, and thus revised effective
service demands. (Chapter 13 discusses modification analysis in more
detail.)

Although it is the effective service demand at each disk k, Dy, that we
require, it will be convenient to think of D, as the product of V,, the
number of visits to disk k made by a customer, and S, the effective ser-
vice requirement per visit. S, in turn, can be thought of as the sum of
seek, , latency,, transfer,., and contention,, each of which are expressed on
a per-visit basis. In other words:

10.2. Channel Contention in Non-RPS I/O Subsystems 227

Dy = Vi S
= Vk[seek,‘. + latency, + transfer, + contention,\,]

We assume that all of these quantities except for contention, are known.

We must estimate contention;, the time spent awaiting access to the
channel by a request associated with disk k. In the spirit of mean value
analysis, this can be viewed as the product of the channel holding time of
a request associated with disk k and the number of requests encountered
by a disk k request upon arrival at the channel. The channel holding
time of a request associated with disk k is simply latency, + transfer,.
To estimate the arrival instant channel queue length, we (falsely) view
the channel as a center in an open system. Recall from Chapter 6 that
the arrival instant queue length at any center in an open system is equal

I v U where U is the utilization of the center. In the present case,
we know that any requests ahead of a disk k request at the the channel
must be associated with some disk other than k, so we modify this equa-

tion to be:

to

ch'/r - [/ch (k)
11— Uch

where U, is the utilization of the channel, and U, (k) is the contribu-
tion to this utilization of requests associated with disk k. Thus, if we
knew U, and U, (k) we could estimate the effective service demand of
disk k as: -

D, = I/k[seekk + latency, + transfer, + contentionk]

= I}\.[seekk + latency, + transfer, +

U, — Uy, (k)
[latencyk + transferk] X —ﬂ——#]

1— rch
[]Ch - []ch (k)
= V,|seek; + [latencyk + t)‘ansfe/'k] X [1l+ ——m—m——m
1- Uch
(latency, + transfer,) (1 — Uy (k))
=V |seek, I U
— Ueh

Unfortunately, the various U, (k) required to parameterize the model are
known only after the model has been evaluated. This suggests the itera-
tive scheme shown as Algorithm 10.1.

As an example, consider a batch computer system with an average
multiprogramming level of 10, a CPU at which jobs have an average total

228 Representing Specific Subsystems: Disk 1/0

1. Define a queueing network model of the system in which the
I/0 subsystem is represented only by the disks. Initially, as-
sume that system throughput, X, is zero. (This will cause
the contention component of the disks’ effective service
demands to be set to zero during the first iteration.)

2. Iterate as follows:
2.1. For each disk k, estimate the contribution to channel
utilization of requests associated with that disk as:
Unk) = X Vk[latencyk + transferk]

where X is obtained from the previous iteration.

2.2. Estimate channel utilization: U, = E U (k)
all disks k

2.3. For each disk k, estimate its effective service demand
as:

D, =V,

seek;, T— U,
cn

(latency, + transfer,) (1 — U, (k))]

2.4. Evaluate the queueing network model using MV A.

Repeat Step 2 until successive estimates of system
throughput, X, are sufficiently close.

3. Obtain performance measures from the final iteration.

Algorithm 10.1 — Non-RPS Disks

service requirement of 15 seconds, a single channel, and five equally
loaded non-RPS disks at each of which jobs have average total service
requirements of 8 seconds seeking (.e., V,seek, = 8), 1 second search-
ing (latency), and 2 seconds transferring data. (Note that it is not neces-
sary to descend to the ‘‘visit’’ level in order to apply Algorithm 10.1; we
did so in our development for consistency with forthcoming sections.)
We analyze this system using a queueing network with 10 customers and
six service centers, corresponding to the CPU and the five disks. The
service demand at the CPU is 15 seconds. The initial service demand at
each disk is 11 seconds. (The equally loaded disks are not essential, but
are used to simplify the example; they allow single calculations of U, (k)
and D, to be used for all disks.) Table 10.1 displays the iteration.

The parameter values used in the first iteration correspond to an
analysis in which channel contention is ignored. The results (throughput
of .056, channel utilization of 84%) differ considerably from those

10.2. Channel Contention in Non-RPS I/O Subsystems ; 229

iter input calculations output
) X U,, (k) U, D, X

1 .0000 .000 .000 | 11.00 | .0557
2 .0557 167 .836 | 23.24 | .0299
3 .0299 .090 449 | 12,96 | .0499
4 .0499 150 749 | 18.16 | .0376
5 .0376 113 564 | 14.10 | .0467
6 .0467 .140 .701 | 16.63 .0408
7 .0408 122 .611 | 14.77 | .0449
8 .0449 135 674 | 1596 | .0423
9 .0423 127 635 | 15.18 | .0439
10 .0439 132 .659 | 15.63 | .0430
11 .0430 129 .645 | 15.36 | .0434
12 .0434 .130 .651 | 15.48 | .0434

Table 10.1 — Execution of Algorithm 10.1

obtained at the end of the iteration (throughput of .044, channel utiliza-
tion of 65%), when channel contention has been accounted for.

Algorithm 10.1 can be applied to computer systems with multiple
channels, each connecting the CPU to a specific set of disks. Each chan-
nel subsystem must be considered separately in the algorithm. In Steps
2.1 and 2.2, a separate utilization is calculated for each channel. In Step
2.3, the effective service demand of each disk is estimated using the utili-
zation of the channel to which it is attached.

Two simple modifications are required to generalize the algorithm to
multiple class queueing networks. In Step 2.1 the channel utilization due
to requests associated with disk & must be estimated as:

c .
Ga) = § [0 fmencs + wanger,)
c=1

In Step 2.3 revised effective service demands must be estimated on a
per-class basis as:

(latency, , + transfer.,) 1 — U, (k))
DC,/\' = I/;',k [Seekc’k + yC’A f C,k ch

1 - Uch

Algorithm 10.1 is simple, efficient, and sufficiently accurate. Further,
the situations in which its accuracy might be questioned are easily
identified: those in which the utilization of the channel is high — cer-
tainly greater than 50%, a higher utilization than would be encountered in
most applications. The source of this error is our view of the channel as
a center in an open system, which we used in calculating the expected
queue length encountered at the channel by arriving requests from disk

230 Representing Specific Subsystems: Disk I/0

k. In reality, the number of requests queued at the channel is bounded,
rather than unbounded as implied by the open system approximation.
For a given utilization, a service center in an open queueing network will
have a greater queue length than a service center in a closed network.
The open system approximation therefore will tend to overestimate the
queue length at the channel, and thus to overestimate channel residence
times. - B

10.3. Channel Contention in RPS I/O Subsystems

Rotational position sensing (RPS) increases concurrency in the 1/0 sub-
system by allowing disks to search for data (the latency period) indepen-
dently of each other and of the channel. When the data record of interest
rotates under the heads, the disk attempts to reconnect. (Reconnect
rather than connect because momentary access to elements of the I/0 path
was required to initiate the seek and the search; we shall continue to
ignore this in our models.) If the path is free, this reconnect succeeds
and the data transfer takes place. If not, another reconnect is attempted
when the data next rotates under the heads, one disk revolution later.
Reconnect attempts are continued in this manner until success is
achieved. We refer to all reconnect attempts after the first as retries.

As in the previous section, we wish to estimate the effective service
demand for each disk k:

D, =V, [seekk + latency, + transfer, + contentionk]

We assume that all of these quantities except for contention, are known.
In the case of RPS disks, we have:

contention, = retries, X rotationy

where retries; is the number of retries required by disk k before a suc-
cessful reconnect, on average, and rotation,, is the rotation time of disk k.
The latter quantity is known from device characteristics; our objective
thus is to estimate rerries;.

We assume that for any particular disk A, the probabilities of failure
on various reconnect attempts are independent. (This assumption is not
strictly correct, but at most a small error is introduced.) We let
P, [reconnect fails] denote this probability of failure. Then:

10.3. Channel Contention in RPS I/O Subsysteins 231

retries, = 0 X (1—Py[reconnect fails]) +
1 X (1—Py[reconnect fails]) X Pylreconnect fails] +

2 X (1—Pylreconnect fails]) X (Pylreconnect fails))? -+

= i [1’ (1— Py [reconnect fails]) x (P, [reconnect fai/s])’]
=

P, [reconnect fails)
1 — Pylreconnect fails]

(a standard transformation)

A reconnect attempt succeeds if the path back to the CPU is free, and
fails otherwise. In other words, P, lreconnect fails] is equal to
Py [path busyl, the probability that disk k finds the path busy when it
attempts to reconnect. Presently the channel is the only path element
that we are considering, so P, [path busy] is equal to P,[channel busyl,
the probability that disk k finds the channel busy when it attempts to
reconnect. At first glance, we might guess that P [channel busy] is equal
to U,. In fact, though, disk & will not ‘‘see’” its own contribution to
channel utilization. Thus:

P, [reconnect fails)
= P.[path busy]
= P, [channel busy]

= Plchannel busy |disk k not transferring]

_ Plchannel busy & disk k not transferring) ,
Pldisk k not transferring] (Bayes’s rule)
Ut‘h - L/(h(k)
1 — U (transfer)

where Uy (transfer) is the utilization of disk k due to data transfers. This
quantity is equal to the utilization of the channel due to requests associ-
ated with disk k, U, (k). Making this substitution and using the result
in the expression for retries,, we obtain:
Uc‘h - Uc‘h(k)

1= Uc/z

Since these utilizations are known only once the model has been
evaluated, we employ an iterative scheme, shown in Algorithm 10.2.

retries, =

232

Representing Specific Subsystems: Disk I/0

Define a queueing network model of the system in which the
1/0 subsystem is represented only by the disks. Initially, as-
sume that system throughput, X, is zero. (This will cause
the contention component of the disks’ effective service
demands to be set to zero during the first iteration.)

Iterate as follows:
2.1. For each disk k, estimate the contribution to channel
utilization of requests associated with that disk as:
Un(k) = X V, transfer,
where X is obtained from the previous iteration.

2.2. Estimate channel utilization: U, = 3 Uy (k)
all disks k
2.3. For each disk k:

— Estimate the average number of retries required
before a successful reconnect as:

Uy — Uch(k)
1 - Uch

retries, =

— Estimate an effective service demand as:

D, = Vi [seekk + latency, + transfer, +
(retries;, X rotan'onk)]

2.4. Evaluate the queueing network model.

Repeat Step 2 until successive estimates of system
throughput, X, are sufficiently close.

Obtain performance measures from the final iteration.

Algorithm 10.2 — RPS Disks

As an example we return to the system considered in Section 10.2,
but assume that the disks are capable of rotational position sensing. Let
the rotation time of each disk be 17 msec., and let the number of opera-
tions per disk be 120. Table 10.2 displays the iteration. In comparison to
the non-RPS case, we note that system throughput has increased by 17%
while channel utilization has decreased by 23%.

10.4. Additional Path Elements 233

it input calculations output
W 7y T U,k | Uy, | reiess | Dy X
1 .0000 .000 .000 .000 11.00 | .0557
2 0557 11 557 1.006 13.05 | .0496
3 .0496 .099 496 .788 12.61 .0509
4 .0509 102 .509 .830 12.69 | .0507
5 .0507 10L 507 822 12.68 | .0507

Table 10.2 — Execution of Algorithm 10.2

Like its non-RPS predecessor, this algorithm can be applied to com-
puter systems with multiple channels each connecting the CPU to a
specific set of disks, by considering each channel subsystem separately in
Steps 2.1 to 2.3. It also can be generalized to multiple classes by means
of two simple modifications. The equation in Step 2.1 becomes:

C
U, k) = 2 [XC Ve ok transferc,,\.]

c=1

and the second equation in Step 2.3 becomes:

D., = VC,,\.[seekcJ< + latency. , + transfer, ; +
(retries;, % roration,‘.)]

(The rotation time of the disk and the average number of retries required
before a successful reconnect are independent of the customer class.)

10.4. Additional Path Elements

The path between the CPU and a disk in a contemporary I/O subsys-
tem contains several elements in addition to a channel. The contention
component of the effective disk service demands is influenced by each of
these path elements. Algorithm 10.2 estimates only the channel’s contri-
bution to the contention component. This algorithm can be used in
modelling I/0 subsystems with additional path elements, provided that a
change in the channel’s contribution will be the primary effect on the
contention component of any contemplated modification. If this is not
the case — if significant variations in the contributions to the contention
component of other path elements are anticipated — then the algorithm
must be extended to estimate these contributions. Such extensions are
the subject of the present section.

234 Representing Specific Subsystems: Disk I/0

10.4.1. Controllers

Figure 10.3 illustrates the interposition of a controller on the path
between the CPU and a disk. Several controllers are attached to a chan-
nel, and several disks are attached to a controller. A controller is occu-
pied when any of its associated disks are transferring data.

CPU Channel

Controllers Disks
Figure 10.3 — Controllers

As in Section 10.3, our objective is to estimate D, for each disk k.
This requires that we estimate contention,. To do so, we must estimate
retries,. This, in turn, requires that we estimate P, [reconnect fails],
which is equal to P, [path busy]. This quantity can be expressed as:

P.lpath busy]l = P.lcontroller busy] +
P, [controller free & channel busy)

By analogy to the derivation in the previous section, the probability that
disk 4 finds its controller busy when attempting to reconnect is:

Ueir = Uey (k)

1 — Uy (transfer)

The probability that disk & finds its controller free and its channel busy
when attempting to reconnect is:

P, [controller busy] =

10.4. Additional Path Elements 235

Py [controller free & channel busy] :

= Plcontroller free & channel busy | disk k not transferring]

Plcontroller free & channel busy & disk k not transferring
Pldisk k not transferring]

Uy, — Uy (ctlr)

1 — U, (transfer)

(In a generalization of our earlier notation, Uy, (ctlr) is the utilization of
the channel by requests associated with the controller to which disk k is
attached.) To make our notation more compact, we replace
U.r — U (k), which is the utilization of the controller due to requests
associated with disks other than k, by U, (k). Similarly, we replace
U., — U, (ctlr), which is the utilization of the channel due to requests
routed through controllers other than the one of interest, with U,, (ctlr).
We obtain:

Ucrlr(l;) + Uch (‘E)
1 — U, (transfer)

Py [path busy)

and:
Ucr/r(/;) + Uch (Ct?)
1= Uch

An iterative solution can be obtained, in a manner analogous to Algo-
rithm 10.2.

retries;, =

10.4.2. Heads of String

Some architectures introduce one further path element: a collection of
disks constitutes a string, which is connected to a controller through a
head of string (hos). Figure 10.4 illustrates this situation.

Like the controller and the channel, the head of string is occupied
when any of its associated disks are transferring data. Thus:

Py lpath busyl = P.lhos busy]l +
P, lhos free & controller busy] =+
Pilhos free & controller free & channel busy]

236 Representing Specific Subsystems: Disk I/0

Channel

Controllers

Heads of Disks
string

Figure 10.4 — Heads of String

Evaluating these terms yields:

Uhos (E)
1 — U, (transfer)

P.lhos busy] =

UCf/r (}E)
1 — U, (transfer)

P.[hos free & controller busy] =

Uch (J)
1 — U, (transfer)

Pl hos free & controller free & channel busy] =

As a result:

[Jhos(E) + []C[],-(/E) + UC;,(CTI[—I‘)
1 — U, (eransfer)

Pilpath busy] =

and:
Upos (k) + Uuy, (hos) + Uy, (ctlr)
1 - Uch

retries, =

10.5. Multipathing 237

10.5. Multipathing

The architectures just described are single path architectures: each disk
is connected to a single head of string, each head of string to a single con-
troller, and each controller to a single channel, with the result that there
is only one path from the CPU to any disk — a particular channel, con-
troller, and head of string must be used. This imposes limitations in
several respects:

® reliability — The failure of any path element will cause all disks
““beneath it”’ to become inaccessible.

® performance — A disk may be unable to transfer data because, for
example, although its head of string and its controller are free, its
channel is busy transferring data for another disk associated with a
different controller. There is no way to utilize another channel that
may be free at the time.

® sharing — In a single path architecture it is not possible to organize
several CPUs as a loosely-coupled multiprocessor coordinated by means
of shared I/0 devices.

Multipathing attempts to overcome these limitations. Figure 10.1 in
the introduction to this chapter illustrates a multipathing I/O subsystem.
In general, a disk-may be connected to several heads of string, a head of
string to several controllers, and a controller to several channels, perhaps
attached to different CPUs. Each different combination of {channel, con-
troller, head of string} that can be used to access a particular disk consti-
tutes a unique path. The system includes an algorithm that selects a path
for each data transfer. Existing algorithms fall into two general classes.
In static reconnection algorithms, any free path is used to initiate an I/O
sequence, but the disk must reconnect over this same path to transfer
data. In dynamic reconnection algorithms, the reconnect may occur over
any free path. (Interestingly, multipathing with static reconnection typi-
cally results in a performance degradation relative to the single path case,
which is tolerated for the sake of reliability and sharing.)

In modelling multipathing, our basic approach remains unchanged, but
the process of estimating the probabilities of reconnect failure for the
various disks (the Py[reconnect fails]) becomes more involved. Three
factors contribute to this complexity:

® To estimate the utilizations of the various path elements, the path
selection algorithm must be considered, because at any ‘‘level’”’ of the
I/0 subsystem hierarchy (i.e., at the level of the channels, the con-
trollers, or the heads of string) the utilization due to requests associ-
ated with a particular disk is divided among several path elements in a
manner determined by this algorithm. This problem is discussed in
Section 10.5.1.

238 Representing Specific Subsystems: Disk I/0

® Once the utilizations of the various path elements are known, it still is
not straightforward to estimate the probability of reconnect failure for
a particular disk. This is the case because several paths are available
to each disk. The probability that each of these paths is found busy
must be estimated. Then, the path selection algorithm must be con-
sidered to determine probability of reconnect failure given these path
busy probabilities. This problem is discussed in Section 10.5.2.

® In the expression for the probability that a particular disk finds a par-
ticular path busy, additional terms must be introduced due to mul-
tipathing. This problem is discussed in Section 10.5.3.

Algorithm 10.3 shows the general structure of a technique for represent-
ing multipathing in queueing network models.

10.5.1. Estimating the Utilizations of Path Elements

In a single path architecture, the utilization of any particular path ele-
ment (any channel, controller, or head of string) is equal to the sum of
the data transfer utilizations of all disks ‘‘beneath it’’. In the case of mul-
tipathing, though, it may be possible to route the data transfers of any
particular disk through several different {channel, controller, head of
string} paths. Thus, the utilization of any path element is the sum of por-
tions of the data transfer utilizations of a number of disks.

Even if we ‘“‘know’’ the utilization of each disk due to data transfer
(an improved estimate is obtained each time we iterate through all of
Step 2 of Algorithm 10.3), the proportion routed through each path ele-
ment can be estimated only once we have represented the behavior of the
path selection algorithm. And, in order to represent the behavior of the
path selection algorithm, we must know the utilizations of the path ele-
ments, because the path selection algorithm is driven by the probabilities
that the various paths are found busy. In other words, estimating the
utilizations of path elements, Step 2.2 of Algorithm 10.3, itself is an itera-
tive process.

This iterative process would be relatively straightforward if I/O subsys-
tems were fully interconnected — if every disk could use every head of
string, controller, and channel. Unfortunately this is not the case. Both
physical and logical constraints exist. These constraints could turn the
estimation of the utilizations of path elements into a nasty combinatorial
problem. Fortunately, though, interconnection structures tend to be
quite limited and quite regular in practice, and various simplifying
approximations can be introduced without significant loss of accuracy.

One possible approach (there are several) is suggested by the fact that
in handling I/O operations for any particular disk k, the path selection

10.5. Multipathing 239

1. Define a queueing network model of the system in which the
I/0 subsystem is represented only by the disks. Make an in-
itial estimate of system throughput, X.

2. Iterate as follows:

2.1. Estimate the utilization of each disk k& due to data
transfer:

U, (transfery = X V, transfer,

2.2. Estimate the utilizations of the various path elements,
by apportioning the data transfer utilizations of the disks
among these path elements in a way that is consistent
with the system’s path structure and with the path selec-
tion algorithm. (See Section 10.5.1.)

2.3. Estimate the effective service demand of each disk k:

— For each path that can be used by disk k, estimate
P.lpath busy], the probability that disk k finds this
path busy when it attempts to reconnect. (See Sec-
tion 10.5.2.)

— Considering these probabilities along with the
system’s path selection algorithm, estimate
P [reconnect fails], the probability that disk k fails
to reconnect. (See Section 10.5.3.)

— Given this probability, estimate retries, and D, in
the usual manner:

P [reconnect fails]

retries,
k 1 — Py [reconnect fails]

D, =V, [seekk + latency, + transfer, +
(retries, X rotationk)]

2.4. Evaluate the queueing network model.

Repeat Step 2 until successive estimates of system
throughput, X, are sufficiently close.

3. Obtain performance measures from the final iteration.

Algorithm 10.3 — Multipathing in the Rough

240 Representing Specific Subsystems: Disk I/0

algorithm will choose among the possible paths in proportion to the pro-
bability that it finds them free. Thus:

— Establish initial estimates (say, zero) for the utilization of each path
element.

— Iterate as follows:
— Treat each disk & in turn:

— For each path i to disk k, let P, [path i selected] denote the
proportion of disk k’s transfers that use path i. Set the
P.lpath i selected] to be proportional to the probabilities that
disk k finds each path i free: (1 — P.[path i busy]), where
P.[path i busy] is calculated as in Section 10.5.2, using the
current estimates for path element utilizations.

— Update the estimates of the utilizations of the various path
elements to include the new assignment of disk k’s transfers.

Once each disk has been considered, iterate, modifying previous
values.

This procedure will not reproduce exactly the behavior of the path selec-
tion algorithm, but will provide a reasonable approximation.

10.5.2. Estimating the Path Busy Probabilities

As in the case of single path architectures, the probability that disk k
finds any particular path busy when it attempts to reconnect is:

P, lpath busy]l = P.lhos busy] +
P, lhos free & controller busy]l +
P lhos free & controller free & channel busy)

where hos, controller, and channel refer to the particular head of string,
controller, and channel of interest — those that constitute the path in
question.

In the multipathing case, additional terms are involved in expressing
these probabilities in terms of the utilizations of path elements. The pro-
bability that disk & finds the path’s head of string busy is unchanged:

Uhos - Uhos(k)

1 — Uy (transfer)

The probability that disk k finds the path’s head of string free but its con-
troller busy has one additional term:

P, [hos busy] =

Uetr — Uy (hos) — Ug,{,(k—’/ﬁ)
1 — U, (transfer)

P [hos free & controller busy] =

10.5. Multipathing 241

where U, (k—hos) is the utilization of the controller of interest due to
requests associated with disk k routed through heads of string other than
the one of interest. The probability that disk & finds the path’s head of
string and controller free but its channel busy has two additional terms:

Py lhos free & controller free & channel busy]

Ueh = U (ctlr) — Uy (hos=ctlr) — Uy, (k—hos—ctlr)
1 — Uy (transfer)

where U, (hos—ctlr) is the utilization of the channel of interest due to
requests routed through the head of string of interest but through con-
trollers other than the one of interest, and U, (k—hos—ctlr) is the utili-
zation of the channel of interest due to requests associated with disk k
routed through heads of string and controllers other than the ones of
interest.

10.5.3. Estimating the Probability of Reconnect Failure

In a single path architecture, Pylreconnect fails] is equal to
P.path busy]. This simple relationship does not hold in the case of mul-
tipathing. Each disk & now has a number of paths to choose from. In
determining the probability of reconnect failure, the busy probabilities of
each possible path must be considered, along with the strategy used by
the path selection algorithm.

With a static reconnection algorithm, the reconnection is attempted
over whichever path was chosen for the initiation of the I/O sequence.
Thus:

Py lreconnect fails] = 2 Pi[path i selected] x Plpath i busy]
__ possible
IS paths
where P.[path i selected] is the proportion of disk k transfers that use
path i (from Section 10.5.1) and Py [path i busy] is the probability that
disk k finds path / busy when attempting to reconnect (from Section
10.5.2).

With a dynamic reconnection algorithm, the reconnection can take
place over any free path. Thus:

P, [reconnect fails) = P, lall possible paths busy]
=~ J[P:lparh i busyl

__ possible

! paths
(This equation assumes that the probabilities of various paths being busy
are independent of one another. This assumption is not strictly correct,
but any error introduced is apt not to be substantial.)

242 Representing Specific Subsystems: Disk I/0

10.6. Other Architectural Characteristics

In this section we provide brief treatments of two additional architec-
tural characteristics: shared disks and cached devices.

10.6.1. Shared Disks

As noted in Section 10.5, one virtue of multipathing is that it allows
disks to be shared among several systems. Such a configuration often is
referred to as a loosely-coupled multiprocessor. In principle the systems
could be joined at any level in the I/O subsystem hierarchy. Figure 10.5
illustrates a typical case, in which a single controller is attached to two
channels connected to different CPUs.

L0

Channels Heads of Disks
string

Controller

L0

Figure 10.5 — Shared Disks

A loosely-coupled multiprocessor can be viewed in two ways: as a sin-
gle system that happens to have multiple CPUs, or as a collection of
separate systems that happen to share disks. The distinction is important,
for the two views lead to different modelling approaches. The choice of
view depends upon the way in which a particular processing complex
actually is used, and the nature of the performance questions under con-
sideration.

10.6. Other Architectural Characteristics 243

The first view, that of a single system that happens to have multiple
CPUs, leads to a single large queueing network model that includes all
devices and all workload components. The advantage of this modelling
approach is its conceptual simplicity: no new ideas are involved. For this
reason we will discuss this view no further.

The second view, that of a collection of separate systems that happen
to share disks, leads to a collection of small queueing network models,
one corresponding to each system. The advantage of this modelling
approach is its modularity: a modification whose primary effect will be
felt by one system can be investigated by defining, parameterizing, and
evaluating one relatively small model. Conducting such an analysis is the
subject of the remainder of this subsection.

Consider the queueing network model of any of the systems. The I/O
subsystem component of this model will include service centers
corresponding to all disks used by customers on that system, whether
those disks are dedicated or shared. Certainly, contention in the I/0O sub-
system due to requests associated with other systems must be
represented. If not, throughput of requests associated with the system of
interest would be over-estimated. We will represent this contention in
our model, but will do so in a way that is determined from measurement
data. In modifying the model for purposes of performance projection, we
will assume that the utilizations of disks and path elements due to
requests associated with other systems remain unchanged.

In estimating the effective service demand at each disk in the model,
we represent the effect of requests associated with other systems in two
ways:

® qccounting for additional reconnect delay experienced because of path con-
tention due to ‘foreign” requests — In evaluating the expressions for the
probabilities that various paths are found busy, the measured utiliza-
tions due to requests associated with other systems are added to the
calculated utilizations due to customers in the model, for each shared
path element and shared disk. This adjustment results in a realistic
estimate for the contention component of effective service demand.

® qaccounting for delay in acquiring the disk due to its use by “foreign”
requests — For each disk, the contention component calculated above
is added to the seek, latency, and transfer components. This total is
divided by one minus the measured utilization of the disk due to
requests associated with other systems. The rationale is the same used
in estimating channel contention for non-RPS disks (Section 10.2).

We recommend this approach whenever it is possible to assume rela-
tive stability in the utilizations of disks and path elements due to requests
associated with other systems, in the presence of postulated modifications
to the system of interest.

244 Representing Specific Subsystems: Disk I/0

10.6.2. Cached Devices

A cache memory is a relatively small, relatively high speed memory
that is used as a staging area for data. For many years cache memories
have been interposed between processors and their primary memories.
Very recently they have been introduced into I70 subsystems, typically by
augmenting controllers with storage capacity (on the order of millions of
bytes) and processing capacity. In this subsection we will take a brief
look at modelling cached devices. .

The cache contains duplicate copies of some of the disk-resident data.
If the cache is well managed, the vast majority of the data that is refer-
enced by I/O operations will be resident in the cache. Two parameters
are crucial in determining the effectiveness of the cache. The first is the
hit ratio. the proportion of I/O operations that refer to data residing in
the cache. The second is the read ratio. the proportion of I/0 operations
that are reads rather than writes. These parameters are crucial because a
read hit (a read operation referencing data resident in the cache) can be
serviced without accessing the disk. Thus, it has a service time roughly
equal to the data transfer time, with no seek or latency components. On
the other hand, a read miss, a write hit, and a write miss each require that
the disk be accessed. Furthermore, because of the overhead involved in
managing the cache, a disk access in a cached environment is somewhat
slower than a disk access in a conventional environment. Thus, a perfor-
mance degradation can result from conversion to a cached I/O subsystem
if a low read ratio exists, regardless of the hit ratio. A performance
improvement will result if high hit and read ratios exist.

Let us consider a modelling study whose objective is to estimate the
effect of converting an existing system to a cached I/O subsystem. We
adhere to the basic model structure and evaluation techniques used in
previous sections, and assume that a validated baseline model exists.

® We can reflect any changes in the seek, latency, and transfer times
due to device characteristics in a straightforward manner.

® To account for the fact that a read hit can be serviced with no disk
access, we adjust the effective service demands of the disks in the
obvious way:

D, = Vk[(1 — (hit ratio X read ratio)) X (seek, + latency,) +
transfer, + contenn‘onk]

The hit ratio is not apt to be site-dependent in a significant way, so
typical values can be obtained from manufacturer’s data. The read
ratio is not apt to change as a result of the conversion, so measure-
ment data from the existing system can be used.

10.7. Practical Considerations 245

® The overhead of managing the cache may cause the utilizations to
increase at various path elements, especially controllers. These
increased utilizations should be represented, because they will affect
path contention. Manufacturer’s data is available that provides multi-
plicative factors to be used in estimating this overhead, given the basic
transfer time. These factors can be used within the model in calculat-
ing the path busy probabilities.

10.7. Practical Considerations

Two practical considerations immediately arise in contemplating the
application of the techniques we have described:

® How can the relatively detailed parameters required by these tech-
niques be inferred from the measurement data that typically is
encountered?

® How can these techniques be embedded in queueing network model-
ling software?

These related concerns are the subjects of the present section.

10.7.1. Inferring Parameter Values from Measurement Data

The techniques we have presented require that the following informa-
tion be provided as input:

— a specification of the path structure of the I/0 subsystem

— for each disk:
— the visit count
— the average seek, latency, and transfer times per visit
— the average rotation time

Given this information, these techniques iteratively estimate the average
contention time per visit at each disk, and thus the effective service time
per visit, S, and the effective service demand, D,.

In this section we consider the common situation in which the values
of some of these parameters are not available directly, so must be
inferred before our techniques can be applied. Inevitably, the visit counts
and utilizations of the disks are known from measurement data. From
these, the actual effective service times per visit and effective service
demands can be calculated. We know that the actual effective service
demands, if used to parameterize a model, would yield excellent results
without the use of the techniques described in this chapter. (These tech-
niques are required to conduct a modification analysis in which a change
to the contention component of the effective service demands is

246 Representing Specific Subsystems: Disk 1/0

anticipated to be a primary effect.) A fruitful way to view our task is that
we must partition the actual effective service times per visit into seek,
latency, transfer, and contention components, in such a way that when
the seek, latency and transfer components are provided as inputs to the
model (along with path structure, visit counts, and rotation times), the
techniques that we have developed will calculate effective service times
per visit and effective service demands that are roughly the same as the
actual values. Once this has been achieved, we will consider the baseline
model to be validated and will be prepared to use it for performance pro-
jection.

We denote the actual effective service time per visit at disk k& by S,
and the actual effective service demand by D;. We proceed as follows:

® To estimate latency, , we refer to the device characteristics.

® To estimate transfer, we employ the utilizations and visit counts of the
channels, which are available readily from measurement data. From
these, the service time per visit to each channel can be obtained. In
the single path case, we set transfer, to this value (for the appropriate
channel, of course). In the multipathing case, we take an average of
the values of the channels accessible from disk k. Estimating transfer,
on the basis of measured channel service times is important. The
various path elements are processors rather than wires, and overhead
is associated with each transfer. Estimating transfer, by considering
block sizes and transfer rates would ignore this overhead, yielding an
optimistic value. In stating our approach, we have made the homo-
geneity assumption that the data transfer service requirements of all
disks on a particular channel are the same. Adjustments are possible
if block size information is available.

® To estimate seek, it is tempting to refer to the device characteristics.
Unfortunately, this approach is notoriously unreliable. We know that:

seek, + contention, = S; — latency, — transfer,

where each of the quantities on the right hand side is known. In order
to obtain consistent estimates for the two quantities on the left hand
side, we will evaluate the queueing network, using either Algorithm
10.2 (for the single path case, augmented as in Section 10.4) or Algo-
rithm 10.3 (for the multipathing case), and let the results determine
the estimates. More specifically:

— In Step 2.1 of either algorithm, we use the values of transfer,
estimated above.

— In each iteration of Step 2 in either algorithm, we use D; as the
effective service demand of disk k. (Fixing this value does not
entirely eliminate iteration, because the throughput of the
model will differ slightly from the throughput of the system.)

10.8. Summary 247

— When the algorithm terminates, it will have estimated
P lreconnect fails] and retries, for each disk. Since rotation; is
known (from the device characteristics), this means that an esti-
mate for contention, has been obtained. We set our estimate for
seek;. to:

seek, = S, — latency, — transfer, — contention;

We now are prepared to use the model for performance projection.

10.7.2. Incorporation in Queueing Network Modelling Software

The preceding discussion provides a number of insights concerning the
support that a queueing network analysis software package might provide
for modelling complex I/0 subsystems.

The package might provide a convenient syntax for specifying the path
structure of the I/0 subsystem. As input, the analyst would provide this
path structure, plus the effective service demands and visit counts at each
disk, and the service demands and visit counts at each channel. The
package might make use of internal information concerning various dev-
ice types to provide quantities such as average latency and rotation times.

The analyst would indicate when the model has been specified fully.
At this point, the package would evaluate the model, inferring the
detailed parameter values and storing them internally.

At this point, it is possible to undertake modification analyses. The
package might support this process in a number of ways. For example,
the path structure might be modifiable using the same syntax in which it
was specified, with the package adjusting the detailed parameter values.

Chapter 16 contains a more extensive discussion of software support
for queueing network modelling.

10.8. Summary

In this chapter we have presented a single model structure that can be
used to represent complex contemporary I/O subsystems at varying levels
of detail. In this model structure, the I/O subsystem is represented by
service centers corresponding to the various disks, each with an effective
service demand, Dy, equal to:

Vi [seekk + latency, + transfer, + contentionk]

We have developed algorithms for estimating the contention component
of the effective service demand under a number of different assumptions
about the structure of the I/O subsystem and the level of detail of the

248 Representing Specific Subsystems: Disk I/0

model. We have discussed various practical considerations, such as
obtaining the necessary parameters for these algorithms from typical
measurement data and incorporating these algorithms in queueing net-
work modelling software.

For a variety of reasons the material in this chapter should not be
viewed as definitive: the I/0 subsystem architectures of various vendors
differ substantially in their details, these architectures are evolving
rapidly, and techniques for representing these architectures in queueing
network models are an area of current research activity. Our algorithms
should be viewed as an indication of what can be done, and as a set of
techniques that can be used directly and also can be tailored as necessary
to the requirements of specific systems.

In closing this chapter, we reiterate an important point made in its
introduction. The fact that the computer system under study has a com-
plex I/0O subsystem does not mean that sophisticated I/O subsystem
modelling techniques are required. If the primary effects of the postu-
lated modifications can be represented by straightforward adjustments of
disk service demands, then sophisticated I/0O subsystem modelling tech-
niques are not called for. The benefits of omitting sophistication include
a simpler parameterization and fewer assumptions.

10.9. References

In this chapter we have developed models in which service centers of
the load-independent queueing type are used to represent each disk, itera-
tively estimating the effective service demands at these centers. Two
equally reasonable alternate approaches exist. The first of these can be
described as follows:

— Define a queueing network model of the system in which the I/0
subsystem is represented only by the disks, and each disk is
represented by a service center of the delay type.

— Iterate as follows:

— For each disk:
— Estimate the effective service demand.
— Use this value in a formula from queueing theory to estimate
the average residence time at the disk.
— Substitute this value into the corresponding delay center.

— Evaluate the queueing network model.

Repeat until successive estimates of system throughput are
sufficiently close.

10.9. References) 249

This approach is common in practice. Although its origins are unknown,
it has been used by Bard [1980, 1982], by Wilhelm [1977], and by Zahor-
jan, Hume, and Sevcik [Zahorjan et al. 1978].

The second alternate approach, due to Brandwajn [1981], involves
multiple applications of the principles of flow equivalence and hierarchical
modelling described in Chapter 8:

— Consider each string (the disks attached to a particular head of
string) in turn. Define an FESC by evaluating (for each feasible
population) a submodel in which each disk on the string is
represented by a service center of load-independent queueing type.

— Consider each controller subsystem (the heads of string and disks
attached to a particular controller) in turn. Define an FESC by
evaluating (for each feasible population) a submodel in which each
string is represented by the FESC defined in the previous step.

— Consider each channel subsystem (the controllers, heads of string,
and disks attached to a particular channel) in turn. Define an
FESC by evaluating (for each feasible population) a submodel in
which each controller subsystem is represented by the FESC
defined in the previous step.

— Evaluate a high-level model consisting of the CPU and the channel
subsystem FESCs defined in the previous step.

Two of the three model structures described above, including the one
adopted in this chapter, require that effective service demands be
estimated for each disk. The treatment of non-RPS disks (Section 10.2)
belongs to the folklore of queueing network modelling. The treatment of
RPS disks (Section 10.3) also is difficult to attribute. Wilhelm [1977] and
Zahorjan, Hume, and Sevcik [Zahorjan et al. 1978] are responsible for
two accessible renditions. The latter analysis incorporates the fact that
the probabilities of failure on successive reconnect attempts are not
independent.

Bard is responsible for the original work on multipathing, both in the
case of static reconnection algorithms [Bard 1980] and in the case of
dynamic reconnection algorithms [Bard 1982]. Bard’s approach relies on
a maximum entropy formulation of the problem.

Buzen and von Mayrhauser [1982] present an interesting analysis of
various considerations affecting the modelling and the performance of the
IBM 3880-13 cached storage controller. The discussion in Section 10.6.2
is based partially on their work.

Hunter [1982] explores the process of parameterizing queueing net-
work models of I/0 subsystems from typical measurement data, in the
context of IBM’s MVS operating system. The discussion in Section
10.7.1 is based partially on his work.

250 Representing Specific Subsystems: Disk 1/0

[Bard 1980] , , . .
Yonathan Bard. A Model of Shared DASD and Multipathing. CACM
23,10 (October 1980), 564-572.

[Bard 1982]
Yonathan Bard. Modeling 1/0O Systems with Dynamic Path Selection,
and General Transmission Networks. Proc. ACM SIGMETRICS
Conference on Measurement and Modeling of Computer Systems (1982),
118-129.

[Brandwajn 1981]
Alexandre Brandwajn. Models of DASD Subsystems: Basic Model of
Reconnection. Performance Evaluation 1,3 (November 1981), 263-
281.

[Buzen & von Mayrhauser 1982]
Jeffrey P. Buzen and Anneliese von Mayrhauser. BEST/1 Analysis of
the IBM 3880-13 Cached Storage Controller. Proc. CMG XIII Inter-
national Conference (1982), 156-173.

[Hunter 1982]
David Hunter. Modelling Real DASD Configurations. In R.L. Disney
and T.J. Ott (eds.), Applied Probability - Computer Science: The Inter-
face, Vol. I. Birkhauser, 1982, 451-468. Also appears as IBM T.J.
Watson Research Center Report RC-8606.

[Wilhelm 1977]
Neil C. Wilhelm. A General Model for the Performance of Disk Sys-
tems. JACM 24,1 (January 1977), 14-31.

[Zahorjan et al. 1978]
J. Zahorjan, J.N.P. Hume, and K.C. Sevcik. A Queueing Model of a
Rotational Position Sensing Disk System. INFOR 16,3 (October
1978), 199-216. ' o o .

10.10. Exercises

1. The example of Section 10.2 involves a CPU, five equally loaded disk
devices, and a channel utilized roughly 65%. Clearly the channel
represents a performance problem. Suppose a second channel were
added to the system, and two of the five disks moved to it.

a. Use the iterative technique of Section 10.2 to estimate system
throughput under the assumption that the disks do not have rota-
tional position sensing capability. Compare the channel contention
component of effective disk service demand with the new
configuration to that shown in Table 10.1 for the single channel
configuration.

10.10. EXxercises 251

b. Perform the same calculations under the assumption of RPS disks.
Compare your results to those shown in Table 10.2.

2. Consider the simple models of channel contention discussed in Section
10.2 (Algorithm 10.1 for non-RPS disks) and Section 10.3 (Algorithm
10.2 for RPS disks). Show that for fixed seek times, rotation times,
data transfer times, and visit counts, the ‘‘effective service demand”’
will be lower with rotational position sensing than without it, for any
disk throughput that does not saturate the channel. (Assume a single
transaction workload, and a latency equal to one half of a rotation.)

3. Consider a new disk technology in which each disk contains a one
track buffer. Assuming a simple channel/disk view of the I/O subsys-
tem (i.e., ignoring other path elements), the disk would operate as fol-
lows. When performing a read operation, seek and initial latency
would be performed independently of the channel. If the channel was
idle when the data to be read rotated under the heads, the disk would
gain control of the channel and perform the data transfer. If the chan-
nel was busy when the data became available, the entire track would
be copied into the disk’s buffer, and the disk would queue in a FCFS
manner for the channel. When the channel became available, the data
would be transferred from the buffer. When performing a write opera-
tion, the buffer would not be used (i.e., the disk would operate as a
standard RPS device).

a. Give an expression for the effective disk service time. What input
parameters are required?

b. Describe an (iterative) approximation technique for modelling this
disk technology.

4. In deriving the expression for retries, (the average number of retries
required by device k), we have assumed that the probability that a
reconnect attempt fails is independent of the number of attempts
made so far. However, it appears that in practice the probability that
the second and subsequent aftempts fail is slightly larger than the pro-
bability that the first attempt fails.

a. What does this indicate about the tendency of the procedures
described in this chapter to under- or over-estimate system
response time?

b. Suppose you knew that the probability of a reconnect attempt fail-
ing was 10% higher on the second and subsequent attempts than on
the first attempt. Give an expression for the average number of
retries required.

252 Representing Specific Subsystems: Disk 1/0

c. In practice, an unlimited number of reconnect failures is not possi-
ble. After some fixed number of failures, the disk queues for the
channel, and reconnects as soon as possible regardless of the posi-
tion of the desired data relative to the heads. What does this indi-
cate about the tendency of the procedures described in this chapter
to under- or over-estimate system response time? Does this
amplify or diminish the effect indicated by your answer to (a)?

5. The complex approach to modelling multi-element I/O paths taken in
this chapter was necessary for two reasons. First, a single job may use
more than one path element at a time. Such simultaneous resource
possession cannot be modelled directly by separable queueing net-
works. Secondly, measurement tools frequently do not provide
sufficient information about the usage of the I/0 path elements.

a. What sorts of measurement information would be useful in model-
ling complex I/0 subsystems?

b. How could you modify the procedures given in this chapter to take
advantage of such information?

Chapter 11

Processors

11.1. Introduction

Thus far we have considered only single CPU systems. We also have
ignored the effects of the scheduling discipline that determines the order
in which customers are served. In this chapter we will consider the
representation of multiprocessors and scheduling disciplines.

In the realm of multiprocessor systems, an important distinction exists
between loosely-coupled multiprocessors and tightly-coupled multiprocessors.
In a loosely-coupled multiprocessor, the processors interact primarily
through shared direct access storage devices. Since the processors operate
essentially independently, they can be represented as separate service
centers in a queueing network model, with different customer classes
used to distinguish I/O operations originating from different CPUs. This
approach was discussed in Chapter 10. In a tightly-coupled multiproces-
sor, the processors share main memory, and typically are under the con-
trol of a single operating system. Special techniques are required in
building queueing network models of tightly-coupled multiprocessors;
these techniques are the subject of Section 11.2.

Scheduling disciplines were ignored in the case of single class models
(Chapter 6) because of two assumptions made there: that customers are
indistinguishable (or ‘‘statistically identical’’) in their service demands,
and that the expected remaining service time of a customer in service at a
center does not depend on how much service the customer already has
received. (The implication of this second assumption is that the expected
time until the next customer completion at any particular center is not
changed by removing one customer from service in order to serve
another.) Given these two assumptions, system performance measures
do not depend on the scheduling discipline used, as long as the processor
is not idle when there is work to be done. The second assumption is
violated, however, if the bursts of service required by a customer on suc-
cessive visits to a processor vary widely in duration. Section 11.6
discusses an approach to modelling first-come-first-served (FCFS)
scheduling when service bursts are highly variable.

253

254 Representing Specific Subsystems: Processors

In multiple class models, the situation is more complex. In Chapter 7
the following restrictions were placed on the scheduling disciplines used
at queueing centers:

® The scheduling discipline cannot discriminate among customers based
on class identity.

® [f the scheduling discipline is FCFS, then the average time required to
complete a customer in service must be independent not only of the
amount of service it has acquired, but also of its class.

® [f the scheduling discipline is #ot FCFS, then it must be one of a spe-
cial group of disciplines that includes processor sharing (PS) and last
come first served (LCFS). One important property of this group of
disciplines is that each customer receives service immediately upon
arrival at a center.

Under these restrictions, the performance estimates of a multiple class
model are identical regardless of which of FCFS, PS, and LCFS schedul-
ing is used at any center. Unfortunately, these scheduling disciplines do
not adequately represent those used in many operating systems. In par-
ticular, class identity and the amount of acquired service often are used in
making scheduling decisions. Separable models of such systems may not
accurately reflect the relative performance of various workload com-
ponents (classes). In Section 11.3 we suggest a way to model systems in
which scheduling is done according to strict priorities among classes. In
Section 11.4 we consider the more difficult case in which priorities are not
based purely on class identity. Finally, in Section 11.5 we treat the case
of FCFS scheduling when the service requirement per visit to the FCFS
center differs from class to class.

11.2. Tightly-Coupled Multiprocessors

Tightly-coupled multiprocessor systems are in widespread use. These
systems have two or more processors cooperating to complete work from
a single shared queue. ’

It is easiest to view a tightly-coupled multiprocessor as a single service
center, since in the system there is a single queue of jobs for all proces-
sors. The service rate of this center (i.e., the number of instructions
delivered per time unit) is ideally the sum of the service rates of the indi-
vidual processors. Consequently, the straightforward approach to model-
ling n tightly-coupled processors is to create a single center representing
them in the model, and to divide the service demands of all customers at
that center by n.

11.2. Tightly-Coupled Multiprocessors - 255

This technique provides a simple, first-cut modelling approach, but it
ignores two important aspects of multiprocessors. The first aspect is that
the total service rate of n processors can be significantly less than » times
the rate of a single processor because of competition for software locks
(such as those controlling access to the shared queue of jobs) and
interference in accessing main memory. Thus, we need a more realistic
assessment of the total processing power actually delivered by the mul-
tiprocessor. The second aspect is that the effective service rate of a mul-
tiprocessor is not constant, but depends on the number of jobs queued at
the center. Consider a four processor system. Ideally, if four (or more)
jobs desire service at the center, all four processors can be kept busy, and
the effective service rate of the center is its maximum rate. However, if
less than four jobs are queued at the center, some of the processors will
be idle, and so the effective service rate will be reduced correspondingly.

The first of these problems, that of accounting for the interference of
the processors with one another in estimating effective service rates, is
best solved by using the results of benchmark studies of the
configurations under consideration, such as those typically provided by
trade journals and vendors. For example, such figures might indicate that
an IBM 3033MP (a tightly-coupled dual processor) is roughly 1.7 times as
powerful as a single 3033 processor when running a mixed TSO and batch
workload under the MVS operating system. Since the power of a mul-
tiprocessor can vary significantly depending on the operating system run
on it and the nature of the workload to be processed, standard estimates
are not likely to be highly reliable. As in all cases where the input param-
eters are not known with high confidence, it is good practice to evaluate
the model for several effective service rates representing a reasonable
range, thereby assessing the sensitivity of the results to the parameter
whose value is in question.

The second of these problems, that of accounting for variability in the
effective service rate of the multiprocessor as a function of the number of
jobs needing processor service, is solved easily using a flow equivalent
service center. Figure 11.1 graphs effective service rate as a function of
the queue length for a four processor system. Service rates increase with
queue length until all four processors are busy, after which increasing the
number of jobs contending for the processors does not result in any
increase in effective service rate. The dashed line illustrates the ideal
growth in service rate, and the solid curve represents the effect of conten-
tion. The flow equivalent service center used to represent the multipro-
cessor is parameterized by giving the effective service rates for each possi-
ble customer population that could be seen there. This set of population
and service rate pairs is essentially a tabular representation of the curve
shown in Figure 11.1.

256 Representing Specific Subsystems: Processors

Ideal
4 t— AT —
/7
. /
B Ve
% 3 // Actual
2 /
2 Ve
g 2 /
= //
1 —
| | J | | |
0 1 2 3 4 5 6

Processor queue length

Figure 11.1 — Service Rate Function of a Four Processor System

11.3. Priority Scheduling Disciplines

In most current operating systems, processor scheduling disciplines are
based on priorities. These priorities may be static (giving consistent
preference to one workload component over another) or they may be
dynamic (reflecting changing estimates of workload characteristics).
Priority scheduling disciplines are not compatible with separable models.
Since these disciplines can have a substantial effect on performance, it is
important to be able to represent them. A number of approaches have
been devised.

One approach was described as an example in Chapter 8. First, the
I/0 subsystem, which by itself was separable, was analyzed in isolation,
and a multiple class flow equivalent service center was constructed.
Then, a high-level model was defined that consisted of two centers: this
FESC, and the priority scheduled CPU. Finally, the global balance tech-
nique was used to evaluate this model. This approach is quite accurate.
Its drawbacks are, first, that it requires special purpose global balance
software, and second, that because of the complexity of a global balance
analysis it becomes infeasible for models with more than a few classes or
customers, and for models with multiple priority scheduled centers.

Because of the difficulties in using the technique described in the last
paragraph, another approach is required. The one we present here is

11.3. Priority Scheduling Disciplines 257

based on the mean value analysis technique. In practice, it has been
found to be acceptably accurate, and is applicable even to very large
models. Consider a model with C customer classes, each of which has a
distinct priority at the CPU. (The generalization to several classes with
equal priorities is straightforward.) For notational simplicity, assume that
the classes are ordered so that higher numbered classes have priority over
lower numbered classes. We develop an approximation to the residence
time of class ¢ customers at the CPU by considering successively the
effects of jobs with lower, equal, and higher priorities than class c:

® lower priority customers (classes 1 through ¢—1)

Because class ¢ has preemptive priority over classes 1 through c—1,
customers in these classes do not interfere with class ¢ customers.
Considering only these lower priority classes we obtain the following
approximation to the CPU residence time of class c:

R..cpy(T) = D, cpy

® cqual priority customers (class c¢)

Each class ¢ customer arriving at the CPU must queue behind any
other class ¢ customers already there. Class ¢ customers that arrive
subsequently do not cause further delay. Accounting for both lower
and equal priority classes we have:

RC,CPU(j) = ‘Dc‘,CPU[1 + QC,CPU(I_IC)]

where /— 1. is the vector of workload intensities with one class ¢ cus-
tomer removed if class ¢ is not transaction type (.e., if class ¢ is
closed), and is the full workload intensity vector otherwise (.e., if
class ¢ is open).

® higher priority customers (classes ¢+ 1 through C)

An arriving class ¢ customer must wait for all higher priority custo-
mers already in the queue. It also must wait for all higher priority
customers that arrive while it is at the CPU. Because of this complica-
tion, it is not possible to estimate accurately the number of higher
priority customers for which the class ¢ customer must wait. Instead,
we consider the servicing of higher priority customers to be ‘‘break-
downs’’ of the processor with respect to delivering service to the class
¢ customers. Because of these breakdowns, more than D, -py time
units are required for the class ¢ customer in service to accumulate
D, cpy time units of service. In particular, since the CPU is busy

C
2 Uj,cpu(ﬂ of the time with higher priority customers, it takes
j=c+1
De cru

C
1= 2 UJ,CPU(T)

j=c+l

time units for the currently selected class ¢

258 Representing Specific Subsystems: Processors

customer to complete. (For instance, once service is begun, it takes
twice as long to complete on a processor 50% busy with higher priority
customers than on a FCFS processor.) The final approximation for
the residence time of class ¢, accounting for lower, equal, and higher
priority classes, is thus:

D. cpufl + Q..o T=T))

il — (11.1)
1= 3 U

Ji=c+1

R.cpy(D) =

A solution technique could be constructed from the mean value
analysis technique by substituting equation (11.1) for the standard
residence time equation in Algorithms 7.1 or 7.2. However, rather than
further complicating these basic algorithms each time we extend our
modelling techniques, we prefer to build upon them, using the basic algo-
rithms as subroutines in our extended algorithms. (We return to this
concept of layered implementation in Chapter 16.)

In the case of priority scheduling, we can obtain the same results as
we would obtain by replacing the residence time equation, by using the
shadow CPU technique. This technique gets its name from the fact that
the single priority scheduled CPU in the actual system is represented in
the model by C FCFS service centers, each visited by one class. Let
CPU, denote the c-th shadow CPU, which is visited only by class ¢. The

‘?C‘CPU . It should

1= 3 Uerr@
j=c+1

be apparent that the residence time of class ¢ at its shadow CPU is given
by equation (11.1): the service demand inflation caused by higher prior-
ity classes is captured in the redefinition of the service demand at the sha-
dow CPU, and the queueing for customers of class ¢ but not other classes
is a consequence of the FCFS scheduling used at the shadow CPU, plus
the fact that only class ¢ visits there. Thus, we have created a queueing
network amenable to the analysis techniques of Chapter 7 that represents
the effects of priority scheduling.

service demand at CPU, is set equal to

Algorithm 11.1 describes the shadow CPU technique more precisely.
Because the CPU utilizations of the various classes are not known before-
hand, it is necessary to employ iteration. Initially, the throughput of each
class is estimated to be zero. This corresponds to estimating that the
CPU utilization of each class is zero. The model is evaluated, yielding an
improved estimate for the throughput, and thus the CPU utilization, of
each class. New model inputs are calculated based on these improved
estimates. The iteration continues until successive estimates of the
throughput of each class are sufficiently close. Extension of Algorithm

11.3. Priority Scheduling Disciplines 259

1. Given a K center model with a priority scheduled CPU,
create'a K+ C—1 center model by replacing the original
CPU center with C FCFS shadow CPU centers, each of
which will be visited by only one class. Assume that the
classes are ordered so that higher numbered classes have
priority over lower numbered classes. Initially, assume that
the throughput of each class ¢, X., is equal to zero.

2. Iterate as follows:
2.1. Estimate the CPU utilization of each class ¢ as:

Uecru = XeDecpy
where D, cpy is the “real”” CPU demand of class c.
2.2. Set the service demand of each class ¢ at the j-th sha-

dow CPU to:
D, cpy .
C c=J
Decpy, = | 1= 3 Ucru
K=o

0 cFJ

2.3. Evaluate the shadow CPU model using either the exact
or the approximate algorithms given in Chapter 7.

Repeat Step 2 until successive estimates of the X. for each
class ¢ are sufficiently close.

3. The final performance measures for the system as a whole
and for every center except the CPU are obtained directly
from the last iteration. At the CPU, the residence time of
each class, R. cpy, and the queue length of each class,
Q. cpu, are obtained directly. The utilization of each class,
though, is obtained as U, cpy = X.D. cpy. (The utiliza-
tions reported for the C shadow CPUs are meaningless be-
cause of the way in which the service demands have been
inflated.)

Algorithm 11.1 — Priority Scheduling at the CPU

11.1to the case in which several centers are priority scheduled is straight-
forward.

Table 11.1 shows the results of applying Algorithm 11.1 to a particular
example. We consider a system with four disks and a priority scheduled

260 Representing Specific Subsystems: Processors

Model Inputs:

N, = <varying> Z, =10 Ng=6 Zzg=0
center
CPU | Disk1 | Disk 2 | Disk 3 | Disk 4
Dy, 4 2 2 2 2
Dg 40 2 4 6 8

(all times are in seconds)

Class A Response Time:

solution Ny
technique 1 5 10 15 20
MVA 348 | 46.5 | 63.1 | 81.0 | 99.7

Algorithm 11.1 | 12.9 | 19.5 | 32.7 | 50.5 | 70.5
simulation 12.0 | 19.1 | 32.0 | 50.4 | 70.0

(all times are in seconds)
Table 11.1 — Priority Scheduling

CPU. There are two classes. Class 4, which is of terminal type, has
priority over class B, which is of batch type.

To assess the value of Algorithm 11.1 we would like to know whether
its results are significantly better than those obtained by ignoring priority
scheduling (i.e., by assuming that processor sharing is used). Unfor-
tunately, we cannot determine exact performance measures for our exam-
ple. Even though it has only five centers and two classes, it is too large
to be analyzed using the global balance technique (described in Section
8.5.1). We have used simulation to obtain an estimate of the exact per-
formance measures. As indicated in Section 8.5.2, simulation has two
important drawbacks that make it less attractive than queueing network
modelling for computer system analysis. First, the probabilistic nature of
simulation causes the accuracy of its results to depend on the duration of
the simulation. (For the duration used here, and in Sections 11.5 and
11.6, the error in the estimates obtained should be taken to be 5 to
10%.) Second, the computational expense of simulation is too great to
allow it to be used regularly.

In the table we show the response time experienced by class 4 users
for five different class 4 populations. The results obtained by ignoring
the priority scheduling and applying mean value analysis directly are
labelled ““MV A’ in the table, the results obtained by using Algorithm

11.4. Variations on Priority Scheduling 261

11.1 are labelled ‘‘Algorithm 11.17°, and the results obtained via simula-
tion are labelled ‘‘simulation”’.

Comparing the results of MVA and Algorithm 11.1 illustrates the
benefits of using Algorithm 11.1 rather than ignoring the priority schedul-
ing. Comparing the results of Algorithm 11.1 and simulation illustrates
the accuracy of Algorithm 11.1 for the specific example under considera-
tion. Algorithm 11.1 will not always exhibit such close agreement to the
results of simulation. Fortunately, though, the instances in which the
algorithm may be unreliable are easy to identify. In most systems, prior-
ity scheduling is used to ensure that customers requiring short bursts of
CPU service are not delayed excessively by customers requiring long
bursts of CPU service. (Note that processor sharing is one step in this
direction relative to FCFS scheduling, but that priority scheduling is one
step further.) The technique presented in this section is designed to work
well in this situation. It relies on the elongation of low priority service
demands to reflect interruptions by high priority customers. This elonga-
tion is appropriate when service bursts of high priority customers are very
short and very frequent relative to those of the low priority customers.
However, whenever low priority service burst lengths are not significantly
longer than high priority service burst lengths, the algorithm suggested in
this section must be used with caution.

11.4. Variations on Priority Scheduling

While many operating systems permit specification of absolute priori-
ties of the type discussed in the previous section, others support priorities
of other natures. Two types of non-absolute priorities can be described as
biased processor sharing and goal-oriented scheduling.

11.4.1. Biased Processor Sharing

Biased processor sharing describes a situation in which one class is
favored over another by giving it longer bursts (‘‘quanta’) rather than by
excluding the other class entirely when a customer of the higher priority
class is present. Thus, a relative priority is associated with each class, and
each customer receives service at a rate proportional to the relative prior-
ity of its class. For example, if the relative priorities of classes A and B
are 2 and 1 respectively (a larger number indicating a higher priority),
then with one customer of each class competing for service, the class A
customer would progress at 2/3 the rate at which it would progress if
alone at the center. With two class A customers and one of class B, each
class A customer would progress at 2/5 of its full rate while the one class
b custome would progress at 1/5 of its full rate.

262 Representing Specific Subsystems: Processors

An evaluation technique for this type of scheduling can be obtained by
another modification of the residence time equation of the MV A algo-
rithm:

. c . |
me+ Dm0, (T=1,)
Rc,k(ﬂ = Dc.k e

e

where 7, is the relative priority of class 7. The quotient in parentheses is
simply the inverse of the rate at which an individual class ¢ customer
receives service based on our expectation of the number of customers of
each class at the center.

11.4.2. Goal-Oriented Scheduling

Goal-oriented scheduling differs from biased processor sharing in that
dynamic scheduling priorities are used to ensure that each class attains
specified performance objectives. For example, interactive users may be
given general priority over a batch workload, subject to a constraint that
batch throughput must have a certain minimum value. Such dynamic
priorities are difficult to model in general, but creative use of transaction
classes is helpful in some cases. For example, in the case described
above, the model could initially give priority to the interactive class. If
the solution indicates that the batch class attains its throughput goal, then
no change to the model is needed. If the batch class fails to meet its
throughput goal, however, we can assume that the goal-oriented
scheduler would reduce the priority given to the interactive users enough
to ensure the specified batch throughput. This can be reflected in the
model by converting the batch workload to a transaction workload with its
arrival rate set to the specified minimum throughput. For transaction
classes, throughput is equal to arrival rate unless the system is saturated.
Thus, the batch class is assured of the performance that it would attain
under the goal-oriented scheduler, and the consequent degradation of ser-
vice to the interactive class is represented.

11.5. FCFS Scheduling with Class-Dependent Average
Service Times

If different classes have significantly different average service times per
visit (S, ;) at a FCFS center, our standard evaluation techniques from
Chapter 7 may not provide acceptable accuracy. This situation is handled
quite easily by another modification to the residence time equation of
these techniques. The original form of the residence time equation is:

11.6. FCFS Scheduling with High Variability in Service Times 263

R (D = Dcvk[l—i—Qk(I—_lc')] = Vos[Seu + 5000, T=T0)]

Since all classes must have the same service time per visit at a FCFS
center (in a separable network), we can think of this equation as a shor-
tened form of:

Re x D = Veu

=1

C _—
Serk T 2,540 T—1,)]

Simply substituting non-identical S; , into the above equation provides
an intuitively appealing evaluation technique for FCFS centers at which
different classes have different average service times per visit: each class
i customer found ahead of an arriving class ¢ customer is multiplied by a
class i service time. With this small change to one equation of the stan-
dard MVA algorithm, substantially more accurate solutions are obtained
for models involving FCFS centers at which average service times differ
from class to class. -

An example is shown in Table 11.2. We consider a system with four
disks and a CPU scheduled FCFS. There are two classes. Class A4 is of
terminal type and class B of batch type. In the table we show the
response time experienced by class 4 users for five different values of
class 4 service time per visit at the CPU. We obtain results in three
different ways: by ignoring the class-dependent average service times and
applying mean value analysis directly (‘““‘MVA” in the table), by using the
algorithm suggested in this section (‘‘Section 11.5” in the table), and by
simulating the system (‘‘simulation’ in the table).

The results show that the effect of class-dependent average service
times can be pronounced, and that the algorithm suggested here yields
good results for the example under consideration.

11.6. FCFS Scheduling with High Variability in Service
Times

In the previous section we presented a solution technique for FCFS
centers where the average service times per visit differ among the custo-
mer classes. This technique was necessary because of the restrictions
required for a model to be separable (see Sections 7.2 and 7.5), and thus
amenable to analysis using the standard algorithms of Chapter 7. In this
section we present a technique that overcomes another restriction of
separable networks, that imposed by the service time homogeneity
assumption (see Section 7.5). This assumption states that the rate of
completion of customers from any service center does not depend on the
state of the model as a whole (i.e., the locations of the other customers).

264 Representing Specific Subsystems: Processors

Model Inputs:

Ny=10 Z, =10 Ng=6 Zg=0
center
CPU Disk 1 | Disk 2 | Disk 3 | Disk 4
Sy | <varying> 1 1 1 1
Vi 8 2 2 2 2
Sg.k 2 1 1 1 1
Vg« 20 2 4 6 8

(all times are in seconds)

Class A Response Time:

solution S4.cru
technique 2 1/2 1/8 1/32 | 1/128
MVA 250.1 63.1 26.8 | 23.7 23.4

Section 11.5 | 250.1.| 133.1 | 104.4 | 97.2 95.4
simulation 250.1 | 131.1 98.0 | 97.9 92.0

(all times are in seconds)
Table 11.2 — FCFS with Class-Dependent Average Service Times

In modelling most computer systems, any violatidn of this assumption
does not result in significant error. Therefore, it is only in unusual situa-
tions that the technique to be presented need be employed. (We
discourage superfluous use of the technique because it requires more
parameter values than the simpler separable models, and so the parame-
terization effort is increased.)

As a rule of thumb, we can expect separable models to perform satis-
factorily when the variability in service times per visit at each FCFS
center is moderate, that is, when the average and standard deviation of
service times are comparable. Centers for which the use of the technique
will yield a noticeable improvement in accuracy are characterized by hav-
ing most service bursts (service acquired in a single visit) be of compar-
able duration, with occasional bursts of much longer duration. As an
example, in a batch system the CPU service quantum might be set very
long to reduce context switch overhead; this could result in many short
service bursts during file access, followed by a single long period of com-
putation once the data has been acquired. In such a situation a separable
model would not capture the effect on performance of the occasional very
long service bursts, even if the average service time in the model was set
to the measured average of the system. The effect of these long bursts is

11.6. FCFS Scheduling with High Variability in Service Times 265

to increase the amount of queueing that occurs in the system. Thus, a
separable model will tend to give optimistic results when used in these
situations.

As in other cases, we suggest a solution technique based on modifying
the MV A residence time equation, then using the modified equation in
the basic MVA iteration. Residence time consists of service time plus
queueing time. Consider a class ¢ customer arriving at service center k.
Service time per visit (S, ;) is an input parameter, and so presents no
problem. Since we are considering FCFS centers, queueing time is
required for all jobs already present at the center. The arriving job must
wait on average S;, time units for each class / customer found in the
queue but not yet in service. Finally, the arriving customer must wait for
the customer currently in service to finish. We can summarize this as:

R« J) = Vek

C _— SN
Sex + ESN\.[Q,-,/‘.(I—IC) - U =) +
i=1

C -
E’i/,k U (I=1.)
Jj=1

where r;, is the average time until completion of a class j customer
found to be in service by a class ¢ arrival at center k. The first term in
this equation represents the inherent service requirement of the class ¢
job. The second term approximates the total time spent waiting for cus-
tomers in the queue (the Q;,(/—1.) term) but not in service (thus the
— U, «(I—1,) term). Interpreting U, , (/—1,) as the proportion of time
that an arriving class ¢ customer finds a class j customer in service, the
final term approximates the time spent waiting for the customer in service
to complete.

This equation is the basis for an MVA-like analysis technique for
models containing FCFS centers with high service time variability. The
remaining problem is to estimate r;,, which often is called the residual
service time of class j at center k. To do so, we assume that a class ¢ job
is equally likely to arrive at any point during the class j service interval
(that is, class c¢ arrivals occur at random with respect to class j service
intervals). Even with this simplification, a reasonable choice for #; is
not immediately apparent. Intuitively, one might guess r; , = Sj,,\./2. In
fact, however, this is an extreme value (representing the smallest possible
residual service time) occurring only when the class j service times of all
visits to center k are exactly equal. Under our assumptions, the residual
service time is given by:

Sj,k variance

2 R T

where variance is the variance in the service times per visit of class j at

266 Representing Specific Subsystems: Processors

center k. Thus, the actual residual can be any number at least as large as
half the average service time (since it is possible for the variance to be
any non-negative value). As an example, suppose class j experienced ten
service bursts of length 1 for each burst of length 90. An arriving custo-
mer is then nine times as likely to arrive during the single long burst as
during any of the short bursts. Thus, the residual service time is
(.1)(5) + (.9)(45) = 41. In contrast, the average service time is

1 1+ 11—1 90 = 9.09. This surprising situation results from the fact

that a customer is much more likely to arrive during a long burst than a
short burst, even if many more bursts are short than long.

Table 11.3 presents an example of the use of this technique. We con-
sider a system with four disks and a CPU. There is a single class of ter-
minal type. In the table we show the response time experienced by users
for five different degrees of variability in CPU service times. We obtain
results in three different ways: by ignoring the high variability in CPU
service times and applying mean value analysis directly (‘“MVA” in the
table), by using the algorithm suggested in this section (“‘Section 11.6”
in the table), and by simulating the system (‘‘simulation’” in the table).

The results show that the effect on performance of service time varia-
bility becomes more severe as this variability increases. The approach
suggested in this section reflects the degradation in response time that
occurs with increasing variability.

We note that this technique can be used whether the center we are
considering has unusually high or low variance in service times per visit.
While service time distributions with low variance also can be trouble-
some at FCFS service centers, their potential impact on model accuracy is
more limited. Separable models tend to be slightly pessimistic for sys-
tems with low variance FCFS centers.

11.7. Summary

System configurations that include multiple processors or that use cer-
tain scheduling disciplines may require special techniques to obtain
sufficiently accurate models. Tightly-coupled multiprocessors provide ser-
vice at a total rate that depends on the number of jobs currently requiring
CPU service. The set of processors is best represented as a single flow
equivalent service center that provides service at a rate proportional to
the number of busy processors, less a factor to account for interference
among the processors. Loosely-coupled multiprocessors, on the other
hand, require no such special treatment since each processor serves a
separate job queue. Separate job classes can be used to distinguish jobs
from different processors when they use shared I/0 devices.

11.7. Summary 267

Model Inputs:
N=10 Z=10

center
CPU | Disk1 Disk 2 | Disk 3 | Disk 4
S, | 05 1 1 1 1
v, 8 2 2 2 2

(all times are in seconds)

Response Time:

solution variance of Scpy
technique 25 S 1 2 4
MVA 32.6 | 32.6 | 32.6 | 32.6 | 32.6
Section 11.6 | 32.6 | 35.5 | 40.1 | 46.7 | 56.4
simulation | 32.4 | 38.9 | 42.3 | 53.8 | 53.4

(all times are in seconds)
Table 11.3 — FCFS with High Variability in Service Times

Many operating systems use scheduling disciplines that are based on
job class priorities, but priority scheduling is not compatible with separ-
able models. Consequently, to obtain a model that can be validated, it
may be necessary to employ a specialized technique for modelling priority
scheduling. We have described a technique based on replacing the prior-
ity CPU by C ‘‘shadow’ CPUs, each one visited by just one class. The
service demand of each class at its shadow CPU is inflated to reflect the
impact of higher priority classes. In some situations a different technique
— based on hierarchical decomposition, a flow equivalent service center,
and global balance — also may be applicable. Both of these techniques
can be adapted to situations in which one, some, or all of the service
centers are scheduled by priority. When priorities among classes are not
absolute, it may be appropriate to model the discipline as biased processor
sharing or goal-oriented scheduling. Techniques for treating these discip-
lines have been suggested.

Finally, FCFS scheduling also requires special treatment under some
circumstances. If the average service requirement per visit to a center
differs from class to class, then the model is not separable. Once again, a
simple modification to the MVA algorithm produces good model solu-
tions. Similarly, if there is high variability in the length of service times
at each visit to a center, then FCFS scheduling cannot be accurately
represented in a separable model. The high variability can be captured by

268 Representing Specific Subsystems: Processors

adapting the MVA solution technique, and by making further assump-
tions that allow estimates for the residual service time of jobs found in
service by an arriving customer.

The techniques described in this chapter are useful for the specific cir-
cumstances in which they have been described. An equally important
reason for presenting them, however, is that they are indicative of the
approaches that must be creatively applied to achieve efficient and accu-
rate solutions to non-separable models.

11.8. References

Sauer and Chandy were the first to use flow equivalent service centers
and a global balance solution of a two center model to evaluate non-
separable models, including ones involving priority scheduling [Sauer &
Chandy 1975]. They discuss other techniques for evaluating non-
separ]able models elsewhere [Chandy & Sauer 1978; Sauer & Chandy
1980].

Bard first demonstrated the flexibility of the basic MVA algorithm in
adapting to non-separable models, treating both priority models and
models in which different classes have distinct average service require-
ments per visit to an FCFS center [Bard 1979]. Bard also has described a
modelling approach capable of treating the dynamic priority scheduling
used in IBM’s VM/370 operating system [Bard 1981].

The shadow CPU technique described in Section 11.3 was developed
by Sevcik [1977]. His approach involved identifying separable models
that provide optimistic and pessimistic bounds on the performance of a
(non-separable) model with a priority center.

The MV A-based approach to modelling high service time variability
was proposed by Reiser and Lavenberg [1978]. An alternative approach
is based on global balance and Cox’s method of stages representation [Cox
1955]. Cox demonstrated that arbitrary service time distributions can be
approximated as closely as desired by using a sufficient number of
exponentially distributed stages with probabilistic selection. Sevcik, Levy,
Tripathi, and Zahorjan describe three-parameter method of stages
representations for both high variability and low variability distributions
[Sevcik et al. 1977]. With these three-parameter representations, it is
possible to match two characteristics (typically the mean and variance) of
an arbitrary distribution. Lazowska has shown that more accurate models
are obtained by matching the mean and some percentile (say the 90th)
than by matching the mean and variance [Lazowska 1977]. Lazowska and
Addison provide a technique for determining a method of stages

11.8. References 269

representation that matches the mean and an arbitrary number of percen-
tiles of an arbitrary distribution [Lazowska & Addison 1979].

The simulation results reported in Tables 11.1, 11.2, and 11.3 were
obtained from IBM’s Research Queueing Package [Sauer et al. 1982].

[Bard 1979]
Yonathan Bard. Some Extensions to Multiclass Queueing Network
Analysis. In M. Arato, A. Butrimenko, and E. Gelenbe (eds.), Perfor-
mance of Computer Systems. North-Holland, 1979.

[Bard 1981]
Yonathan Bard. A Simple Approach to System Modelling. Perfor-
mance Evaluation 1,3 (November 1981), 225-248.

[Chandy & Sauer 1978]
K. Mani Chandy and Charles H. Sauer. Approximate Methods for
Analyzing Queueing Network Models of Computing Systems. Com-
puting Surveys 10,3 (September 1978), 281-317.

[Cox 1955]
D.R. Cox. A Use of Complex Probabilities in the Theory of Stochas-
tic Processes. "Proc. Cambridge Philosophical Society 51 (1955), 313-
319.

[Lazowska 1977]
Edward D. Lazowska. The Use of Percentiles in Modeling CPU Ser-
vice Time Distributions. In K.M. Chandy and M. Reiser (eds.), Com-
puter Performance. North-Holland, 1977, 53-66.

[Lazowska & Addison 1979]
Edward D. Lazowska and Clifford A. Addison. Selecting Parameter
Values for Servers of the Phase Type. In M. Arato, A. Butrimenko,
and E. Gelenbe (eds.), Performance of Computer Systems. North-
Holland, 1979, 407-420.

[Reiser & Lavenberg 1978]
Martin Reiser and Stephen S. Lavenberg. Mean Value Analysis of
Closed Multichain Queueing Networks. Report RC-7023, IBM T.J.
Watson Research Center, March 1978.

[Sauer & Chandy 1975]
Charles H. Sauer and K. Mani Chandy. Approximate Analysis of Cen-
tral Server Models. IBM Journal of Research and Development 19,3
(May 1975), 301-313.

[Sauer & Chandy 1980]
C.H. Sauer and K. Mani Chandy. Approximate Solution of Queueing
Models. IEEE Computer 13,4 (April 1980), 25-32.

270 Representing Specific Subsystems: Processors

[Sauer et al. 1982]
Charles H. Sauer, Edward A. MacNair, and James F. Kurose. The
Research Queueing Package, Version 2: Introduction and Examples.
Report RA 138, IBM T.J. Watson Research Center, 1982.

[Sevcik 1977]
Kenneth C. Sevcik. Priority Scheduling Disciplines in Queueing Net-
work Models of Computer Systems. Proc. IFIP Congress '77 (1977),
565-570.

[Sevcik et al. 1977]
Kenneth C. Sevcik, Allan I. Levy, Satish K. Tripathi, and John Zahor-
jan. Improving Approximations of Aggregated Queueing Network
Subsystems. In K.M. Chandy and M. Reiser (eds.), Computer Perfor-
mance. North-Holland, 1977, 1-22.

11.9. Exercises

1. Consider a single class model of a dual processor system. The service
demand at the CPU is 8 seconds (with each processor providing a por-
tion of this service) and the service demands at each of the four disks
are 2 seconds. The single customer class is of terminal type, with
Z = 20 seconds.

a. Compare the results obtained by modelling the dual processor as a
single fast processor (with a service demand of 4 seconds) to the
results obtained by using the FESC approach of Section 11.2 (with
service rates of 0.125 with one customer in the queue, and 0.250
with more than one customer in the queue). Obtain solutions for
populations of 5, 10, and 20 online users. (Use the MVA imple-
mentation of Chapter 18, extended to accommodate FESCs and
terminal classes.)

b. What do your solutions for the three population sizes indicate
about the accuracy of the ‘‘single fast processor’’ approach in (a)?
How well would you expect this approach to work if the
configuration contained four processors rather than two?

2. Section 11.3 developed a technique for modelling preemptive priority
CPU scheduling. Using this as a basis, develop a technique for model-
ling non-preemptive priority scheduling. Under non-preemptive prior-
ity, a job in service at the CPU receives a full service burst, even if a
higher priority job arrives during that burst. When the service burst
completes, the highest priority waiting job is selected for the next ser-
vice burst.

11.9.

Exercises , 271

3. Consider a simple interactive computer system consisting of a CPU
and four disks. Assume that the disks are scheduled FCFS, and that
users can choose their I/0 block size: the number of bytes transferred
between a file and main storage on each access. Measurements of the
system show that 75% of the users choose block sizes resulting in ser-
vice times per disk visit of 32 milliseconds, and 25% choose sizes
resulting in service times per disk visit of 44 milliseconds.

a.

Suppose that there are a total of 24 online users divided into two
classes based on blocksize. Both classes have 20 second think
times, and have interactions that require 4 seconds of CPU service
and an average of 100 accesses to each of the four disks. Use the
technique of Section 11.5 to estimate response times for each class.

Using the throughput values obtained from (a), compute the aver-
age service time per I/O operation at each disk. Use this value to
construct a model of the system with a single class of ‘‘average”
users. This model can be evaluated using standard mean value
analysis techniques.

Compute the overall average response time in the two class model
of (a). (Remember that the response times of the classes must be
weighted by their throughputs.) Compare your result to the
response time obtained in (b). What does this tell you about the
effect on system performance of FCFS scheduling with class-
dependent service times?

Repeat (a) through (c) under that assumption that 75% of the
users have disk service times of 12 milliseconds, and 25% have
disk service times of 116 milliseconds. Compare your results to
those obtained earlier. What does this tell you about the impor-
tance of reflecting service time variability in models of computer
systems?

Returning to the single class model, use the technique of Section
11.6 to model the high service time variability of an ‘‘average’ job
at each disk. To do so, you will need to estimate the variance of
the service times at the disks. If proportion p of the total accesses
require S; time units and proportion 1—p require S, time units,
then the average service time S is equal to pS; + (1—p) S, and a
reasonable estimate of the variance in service times is:

variance = p(S; — $)* + (1—p)(S; — S)?

Calculate response times for the original set of disk service times
and the modified set of (d), and compare these to the results
obtained earlier. How do you account for the differences in the
various estimates?

272 Representing Specific Subsystems: Processors

4. Discuss the treatment of scheduling disciplines in single class, separ-
able queueing network models.

5. Discuss the treatment of scheduling disciplines in multiple class,
separable queueing network models.

6. We have considered FCFS scheduling in four contexts: single class
separable models, multiple class separable models, single class with
high wvariability in service times, and multiple class with class-
dependent average service times. Compare and contrast these.

Part IV

Parameterization

In Parts II and III we have discussed extensively the definition and
evaluation of queueing network models. Here, in Part IV, we discuss the
parameterization of these models. Parameterization is the heart of the
modelling process, for the results of a study can be no more accurate than
the parameter values provided to the queueing network evaluation algo-
rithms.

Our presentation is divided into three parts. In Chapter 12 we discuss
the construction of baseline models of existing systems. A validated
baseline model is the starting point for any performance study of an exist-
ing system.

In Chapter 13 we discuss modification analysis: the process of adjust-
ing parameter values to project performance for modified environments.
The key to modification analysis is the ability to anticipate and represent
primary effects. For this reason, modification analysis relies on the
experience of the analyst to a significant extent.

In Chapter 14 we discuss the use of queueing network models to pro-
ject the performance of proposed systems — systems for which baseline
models cannot be constructed and validated. The process of designing a
new system involves continuous tradeoffs between cost and performance.
Queueing network models can help to quantify performance, and thus to
guide the entire design process.

The divisions between these three chapters are artificial in many
respects. The construction of a baseline model of an existing system
must be guided by knowledge of the model’s intended applications in pro-
jecting performance for the system as it evolves. The techniques for the
successive refinement of workload characterizations that have been
developed to model proposed systems can be extremely helpful in dealing
with existing and evolving systems.

273

Chapter 12

Existing Systems

12.1. Introduction

In this chapter we discuss the construction of baseline models of exist-
ing systems. This activity relies on knowledge of the hardware, software,
workload, and monitoring tools associated with the system under study.
It also requires access to information recorded by accounting and software
monitors during system operation. Here, we describe general approaches
applicable to a variety of systems. In Chapter 17, we illustrate these
approaches with an example based on a specific system (IBM’s MVS) and
a specific monitoring tool (RMF).

In Chapter 4 we divided the inputs of queueing network models into
three groups: the customer description, the center description, and the ser-
vice demands. The structure of the present chapter reflects this division.

Section 12.3 is devoted to the customer description: the correspon-
dence of the workload components of the system to the customer classes
of the model. In specifying the values of the customer description param-
eters, we are answering questions such as:

— How many customer classes are required?

— Of what type (transaction, batch, or terminal) should each class be?

— What should be the workload intensity value ()\ N, or N and Z)
for each class?

Section 12.4 is devoted to the center description: the correspondence
of the resources of the sysiem to the service centers of the model. In
specifying the values of the center description parameters, we are answer-
ing questions such as:

~— What devices and subsystems should be included in the model?
— How should each of these entities be represented (e.g., as a queue-
ing center, a delay center, or an FESC)?

Section 12.5 is devoted to the service demands: the description of the
interactions between customers and centers. In specifying the values of
the service demand parameters, we are answering the question:

274

12.2. Types and Sources of Information 275

— What proportion of the measured usage of each device should be
attributed to the customers of each class?

We precede these three sections, in Section 12.2, with a survey of the
information used to parameterize queueing network models: its types, its
sources, and how it can be managed. We follow these sections, in Sec-
tion 12.6, with a discussion of the validation of baseline models, indicat-
ing reasonable tolerances for various performance measures.

There is little reason to construct a model of an existing system unless
this model is to be used for performance projection. Consequently, we
cannot completely separate the task of constructing a baseline model of
an existing system (the subject of this chapter) from the task of using the
model to project performance for an evolving system (the subject of
Chapter 13). Our (somewhat artificial) separation between the two tasks
will be the following: problems that arise from limitations or shortcom-
ings of current monitoring tools and techniques will be treated in this
chapter, while problems that would persist even with ideal monitoring
capabilities will be deferred to the next chapter.

12.2. Types and Sources of Information

The information required to specify parameter values for a queueing
network model of an existing system includes static information about the
system configuration and dynamic information extracted from records pro-
duced during system operation by various monitoring packages. Some
information is recorded for purposes of accounting, while other informa-
tion is recorded explicitly for performance evaluation purposes. Software
packages of varying degrees of sophistication are available for storing,
analyzing, and reporting the information recorded during system opera-
tion. In this section, we discuss briefly the information needed, how it
can be obtained, and how it can be managed. Our intention is not to be
comprehensive, but rather to highlight points of particular relevance to
the construction and use of queueing network models.

One type of information required is a description of the hardware and
software of the system. With respect to hardware, this information
includes an enumeration of the components of the system (processors,
channels, storage devices, communication devices, etc.) and an indication
their interconnections (e.g., the paths over which data can be moved
from a particular storage device to memory). With respect to software,
this information includes the operating system in use, and the values of
parameters that influence resource allocation. Examples of such parame-
ters include CPU scheduling priorities for various workload components,
placement of files on storage devices, etc.

276 Parameterization: Existing Systems

This system description is relatively static, in that it changes only week
to week or month to month. The information it provides about the
hardware suggests what resources should be represented as centers in the
model. The information it provides about the software and operating pol-
icies suggests appropriate modelling assumptions and helps in the
interpretation of measurement data.

Another type of information that is required is recorded dynamically
during system operation by various monitors. Accounting monitors write
records at the termination of batch jobs or interactive sessions, indicating
the system resources consumed by the job or session (CPU seconds, I/0
operations, memory residence time, connect time, etc.). Software perfor-
mance monitors write records describing resource usage and performance
status from another point of view. At specified intervals, queue lengths
or device status indicators may be sampled and the results written in a
record. Also, certain events that are considered significant (such as swap-
ping a customer out of main memory) may be documented in a record.

Because of their volume and their encoding, the records produced by
accounting and software monitors are not usable directly. Rather, they
must be processed by reporting routines that produce summary informa-
tion for a specific purpose (e.g., accounting, workload forecasting, perfor-
mance modelling). Most accounting and software monitors are packages
that include both a recording component and a reporting component. For
example, accounting records are written for each unit of work processed,
and an accounting program periodically passes over the recent accounting
records to determine charges for each account. Similarly, software moni-
tors write records at certain events or sampling intervals, and a post-
processor later examines the records and produces reports organized to
aid system tuning and performance evaluation.

The reports produced by accounting and software monitors usually are
organized in one of two ways. Some reports are class based: they organ-
ize information by user or by workload component. Other reports are
resource based: they organize information by system resource. Monitors
that reliably break down resource usage by both workload component and
resource are not used commonly in most systems. (Those that exist
cause prohibitively high monitoring overhead.) Much of the effort in
parameterization, as described in Sections 12.3 to 12.5, arises from the
need to surmount the inadequacies of commonly available measurement
information. As software monitors are improved, the parameterization
task will become less burdensome, and some of the techniques described
in this chapter will become unnecessary.

When using a reporting routine to obtain information, it is necessary
to specify the interval of time over which information is to be gathered.
Generally, it is appropriate to run the monitor during peak loads, as these

12.2. Types and Sources of Information 277

present the most significant performance problems. The duration of the
observation interval should be long enough that end effects do not
significantly affect the accuracy of the measurements. End effects are
measurement errors caused by the fact that some customers are processed
partly within and partly outside of the observation interval. In particular,
it is typical to assume that the system operates in flow balance over the
measurement interval, so that the job arrival and completion rates are
equal. However, because some jobs arrive but do not complete during the
interval, and other jobs arrive before but complete during the interval,
flow balance may not hold. Clearly, measurements obtained from longer
observation intervals are affected less by these end-effects than are
shorter intervals. Typically, observation intervals of thirty to ninety
minutes are appropriate for obtaining software monitor data. If monitor-
ing overhead is a concern, shorter intervals can be used, but the danger
of anomalies is increased.

Other sources of useful information include hardware monitors and
monitors specialized for particular application subsystems (such as data-
base or telecommunications subsystems). Hardware monitors, because
they are ‘‘external observers’ of the system, obtain accurate measure-
ments and do not perturb system operation. They are incapable, how-
ever, of associating resource usage with workload components. The spe-
cialized application subsystem monitors are helpful in assessing the per-
formance of subsystems whose autonomy from the host operating system
prevents standard monitors from being able to record their activity. (For
example, special monitors are needed for IBM’s IMS database system
because RMF does not record information about individual IMS transac-
tions.) While any information that is available from hardware and spe-
cialized application subsystem monitors should be exploited, our discus-
sion in this chapter will be restricted to the kinds of information that are
commonly reported in most medium or large computer installations.

Table 12.1 summarizes the information typically available from various
sources. Information from different sources (accounting and software
monitors, or even two different software monitors) may be based on
different underlying assumptions. For this reason, and also because of
end effect anomalies, information from different sources may appear to be
contradictory. For example, consider a small interactive system in which
monitors report that in a thirty minute observation interval:

— 7200 transactions were processed
— average response time was three seconds
— the sum of the queue lengths at the CPU and all disks was 18

We would conclude that throughput during the observation interval was:

7200 transactions
1800 seconds

= 4 transactions/second

278 Parameterization: Existing Systems

type information provided
hardware configuration
system operating system (and version)
description resource allocation and scheduling strategies

tuning parameter values

CPU usage, by workload component

accouqtmg logical I/0 operation count, by workload component
monitor :
customer completions, by workload component
measured busy time, by device
software physical I/0O operation count, .by device
monitor average queue length, by device
throughput, by workload component
average response time, by workload component
hardvyare observed busy time, by device
monitor

Table 12.1 — Sources of Information

Because the observation interval is long relative to the average response
time, we could be confident that end-effects would not lead to significant
errors in the estimates of throughput or response time. Considering
Little’s law, however, we would find the sum of the queue lengths (18)
to be much higher than expected from the product of throughput (4
transactions/second) and response time (3 seconds). One possible expla-
nation for such a situation is that the queue lengths include system tasks
that are not counted in either the throughput or response time calcula-
tions. On the other hand, if the sum of the queue lengths had been
reported as 8 (and other values remained the same), then Little’s law
would reveal a discrepancy in the other direction. A possible explanation
for the second case would be that requests were queueing for admission
to memory, thus spending a significant part of their response time where
they were not included in the queue length of any device. The funda-
mental laws presented in Chapter 3 can be used to detect such apparent
contradictions. System intuition and careful thought is required to
resolve them.

Enhanced awareness of the problems of configuration management
and capacity planning has led recently to some encouraging progress in
the use and management of system measurement data. First, special
reporting routines tailored to the requirements of queueing network
modelling have been developed for some systems. These routines
analyze records produced by existing accounting and software monitors.
Some are capable of defining a queueing network in a format directly
acceptable by particular queueing network modelling software packages.

12.3. Customer Description 279

While these routines are a great aid, intervention by an analyst still is
necessary in most cases to obtain a validated model. This is true because
of inadequacies in the measurement data, and the fact that the analyst’s
knowledge of the system is not available to the automated routine.
(Further discussion of such routines appears in Chapter 16.)

Second, some of the newer reporting routines have been generalized
to be capable of using and contributing to a performance database. The
records written by various monitors constitute a rudimentary performance
database. Merely organizing the records according to their types and
source makes them easier to use. The utility of the database is further
enhanced, however, if it is extended to include aggregated information
produced by reporting routines. There are several advantages to main-
taining such a performance database. For one, long-term trends can be
examined if information aggregated on a month by month basis is
included in the database. Also, information intended for management
planning can be isolated from the more technically oriented information
intended for system tuning. Finally, by having various aggregations of
monitoring information available in a database, the need for regular
printed reports is substantially reduced.

12.3. Customer Description

Most large computer systems have workloads consisting of several
identifiable components. Performance studies often are intended to
assess performance of each workload component, since system-wide aver-
age values for throughput and response time have little significance in
systems that include such diverse workload components as background
batch and foreground transaction processing. There are several goals to
meet in deciding how to assign the workload components of the system to
the customer classes of a queueing network model:

® (lasses should consist of customers whose service demands are of
comparable magnitude and similar balance across service centers, since
input parameters to the model for all customers in the same class are
identical. (For example, I/O bound customers should not ordinarily
be in the same class as CPU bound customers.)

® (lasses must distinguish workload components for which independent
performance projections are desired as outputs of the model. (For
example, if response time to database queries is of concern, then data-
base queries should not be grouped in a single class with other work-
load components.)

280 Parameterization: Existing Systems

® (lasses may be made to correspond to accounting and performance
groups. This facilitates the calculation of various parameter values,
since accounting data is organized by accounting group.

® (Classes may be used to distinguish work generated by various organi-
zational units (e.g., divisions of a company). This permits unit-
specific performance projections, and facilitates later modification
analysis (since workload forecasts frequently are made on an organiza-
tional unit basis).

A first step in identifying customer classes is to group portions of the
workload according to whether they are best represented as batch, termi-
nal, or transaction types. Often, the nature of a workload component
suggests an appropriate type: if requests arrive at a constant rate, then
transaction; if requests are generated by a set of users that await the com-
pletion of service to one request before generating another, then termi-
nal; if the number of active requests is constant, then batch. Variations
are possible, though, especially in conducting a modification analysis. As
one example, a workload component might in fact consist of users at ter-
minals, but for planning purposes its intensity might be described in
terms of a request arrival rate. In this case, the use of a transaction type
might be appropriate. As another example, a system might have many
workload components, only a few of which are of interest. The presence
of the other components might be reflected in the model by a single
“aggregate”’ class of transaction type (so that its throughput is guaranteed
to equal the measured value).

Within each type of customer class, further separation of workload
components may be desirable. Batch work of different priorities may be
represented as distinct classes. Different interactive systems (e.g., APL
and TSO in an IBM environment) may be treated as separate terminal
classes. If trivial transactions (such as simple editing commands) can be
distinguished from substantive transactions (such as complex database
queries), then different classes can be used to distinguish the two groups.

The queueing network model input parameter C is simply the number
of customer classes, determined according to the guidelines suggested
above. Models of simple systems typically have just one or two classes,
while models of complex multi-purpose systems may have eight or more.
In some special situations it is useful to have a very large number of
classes — say, twenty to forty.

One example of a situation in which a large number of classes was
used is a model developed for projecting the performance of a hospital
information system used in many hospitals. There were roughly thirty
major transaction types (admit-patient, order-blood-test, set-dietary-
restriction, etc.) each one of which was represented as a separate custo-
mer class. In this way, the arrival rate of each transaction type and the

12.3. Customer Description 281

priority assigned to the transaction type (reflecting its urgency in a partic-
ular hospital) could be represented directly in the model. The hospitals
using the system differed substantially in size and in the hardware on
which they ran the system. Also, they differed significantly in the partic-
ular mix of transactions that were processed. The model proved useful in
configuration design. The response times for various transaction classes
could be related to the arrival rates and priorities of the classes for vari-
ous contemplated hardware configurations.

Having identified each workload component to be represented as a dis-
tinct customer class and determined the type of that class, the next step is
to establish the workload intensity of each class. For a transaction class,
the workload intensity is the transaction arrival rate. Over a reasonably
long observation interval in a system that is not saturated, the arrival rate
is essentially the same as the completion rate. Consequently, an estimate
for the arrival rate of class c is:

measured completions of class ¢
length of measurement interval

Ae =

For a batch class, the workload intensity is given by the average
number of batch customers active. An estimate for N,, the number of
class ¢ customers, can be obtained in several ways:

® If jobs are processed in a fixed number of regions and memory queue-
ing times are high (so that it is known that each region is busy
throughout most of the observation interval), then N, is the number
of processing regions.

® If the software monitor provides an estimate of the average multipro-
gramming level of the class over the observation interval by sampling,
then N, can be taken to be that estimate.

® If accounting data provides the residence time of each job in the cen-
tral subsystem, then N, can be estimated by:

2 measured job residence time

class ¢
Jjobs

length of measurement interval

c

(This alternative is impractical without the use of a reduction package
capable of automatically extracting this information from accounting
records.)

For a terminal class, workload intensity is specified by the number of
active terminals, V., along with the average think time, Z.. Three possi-
bilities for estimating N. for terminal classes correspond directly to the
three methods used for batch classes:

282 Parameterization: Existing Systems

® If terminals connect to the system through a limited number of ports,
and if all ports are busy throughout most of the observation interval,
then N, is the number of ports.

® If the software monitor provides the average number of active termi-
nals over the observation interval, then N, can be taken to be that
number.

® If accounting data includes session lengths, then N, can be estimated
(over an observation interval that is long relative to average session
length in order to restrict end effects) by:

> measured session length

class ¢
sessions

length of measurement interval

c

The average think time of a terminal class often is one of the most
difficult input parameters to estimate. There are several reasons. First,
there are differing views of when think time starts and ends. We will
adopt the one in which it starts with the arrival of the first character of a
response from the system, and ends when the last character of the next
request to the system is entered. Second, some systems allow a stream of
commands to be entered without awaiting responses. Such systems can
cause think times (as defined above) to be negative! Third, some think
times become so long that they actually represent a loss of an active ter-
minal. (This occurs when terminal users interrupt their work without
logging off.) Fourth, average think time seldom is measured directly by
performance monitors. Consequently, the best estimate of think time
often is obtained by estimating Z, from the response time law:

where N, is estimated as described above, and X, and R, are measured
values. Because there often is less confidence in the estimate of think
time than in the estimates of other parameters, it may be desirable to test
the sensitivity of the model to this value.

When memory constraints are imposed on transaction or terminal
classes, it is necessary to specify the capacity associated with each domain
so that the modelling approach of Section 9.3 can be used. The capacity
of each domain typically is known from the system description. Whether
or not the domain was filled to capacity in a particular measurement inter-
val is revealed by comparing the average number active among classes
assigned to the domain (as reported by a monitor) to the domain capa-
city.

12.5. Service Demands 283

12.4. Center Description

The service centers of a queueing network model correspond to
significant points of congestion or delay in the system. There are many
ways of representing system resources by a set of service centers. Here
we suggest only the most widely accepted methods, which have proven
successful in a large number of modelling studies.

For systems with single CPUs and for tightly-coupled multiprocessors,
a single service center is used to represent the CPU(s) in the queueing
network model. Loosely-coupled multiprocessors are modelled by includ-
ing one service center per processor. Front end communications proces-
sors and back end database machines also may be represented as separate
service centers.

The representation of disk subsystems can be done in a variety of
ways. (See the discussion in Chapter 10.) A number of components are
involved in each disk I/O operation. The modelling approach that has
proven most successful, however, is to use a single service center to
represent each disk. Congestion due to other I/O subsystem components
is represented by calculating an appropriate effective service demand for
each center.

Other peripheral devices can be represented more simply than disks.
Because tape drives are not capable of operation independent of the chan-
nel, a group of tape drives on a channel can be represented by a single
service center. The service demands at the center can be established
using channel utilization only, and ignoring the individual tape drives.

Unit record equipment typically is ignored in constructing queueing
network models. This is justified in many systems because spooling makes
the use of unit record devices asynchronous. Similarly, terminal controll-
ers typically are not represented. If delays in the communications front
end are thought to be important in a particular study, then a special
approach must be used. This might involve a hierarchical model in which
a conventional central subsystem model is evaluated, and then the delays
due to communication are represented in a high-level model that includes
an FESC representing the central subsystem.

12.5. Service Demands

The final set of values needed to parameterize a queueing network
model are the service demands at each center of the customers belonging
to each class. Obtaining these values can be a difficult and time consum-
ing process. As a practical consideration, it is important to concentrate
on obtaining accurate estimates for the most heavily utilized centers,

284 Parameterization: Existing Systems

because a small error in estimating the service demands at the bottleneck
center will affect performance projections more than a much larger error
at a lightly utilized center.

In estimating service demands, the three center types (delay, FESC,
and queueing) are treated differently.

Delay centers have service demands that represent a delay that is not
caused by congestion (e.g., a propagation delay in a communication net-
work). It usually is not difficult to determine appropriate values for delay
centers. In addition, errors in the service demands at delay centers are
not ‘‘magnified”” by queueing delay calculations when the model is
evaluated.

For FESCs, the load dependent service rates can be determined in
many ways, as described in Chapter 8. Two major approaches are
evaluating low-level queueing network models (as illustrated in Chapter 9
for the case of memory constraints) and considering hardware characteris-
tics (as illustrated in Chapter 11 for the case of tightly-coupled multipro-
Cessors).

The remainder of this section is devoted to the case of queueing
centers, by far the most common center type in queueing network
models. Conceptually, estimating service demands for queueing centers
is straightforward: at the conclusion of the measurement interval, the
measured busy time for each class at each device is divided by the
number of system completions for the class. In practice, however, two
difficulties arise:

® In the multiple class case, the available data frequently is insufficient
to apportion the measured busy time among the classes with certainty.
The reasons and the remedies differ for various devices and various
systems.

® A portion of the busy time attributed to each class is intrinsic to that
class: its basic processing and I/0 requirements. The remainder con-
sists partly of service demand inflation and partly of overhead. Service
demand inflation, introduced in Chapter 10, is the component of
measured disk busy times due to contention in the I/O subsystem.
(There is no service demand inflation for processors.) Overhead is
work done by the operating system ‘‘on behalf of’’ the customers of
the class. Part of the overhead component is fixed, in that it does not
depend on system congestion (e.g., the CPU service required to ini-
tiate user I/O operations), and part of it is variable and typically
increases with system load (e.g., paging 1/0). In a baseline model
these distinctions do not matter, but in conducting a modification
analysis they can be crucial, for the service demand inflation and vari-
able overhead components of the model usually change in a new
environment.

12.5. Service Demands 285

This section is devoted to the first of these two difficulties: apportion-
ing measured busy time among the various classes. We defer our discus-
sion of the second difficulty to Chapter 13. The reader should under-
stand, however, that while the techniques used to adjust the service
demand inflation and variable overhead components of service demands
are not required until projecting performance for an evolving system, they
should be validated by examining several measurement intervals using
the baseline model of the existing system.

Our discussion is organized into two subsections, the first devoted to
processors and the second to I/0.

12.5.1. Estimating Processor Service Demands

Since the CPU typically is a heavily utilized resource, it is important to
determine accurately the service demands of the various classes there.
As noted in Table 12.1, monitor data often includes the CPU usage and
the number of customer completions for each workload component.
Unfortunately, the quotient of these quantities turns out in practice to
yield a poor estimate of CPU service demand. The reason is that the CPU
usage reported on a per class basis often fails to capture significant
amounts of CPU activity. More specifically, the sum of the CPU busy
times reported on a per class basis is likely to be considerably less than
the total CPU busy time reported by a monitor that does not attempt to
distinguish among classes. The ratio of attributed CPU usage for a class
to the total CPU busy time due to activities initiated by that class is
known as the capture ratio. Capture ratios typically range from .85 down
to .40 for various systems and various workload components. For a par-
ticular system, the overall capture ratio can be estimated as suggested
above: by dividing the sum of the CPU busy times reported on a per
class basis (often by an accounting monitor) by the total CPU busy time
reported by a monitor that does not attempt to distinguish among classes
(often by a software monitor).

In the case of single class models, dividing the estimate of total CPU
busy time from software monitor data by the estimate of total customer
completions from either accounting or software monitor data will yield a
good estimate for CPU service demand. In the case of multiple class
models, though, techniques must be devised to apportion the unattri-
buted CPU busy time among classes. This process has three steps:

— calculate the unattributed busy time during the interval
— decide how much to attribute to each class
— compute how much to attribute to each customer of each class

The second of these steps is the interesting one, and will be addressed in
the paragraphs that follow.

286 Parameterization: Existing Systems

Consider a system with a workload consisting of two components:
batch jobs and interactive users. Assume that information comparable to
that listed in Table 12.1 has been obtained. Let fg 7cy and finrer be
(unknown) factors by which the attributed CPU busy time for each class
must be multiplied so that all measured CPU busy time is attributed to
some class. (Observe that f, is the inverse of the capture ratio for class
c.) This leads to the equation:

Bepy = fparcw X Aparcw.cru t finter X ATER.CPU

where A, cpy is the CPU usage attributed to class ¢, and Bcpy is the total
measured CPU busy time.

To determine unique values for fgy7cy and finter We must establish
a relationship between them in addition to this equation. Several possi-
bilities exist:

® Assume that the ratio of total CPU time to attributed CPU time is the
same for each class, yielding:

Bepy

Searcy = Sfinter =

[A/NTER.CPU + Apy TCH.CPU]

® Since the unattributed CPU busy time is likely to be overhead, use
class based information on activities likely to cause CPU overhead
(such as paging rate, swapping rate, spooling, user /O, and job initia-
tions) to determine a relative measure of total overhead for each class.
For instance, assuming that overhead is due almost entirely to page
fault handling, and letting OV, (the relative overhead of class ¢) be
the measured number of pages transferred because of class ¢ faults,
we have:

fintEr =

OVinrer y [B _ [A ny]]
OVinter + OVaarcy CPU INTER ,CPU BATCH.CPU

AINTER . CPU

1+

The second approach is the more reasonable. Unfortunately, more than
one factor inevitably contributes to overhead. Thus, OV, is better
defined as the weighted sum of several factors:

ov, = > weight i X factor i,

all factors i

When one attempts to apply this approach in practice, two common prob-
lems are apt to be encountered:

12.5. Service Demands 287

® Even for a single measurement interval, it may be difficult to deter-
mine which factors to consider, and what weights to assign to these
factors. Iteration inevitably is required: estimate weights, calculate
service demands, evaluate model, re-estimate weights, etc.

® If one truly is to have confidence in the weights selected, then data
from a number of measurement intervals must be considered, and
weights must be found that yield good model results when applied to
each set of data. An ad hoc approach can be adopted, or linear regres-
sion techniques can be used.

Once fparcy and finrer have been determined, the service demands
of the two classes can be estimated by the equation:

Je X A cpu
measured class ¢ completions

DC,CPU

Note that the service demands determined in this way include intrinsic
service, fixed overhead, and an amount of variable overhead that reflects
the degree of system congestion in the interval covered by the measure-
ment data.

12.5.2. Estimating I/O Service Demands

I/0 activity in most current computer systems is dominated by opera-
tions on direct access storage devices (fixed head, movable head, and
electronic disks). Tape I/O and I/O for staging data to and from mass
storage devices plays a secondary role. Other types of peripheral devices
typically are inconsequential with respect to performance. Our discussion
in this section focuses on disk I/O, reflecting its importance.

In Section 10.7 we described how the lengths of certain portions of
disk service requirements (seek, latency, rotation, and transfer) could be
established from system knowledge (e.g., device characteristics) and
measurement data. We assumed that both the visit counts and the ser-
vice times per visit for each class at each disk were known. In this sec-
tion, we suggest a method for determining these quantities. First we con-
sider the visit counts, then the service times.

We distinguish two ways of viewing I/O operations. Physical 1/0
operations correspond to activations of I/O subsystem components to
transfer data to or from peripherals. Logical I/0 operations correspond to
operating system calls by customers requesting access to blocks of infor-
mation. For a number of reasons physical and logical I/O operations do
not correspond directly to one another. Sometimes, a logical I/O opera-
tion may not result in a physical I/O operation; for example, a logical I/0O
operation may request access to a block of information that already is in
memory. Sometimes, a logical I/O operation may result in several

288 Parameterization: Existing Systems

physical I/O operations; for example, errors detected in reading or writing
a block may cause operations to be retried.

It is the physical 1/O operations that correspond to the visit counts,
but physical operations seldom are reported on a per class basis. Typi-
cally, logical I/O operations are broken down by class but not by device
(often by an accounting monitor), while physical I/O operations are bro-
ken down by device but not by class (often by a software monitor).

The first step in confronting this situation is to estimate the ratio of
physical to logical I/Os for each class. We now restrict consideration to a
set of disk drives. Let P, denote the physical I/0s at disk 4, and let L.
denote the logical I/Os of class ¢ over the set of disks. (Some monitors
fail to distinguish logical disk I/Os from other logical I/Os. In such cases,
we are forced to make some assumption such as that the fraction of all
logical I/0Os that are directed to the disks is the same as the fraction of all
physical I/Os that are directed toward the disks, which is presumed to be
available from measurements.) We define g, to be the ratio of physical
to logical I/Os for class ¢. (The assumption that the ratio depends on
class but not device is realistic in most systems.) Estimating the g, is a
problem analogous to estimating the f. in the case of the CPU. Possible
approaches include:

® Assume that g. is the same for each class, so that:
Py

ai[I disks k
L

all classes j

&

® Use generally accepted ratios for standard types of workloads for the
architectural family of the system.

® For a number of observation intervals, determine the values for the g,
that best satisfy the set of equations:

Pk(i) = 2 8 X Lc(i)

all disks k all classes ¢

where (i) denotes values obtained during the i-th observation inter-
val.

Once these g. have been estimated, we proceed to determine the visit
counts. In essence, we must satisfy the equations:

P = 2 (measured class ¢ completions) X V,
all classes ¢

Vc,k

all disks k 8¢

L. (measured class ¢ completions) X

12.5. Service Demands 289

device adjusted
class logical
disk 1 | disk 2 | disk 3 1/0s
BATCH ? ? ? Lgarcy X 8parcH
INTER ? ? ? Linter X &iNTER
| physicall/Os | P, | P, | Py |

Table 12.2 — Physical Disk I/0Os by Class and Device

Table 12.2 suggests a way of thinking about the problem of determin-
ing the number of physical I/Os by each class at each device, again for
the case of two classes, batch (BATCH) and interactive (INTER). The
central rows correspond to classes, while the central columns correspond
to disks. The entry to be filled in at column k of row c¢ is the number of
physical I/0s by class c at device k
(V. X measured class ¢ completions). The information available, how-
ever, is only that the columns must add to P, while the rows must add to
L. X g.. This provides a number of equations equal to the sum of the
number of classes and the number of disks, whereas the number of V,
values that we must estimate is equal to the product of these quantities.
(For instance, in Table 12.2 there are five constraints corresponding to
the two row sums and three column sums, but there are six V., values
to be determined.) Consequently, we must use additional information to
specify the V, , values uniquely. Alternatives include:

® The simplest assumption, which can be used in the absence of any
other information, is that all classes use the various disks in the same
proportions:
Vc,k Vc k

= : for classes ¢ and ¢’, and disks k and K’
Vet Ve

® The software configuration portion of the system description fre-
quently indicates the location of various key data sets: paging files,
swapping files, catalogs, files devoted to various applications, etc. If a
particular class is known not to use a device, then its visit count there
can be set to zero. If a particular class is known to be the exclusive
user of a device, then its visit count there can be set to the measured
physical I/0 count of the device divided by the measured number of
completions of the class. The remaining visit counts can be resolved
in a series of stages. At each stage, the distribution of I/Os for the
class for which the /least flexibility remains is determined.

290 Parameterization: Existing Systems

® In some systems there are software monitors capable of observing
directly the number of physical 1/Os broken down by both class and
device. Although such monitors cause too much overhead to be used
continuously, they can be used over short intervals (e.g., 10 minutes)
to obtain an indication of the distribution of physical I/Os by class and
device.

® Qccasionally, the breakdown of logical I/Os by device as well as by
class is known. This additional information makes it possible to
proceed with greater confidence. In particular, if we can assume that
the ratio of physical 1/Os to logical 1/Os is the same for each class,
then the physical I/Os at a particular device can be attributed to classes
in the same proportions as are the logical 1/0s.

We turn now to the problem of determining the S, ;. It is customary
to assume that, at any particular disk, all classes have the same service
time per visit. With this simplification, the service times are given by:

B
Py

Situations in which one class has a substantially larger service time at a
disk than another class typically arise when the former class uses a much
larger block size. In such cases, disk characteristics (transfer rates, rota-
tion times, and seek time functions) can be used to estimate the ratios
S, x/Se i, for each pair of classes ¢ and ¢’ that use the disk. Those
ratios, together with the equation:

Sew = Sk

B, = 3 Vex X S X (measured class c completions)
all classes ¢

allow unique determination of the S, . In both the cases of equal and
unequal service times across classes, the service demands are given by:

DC«/\' = V</\ SL‘./\‘

We now consider briefly the estimation of service demands for tape
devices. As noted in an earlier section, it generally is appropriate to
represent the tape channels rather than the individual drives. Further, it
generally is appropriate to model all classes as using the various tape
channels in the same proportions (although different classes will have
different total amounts of tape I/O activity). Thus, the visit counts are
given by:

L 1

X P X
L k measured class ¢ completions
all classes j

Vek

where the P, and L. now are measured physical tape I/Os at center k and
logical tape 1/Os of class c, respectively. Assuming that all classes use

12.6. Validating the Model 291

essentially the same block size (so that they have the same service
times), the service demands are given by:

B,

P,

If block sizes differ significantly among classes, then service demands can

be determined in a manner analogous to that suggested above for disks
with class-dependent service times.

Dc,k = Vc,/\'

12.6. Validating the Model

* Once values are established for all inputs, the model can be evaluated
using the algorithms described in Part II, extended as described in Part
III. This evaluation yields, for each class, estimates of system throughput
and response time, and of device residence time, utilization, and queue
length.

Model validation involves comparing these estimates with the meas-
ured values of the corresponding quantities. A model can be considered
“‘validated’” when it has been demonstrated that, in several (or many)
measurement intervals, the differences between the estimates produced
by the model and the measured quantities are sufficiently small.

In choosing observation intervals for use in validating the model, it is
desirable to look ahead to the types of system changes to be investigated
with the model. If the model is to be used to investigate the effect of an
increased workload intensity, then the model should be wvalidated on
observation intervals representing a range of workload intensities. Simi-
larly, if an increase in the size of main memory is to be considered, it is
beneficial to validate the model on several different memory sizes. This
could be done in a number of ways. Scheduling parameters could be
adjusted to keep the number of active customers artificially low (thus
underutilizing the memory). Alternatively, a portion of the memory
could be disabled during an observation interval.

The correspondence between model estimates and measured quantities
depends on several factors. Single class models can be validated with
higher precision than multiple class models because their input parameter
values can be determined from measurement data with greater accuracy.
Some performance measures can be matched more easily than others. In
validating multiple class models, it seldom is possible to reflect the
behavior of every class at every device accurately. Clearly, it is desirable
to have the model represent most accurately the behavior of the critical
(mostly heavily used) resources. Similarly, if one class of customers is of
particular interest in a modelling study, then validation of the model

292 Parameterization: Existing Systems

should place special emphasis on the performance measures of that class.
Table 12.3 suggests rough guidelines for reasonable expectations of model
accuracy during validation.

An important point to note is that queueing network models typically
project percentage changes in performance with more accuracy than abso-
lute levels of performance. For example, consider the projection of the
effect on interactive response time of adding a batch workload to a sys-
tem. Assume that the measured response time in the original system was
six seconds, and the baseline model validated within 20%, giving a
response time of five seconds. If the modified model then projected a ten
second response time after the batch workload was added, we should anti-
cipate a response time in the modified system of twelve seconds (rather
than ten) since the model projected a doubling of the response time.

system . device
model system response device -
type throughput time utilizations lengths
single class 0to 5% 5to 20% 0to 5% 5to 20%
multiple class | 51000 | 101030% | Sto10% | 10 to 30%
(per class)

Table 12.3 — Reasonable Tolerances in Validation

Often, even in well conceived and well executed modelling studies, an
initial model will not satisfy the validation criterion. In such cases, rea-
sonable modifications of the assumptions used in estimating input param-
eters (especially service demands) should be attempted. For example, by
noting which classes have throughputs underestimated, the analyst may
be guided in a reassessment of how overhead should be attributed to the
various classes. This review is repeated until the model can be validated.
It is not unusual for several iterations to be required at this stage. In
some cases, however, no reasonable technique for estimating inputs
yields acceptable results. This is a sign that some important aspect of the
system’s behavior has not been captured in the model. In many such
cases, accuracy can be improved by adding more detail to the model.

It is important to realize the significance of validating a model success-
fully. If information from measurement data is used to establish values
of model inputs, then the fact that the model outputs match the measure-
ment data is, at first glance, not surprising. After a little thought, how-
ever, one realizes that success in validation carries the significant implica-
tion that the numerous assumptions made in establishing the model are
acceptable in the context of the particular system under study. With a
validated model, we are prepared to proceed to the modification analysis
and performance projection, the subjects of the next chapter.

12.8. References 293

12.7. Summary

The inputs required by queueing network models can be divided into
three groups: the customer description, the center description, and the
service demands. The information required to determine the values of
these inputs is obtained from a system description and data recorded and
reported by various monitors. Many of the input values can be deter-
mined in a straightforward manner from this information. Other values,
however, must be inferred. The bulk of this chapter has been devoted to
techniques for doing so, for various inputs.

An appropriate modelling strategy is to start with the simplest model
that might suffice, adding detail as necessary. The process of model vali-
dation may involve several iterations in which input values are revised
and detail is added.

Thorough validation must be based on several measurement intervals.
It also must be based on knowledge of the kinds of performance projec-
tion questions for which the model is to be used.

12.8. References

Several good books on compuier system performance measurement
techniques are available, such as [Ferrari 1978], [Ferrari et al. 1983], and
[Svobodova 1976]. These, however, do not deal specifically with the
needs of queueing network modelling.

Rose [1978] treats the queueing network parameterization problem in
general, and also relates the techniques to various specific systems. Kien-
zle and Sevcik [1979] review the approaches to parameterization taken by
a number of early queueing network modelling case studies.

Curtin [1979] describes a performance database which serves as a
repository for measurement data, and which can be accessed by the SAS
statistical analysis package to produce reports suitable for both managers
and analysts. Lindsay [1980] reports on the accuracy of a software pesfor-
mance monitor by comparing its results to those of a hardware monitor.

Artis [1979] suggests a technique for identifying customer classes
based on the similarity of their resource demand patterns. Cooper [1980]
describes both the identification of customer classes and the use of cap-
ture ratios as part of his presentation of an overall capacity planning
methodology. Anderson [1979] proposes a sophisticated method for
apportioning unattributed device activity to classes using multiple linear
regression.

294 Parameterization: Existing Systems

The details of the parameterization process depend heavily on the sys-
tem under consideration. Both the quantity and the quality of data varies
widely among systems. Consequently, proceedings of ‘‘user group”’
conferences are good sources of papers describing techniques of relevance
to a particular type of system.

[Anderson 1979]
Edwin Anderson. A Method for the Estimation of Resource Use for
Queueing Models. Proc. CMG X International Conference (1979),
157-164.

[Artis 1979]
H. Pat Artis. A Technique for Establishing Resource Limited Job
Class Structures. Proc. CMG X International Conference (1979), 249-
253.

[Cooper 1980]
J.C. Cooper. A Capacity Planning Methodology. [/BM Systems Journal
19,1 (1980), 28-35.

[Curtin 1979]
James P. Curtin. An MVS Performance Data Base and Reporting Sys-
tem Using SAS. Proc. CMG X International Conference (1979), 35-39.

[Ferrari 1978] .
Domenico Ferrari. Computer Systems Performance Evaluation.
Prentice-Hall, 1978.

[Ferrari et al. 1983]
Domenico Ferrari, Giuseppe Serrazi, and Alessandro Zeigner. Meas-
urement and Tuning of Computer Systems. Prentice-Hall, 1983.

[Kienzle & Sevcik 1979]
Martin G. Kienzle and Kenneth C. Sevcik. Survey of Analytic Queue-
ing Network Models of Computer Systems. Proc. ACM SIGMETRICS
Conference on Simulation, Measurement and Modeling of Computer Sys-
tems (1979), 113-129.

[Lindsay 1980]
David S. Lindsay. RMF I/0 Time Validation. Proc. CMG XI Interna-
tional Conference (1980), 112-119.

[Rose 1978] '
Clifford A. Rose. A Measurement Procedure for Queueing Network
Models of Computer Systems. Computing Surveys 10,3 (September
1978), 263-280.

[Svobodova 1976]

Liba Svobodova. Computer Performance Measurement and Evaluation
Methods: Analysis and Applications. North-Holland, 1976.

12.9. EXxercises 295

12.9. Exercises

1. Section 2.2 describes two case studies in which queueing network
models were used for performance projection in an IBM processing
complex. In each case, the objectives and the results of the study
were presented, but the details of the model were not. For each of
these studies, use the available information to specify an appropriate
structure for a model. Indicate the significant parameters of the model
and suggest how their values might be established.

2. In a system with two workload components, batch and interactive, the
following measurements were obtained in a 60 minute observation
interval:

observed CPU busy time: 50 minutes
accounted batch CPU time: 20 minutes
accounted interactive CPU time: 10 minutes

a. Assuming that the ‘‘capture ratio’’ is the same for each workload
component, what proportion of the observed CPU busy time
should be attributed to each component?

b. Assuming that the primary source of CPU overhead is page
transfers and that 75% of all page transfers are for interactive custo-
mers, what proportion of the observed CPU busy time should be
attributed to each workload component?

c. In a second 60 minute observation interval, the observed CPU
busy time was 45 minutes, while the accounted CPU times for
batch and interactive were 15 and 10 minutes, respectively. Using
the measurement data from both observation intervals simultane-
ously, what proportion of the observed CPU busy time should be
attributed to each workload component?

3. In an observation interval, the number of logical I/Os (in thousands)
for classes A, B, and C were 60, 50, and 30, respectively. In the same
interval the number of physical I/Os (in thousands) at the two disk
drives were 100 and 60, respectively. Determine an appropriate allo-
cation to each class of the physical I/Os at each disk drive under each
of the following assumptions:

a. No further information is available.

b. The ratios of physical to logical I/Os for classes A, B, and C are
known to be approximately 13/12, 11/10, and 4/3, respectively.

Chapter 13

Evolving Systems

13.1. Introduction

We create and validate queueing network models of baseline systems,
as described in Chapter 12, so that these models can be used to project
the effects on performance of contemplated modifications to the work-
load, to the hardware, and to the operating policies and system software.
In this chapter we will see how to represent such modifications by altera-
tions to the inputs of the validated model. The accuracy and utility of the
resulting performance projections depend on three factors:

® how well the baseline model validates — The construction and validation
of baseline models was discussed in Chapter 12.

® how accurately the modifications are forecast — Anticipating the evolu-
tion of a system and its workload is a difficult task that is faced by
organizational management. It lies beyond the scope of this book.

® jiow well the anticipated modifications are represented as changes to the
model inputs — This is the subject of the present chapter.

In general, system modifications have both primary and secondary
effects. For example, a CPU upgrade has the primary effect of reducing
the CPU service requirement of each user (in seconds, rather than
instructions), and may have one or more secohdary effects, such as
changing the number of times that each user is swapped, on the average.
We will see that for many modifications it is relatively easy to anticipate
and represent the primary effects, but harder to anticipate, and thus to
quantify and represent, the secondary effects. For this reason, successful
performance projection studies in which several alternatives are being
considered often take the following form:

— Initially, each alternative is investigated by representing only its
primary effects. This can be done quickly.

— The results may reveal that some of the alternatives are not worthy
of further consideration. These alternatives are discarded.

296

13.2. Changes to the Workload 297

— The remaining alternatives are investigated in more detail, with
attention paid to secondary as well as primary effects.

The organization of this chapter reflects this scenario. In Sections
13.2, 13.3, and 13.4, we discuss modelling the effects of modifications to
the workload, to the hardware, and to the operating policies and system
software, respectively. We concentrate in these sections on representing
the primary effects of modifications, but also discuss certain secondary
effects that are peculiar to a particular type of modification.

In practice, two or more modifications often will occur together. For
example, if an increase in transaction processing volume is anticipated (a
modification to the workload), one may wish to project performance
under the assumption that the CPU is upgraded (a modification to the
hardware). For clarity of presentation we will discuss such changes
separately. To represent the effect of multiple modifications, the
corresponding model input alterations can be applied serially.

In Section 13.5 we discuss some secondary effects that are common to
most types of modifications. An example is the change in the level of
variable overhead (CPU and 1/0 overhead due to swapping, for instance)
that may accompany various modifications.

Finally, in Section 13.6, we describe three related case studies in
which queueing network models were used to project the effects on per-
formance of various modifications. In each case, the accuracy of the pro-
jection was assessed after actually implementing the modification. These
three case studies are similar in spirit to the two studies of an IBM com-
puting complex that we discussed in Section 2.2, where the modelling
cycle was presented. A review of Section 2.2 would be worthwhile at this
point.

13.2. Changes to the Workload

The workload presented to a computer system can change in several
ways. First, the intensities of workload components can change. Second,
the character of workload components (e.g., the service demands) can
change. Third, the number of workload components can change. The
following three subsections describe how the effects of each of these
changes can be represented by adjustments to the inputs of a validated
model. Both in this section and in the ones to follow, we will indicate
modified input parameter values as primed quantities. For example, D 4
will denote the modified service demand of class ¢ at center k.

298 Parameterization: Evolving Systems

13.2.1. Changes in Workload Intensities

The most frequently studied workload changes are changes in inten-
sity. Naturally, the primary effect of such a change is reflected by modi-
fying the appropriate workload intensity input parameters.

For a transaction class, a typical workload forecast would be ‘“‘a 30%
increase in transaction volume’’. This can be represented in the model
by A, — 1.3 \..

For a terminal class, a typical workload forecast would be ‘“‘a 50%
increase in the number of active users’’. This can be represented in the
model by N «— 1.5 N.. (In the absence of evidence to the contrary, it is
reasonable to assume that average think time does not change.)

In the case of both transaction and terminal classes, increased com-
petition for main memory will result from an increase in workload inten-
sity. If the baseline model included a memory constraint (‘‘at most
twenty requests simultaneously active’’), then we may assume that the
same constraint still applies. If no such constraint were present in the
baseline model, then the analyst must decide whether or not the
increased central subsystem population that results from the parameter
modification is realistic in light of the amount of memory available. If
not, an appropriate memory constraint should be imposed. In either case,
the variable component of overhead (e.g., paging and swapping service
demands) may increase. This is discussed in Section 13.5.

For a batch class, it is unusual for a workload forecast to be phrased in
terms of the multiprogramming level, N,. (More likely, such phrasing
would be used to describe the addition or re-allocation of memory.)
Additional complexity arises from the fact that the value of this parameter
in the baseline model can be due to several factors. At one extreme,
there may be a persistent backlog of batch jobs, so that N, reflects a
memory constraint. In this case, an increase in the availability of batch
jobs would only result in a larger backlog. At the other extreme, if
sufficient memory is available to activate most batch jobs immediately
when they arrive, the value of N, is not related to a memory constraint.
In this case, an increase in the availability of batch jobs would allow N. to
increase. Typically, a workload forecast for a batch class will be phrased
in terms of throughput. The analyst must adjust N, to achieve the fore-
cast throughput, and then consider whether or not the increased central
subsystem population is realistic with respect to the available memory.

13.2. Changes to the Workload 299

13.2.2. Changes in the Character of Workload Components

Changes to application programs may lead to changes in the resource
requirements of customers. Such changes would be represented in a
model by adjusting service demands. Three examples are given in the
following paragraphs.

It is proposed to modify an application program to do more checking
of the validity and consistency of the input data it receives. The change
is projected to increase the CPU path length of a transaction by 20%. The
primary effect of this modification can be represented in the model by
increasing the CPU service demand of transactions by 20%.

It is proposed to introduce data compression techniques to reduce the
space occupied by a flle that is processed sequentially by an application.
The data transferred by the application will decrease, while its CPU
requirements will increase (to translate data from compressed to
uncompressed format and back again). To represent this modification in
the model, the data transfer component of the service demand at the
appropriate disk should be decreased, while the service demand at the
CPU should be increased.

It is proposed to change the structure of a file used by an application.
Initially, the file had three levels of indexing with the highest level kept
in memory. The number of I/Os required to access any record was three:
two index blocks plus the record itself. The new organization will be
based on hashing, which is expected to decrease the average number of
I/0s per record access to roughly 1.5. The primary effect of this
modification can be represented in the model by halving the visit count at
the appropriate disk (assuming that this is the only use of the disk by the
class). A secondary effect of this modification might be an increase in the
seek component of the service requirement at the disk, because the hash-
ing technique would eliminate any locality of reference that might have
existed under the indexed organization.

13.2.3. Changes in the Number of Workload Components

The primary effect of removing a workload component from a system
is represented easily in the model by eliminating the corresponding custo-
mer class. The result will be a decrease in the activity at various devices,
and a corresponding improvement in the performance of the remaining
workload components.

300 Parameterization: Evolving Systems

Similarly, the primary effect of adding a workload component is
represented by adding a new class. The result will be an increase in the
activity at various devices, and a potential degradation in the performance
of the original workload components. Of course, the workload intensity
and service demands of the new class must be determined and specified.
If a similar application runs at some installation with a similar hardware
and software configuration, then measured service demands can be used.
For a new application that cannot be measured, estimating service
demands is much harder. This problem will be treated in Chapter 14.

Both the removal and the addition of workload components have a
number of effects which, although of lesser importance than changes in
device congestion, still can have considerable impact on performance.
When a workload component is removed, memory becomes available for
allocation to the remaining components. Knowledge of the operating pol-
icies of the system is required to determine how to represent this. When
a component is added, it may be necessary to obtain memory at the
expense of other components. Again, system knowledge is required.

As always, secondary effects arise in the realm of variable overhead.
These will be considered in Section 13.5.

Modelling changes in the number of workload components is of partic-
ular benefit in multiple mainframe installations composed of several
machines of the same architecture using the same operating system. In
such environments, a large part of capacity planning involves projecting
the performance resulting from various ways of assigning workload com-
ponents to machines. The service demands measured for a class on one
system can be translated for other systems, using known speed ratios. An
example of capacity planning in a multiple mainframe environment was
considered in Section 2.2.

13.3. Changes to the Hardware

New hardware products based on recent technological developments
are announced with great frequency. This makes capacity planning and
configuration management a continuing challenge. Fortunately, queueing
network models are well suited to quickly evaluating configuration
modifications.

In the subsections to follow we describe how CPU upgrades, memory
expansions, and I/O subsystem modifications can be represented as
modifications to model input parameter values.

13.3. Changes to the Hardware 301

13.3.1. CPU Upgrades

Perhaps the most common configuration change is the upgrade of a
CPU within a family of processors of the same architecture. Fortunately,
this also is one of the easiest changes to evaluate using queueing network
models. The relative instruction execution rates among processors within
a family generally are known and publicized by vendors and user groups.
Consequently, the primary parameter change is to multiply the CPU ser-
vice demand by the ratio of old CPU’s processing rate (ro;p) to that of
the new (,‘NEW):

roLD

Di cpy — X D, cpy for each class ¢

'NEW

A common secondary effect of a CPU upgrade is a change in variable
overhead (considered in Section 13.5). Additional memory or I/0 equip-
ment often accompanies such an upgrade (later subsections suggest ways
to reflect these changes).

Rather than acquiring a faster CPU, it sometimes is possible to acquire
a second processor to form a tightly coupled multiprocessor system. As
we discussed in Chapter 11, the primary corresponding change to model
parameters would be to represent the processor complex as an FESC with
service rate approximately twice as great with two or more customers
present as with only one customer present. An important secondary
effect is the interference between the processors in accessing memory or
shared data structures. This interference causes the capacity of a dual
processor to be considerably less than twice the capacity of a single pro-
cessor. If appropriate measurement data is available, the service rates of
the FESC can be set to reflect the degree of interference. An example in
Section 13.6 treats the change from a uniprocessor to a dual processor.

13.3.2. Memory Expansions

Since additional memory can be allocated in a number of ways,
representing the effect of a memory expansion requires knowledge of the
operating policies of the system.

The most common way to employ additional memory is to permit an
increase in the central subsystem population of various classes. For batch
classes, the parameter N, would be changed. For transaction or terminal
classes, the memory constraint would be adjusted upwards. The key, of
course, is to estimate the extent to which each class will be affected. To
some extent, this is under the control of installation-dependent tuning

302 Parameterization: Evolving Systems

parameters. A few, well chosen experiments with smaller memory sizes
can help to determine the effect of operating policies. Changes in swap-
ping and paging activities can result; these secondary effects are discussed
in Section 13.5.

Additional memory also can be used to permit workload components
to run more efficiently at existing central subsystem populations. In this
case, the entire effect of the memory upgrade would be felt as a decrease
in variable overhead (see Section 13.5).

A third use of additional memory is to make frequently accessed files
permanently resident in memory. Examples include system routines or
indices. If measurement data indicates frequency of use for these files,
then disk service demands can be decreased by an appropriate amount to
represent fixing them in memory.

As a final example, additional memory can be used to increase the size
of the disk cache employed by many operating systems. Experimentation
with a few different cache sizes would indicate the relationship between
disk cache size and disk cache hits (and thus I/0 activity).

13.3.3. 1I/0 Subsystem Modifications

Each generation of disks can be characterized by basic quantities such
as capacity, seek time, latency time, and transfer rate. From these
characteristics it is possible to estimate the changes in disk service
demands that will result from replacing one type of disk with another.
For example, due to faster seeks and higher transfer rates, service
demands are reduced by 25% to 30% when converting from IBM 3350 to
IBM 3380 disks. The exact speed ratio depends on block size, seek pat-
tern, and I/O subsystem contention.

A secondary effect to consider in this case is the fact that, because the
capacity of a 3380 is nearly double that of a 3350, there is a temptation to
reduce the number of drives as part of a conversion effort. The resulting
change in seek patterns may cause the average seek distance to increase,
making it more difficult to forecast service demands.

Recently, solid state drums have provided a new alternative in I/0
subsystems. These devices have limited capacity, but provide much faster
access times than conventional disks or drums (factors of 4:1 currently).
In modelling the addition of a solid state drum to a system, several steps
are required:

— Identify the files to be placed on the drum. (Typically, these will
be small, highly active files.)

13.4. Changes to the Operating Policies and System Software 303

— Reduce the service demands on the disks from which these files
will be removed.

— Add a new center to the model and set the service demand there to
be a fraction of the service demands removed from the disks,
determined by the relative speeds of the devices.

An I/0 subsystem can be upgraded by increasing the numbers of
channels and controllers or by changing the interconnections among
existing components, as well as by adding storage devices. Changes of
this sort would be expected to reduce contention in the I/0 subsystem by
creating alternate paths between the CPU and the disks. Consequently,
the contention component of effective disk service demands would be
reduced. The techniques suggested in Chapter 10 are oriented towards
assessing the effect of this sort of modification.

13.4. Changes to the Operating Policies and System
Software

Operating systems typically leave a great deal of flexibility to installa-
tions with respect to certain operating policies that can have a significant
influence on performance: placement of files on devices, assignment of
workload components’to memory domains, setting of scheduling priori-
ties, etc. The first three subsections that follow discuss the representation
of modifications to such operating policies in queueing network models.
The fourth subsection discusses the representation of the effect of operat-
ing system upgrades.

13.4.1. File Placement

Performance often can be improved by altering the assignment of files
to devices, with the objective of balancing the load across disks and other
I/0 subsystem components. The parameter changes to represent such
modifications in the model are straightforward. If the disks involved are
identical, then the primary effect can be represented (in the case of three
disks) by:

, Dpisk \ + Dpisk 2 + Dpisk 3
Deach disk 3

If a decrease in the contention component of the effective disk service
demands is expected, then the techniques of Chapter 10 should be used,
with the analyst balancing the seek, latency, and transfer components as
above.

304 Parameterization: Evolving Systems

If the devices involved differ in speed, more effort is required. The
service demands in the baseline model must be viewed as the product of
visit counts and service times per visit. The service demand at each of k
disks after balancing is given by the equations:

' — ! —_ — ’
Deach disk — VDisk 1 SDisk = = VDisk k SDisA- k
and:
Kk k
! —_—
2 Vo, = 2 Vo,
Jj=1 i=1

Thus, we assume that balancing the load does not change the service
times at the devices substantially (e.g., by changing seek patterns), and
that the total number of physical I/O operations does not change. The
service demand for each disk will be:

k
2 VDc'sk J

Jj=1
k
> 1/ Sy)
j=1
Thus, we would seek an assignment of files to disks such that capacity

constraints are not exceeded and the visit count” to ﬁles assigned to each
disk approximately satisfy:

’
D each disk

' _D ;ach disk_
Dk g Spisk i

The approach described above generally will succeed only in approxi-
mately balancing the I/0 load. The service times at the various disks in
fact will change due to altered seek patterns and other secondary effects.
Also, carefully balancing the I/O load according to access patterns
observed during one period of the day will not lead to a balanced load
throughout the day. Consequently, in doing I/O balancing, peak load
periods should be given most consideration, but implications for other
periods should be considered.

When representing the addition of disks to a configuration, it is
appropriate to attempt I/0 load balancing at the same time. An example
in Section 13.6 illustrates the evaluation of the effect of I/0 load balanc-
ing through altering the placement of user files.

13.4.2. Memory Allocation

The allocation of memory is critical to performance. An operating sys-
tem typically requires substantial memory for its own use, devoted to
resident code and data structures, transient routines, and I[/O buffers.

13.4. Changes to the Operating Policies and System Software 305

The remaining memory is allocated to user programs. As noted in
Chapter 9, it is typical to define domains with limited capacities and to
assign workload components to these domains. This approach regulates
competition for memory so that thrashing does not occur.

The primary effect of altering the allocation of memory can be
represented by changing the domain capacities in the model (the mul-
tiprogramming level, in the case of batch classes). The problems that
arise are similar to those that arise in modelling the addition of memory,
which were discussed in an earlier section. Especially in a virtual memory
system, it can be difficult to determine the number of jobs that can be
accommodated in a specific amount of memory. Limited benchmarking
can be of assistance in determining how the rate of paging depends on the
amount of main memory available for each active customer.

13.4.3. Tuning Parameters

In most operating systems, many of the scheduling and resource allo-
cation activities are controlled by tuning parameters. Among other
things, such parameters control the dispatching and initiation priorities of
various workload components, and the amount of service guaranteed to
customers before they are eligible to be swapped out. Queueing network
models can be used to gain an understanding of the effects of changing
certain tuning parameters. The major benefit of such studies is to esti-
mate the extent to which performance might be affected by a particular
parameter.

Representing the effect of changes in the relative priorities of work-
load components is straightforward, using the techniques described in
Chapter 11. Chapter 16 includes an example of such a study.

The swapping quantum (the amount of service guaranteed a customer
before becoming eligible for swapping) is another example of an impor-
tant tuning parameter. The case study of Section 9.6.2 illustrates the
incorporation of this parameter in a queueing network model.

13.4.4. Operating System Upgrades

Operating systems provide certain services to the programs that exe-
cute under them. The variety of services available and the efficiency with
which they are delivered differs from one system to another. The operat-
ing systems for most major computer systems evolve continually. Each
version (or ‘“‘release’”) typically provides some new functions, and possi-
bly improves the efficiency with which earlier functions are delivered.

To model the effect of an operating system upgrade, the analyst must
determine the relative efficiency of various functions by relying either on

306 Parameterization: Evolving Systems

statements by the vendor or on experience of early users (‘‘beta test”
sites). Given this information, modification of the model is straightfor-
ward. For example, if it is claimed that CPU path lengths for user I/O
processing will be decreased by a factor of two, the analyst first must
determine this overhead component of CPU service demand for the
workload on the existing system, then divide it by two to represent the
effect of the new release.

Operating system efficiency also is of importance when comparing vari-
ous systems under consideration for the support of a new workload. In
this case, it is necessary to translate a workload description in system-
independent terms into service demands for each candidate system. In
the case of CPU service demands, for example, the relative CPU execu-
tion rates of the various systems tell only part of the story: the efficiency
of operating software can have a dramatic effect on performance. As we
showed in an example in Section 2.4, simple, single-thread benchmarking
experiments are appropriate and useful in quantifying software efficiencies
for incorporation in queueing network models.

13.5. Secondary Effects of Changes

Previous sections have concentrated on the representation of the pri-
mary effects of system changes. In the present section we consider the
representation of certain secondary effects that are common to a number
of the modifications we have discussed.

To a certain extent, these issues already have been addressed in Part
Il of the book. In Chapter 9, we showed one approach to estimating the
change in swapping activity that would accompany various system
modifications. We also showed how variability in paging activity could be
incorporated in a model. In Chapter 10, we developed algorithms to esti-
mate path contention in complex I/O subsystems as a function of other
system characteristics. In Chapter 11, we mentioned the representation
of the CPU overhead that accompanies all other activities.

In this section, we will talk in more general terms about techniques to
forecast the level of CPU and I/O overhead present in a system. Our
approach will be one that was suggested in earlier chapters: to extrapolate
from the results of a few measurement intervals.

13.5.1. Changes in Variable Overhead

Almost every contemplated change to a system will, as a secondary
effect, change the variable overhead incurred in system operation. The
most significant examples of this in many systems are changes in paging

13.5. S_condary Effects of Changes 307

and swapping rates, which involve both CPU and I/O activity. CPU
upgrades, memory expansions, increases in workload intensities, even
changes in the priority structure among classes, all have the secondary
effect of changing paging and swapping rates.

As we have noted in earlier chapters, when a model is used to project
performance for relatively minor modifications (a 10% increase in work-
load intensity, a 25% increase in CPU capacity), changes in variable over-
head need not be considered. The more significant the modification
under consideration, the more important it is to attempt to quantify these
changes. This is a difficult task; in some cases it will be necessary to
employ a sensitivity analysis to indicate the range of anticipated perfor-
mance.

1. Obtain measurements from several observation intervals,
preferably including a range of degrees of system congestion.

2. For each interval, determine the service demand at each
center.

3. For the measure of system congestion of greatest concern
(e.g., workload intensity), for each center, fit a simple curve
to the observed service demands as a function of the meas-
ure of concern.

4. Use the simple curve for each center to extrapolate service
demand for unobserved situations.

Algorithm 13.1 — Variable Overhead in Single Class Models

An approach to characterizing variable overhead for single class
models based on measurements from several observation intervals is
given as Algorithm 13.1. The simplest curve to use in Algorithm 13.1is
a straight line. This suffices for representing variable overhead as long as
the range of congestion being investigated is not extreme. Assume that
measurements are available for two observation intervals in which the
workload intensities are IV and I®, respectively, and in which the
observed service demands at device k are DV and D?, respectively.
Assuming that variable overhead increases linearly with workload inten-
sity, an appropriate estimate for the service demand at device k for a new
workload intensity I’ is given by:

Dk(2) — Dk(l)]

D, = DV + (I'=11) x [m

Approximating the dependence of variable overhead on workload inten-
sity by more complex curves typically yields slightly greater accuracy,

308 Parameterization: Evolving Systems

particularly if workload intensity changes are large, but this gain may not
justify the added complexity.

Careful treatment of variable overhead is more difficult in multiple
class models. There are several issues involved:

® In the multiple class case, more observation intervals are necessary,
because the workload intensity now is. a vector. For example, if the
workload consists of two major components, interactive and batch, we
might consider four observation intervals: heavy batch and heavy
interactive, heavy batch and light interactive, light batch and heavy
interactive, and light batch and light interactive.

® Within each observation interval, it is difficult to attribute variable
overhead to the classes accurately, because of the inadequacy of meas-
urement tools. Techniques such as those described in Section 12.5
can be used.

® Where the single class case involved fitting a curve through some
points, the analogous procedure for the multiple class case with C
classes involves fitting a C-dimensional surface. Such multi-
dimensional surface fitting, however, is too complex to be justified
considering other limitations on the accuracy of this technique. In
almost all cases, a sequence of one-dimensional extrapolations based
on changes to one workload component at a time will suffice.

From the preceding discussion, it should be apparent that estimating
changes in variable overhead is difficult, and cannot be done with high
confidence. Consequently, it often is appropriate to evaluate the model
under both optimistic and pessimistic assumptions in order to assess the
importance of accurately estimating overhead in projecting performance.
For example, when memory size is increased, paging and swapping
activity typically are reduced. Because it is difficult to determine the
extent of this reduction, we might evaluate the model once assuming no
change in paging and swapping activity, and agam assummg that all paging
and swapping activity is eliminated.

13.5.2. Changes in I/O Service Times

Many modifications have the secondary effect of changing the seek,
transfer, and contention components of effective disk service time. The
contention component was considered in Chapter 10. Here we discuss
the others.

Relocating files from one disk to another can cause the seek patterns
to change on each disk. Typically, the average seek time will increase on
the disk to which the file is moved and will decrease on the other. If all
files do not have the same block size, then the average transfer times at
both disks also will be altered.

13.6. Case Studies 309

Similar considerations arise in such system modifications as increasing
the block size of a file or increasing the workload intensity of a class
(which can alter the seek pattern and change the average transfer time if
the class accesses some files particularly heavily).

13.6. Case Studies

In this section we describe three case studies conducted over a period
of several years on an evolving UNIVAC 1100 system running the Exec 8
operating system. Initially the system was configured as an 1100/41 (a
uniprocessor) with the following I/0O subsystem structure:

channel 0 1 FH-1782 drum
channel 1 1 FH-1782 drum
channel 2 4 tape drives
channel 3 8 8424 disk drives
channel 4 4 8433 disk drives

In each of the three case studies, synthetic benchmarks designed to
reflect actual workloads were used, and the same experimental procedure
was followed:

— The benchmark was run on the existing configuration and measure-
ments were taken with UNIVAC’s SIP (the Software Instrumenta-
tion Package).

— A baseline queueing network model was developed and validated.

— The model was modified to project the effect on performance of a
specific proposed change to the system.

— This change was implemented, and the benchmark was run again.

— The performance projected by the model was compared to the per-
formance measured on the modified system.

Note that this experimental procedure follows closely the modelling cycle
described in Section 2.2. It is this aspect that makes these three case stu-
dies particularly interesting in the context of the present chapter. On the
one hand, the parameter adjustments used to project performance occa-
sionally were somewhat simplistic, in that obvious secondary effects were
ignored. On the other hand, retrospective attempts were made to attri-
bute discrepancies between projections and measurements to specific
secondary effects. The sequence of case studies thus is a good example of
how lessons learned in one study can be used to improve the accuracy of
subsequent studies. In a production environment where decisions are
made after the performance projection step, there is a tendency to omit
the final two steps of the procedure outlined above. These steps are
important, however.

310 Parameterization: Evolving Systems

13.6.1. Moving to a Dual Processor

In the first study, a baseline model of a uniprocessor system (an
1100/41) was modified to project the performance of a dual processor sys-
tem (an 1100/42). The model contained a single class of batch type and
six service centers: one representing the CPU (or pair of CPUs) and five
representing the five I/0 channels of the system. The use of centers to
represent channels rather than disks differs from the approach suggested
in Chapter 10. This case study pre-dates that approach. Further, the
channels had considerably higher utilizations than the disks in this sys-
tem, and thus were thought to be the principal constraints on perfor-
mance. Also, reliable measurements of busy times were available for the
channels but not for the disks.

In this study six different benchmarks were used. After each bench-
mark was run on the uniprocessor system, measurement data was used to
parameterize the baseline model, as follows:

— The service demand at the CPU center was set to the CPU busy
time divided by the number of job completions.

— At the five centers representing the channels, the service demands
were set to the corresponding channel busy times divided by the
number of job completions. (Note that the seek component of disk
service times was not represented in this model.)

— SIP provided an estimate of multiprogramming level that was
known to be unreliable. Consequently, the value of NV was adjusted
until the throughput of the model exactly matched that of the sys-
tem.

The technique of establishing the value of some parameter according to
what yields the best results is called calibration. 1t should be avoided
unless legitimate uncertainty exists concerning the value of a single
parameter. :

This baseline model then was modified to reflect the addition of the
second CPU. This was done by replacing the CPU center with an FESC.
With one customer present, the FESC service rate was the same as that
of the uniprocessor. With two or more customers present, it was double
this value. That is:

1 n=1

Dcpy

wln) = | 2
-n>1

Dcpy

where Dcpy was the processor service demand in the baseline model.

13.6. Case Studies 311

benchmark — fhroughput

original | projected | actual error
1 48.2 53.8 48.0 + 12%
2 47.8 67.3 48.9 + 38%
3 48.9 55.0 50.9 + 8%
4 39.9 56.8 50.1 + 14%
5 33.7 47.0 45.9 + 2%
6 40.4 57.1 59.9 — 5%

Table 13.1 — Moving to a Dual Processor

Table 13.1 compares the projections of the model to the measured
performance after the second processor was added for each of the six
benchmarks. The error in projected throughput was 15% or less in five of
the six cases, but 5% or less in only two. This cannot be viewed as suc-
cessful, especially in light of the 38% discrepancy in the sixth case.

A retrospective analysis revealed that the CPU upgrade caused the
average multiprogramming level to drop substantially — to one half its
former value for four of the six benchmarks. This likely was the reason
for the counter-intuitive fact that the addition of the second processor
made essentially no difference in measured performance for the first three
benchmarks. Even with the benefit of hindsight, it was difficult to under-
stand why this drop in multiprogramming level occurred. (Conceivably it
was indicative of a shortcoming in the system’s job scheduler.) The
assumption that the multiprogramming level would not change with the
addition of the second processor played a substantial role in the optimistic
throughputs projected for five of the six benchmarks.

A second factor that contributed somewhat to the optimistic projec-
tions was that interference between the two processors was not taken into
account in determining the rates of the FESC. As was noted in Chapter
11, the full power of the second CPU is not realized in dual processor
systems; w(n) for n greater than one should have been set to a value less
than 2/Dcpu.

Finally, no change in the number of swaps per job was anticipated or
represented in modifying the model parameter values. In fact, the
number of swaps per job decreased, possibly due to the reduced multipro-
gramming level. This meant that the average number of visits made by a
job to channel 1 (the location of the swapping drum) decreased, and also
that the average service time per visit was reduced (because swapping
operations had much higher average service times than did user I/0
operations at this device). This effect was not large, and was more than
offset by the other, optimistic discrepancies.

312 Parameterization: Evolving Systems

13.6.2. Altering File Placement

The second case study was an investigation of the effect of balancing
the load across channels by altering the placement of user files. By the
time of this study, the configuration had evolved somewhat. Specifically,
the disk channels had been converted to ‘‘dual channels’: two disks on
the same dual channel could be active (in any phase, even data transfer)
simultaneously. Thus, performance measures of the two studies are not
directly comparable.

The model employed was similar to that used in the first study. Once
again, there was a single class of batch type. Again, an FESC was used to
model the dual processor of the UNIVAC 1100/42 configuration. The
other centers in the model corresponded to channels. Each of the dual
channels was modelled as an FESC that behaved similarly to the FESC
used to represent the dual processor CPU.

A single benchmark was run on the system with the original assign-
ment of user files to devices. Data from both SIP and UNIVAC
IOTRACE was used to parameterize the baseline model. (IOTRACE
reported the channel busy time due to accesses of each individual file.)
Most of the model parameters were established in conventional ways.
The centers representing the dual channels required special attention,
however. One channel in each pair was the primary and was used when-
ever available. The other was the secondary and was used only when
necessary. The service rates of each FESC were calculated as:

Cprim

B n=1

prim
pln) = . c
prim + sec
=t 53— >l
prim B sec

where prim and sec denote the primary and secondary channels of the
pair, C; is the measured number of operations on channel k, and B, is
the measured busy time of channel k. (Note that this calculation ignores
the fact that the secondary channel is blocked if the request it is serving
happens to access the same disk as the request being served by the pri-
mary channel.) Once again it was necessary to determine the multipro-
gramming level N by calibrating on throughput.

User files accounted for only 30% of the measured I/0 accesses. The
other 70% of the accesses were to system files whose placement was con-
sidered fixed in this experiment. Two alterations in the existing place-
ment of user files were considered:

13.6. Case Studies 313

® Place all user files on the 8433 disks associated with channel 4. A
careful analysis indicated that this would result in the greatest perfor-
mance improvement — a ‘‘best case’’ scenario.

® Place all user files on devices attached to the most heavily utilized
channel. It was believed that this would result in the greatest perfor-
mance degradation — a ‘“‘worst case’’ included for comparison.

The parameters of the baseline model were adjusted to represent each of
these file placements, using techniques similar to those suggested earlier
in this chapter. After model projections were obtained for each case, the
files actually were moved, and the benchmark was run again for each
case.

case | quantity | original | projected | actual pi;}:g tign

best Ucpy 843 .888 881 +0.8%
X 79.5 86.7 84.5 +2.6%

worst Ucpy .843 762 .640 +19.1%
X 79.5 68.0 59.6 +14.1%

Table 13.2 — Altering File Placement

The results for both cases are shown in Table 13.2. The last column
indicates the error in the projection relative to the observed value. The
results show that throughput for the best placement of user files, which
account for only 30% of I/O accesses, is roughly 5% greater than for the
existing placement, and roughly 35% greater than for the worst place-
ment. The accuracy of the model for the best placement is quite good,
while for the worst placement it is acceptable but not good.

Retrospectively, it was observed that the major source of error was the
fact that the model ignored changes in swapping behavior that accom-
panied the alterations in file placement. The worst case scenario caused
many user files to be located on the drum containing the swap data set.
Swap operations took longer, the CPU was left idle more often (because
jobs were not available for service while being swapped), the scheduler
activated more jobs to try to keep the CPU busy, and swapping (and the
associated channel congestion) increased. The model, which assumed
that swapping would be unaffected, underestimated the deterioration in
performance. (The best placement caused some files to be removed from
the swapping drum, leading to some reduction in swapping, but the effect
was not significant.)

314 Parameterization: Evolving Systems

13.6.3. Moving Swapping Activity from Drum to Disk

A third study of the same system considered the effect of moving
swapping activity from drum to disk. The disks were under-utilized rela-
tive to the drums, and their newer technology and dual channel capability
made them competitive in terms of performance. By moving swapping
activity to disk, the drums could be used for temporary data sets,
accessed frequently during their short lifetimes.

In constructing the baseline model, additional detail in the representa-
tion of the I/O subsystem was incorporated. Centers were included to
represent each disk, in addition to the FESCs representing the two dual
channels. So that no component of I/O service demand would be dupli-
cated at the disk and channel centers, the disk centers represented only
seek times, while the channel centers represented latency and transfer
times. Because this approach tends to yield optimistic results (in the
model, one customer’s seek activity at a disk can be overlapped with
another customer’s latency and transfer activity at the same disk), the
disk centers were represented as FESCs whose service rates decreased
when more than one customer was present.

Remembering the lessons from the first two studies, thought was
given to examining both primary and secondary effects of the proposed
modification. The procedure used to adjust the parameters of the base-
line model to reflect the movement of swapping from drum to disk was
iterative in nature:

— Assume initially that the level of swapping activity will remain
unchanged after the modification.

— Knowing that the operating system tends to place temporary files
on faster devices, estimate the visit counts at drums and disks that
would result from moving all swapping activity to disk.

— Knowing the files placed on each device, the relative access fre-
quencies to files, and the average transfer size for each file, adjust
the service demands at the centers representing the drums, and the
service rates at the FESCs representing the disks and dual chan-
nels.

— Evaluate the model.

— Use an empirically derived relationship between throughput, mul-
tiprogramming level, and swapping activity to estimate the change
in the level of swapping activity resulting from the modification.

— Return to the second step, iterating until convergence is achieved.

As in the two earlier case studies, the change to the system was imple-
mented and the benchmark was run once again. Table 13.3 displays the
results. This experiment was successful in producing usefully accurate
performance projections.

13.7. Summary 315

quantity original | projected | actual pi;;gzt;::n
CPU utilization .609 665 679 —2.1%
CPU queue length 1.08 1.32 1.39 — 5.0%
throughput 101 115 121 — 5.0%

Table 13.3 — Moving Swapping Activity from Drum to Disk

13.7. Summary

The principal value of a validated queueing network model of a base-
line system is its utility as a basis for performance projection. In this
chapter we have indicated, through discussion and example, how to
modify the parameters of a baseline model to represent various common
changes to the workload, to the hardware, and to the system software and
operating policies.

A key point to keep in mind in conducting a modification analysis,
especially as part of a study in which a large number of alternatives must
be considered, is the need to identify those effects of the modification
that are primary, and those that are secondary.

Primary effects typically are easy to anticipate and to represent. In the
early stages of a study, alternatives can be compared on the basis of their
primary effects alone.

Secondary effects typically are less easy to anticipate, and even once
anticipated, less easy to quantify and represent. Several approaches can
be adopted:

® Extreme assumptions can be evaluated; for example, the addition of
memory at worst leaves swapping unaffected, and at best eliminates it.

® A more careful estimate of secondary effects can be made, based on
measurements from several observation intervals.

® A sensitivity analysis can be used to assess the extent to which the
projections of a model depend upon the assumptions that have been
made.

We have tried to indicate the importance of the ‘‘verification phase”
of the modelling cycle, described in Chapter 2. Expertise and confidence
in conducting modification analyses is best acquired by learning from
prior modelling experiences.

316 Parameterization: Evolving Systems

13.8. References

There have been a number of case studies in which a baseline model
was constructed, performance projections were obtained, and the accuracy
of these projections was checked after the system had been modified.
The three studies described in Section 13.6 all were carried out at the
University of Maryland, using facilities available at the computer center
there. The study of moving to a dual processor was conducted by
Dowdy, Agrawala, Gordon, and Tripathi [1979]. The study of altering
file placement was conducted by Dowdy and Budd [1982]. The study of
moving swapping activity from drum to disk was conducted by Dowdy
and Breitenlohner [1981]. ’ - '

Several similar studies from production environments were reviewed
in Chapter 2: by Lo [1980] on the effect of reallocating workloads among
systems in a multiple mainframe environment, and by Lazowska [1980]
and Sevcik, Graham, and Zahorjan [1980] on evaluating various candidate
systems for specified applications.

There are several related papers that we have not discussed
specifically. Tibbs and Kelly use quadratic fits obtained by non-linear
regression to forecast the change in overhead in doing performance pro-
jections for a UNIVAC 1100 [Tibbs & Kelly 1982]. Bard [1978] describes
a performance projection tool for systems running IBM’s VM/370 operat-
ing system. Buzen presents a queueing network model of systems run-
ning IBM’s MVS operating system, which includes the effects of shared
memory domains and performance periods [Buzen 1978]. Models of
DECsystem-10 systems running TOPS-10 have been described by Saxton
and Lamont [1978] and by Sanguinetti and Billington [1980]. Dowdy,
Stephens, and Perez-Davila [Dowdy et al. 1982] have done a study of
performance projection in a UNIX environment, in which the treatment
of memory management was the principal issue.

In the realm of workload forecasting, Artis proposes a way of estimat-
ing what the workload of a system would be if sufficient capacity were
provided to handle it [Artis 1981]. Cooper [1980] describes an approach
to capacity planning in an organization, which integrates business plan-
ning forecasts with the use of models of computer system performance.

[Artis 1981]
H. Pat Artis. Estimating Latent Demand for Random Arrival Batch
Workloads. Computer Performance 2,1 (March 1981), 26-29.

13.8. References 317

[Bard 1978]
Y. Bard. The VM/370 Performance Predictor. Computing Surveys 10,3
(September 1978), 333-342.

[Buzen 1978]
Jeffrey P. Buzen. A Queueing Network Model of MVS. Computing
Surveys 10,3 (September 1978), 319-331.

[Cooper 1980]
J.C. Cooper. A Capacity Planning Methodology. IBM Systeins Journal
19,1 (1980), 28-45.

[Dowdy & Breitenlohner 1981]
Lawrence W. Dowdy and Hans J. Breitenlohner. A Model of Univac
1100/42 Swapping. Proc. ACM SIGMETRICS Conference on Measure-
ment and Modeling of Computer Systems (1981), 36-47. Copyright ©
1981 by the Association for Computing Machinery.

[Dowdy & Budd 1982]
Lawrence W. Dowdy and Rosemary M. Budd. File Placement Using
Predictive Queueing Models. In R.L. Disney and T.J. Ott (eds.),
Applied Probability - Computer Science: The Interface, Vol. 1I. Bir-
khauser, 1982, 459-476.

[Dowdy et al. 1979]
Lawrence W. Dowdy, Ashok K. Agrawala, Karen D. Gordon, and Sat-
ish K. Tripathi. Computer Performance Prediction via Analytical
Modeling — An Experiment. Proc. ACM SIGMETRICS Conference on
Simulation, Measurement and Modeling of Computer Systems (1979),
13-18. Copyright © 1979 by the Association for Computing
Machinery.

[Dowdy et al. 1982]
Lawrence W. Dowdy, Lindsey E. Stephens, and Alfredo Perez-Davila.
Performance Prediction in a UNIX Environment. Proc. 18th CPEUG
Meeting (1982), 205-211.

[Lazowska 1980]
Edward D. Lazowska. The Use of Analytic Modelling in System
Selection. Proc. CMG XI International Conference (1980), 63-69.

[Lo 1980] ' ’
T.L. Lo. Computer Capacity Planning Using Queueing Network
Models. Proc. IFIP W.G.7.3 International Symposium on Computer Per-
formance Modelling, Measurement, and Evaluation (1980), 145-152.

318 Parameterization: Evolving Systems

[Sanguinetti & Billington 1980]
John Sanguinetti and Richard Billington. A Multi-Class Queueing
Network Model Of An Interactive System. Proc. CMG XI International
Conference (1980), 50-55.

[Saxton & Lamont 1978]
Harold E. Saxton and Gary B. Lamont. Validation of a DEC-10
Closed Queueing Network Model. Proc. CMG IX International Confer-
ence (1978), 143-151.

[Sevcik et al. 1980]
K.C. Sevcik, G.S. Graham, and J. Zahorjan. Configuration and Capa-
city Planning in a Distributed Processing System. Proc. 16th CPEUG
Meeting (1980), 165-171.

[Tibbs & Kelly 1982] /
Richard W. Tibbs and John C. Kelly. The Application of Analytic and

Simulation Models to Size a Large Computer System. Proc. I8th
CPEUG Meeting (1982), 231-257.

13.9. Exercises

1. Expand on Exercise 1 of Chapter 12. For each of the case studies,
indicate how the model you proposed could be modified to represent
the primary effects of the system change being investigated. In addi-
tion, consider what secondary effects should be represented.

2. A group of files are stored on a disk and a drum with service times of
30 and 10 milliseconds per access, respectively. Currently, the service
demands at the disk and drum are 6 and 3 seconds, respectively. Con-
sider each of the following scenarios for changing the system:

a. Knowing the relative access counts for the files, indicate how you
would relocate files in order to balance the demand on the two dev-
ices.

b. If the disk were replaced by a second drum, and the demand were
balanced across the two devices, what would the service demand at
each be?

c. If all files on the disk were moved to a solid state drum with a ser-
vice time of 2 milliseconds per access, what would be the resulting
service demand?

3. Consider a system with a single batch class in which each customer
has a CPU service demand of 30 seconds and does 1000 I/O opera-
tions involving a total of four files: 400 accesses to file W, 300 to file
X, 200 to file Y, and 100 to file Z. The files can be placed on three
I/0 devices with service times per access of 10 milliseconds at device

13.9. Exercises 319

1, 30 milliseconds at device 2, and 50 milliseconds at device 3. Using
a single class queueing network solution package such as the one pro-
vided in Chapter 18, determine how to assign the files to the storage
devices to maximize throughput, for each of the following situations:

a. Multiprogramming level is 1.
b. Multiprogramming level is 4.
¢. Multiprogramming level is 12.

(Assume that each device has sufficient capacity to accommodate
whatever files you choose to assign there.)

4. Three observation intervals yield the following information:

measurement interval

quantity 1 2 3
jobs completed 600 800 500
CPU busy time 14400 20800 11500
multiprogramming level 4 6 3

In projecting performance for a multiprogramming level of 10, what
service demand should be used to reflect a simple linear model of
variable overhead?

5. Suppose that you had two single class models, one open and one
closed. Suppose that these models were ‘‘equivalent’ in the sense
that they had identical service centers, identical service demands, and
identical throughputs and utilizations.

a. Would you expect these models to have identical queue lengths
and residence times? Why or why not?

b. If you were to modify the open model by doubling the arrival rate
and the closed model by doubling the population, how would you
expect the changes in performance measures to differ between the
two models?

c. Doubling the arrival rate of an open model and doubling the popu-
lation of a closed model correspond to two very different
‘‘scenarios’’ about the future of a system. State the system change
that is addressed by each of these modifications.

Chapter 14

Proposed Systems

14.1. Introduction

The preceding two chapters have discussed the parameterization of
queueing network models of existing systems and evolving systems. In
this chapter we consider models of proposed systems: major new systems
and subsystems that are undergoing design and implementation.

The process of design and implementation involves continual tradeoffs
between cost and performance. Quantifying the performance implications
of various alternatives is central to this process. It also is extremely chal-
lenging. In the case of existing systems, measurement data is available.
In the case of evolving systems, contemplated modifications often are
straightforward (e.g., a new CPU within a product line), and limited
experimentation may be possible in validating a baseline model. In the
case of proposed systems, these advantages do not exist. For this reason,
it is tempting to rely on seat-of-the-pants performance projections, which
all too often prove to be significantly in error. The consequences can be
serious, for performance, like reliability, is best designed in, rather than
added on.

Recently, progress has been made in evolving a general framework for
projecting the performance of proposed systems. There has been a
confluence of ideas from software engineering and performance evalua-
tion, with queueing network models playing a central role. The purpose
of this chapter is to present the elements of this framework. In Section
14.2 we review some early efforts. In Section 14.3 we discuss, in a gen-
eral setting, some of the components necessary to achieve a good under-
standing of the performance of a proposed system. In Section 14.4 we
describe two specific approaches.

320

14.2. Background 321

14.2. Background

User satisfaction with a new application system depends to a significant
extent on the system’s ability to deliver performance that is acceptable
and consistent. In this section we describe several early attempts at
assessing the performance of large systems during the design stage. Some
common themes will be evident; these will be discussed in the next sec-
tion.

In the mid 1960s, GECOS III was being designed by General Electric
as an integrated batch and timesharing system. After the initial design
was complete, two activities began in parallel: one team began the imple-
mentation, while another developed a simulation model to project the
effects of subsequent design and implementation decisions.

The simulation modelling team came out second best. The model was
not debugged until several months after a skeletal version of the actual
system was operational. Thus, many of the design questions that might
have been answered by the model were answered instead by the system.
The model could not be kept current. The projections of the model were
not trusted, because the system designers lacked confidence in the simu-
lation methodology.

This attempt to understand the interactions among design decisions
throughout the project lifetime failed. Other attempts have been more
successful.

In the late 1960s, TSO was being developed as a timesharing subsys-
tem for IBM’s batch-oriented MVT operating system. During final design
and initial implementation of the final system, an earlier prototype was
measured in a test environment, and a queueing network model was
parameterized from these measurements and from detailed specifications
of the final design.

The average response time projected by the model was significantly
lower than that measured for prototype. However, the design team had
confidence in the model because a similar one had been used successfully
for MIT’s CTSS system (see Section 6.3.1). The team checked the proto-
type for conformance with specifications and detected a discrepancy: the
scheduler had been implemented with an unnecessary locking mechanism
that created a software bottleneck. When this was corrected, the projec-
tions of the model and the behavior of the prototype were compatible.

322 Parameterization: Proposed Systems

In the early 1970s, MVS was being designed and developed as a
batch-oriented operating system for IBM’s new family of virtual memory
machines. A simulation model was developed for an early version of this
system, OS/VS2 Release 2. The model’s purpose was to provide perfor-
mance information for system designers.

Model wvalidation was a problem. In the design stage, key model
parameters were represented only as ranges of values. Performance pro-
jections were checked for reasonableness, to ensure that the model
represented the functional flow of work through the system. This type of
sensitivity analysis compensated for the lack of precise parameter values.
The system was changing constantly during design and implementation.
To reduce this problem, the model builders maintained a close working
relationship with the system designers and implementors.

This modelling effort was considered to be a success, because several
of its recommendations had direct, beneficial effects on the design of the
system.

In the mid 1970s, the Advanced Logistics System (ALS) was under
development for the U.S. Air Force. After the design was completed,
during initial implementation, a modelling study was undertaken to deter-
mine the bottlenecks in the design and to recommend alternate designs
yielding better performance. Hierarchical modelling, as described in
Chapter 8, was applied. Four major subsystems were identified in ALS:
CPU and memory, system disks, database disks, and tapes. A hierarchi-
cal model was structured along these lines, dividing the modelling task
into manageable components. Parameter values came from a combina-
tion of measurements and detailed specifications.

Both analytic and simulation solutions of the model were obtained.
Most ALS features could be captured in the analytic solution. Simulation
was used to validate the analytic results and to explore certain system
characteristics in more detail.

The modelling study predicted that as the workload. increased, the first
bottleneck would be encountered in the system disk subsystem, and the
next in the CPU and memory subsystem. Both predictions were verified
in early production operation. Thus, the study was judged a success.

Each successful project that we have described used a different under-
lying approach: an analytic model for TSO, a simulation model for MVS,
and hierarchical analytic and simulation models for ALS. However, these
projects shared a number of underlying principles. In the next section,
we include these and other principles in a general framework for studying
the performance of proposed systems.

14.3. A General Framework 323

14.3. A General Framework

Unfortunately, it is not common to attempt to quantify the perfor-
mance of proposed systems. There are two major reasons for this:

® Manpower devoted to performance projection is viewed as manpower
that otherwise could be devoted to writing code and delivering the sys-
tem on time.

® There is no widely accepted approach to integrating performance pro-
jections with a system design project.

The first of these points is rendered invalid by the false sense of economy
on which it is based: the implications of misguided design decisions for
the ultimate cost of a system can be enormous. The second of these
points is becoming less significant as aspects of a general framework begin
to emerge. These are the subject of the present section.

14.3.1. The Approach

Performance is not the domain of a single group. Thus, performance
projection is best done in a team environment, with representation from
groups such as intended users, software designers, software implemen-
tors, configuration planners, and performance analysts. By analogy to
software engineering, the team would begin its task by conducting a per-
JSormance walkthrough of a proposed design. A typical walkthrough would
consist of the following steps:

— The intended users would describe anticipated patterns of use of
the system. In queueing network modelling terms, they would
identify the workload components, and the workload intensities of
the various components.

— The software designers would identify, for a selected subset of the
workload components, the path through the software modules of
the system that would be followed in processing each component:
which modules would be invoked, and how frequently.

— The software implementors would specify the resource require-
ments for each module in system-independent terms: software
path lengths, I/0 volume, etc.

— The configuration plannerss would translate these system-
independent resource requirements into configuration-dependent
terms.

— The performance analysts would synthesize the results of this pro-
cess, constructing a queueing network model of the system.

324 Parameterization: Proposed Systems

Various parts of this process would be repeated as the performance
analysts seek additional information, as the design evolves, and as the
results of the analysis indicate specific areas of concern. An important
aspect of any tool embodying this approach is the support that it provides
for this sort of iteration and successive refinement.

It should be clear that what has been outlined is a methodical
approach to obtaining queueing network model inputs, an approach that
could be of value in any modelling study, not just an evaluation of a pro-
posed system. (For example, see the case study in Section 2.4.)

It also should be clear that this approach, since it forces meaningful
communication between various ‘‘interested parties’’, can be a valuable
aid in software project management.

14.3.2. An Example

Here is a simple example that illustrates the application of this general
approach. A store-and-forward computer communication network is
being designed. Our objective is to project the performance of this net-
work, given information about the planned usage, the software design,
and the supporting hardware.

The topology (star) and the protocol (polling) of the network are
known. The system is to support three kinds of messages: STORE,
FORWARD, and FLASH. From the functional specifications, the arrival
rate, priority, and response time requirement of each message type can be
obtained. Each message type has different characteristics and represents a
non-trivial portion of the workload, so it is natural to view each as a
separate workload component and to assign each to a different class.
Given knowledge of the intended protocol, a fourth class is formulated,
representing polling overhead. Further refinements of this class structure
are possible during project evolution.

The software specifications for each class are imprecise in the initial
stages. Only high-level information about software functionality, flow of
control, and processing requirements are available. A gross estimate of
CPU and I/0 resource requirements for each class is obtained. The CPU
requirement specifies an estimated number of instructions for each mes-
sage of the type, and an estimated number of logical I/O operations. For
STORE messages, as an example, the I/O consists of a read to an index
to locate the message storage area, a write to store the message, and a
write to update the index. No indication is given here about file place-
ments or device characteristics. Instead, the logical properties of the
software are emphasized, to serve as a basis for further refinement when
the software design becomes more mature.

14.3. A General Framework 325

Physical device characteristics are identified: speed, capacity, file
placement, etc. A CPU is characterized by its MIPS rate and its number
of processors. A disk is characterized by its capacity, average seek time,
rotation time, transfer rate, and the assignment of files to it. From con-
sideration of the software specifications and the device characteristics, ser-
vice demands can be estimated. As a simple example, a software
designer may estimate 60,000 CPU instructions for a STORE message,
and a hardware configuration analyst may estimate a CPU MIPS rate of
.40. This leads to a STORE service demand for the CPU of .15 seconds.
This admittedly is a crude estimate, but it serves as a basis, and more
detail can be incorporated subsequently.

At this point, a queueing network model of the design, incorporating
classes, devices, and service demands, can be constructed and evaluated
to give an initial assessment of performance. Alternatives can be
evaluated to determine their effect on performance. Sensitivity analyses
can be used to identify potential trouble spots, even at this early stage of
the project.

One of the strengths of this approach is the ability to handle easily
changes in the workload, software, and hardware. In the example, no
internal module flow of control was specified and processing requirements
were gross approximations. As the design progresses, the individual
modules begin to acquire a finer structure, as reflected in Figure 14.1.
This can be reflected by modifying the software specifications. This struc-
ture acquires multiple levels of detail as the design matures. The sub-
modules at the leaves of the tree represent detailed information about a
particular operation; the software designer has more confidence in the
resource estimates specified for these types of modules. The total
resource requirements for a workload are found by appropriately sum-
ming the resource requirements at the various levels in the detailed
module structure. Software specifications thus can be updated as more
information becomes available.

The important features we have illustrated in this example include the
identification of workload, software, and hardware at the appropriate level
of detail, the transformation of these high-level components into queue-
ing network model parameters, and the ability to represent changes in the
basic components.

14.3.3. Other Considerations

The design stage of a proposed system has received most of our atten-
tion. This is where the greatest leverage exists to change plans. How-
ever, it is important to continue the performance projection effort during
the life of the project. Implementation, testing, and

326 Parameterization: Proposed Systems

FETCH-INDEX \

DETERMINE-MSG-DESTINATION

STORE

WRITE-MSG [

STORE-MSG

UPDATE-INDEX |

WRITE-INDEX |

FETCH-INDEX \

DETERMINE-MSG-DESTINATION

WRITE-MSG |

FLASH STORE-MSG

UPDATE-~INDEX]

ALERT-DESTINATION ,

WRITE~INDEX l

DETERMINE-MSG-DESTINATION l

FETCH-INDEX l

FORWARD

FORWARD-MSG READ-MSGS J

UPDATE-INDEX }

WRITE-INDEX l

Figure 14.1 — Refinement of Software Specifications

maintenance/evolution follow design. Estimates indicate that the largest

proportion of the cost of software comes from the maintenance/evolution
stage.

Given the desirability of tracking performance over the software life-
time, it is useful to maintain a repository of current information about
important aspects of the project (e.g., procedure structure within software
modules). If the repository is automated in database form, software
designers and implementors are more likely to keep it current.

A prerequisite for the success of the approach we have outlined is that
management be prepared to listen to the recommendations rather than
adopting an expedient approach. Budgeting time and manpower for per-
formance projection may lengthen the development schedule somewhat,
but the benefits can be significant.

14.4. Tools and Techniques 327

A final important factor is the ability to turn this general framework
into specific working strategies. In the next section, we describe two
recent tools that are examples of attempts to do so.

14.4. Tools and Techniques

14.4.1. CRYSTAL

CRYSTAL is a software package developed in the late 1970s to facili-
tate the performance modelling of proposed and evolving application sys-
tems.

A CRYSTAL user describes a system in three components: the
module specification, the workload specification, and the configuration
specification. These specifications are inter-related, and are developed in
parallel. They are stated in a high-level system description language.

® The module specification describes the CPU and I/O requirements of
each software module of the system in machine-independent terms:
path lengths for the CPU, and operation counts to various files for
I/0.

® The workload specification identifies the various components of the
workload, and, for each component, gives its type (i.e., transaction,
batch, or terminal), its workload intensity, and the modules that it
uses. -

® The configuration specification states the characteristics of hardware
devices and of files.

From these specifications, CRYSTAL calculates queueing network model
inputs. These are supplied to an internal queueing network evaluation
algorithm, which calculates performance measures.

We illustrate some of the important aspects of CRYSTAL by describ-
ing its use in modelling a proposed application software system. An
insurance company is replacing its claims processing system. CRYSTAL
is used to determine the most cost-effective equipment configuration to
support the application.

As a first step, the workload components are identified in the work-
load specification. Many functions are planned for the proposed system,
but the analyst determines that five will account for more than 80% of the
transactions. These include, for example, Claims Registration. (This
information comes from administrative records.)

Since the planning of this system is in its preliminary stages, it is not
possible to say with certainty how the system will be structured into
modules. The analyst decides initially to define one module

328 Parameterization: Proposed Systems

corresponding to each of the five workload components. This informa-
tion is represented in both the workload and the module specification.
(Naturally, this is an area where the appropriate level of detail will vary as
knowledge of the system evolves.)

For each module, resource requirements are stated in the module
specification. The units of CPU usage are instructions executed. There
are two components: application path length and support system path
length. In the case of the example, benchmarks of similar modules
currently in use provide information for application path length. Where
no benchmark exists, the logical flow of the software is used to provide
estimates. For support system path length, major system routines are
examined in detail to provide estimates; some benchmarks also are done.
The units of I/O usage are number of physical I/O operations. The
analyst determines these, beginning from a logical view of each module,
and taking into account the file structure to be used.

The major application files and their sizes are part of the configuration
specification. (These files correspond to those referred to in the I/0 com-
ponent of the module specification.) Initially, a simple file structure is
proposed, but eventually file indices and database software will be intro-
duced. In addition, a series of entries describe the devices of the system,
e.g., for a disk, its transfer rate, seek time, rotation time, and a list of its
files. ’

When the system description is complete, CRYSTAL can calculate
queueing network model inputs and obtain performance measures. For
example, response times can be projected for the baseline transaction
volume and hardware configuration. If the results are satisfactory when
compared to the response time requirement stipulated for the application,
projections can be obtained for increased transaction volume by adjusting
the arrival rates of the relevant workloads in the workload specification.
Hardware alternatives can be investigated in a similar manner.

This concludes our description of CRYSTAL. The major activities in
using this tool are completing the module specification, the workload
specification, and the configuration specification. The study described
here occurred during the initial stages of a project. As noted before,
additional benefits would arise if the study were extended through the
lifetime of the project. Better resource estimates would be available from
module implementation, and the ability of the configuration to meet the
response time requirement could be re-evaluated periodically.

14.4. Tools and Techniques 329

14.4.2. ADEPT

The second technique to be discussed is ADEPT (A Design-based
Evaluation and Prediction Technique), developed in the late 1970s.

Using ADEPT, resource requirements are specified both as average
values and as maximum (upper bound) values. The project design is
likely to be suitable if the performance specifications are satisfied for the
upper bounds. Sensitivity analyses can show the system components for
which more accurate resource requirements must be specified. These
components should be implemented first, to provide early feedback and
allow more accurate forecasts.

The software structure of the proposed application is determined
through performance walkthroughs and is described using a graph
representation, with software components represented as nodes, and links
between these components represented as arcs. Because the software
design usually results from a top-down successive refinement process,
these graphs are tree-structured, with greater detail towards the leaves.
An example is found in Figure 14.2, where three design levels are shown.
Each component that is not further decomposed has a CPU time estimate
and a number of I/O accesses associated with it.

The graphs are analyzed to determine elapsed time and resource
requirements for the entire design by a bottom-up procedure. The time
and resource requirements of the leaf nodes are used to calculate the
requirements of the nodes one level up, and so on up to the root node.
A static analysis, assuming no interference between modules, is per-
formed to derive best case, average case, and worst case behavior. The
visual nature of the execution graphs can help to point out design optimi-
zations, such as moving invariant components out of loops.

Additional techniques handle other software and hardware characteris-
tics introduced as the design matures. These characteristics include data
dependencies (for which counting parameters are introduced), competi-
tion for resources (for which queueing network analysis software is used),
and concurrent processing (in which locking and synchronization are
important).

ADEPT was used to project the performance of a database component
of a proposed CAD/CAM system. Only preliminary design specifications
were available, including a high-level description of the major functional
modules. "A small example from that study will be discussed. A transac-
tion builds a list of record occurrences that satisfy given qualifications,
and returns the first qualified occurrences to the user at a terminal. It

330

Top level:
QUERY

Query
parser

message

DB control
system

A

LOCATE
descriptive
data

Retrieve
descriptive
data

y

FETCH
internal
parts

y

Send info
to user

Parameterization: Proposed Systems

Second level:
FETCH
internal parts

&

LOCATE
subassembly ¢

Third level:
LOCATE
subassembly

Access
module (AM)

Retrieve
subassembly i

)

Read
addresses

Sort
lists

LOCATE
pieces j of
subassembly ¢

\

Write
scratch
file

Retrieve
piece j

y

LOCATE
parts k
of piece j

L

Retrieve
part k

Figure 14.2 — Example Execution Graphs

14.4. Tools and Techniques 331

issues FIND FIRST commands to qualify record occurrences and FIND
NEXT commands to return the occurrences. The execution graphs for
the FIND commands have the structure shown in Figure 14.3.

The performance goal for processing this transaction was an average
response time of under 5 seconds, when the computing environment was
a Cyber 170 computer running the NOS operating system. A perfor-
mance walkthrough produced a typical usage scenario from an engineer-
ing user and descriptions of the processing steps for the FIND commands
from a software designer. Resource estimates for the transaction com-
ponents were based on the walkthrough information. Many optimistic
assumptions were made, but the best case response time was predicted to
be 6.1 seconds, not meeting the goal (see Figure 14.3). About 43% of
this elapsed time (2.6 seconds) was actual CPU requirement. Thus, it
was clear at the design stage that response times would be unacceptably
long because of excessive CPU requirements.

CPU 1/Os Elapsed
(secs) (secs)

Fetch first rec | where ,
assembly =43120 0.488 27 1.514

\

Fetch first rec 2 where
assembly = 43120 0.488 27 1.514

¥

Fetch first rec 3 where .
assembly = 43120 0.488 27 1314

[Fetch next rec 1 l 0.116 1 0.154

- Average 0.116 1 0.154

| Fetohnextrc2 | Total 0.464 4 0.616
Fetch next rec 3 " Average 0.116 1 0.154

. Total 0.580 i . 0.770

2.624 91 6.082

Figure 14.3 — Transaction Steps and Projections

332 Parameterization: Proposed Systems

The application system has been implemented. Although actual
parameter values were different in the running system than in the design,
CPU bottlenecking still was present, more than a year after it was
predicted. This demonstrates the success of the ADEPT approach. (The
specific corrective advice provided by the performance analysts using
ADEPT was not acted on, because it would have caused slippage in the
‘delivery schedule for the system. However, the performance problems
that arose resulted in delay and dissatisfaction anyway.)

This study shows that it is possible to predict with reasonable accuracy
resource usage patterns and system performance of a large software sys-
tem in the early design stage, before code is written. It also is possible to
achieve these benefits without incurring significant personnel costs. This
example was part of a project staffed by a half-time performance analyst
and took approximately one person-month of work.

14.5. Summary

The process of design and implementation involves continual tradeoffs
between cost and performance. Quantifying the performance implications
of various alternatives is central to this process. Because doing so is chal-
lenging and requires resources, it is tempting to rely on seat-of-the-pants
performance projections. The consequences of doing so can be serious,
for user satisfaction with a system depends to a significant extent on the
system’s ability to deliver acceptable performance.

We began this chapter with a description of several early experiences
in projecting the performance of proposed systems. We then discussed
various aspects of a general approach to the problem. Finally, we studied
two recent attempts to devise and support this general approach. We
noted that projecting the performance of proposed systems requires a
methodical approach to obtaining queueing network model inputs, an
approach that could be of value in any modelling study. We also noted
that the process of performance projection can be a valuable project
management aid, because it serves to structure and focus communication
among various members of the project team.

14.6. References

The early attempts at projecting the performance of proposed systems,
discussed in Section 14.2, were directed not towards devising general
approaches, but rather towards addressing the particular problems of
specific systems. The study of GECOS III was described by Campbell and

14.6. References 333

Heffner [1968]. The study of TSO was described by Lassettre and Scherr
[1972]. The study of OS/VS2 Release 2 was described by Beretvas
[1974]. The study of ALS was described by Browne et al. [1975]. A
good summary of these attempts appears in [Weleschuk 1981].

We have described two recent attempts at devising and supporting
general approaches. CRYSTAL was developed by BGS Systems, Inc.
[BGS 1982a, 1982b, 1983]. The examples in Sections 14.3.2 and 14.4.1
come from internal BGS Systems reports, as does Figure 14.1. ADEPT
was developed by Connie U. Smith and J.C. Browne. The case study in
14.4.2 was conducted by Smith and Browne [1982]; Figure 14.3 comes
from this paper. Other good sources on ADEPT include [Smith 1981]
(the source of Figure 14.2), and [Smith & Browne 1983].

[Beretvas 1974]
T. Beretvas. A Simulation Model Representing the OS/VS2 Release 2
Control Program. Lecture Notes in Computer Science 16. Springer-
Verlag, 1974, 15-29.

[BGS 1982a]
CRYSTAL/IMS Modeling Support Library User’s Guide. BGS Systems,
Inc., Waltham, MA, 1982.

[BGS 1982b]
CRYSTAL/CICS Modeling Support Library User’s Guide. BGS Systems,
Inc., Waltham, MA, 1982.

[BGS 1983]
CRYSTAL Release 2.0 User’s Guide. BGS Systems, Inc., Waltham,
MA, 1983.

[Browne et al. 1975]
J.C. Browne, K.M. Chandy, R.M. Brown, T.W. Keller, D.F. Towsley,
and C.W, Dissley. Hierarchical Techniques for Development of Real-
istic Models of Complex Computer Systems. Proc. IEEE 63,4 (June
1975), 966-975.

[Campbell & Heffner 1968]
D.J. Campbell and W.J. Heffner. Measurement and Analysis of Large
Operating Systems During System Development. 1968 Fall Joint Com-
puter Conference Proceedings, AFIPS Volume 37 (1968), AFIPS Press,
903-914.

[Lassettre & Scherr 1972]
Edwin R. Lassettre and Allan L. Scherr. Modeling the Performance of
the 0S/360 Time-Sharing Option (TSO). In Walter Freiberger (ed.),

Statistical Computer Performance Evaluation. Academic Press, 1972,
57-72.

334 ‘Parameterization: Proposed Systems

[Smith 1981]
Connie Smith. Increasing Information Systems Productivity by
Software Performance Engineering. Proc. CMG XII International
Conference (1981).

[Smith & Browne 1982] , o
Connie Smith and J.C. Browne. Performance Engineering of Software
Systems: A Case Study. 1982 National Computer Conference Proceed-
ings, AFIPS Volume 51 (1982), AFIPS Press, 217-244.

[Smith & Browne 1983]
Connie Smith and J.C. Browne. Performance Engineering of Software
Systems: A Design-Based Approach. To be published, 1983.

[Weleschuk 1981]
B.M. Weleschuk. Designing Operating Systems with Performance in

Mind. M.Sc. Thesis, Department of Computer Science, University of
Toronto, 1981.

PartV

Perspective

We have provided a general overview of computer system analysis
using queueing network models (Part I), a discussion of the algorithms
used for evaluating separable networks (Part II), a look at specialized
techniques for the detailed modelling of particular subsystems (Part III),
and a guide to parameterizing queueing network models (Part IV). Here,
in Part V, we attempt to “‘fit the pieces together’’.

Chapter 15 shows, through example, how the techniques that we have
presented can be used in non-traditional contexts: modelling computer
communication networks, local area networks, software resources, data-
base concurrency control, and operating system algorithms. As computer
systems continue to evolve, it is important to recognize that the applica-
bility of queueing network technology extends well beyond the confines
of centralized systems with simple characteristics.

Chapter 16 discusses the structure and use of queueing network
modelling software. This is a fitting conclusion to the book, for such
software can embody many of the techniques covered in Parts I - IV.

Two natural additional components of Part V would be a review of the
important differences between queueing network modelling and other
approaches to computer system analysis, and a discussion of various con-
siderations that arise in the course of conducting a modelling study.
These topics were addressed, by way of introduction, in Chapters 1 and 2.
We suggest reviewing those chapters at the conclusion of Part V, since
you then will be in a position to appreciate them fully.

335

Chapter 15

Extended Applications

15.1. Introduction

In this chapter we will illustrate how the techniques developed in Parts
II and III can be used to model systems and subsystems whose charac-
teristics are significantly different from those of the centralized systems
previously used as examples. Our objective is twofold: to convey the
range of applicability of these techniques, and to indicate the sorts of
‘“‘creative approaches’’ that have proven successful.

Our presentation will consist of five example application areas: com-
puter communication networks (IBM’s SNA), local area networks (Ether-
net), software resources, database concurrency control, and operating sys-
tem algorithms (the SRM in IBM’s MVS system). Each application is
discussed in a separate section. The sections are brief; further details can
be obtained from the papers cited in Section 15.8.

15.2. Computer Communication Networks

Computer communication networks use a variety of flow control policies
to achieve high throughput, low delay, and stability. Here, we model the
flow control policy of IBM’s System Network Architecture (SNA).

SNA routes messages from sources to destinations by way of intermedi-
ate nodes which temporarily buffer the messages. Message buffers are a
scarce resource. The flow control policy regulates the flow of messages
between source/destination pairs in an effort to avoid problems such as
deadlock and starvation, which could result from poor buffer management.

SNA has a window flow control policy. The key control parameter is
the window size, W. When a source starts sending messages to a particu-
lar destination, a pacing count at the source is initialized to the value of
W. This pacing count is decremented every time a message is sent. If
the pacing count reaches zero, the transmission of messages is halted.
When the first message of a window reaches the destination, a pacing

336

15.2. Computer Communication Networks 337

response is returned to the source. Upon receipt, the source increments
the current value of the pacing count by W. Another pacing response is
sent to the source by the destination each time an additional W messages
have been received. Thus, the maximum number of messages that can
be en route from source to destination at any time is 2W—1.

Our objective is to model the ‘‘response time’’ of messages between a
single source/destination pair — the average time required for messages
to flow from source to destination. The most convenient model, in terms
of simplicity and ease of evaluation, is an open queueing network. There
are M centers, representing the source node, the destination node, and
M—2 intermediate nodes. (Obviously, M is determined by adding two
to the number of intermediate nodes.) Customers, which represent mes-
sages, arrive at the source node at rate . They flow from node to node,
requiring D units of service at each node. This model is shown in Figure
15.1.

Arrival

Source _ (Service demand D at each center) Destination
Figure 15.1 — Open Model of SNA Flow Control (©1982 IEEE)

Response times can be calculated easily for this model. Unfortunately,
the model makes a significant simplifying assumption which impacts the
applicability of the results: there is no representation of the flow control
policy! The source continues to transmit, regardless of the number of
outstanding messages.)

A more realistic approach, therefore, is to use a closed model, in
which it will be possible to represent the limit on the number of out-
standing messages. Figure 15.2 shows this model. There are 2 W—1 cus-
tomers, representing the possible outstanding messages. As in the open
model, there are M centers corresponding to the source node, the desti-
nation node, and M—2 intermediate nodes. Customers have service
demand D at each of these centers. In addition, there is a ‘“‘message gen-
eration” center and a ‘‘pacing box’’. Together, the message generation
center and the pacing box mimic the flow control policy, in the following
way.

The pacing box ‘‘stores” up to W—1 messages. When the W-th
message arrives, it triggers the discharge of all W messages into the
queue of the message generation center. The message generation center

338 Perspective: Extended Applications

has service rate A; as long as its queue is non-empty, it will generate mes-
sage traffic at this rate. A bit of thought will reveal that the arrival of the
W-th message to the pacing box corresponds to the source’s receipt of a
pacing response from the destination; such receipt carries with it the right
to initiate W additional messages.

Source (Service demand D at each center) Destination
Service
rate A
Up to
- W -] =
. messages N=2W -1

Message
generation Pacing box

center
Figure 15.2 — Closed Model of SNA Flow Control (©1982 IEEE)

The model of Figure 15.2, while realistic, is not separable, because of
the unusual characteristics of the pacing box. The model could be
evaluated directly using the global balance approach, described in Chapter
8. However, the potentially large size of the model makes this approach
infeasible in general. A viable alternative, also described in Chapter 8, is
to replace the M centers representing the source, destination, and inter-
mediate nodes with an FESC. The resulting three node model of Figure
15.3 still is not separable, but it is small enough for global balance to be
practical.

The load dependent service rates of the FESC are estimated in the
usual way. A closed, separable model consisting of the M centers
representing the nodes, each with service demand D, is evaluated for
each feasible message population, from 1 to 2W—1. Throughputs are
determined, and used to define the FESC. Once this has been accom-
plished, writing the global balance equations and numerically evaluating
them to obtain the equilibrium state probabilities is tedious but straight-
forward. These probabilities yield system throughput and average queue
length at the FESC. Little’s law then can be applied to determine average
response time.

15.3. Local Area Networks 339

FESC
Service
rate A
Upto
- -~ W -] -
messages N=2W -1
Message
generation Pacing box

center

Figure 15.3 — FESC Representing the Message Path (©1982 IEEE)

One assumption made by this modelling approach is that the only
traffic passing through a node is due to the source/destination pair of
interest. This unrealistic assumption can be eliminated by modifying the
separable model used to estimate the load dependent service rates of the
FESC. As one approach, if the traffic at each node due to other
source/destination pairs is known, it can be represented as an open class
whose presence will impede the progress of messages associated with the
source/destination pair of interest, with a resulting decrease in FESC
rates.

Comparisons with detailed simulations indicate that this simple model-
ling approach yields good accuracy.

15.3. Local Area Networks

Computer communication networks such as SNA are designed to per-
form well over long distances at moderate bandwidths. Local area net-
works, on the other hand, are optimized for use over moderate distances
(say, 1 km.) at high bandwidths (10 MHz or greater). Ethernet is
perhaps the most widely known and used local area network. In this sec-
tion we will describe how to incorporate a representation of Ethernet into
a queueing network model of a locally distributed system.

Ethernet uses a single coaxial cable to interconnect stations (comput-
ers). A station wishing to communicate with another station broadcasts a

340 Perspective: Extended Applications

packet on this channel. (Long messages are decomposed into multiple
packets prior to transmission.) The packet contains the address of the
destination station, plus the desired data. All stations will ‘‘see’” the
packet, but only the station to which the packet is addressed will copy the
packet into its local memory.

Since the channel is shared by all stations, the key to Ethernet is the
way in which access to the channel is controlled. Ethernet uses carrier
sense multiple access with collision detection (CSMA-CD). Multiple access
means that all stations share the same channel. Carrier sense means that
no station will begin to transmit a packet if it hears data from another sta-
tion on the channel. Of course, a collision still can occur, because two sta-
tions can begin transmitting simultaneously (or, in fact, at times that
differ by as much as the propagation delay of the channel). Collision
detection means that stations ‘‘listen’’ while they are transmitting, stop if
they detect such a collision, and retry at some point in the future. In Eth-
ernet, the average amount of time that a station delays before such a
retry increases with the load on the channel, with the result that stability
is achieved.

The implementation of Ethernet is complex, and an attempt to incor-
porate a detailed representation in a queueing network model would be
ill-advised. However, Ethernet is based on a simple underlying policy. It
is possible to represent the behavior of this policy in a queueing network
model. Further, simulation results and measurements indicate that such
a model yields accurate results. The approach that we will use is a two-
level hierarchical model. At the low level we will determine the efficiency
of Ethernet (the proportion of its bandwidth devoted to useful work) as a
function of the instantaneous load (the number of stations simultaneously
desiring to transmit packets). The results of this analysis will be used to
define an FESC, which will be used to represent the channel in a system-
level model.

Imagine time to be divided into slots whose duration, S, is equal to
the round-trip propagation time of the channel. (This is the time
required for a collision to be detected by all stations.) Consider a slot
during which some number of stations » > 0 desire to transmit packets.
If no station transmits, the slot is wasted. If exactly one station
transmits, that station acquires the channel and continues transmitting
until it has finished sending its packet. If more than one station
transmits, a collision occurs and the slot is wasted. The Ethernet control
policy attempts to maximize the probability that exactly one station
transmits during a slot by allowing each station to transmit with probabil-
ity 1/n when n stations desire to use the channel. (The actual imple-
mentation differs from this policy because the value of » is not known,
and must be estimated by each station.)

15.3. Local Area Networks 341

If »n stations desire to use the channel and each transmits indepen-
dently with probability 1/#n, then the probability that any of the stations
successfully acquires the channel during a particular slot is equal to the
probability that exactly one station transmits, or:

1n—1
A= [1__]
n

The average number of slots devoted to contention (collisions) before a
successful acquisition by some station is:

S ; 1—A4

C = id(1—4) = —=

Z z
For n > 0 the channel has, by definition, no idle periods; time consists
of contention intervals interleaved with transmission intervals. The
efficiency of the channel at instantaneous load # can be expressed as:

E(n) = length of a transmission interval

length of a transmission interval
+ length of a contention interval

The length of a transmission interval equals the average packet length in
bits, P, divided by the network bandwidth in bits per second, B. The
length of a contention interval equals the expected number of slots
devoted to contention, C, multiplied by the slot duration, S (a parameter
of the configuration, related to the length of the network). In other
words:

___P/IB
P/B + CxS

Given P, B, and S, efficiencies are calculated algebraically for each feasi-
ble value of n. An FESC then is defined as follows:

n(n) = B/P X E(n)

In other words, the rate at which the Ethernet delivers packets is equal to
its maximum theoretical capacity in packets per second (B/P) multiplied
by the proportion of that capacity that is devoted to useful work when
there are » stations desiring to transmit packets (E(x)). This FESC is
used to represent the Ethernet in a system-level model.

E(n)

As noted earlier, comparisons with simulation results and with meas-
urements indicate that this simple modelling approach yields good accu-
racy. The analysis can be extended to represent the (non-negligible)
effect of packet size variability on performance. The same two-level
hierarchical approach can be used to represent other local area networks.
For example, a corresponding analysis has been done for the Cambridge
ring.

342 Perspective: Extended Applications

15.4. Software Resources

The usual viewpoint in constructing queueing network models is that
service centers correspond to hardware resources. It also is the case,
though, that queueing delays in computer systems can arise from conten-
tion for software resources: operating system critical sections, non-
reentrant software modules, etc. In this section we consider the use of
queueing network models to evaluate software system structures.

Our approach will be to define a software-level queueing network
model in which customers, as usual, correspond to users, but in which
service centers correspond to software modules. The service demand at
each center will be equal to the time the customer spends executing the
corresponding software module. The queueing delay at each center, cal-
culated when the model is evaluated, will be an estimate of the time the
customer is blocked awaiting access to the corresponding software
module. A reentrant software module will be represented as a delay
center, since a customer is never blocked awaiting access. A non-
reentrant module will be represented as a queueing center, since only one
customer can be executing it at a time.

Obviously, the service demand at each center in the software-level
model includes various service requirements and queueing delays
incurred in executing the corresponding software module on the underly-
ing computer system. This service demand can be thought of as the
“‘response time’’ of the user once access to the software module has been
granted. This service demand will be estimated using a more conven-
tional hardware-level queueing network model, in which customers
correspond to users executing software modules, and centers correspond
to hardware resources. The service demands are easily obtained for this
hardware-level model, but the customer population is not known, because
the degree of concurrency at the hardware level depends upon the extent
to which users are blocked awaiting access to modules at the software
level. Thus, an iterative solution is required, in which the hardware-level
model provides service demand estimates for the software-level model,
which in turn provides customer population estimates for the hardware-
level model.

A simple example of a software-level model is shown in Figure 15.4.
There are centers corresponding to various software activities: editing,
compilation, linking, loading, and execution. There are various possible
“‘execution sequences’’: edit and compile; compile, link, and execute;
load and execute; etc. Each execution sequence is represented as a
separate customer class. The number of customers in each class is the
number of users performing the corresponding execution sequence.

15.5. Database Concurrency Control 343

e

Load
Edit Compile —\‘ Link Execute

Figure 15.4 — A Software-Level Queueing Network Model

Once the service demands for the centers in the software-level model
are known, the model can be evaluated. From the results, the average
number of users concurrently executing each software module can be
estimated. If a module is reentrant it will be represented as a delay
center, and the average population at that delay center will be the average
number of users concurrently executing the module. If a module is non-

Jreentrant it will be represented as a queueing center, and the utilization
of that center will be the proportion of time that a user is executing the
module.

To estimate the service demands for the centers in the software-level
model, we use the hardware-level model. As noted earlier, customers in
this model correspond to users executing software modules. One class
represents each module. The service demands of the various classes at
the various centers are determined by the resource requirements of the
corresponding software modules. The response time of a class in this
hardware-level model determines the service demand at the center
corresponding to the same software module in the software-level model.
The iteration proceeds in the obvious manner. (The think time of a ter-
minal workload can be represented at either level in this approach,
although the software level is a more natural place.)

This approach, and several related ones, have proven quite successful
in practice.

15.5. Database Concurrency Control

In any database system, many users will wish to access and update the
database concurrently. Problems may arise if this concurrency is undis-
ciplined:

344 Perspective: Extended Applications

® The database may become inconsistent because of an unfortunate inter-
leaving of reads and writes by various users.

® Even if the database remains consistent, individual users may ‘‘see
inconsistent views, again because of an unfortunate interleaving of
activity.

As an example, Table 15.1 illustrates an inconsistency that might arise if

two users concurrently attempted to transfer $50 from their individual

bank accounts (ul and u2, respectively), each initially containing $75, to

a shared bank account (sh), initially containing $50: their original total

assets of $200 are decreased to $150!

29

user 1 database user 2
time action local ul sh u2 local action
copy copy
0 $75 | $50 | $75
1 read ul $75
2 $75 read u2
3 — $50 $25
4 $25 - $50
5 write ul $25
6 $25 write u?2
7 read sh $50
8 $50 read sh
9 + $50 $100
10 $100 + $50
11 write sh $100
12 $100 write sh

Table 15.1 — Effect of Undisciplined Concurrency

To free the user from concemn for problems such as these, the concept
of a transaction has been devised. The key property of a transaction is
atomicity :
® The user executing a transaction is guaranteed a single, consistent

view of the database, regardless of the activities of other users.

¢ Other users perceive a transaction as a single action, rather than as a
series of separate reads and writes of data items.

The job of a concurrency control mechanism is to allow transactions to be
executed concurrently while guaranteeing that the consistency of the data-
base is preserved. A crude concurrency control mechanism would grant
exclusive access to the entire database to one transaction for its duration.
(Concurrency is restricted unnecessarily by this simple solution: two
transactions that reference entirely different sets of data items would be

15.5. Database Concurrency Control 345

unable to proceed concurrently.) A more reasonable mechanism would
grant exclusive access to various data items to one transaction for its
duration. Other possibilities exist. Clearly, the presence of a concurrency
control mechanism can have a significant effect on system performance —
an effect somewhat analogous to that of a memory constraint. Equally
clearly, a queueing network model that represents the concurrency con-
trol mechanism directly will be non-separable: customers may be blocked
when data items they require are held by other customers. Techniques
comparable to those developed in Part III and in the other sections of this
chapter are required.

In this section we consider the evaluation of a database system
employing a particular, simple concurrency control mechanism. The pro-
cessing of a transaction under this concurrency control mechanism is
described in Table 15.2. Consider the banking example in Table 15.1.
Under the concurrency control mechanism, the activities of user 1 and
user 2 would constitute separate transactions. User 1 would obtain locks
on data items ul and sh, and would proceed without concern for interfer-
ence from others. User 2 would be granted a lock on u2 but denied a
lock on sh, and would abort, releasing the lock on u2. Subsequently,
user 2’s transaction would be re-submitted. (We assume that aborted
transactions are re-submitted after some delay.) User 1 would be
finished, so the lock on sh would be granted to user 2, who would find
the value of sh equal to $100.

The effect of the concurrency control mechanism on performance is
evident from this example and from Table 15.2. Some transactions abort
because they are unable to obtain a lock on a required data item. From
the point of view of the system, a transaction that aborts consumes
resources (although not to the extent of a successful transaction). From
the point of view of a user, several attempts may be required to complete
a transaction successfully.

Estimating the proportion of transactions that abort and the service
demands of these transactions are the keys to modelling the system. Ini-
tially, though, let us assume that conflicts never occur, so all transactions
complete successfully. In this case, a traditional separable queueing net-
work model is suitable. Users at terminals submit transactions. The ser-
vice demands of transactions can be calculated by considering their com-
plexity: number of items read, number of items written, processing
requirements, overhead of lock manipulation required for concurrency
control, etc. Evaluating this model yields the average transaction
response time and other performance measures of interest.

How can this model be extended to represent the effect of conflicts
between transactions? As noted, we must estimate the proportion of
transactions that abort, Plabort], and the service demands of these

346 Perspective: Extended Applications

locking phase

— Request a read lock on each data item whose value is required.
A read lock will be granted if no other transaction currently
holds a write lock on the item.

— Request a write lock on each data item that is to be written. A
write lock will be granted if no other transaction currently
holds either a read lock or a write lock on the item.

— If any lock is refused, abort, releasing all locks previously
granted to the transaction.

processing phase
— Read the values of the required data items.

— Based on these values, compute the values of the data items
to be written.

— Update the values of the data items to be written.
termination phase
— Release all read and write locks held by the transaction.

Table 15.2 — Steps in Processing a Transaction

transactions. Given this information, we could adjust the service
demands of transactions in the model to be:

(1 — Plabort]) X (service demands of a successful transaction) ~+
Plabort] X (service demands of an aborted transaction)

The model could be evaluated using this parameterization to yield
response times for each submission of a transaction. To compute the
effective response time to successfully complete a transaction we would
multiply the response time of each submission by the average number of
submissions _required. (Obviously, a homogeneity assumption is
employed here.) The average number of submissions required is:

1 X (1 — Plabort]) + S
2 X (1 — Plabort]) x Plabort] +
3 x (1 — Plabort]) x Plabort]* +

1
1 — Plabort]

15.6. Operating System Algorithms 347

The proportion of transactions that abort depends on many factors,
including the average number of active transactions (if few transactions
are active simultaneously, then the probability of conflict is low) and the
average number of data items read and written by each transaction, rela-
tive to the total number of items in the database (if each transaction locks
a very small proportion of the items in the database, then the probability
of conflict is low). As an example, one particularly simple approach is to
assume that each transaction requires read locks on r of the I items in
the database, chosen at random, and write locks on w of these [/ items,
also chosen independently and at random. A probabilistic analysis then
yields Plabort]. This analysis is based on reasoning such as the follow-
ing: If N transactions are active, they hold N X w write locks. An
arriving transaction will be able to acquire all of its r required read locks
with probability:

[I — NX w]

R

(More accurate estimates of Plabort] can be obtained from more detailed
submodels, evaluated either probabilistically or using simulation.)

The service demands of an aborted transaction can be estimated
roughly as one half of the lock manipulation overhead of a successful
transaction. (We expect half the required locks to be obtained before one
is denied; these must be released when the transaction aborts.) In addi-
tion, by assumption aborted transactions are re-submitted after some
delay. This can be represented by adding a delay center to the model, or
by adjusting the ‘‘think time’’ downwards in a manner analogous to that
used for service demands.

The average number of active transactions, which is a key parameter
required to estimate Plabort], is an output of the model. This suggests
the iterative evaluation scheme outlined in Algorithm 15.1. We have left
many details unspecified, and have made a number of simplifying
assumptions concerning the nature of the system and of the concurrency
control mechanism. The basic iterative approach of Algorithm 15.1 is
relatively general, however.

15.6. Operating System Algorithms

During the design of an operating system, extremely subtle perfor-
mance questions may arise that require certain subsystems to be modelled
at a level of detail greater than we have considered thus far. Examples of
such questions include the design of complex resource allocation

348 Perspective: Extended Applications

1. Construct a traditional separable queueing network model
with basic transaction service demands calculated as suggest-
ed in the text. Initially, assume that the average number of
active transactions is zero. (This will cause P[abort] to be
estimated as zero in the first iteration, so the model will be
evaluated without adjustment.)

2. Iterate as follows:

2.1. Based on various input parameters plus the average
number of active transactions, use a submodel to deter-
mine the proportion of transactions that abort. This
submodel may involve probabilistic or simulation ana-
lyses, as described in the text.

2.2. Calculate revised transaction service demands, as
described in the text.

2.3. Evaluate the queueing network model. Obtain the aver-
age number of active transactions.

Repeat Step 2 until successive estimates of the average
number of active transactions are sufficiently close.

3. Obtain performance measures from the final iteration, as
described in the text.

Algorithm 15.1 — Concurrency Control in the Rough

algorithms that coordinate the control of paging, swapping, and processor
scheduling.

On the one hand, queueing network models are not ideally suited to
answering these extremely detailed questions. (Fortunately, such ques-
tions arise very infrequently!) On the other hand, queueing network
models offer such tremendous advantages over alternative techniques
(such as simulation or experimentation) that there is a strong motivation
to use them to the greatest possible extent. Often, the solution is to
employ hybrid modelling, as described in Chapter 8.

In this section we describe a hybrid model of IBM’s MVS operating
system. This model was designed to study the internal details of the
MVS System Resources Manager (SRM). Under MVS, each installation
classifies its workload components into performance groups. Within each
performance group, customers pass through a sequence of performance
periods as service is acquired. For each performance period, service objec-
tives are established. Customers are served at various resources at a rate
that depends on the service objectives specified for their current

15.7. Summary 349

performance period. (For example, a customer’s susceptibility to swap-
ping will depend on that customer’s current performance period.) In
addition, goals are established for the utilizations of various resources.
These goals impose additional constraints on scheduling decisions. It is
the job of the SRM to reconcile these many objectives by making
appropriate long-term and short-term resource allocation decisions.

Figure 15.5 illustrates the structure of the two-level hierarchical hybrid
model that allowed the internal algorithms of the SRM to be represented.
There are two workload components: TSO (timesharing) and batch. In
the high-level model, customer arrivals and the operation of the SRM are
represented. Two principal SRM modules are represented explicitly.
Swap Analysis keeps track of the attained service of each customer and
determines if a swap is to be performed. Resource Monitor calculates tar-
get multiprogramming levels, invokes Swap Analysis if necessary, and
collects various statistics. These statistics are used in an overhead sub-
model to determine the overhead service demands of the operating sys-
tem. The high-level model is evaluated using simulation.

In the low-level model, the central subsystem is represented. Paging
activity is determined by a submodel that has knowledge of the particular
paging policy of interest. The low-level model is evaluated using tech-
niques from Parts II and III.

The hybrid solution of this model proceeds iteratively. The high-level
model determines the multiprogramming mix and the overhead service
demands, and supplies these to the low-level model. The low-level
model determines throughputs and utilizations, which allow the high-
level model to calculate the time of the next completion and to make
resource allocation decisions.

Of course, representing the internal algorithms of the SRM is a level
of detail far beyond that which is appropriate for capacity planning and
performance projection applications. Still, this hybrid model was success-
ful at answering detailed questions concerning SRM behavior. Evaluation
of the model was estimated to be 30 to 100 times faster than would have
been possible using a pure simulation approach. The modelling approach
led to greater flexibility than would have been possible in direct experi-
mentation on an MVS system.

15.7. Summary

This chapter has used five examples to illustrate that the applicability
of queueing network models extends well beyond the confines of central-
ized systems with simple characteristics. We have studied models of
computer communication networks, local area networks, software

350 Perspective: Extended Applications

SIMULATION
Arrival
BATCH > | JOB
WORKLOAD Departure ENTRY
. SUBSYSTEM
SYSTEM RESOURCES MANAGER
TSO RESOURCE SWAP
WORKLOAD MONITOR ANALYSIS
ANALYSIS
STATISTICAL QUEUEING
MODEL FOR NETWORK ESS;FOGDEL
OVERHEAD MODEL

Figure 15.5 — A Detailed Hybrid Model of the MVS SRM

15.8. References 351

resources, database concurrency control, and operating system-algorithms.
These models have employed techniques such as FESCs with global bal-
ance, FESCs whose service rates are determined through probabilistic
analysis, two-level hierarchical iteration, and hybrid modelling. These
techniques, combined with good knowledge of the system being modelled
and a modicum of inventiveness, can solve a wide variety of computer
system analysis problems.

15.8. References

Queueing theory has been used widely in the detailed analysis of com-
puter communication network protocols. The use of queueing network
models to evaluate networks and to represent them in system-level
models is more recent. A useful general discussion of this area is the
book by Schwartz [1977]. The SNA flow control model in Section 15.2
was constructed by Schwartz [1982]; this paper is the source of Figures
15.1, 15.2, and 15.3.

Local area networks have received widespread attention recently. Eth-
ernet was described originally by Metcalfe and Boggs [1976]. The Ether-
net model in Section 15.3 was developed by Almes and Lazowska [1979].
King and Mitrani [1982] discuss a similar model of the Cambridge ring.

The technique for modelling software resources described in Section
15.4 is similar to one described by Agre and Tripathi [1982]. Other
approaches are described by Smith and Browne [1980], Agrawal and
Buzen [1983], and Jacobson and Lazowska [1983].

The modelling of database concurrency control mechanisms is the sub-
ject of much recent research activity. Sevcik [1983] provides a survey of
various approaches. An excellent discussion of the issues involved,
including a framework for classifying mechanisms, is provided by Bern-
stein and Goodman [1981].

An overview of an early version of the MVS SRM is given by Lynch
and Page [1974]. The hybrid hierarchical model in Section 15.6 was
developed by Chiu and Chow [1978]; their paper is the source of Figure
15.5. Buzen [1978] describes a queueing network model of MVS that is
better suited to capacity planning applications.

[Agrawal & Buzen 1983]
Subhash C. Agrawal and Jeffrey P. Buzen. The Aggregate Server
Method for Analyzing Serialization Delays in Computer Systems.
Transactions on Computer Systems 1,2 (March 1983), 116-143.

352 Perspective: Extended Applications

[Agre & Tripathi 1982]
Jon R. Agre and Satish K. Tripathi. Modelling Reentrant and Non-
Reentrant Software. Proc. ACM SIGMETRICS Conference on Meas-
urement and Modeling of Computer Systems (1982), 163-178.

[Almes & Lazowska 1979]
Guy T. Almes and Edward D. Lazowska. The Behavior of Ethernet-
Like Computer Communication Networks. Proc. 7th Symposium on
Operating Systems Principles (1979), 66-81. Copyright © 1979 by the
Association for Computing Machinery.

[Bernstein & Goodman 19811]
Philip A. Bernstein and N. Goodman. Concurrency Control in Distri-

buted Database Systems. Computing Surveys 13,2 (June 1981), 185-
221.

[Buzen 1978]
Jeffrey P. Buzen. A Queueing Network Model of MVS. Computing
Surveys 10,3 (September 1978), 319-331.

[Chiu and Chow 1978]
Willy W. Chiu and We-Min Chow. A Performance Model of MVS.
IBM Systems Journal 17,4 (1978), 444-462.

[Jacobson & Lazowska 1983]
Patricia A. Jacobson and Edward D. Lazowska. A Reduction Tech-
nique for Evaluating Queueing Networks with Serialization Delays.
Proc. IFIP W.G.7.3 International Symposium on Computer Performance
Modeling, Measurement, and Evaluation (1983), 45-59.

[King & Mitrani 1982]
Peter J.B. King and Israel Mitrani. Modelling the Cambridge Ring.
Proc. ACM SIGMETRICS Conference on Measurement and Modeling of
Computer Systems (1982), 250-258.

[Lynch & Page 1974]
H.W. Lynch and J.B. Page. The OS/VS2 Release 2 System Resources
Manager. IBM Systems Journal 13,4 (1974), 274-291.

[Metcalfe & Boggs 1976]
Robert M. Metcalfe and David R. Boggs. Ethernet: Distributed
Packet Switching for Local Computer Networks. CACM 19,7 (July
1976), 395-404.

[Schwartz 1977]

Mischa Schwartz. Computer Communication Network Design and
Analysis. Prentice-Hall, 1977.

15.8. References 7 353

[Schwartz 1982]
Mischa Schwartz. Performance Analysis of the SNA Virtual Route
Pacing Control. [EEE Transactions on Communications COM-30,1
(January 1982), 172-184. Copyright © 1982 IEEE.

[Sevcik 1983]
Kenneth C. Sevcik. Comparison of Concurrency Control Algorithms
Using Analytic Models. Proc. IFIP Congress 83 (1983).

[Smith and Browne 1980]
Connie Smith and J.C. Browne. Aspects of Software Design Analysis:
Concurrency and Blocking. Proc. IFIP W.G.7.3 International Sympo-

sium on Computer Performance Modeling, Measurement, and Evaluation
(1980), 245-253.

Chapter 16

Using Queueing Network Modelling Software

16.1. Introduction

A variety of techniques for evaluating queueing network models have
been described. The general techniques of bounding analysis, single and
multiple class analysis, and hierarchical modelling were presented in Part
II. Specific techniques for memory, disk I/0O, and processor subsystems
were discussed in Part III. This collection of techniques comes together
for the computer system performance analyst in the form of queueing
network modelling software. Such software frees the analyst from the
algorithmic portion of the modelling process, allowing concentration on
important issues such as model construction and validation, performance
projection, and capacity planning.

Most queueing network modelling software can be understood in
terms of the structure illustrated in Figure 16.1. There is a sequence of
software layers, each transforming input received from the layer above
into output suitable for the layer below. In Section 16.2 we will refer to
this structure in describing the major components of queueing network
modelling software. In Section 16.3 we give an example of conducting a
performance study using such software.

16.2. Components of Queueing Network Modelling
Software

16.2.1. The Core Computational Routine

The job of the core computational routine, situated at the lowest level in
Figure 16.1, is simply stated. Given a separable queueing network model
defined by its customer description, center description, and service
demands, this routine produces performance measures. In other words,
the core computational routine is an embodiment of the techniques
described in Part II of the book. The core routine may be based on
either exact or approximate algorithms.

354

16.2. Components of Queueing Network Modelling Software 355

LEVEL 4

High-level front ends
for generating models

(Section 16.2.4)

LEVEL 3

User interface with
convenience features

(Section 16,2.3)

LEVEL 2
Transformations from

non-separable QNMs
to separable QNMs

(Section 16.2.2)

LEVEL 1

Core algorithms for
separable QNMs

(Section 16,2.1)

Figure 16.1 — The Structure of Queueing Network Modelling Software

356 Perspective: Using Queueing Network Modelling Software

16.2.2. The Approximation Transformations

When viewed at a detailed level, many subsystems have characteristics
that lead to non-separable queueing network models. The software layers
immediately above the core computational routine, the approximation
transformations (level 2 in Figure 16.1), translate these non-separable
models into a form that is suitable for the core routine. In other words,
the approximation transformations correspond to the techniques described
in Part III. Many of these techniques require an iterative relationship
with the core routine: the transformations provide input suitable to the
core routine, and the core routine’s output is used as additional input to
the transformations.

Consider the treatment of C classes with independent memory con-
straints in Section 9.3.2. In a sense, there are C different separable low-
level models, and C different separable high-level models. The low-level
model corresponding to class ¢ has each class other than ¢ represented by
its average central subsystem population, while class ¢’s population is
varied from 1 to M,, its memory constraint. The high-level model
corresponding to class ¢ is a single class model using the FESC obtained
from the low-level model. Each model is evaluated by the core routine,
with the transformation layer using the outputs of some models to define
the inputs of others.

Another example is the treatment of RPS disks in Section 10.3. The
service demands at the centers representing the disks must reflect more
than the seek, latency, and data transfer requirements. Approximation
transformations estimate the component due to path contention, as in
Algorithm 10.2, and calculate effective service demands, which are passed
to the core routine. Again, this process is iterative.

Additional examples of transformations include those used to
represent priority scheduling (Section 11.3) and distributions of multipro-
gramming level (Section 9.2).

16.2.3. The User Interface

An important attribute of queueing network modelling software is the
convenient expression of performance models. The user interface, level 3
in Figure 16.1, must bridge the gap between the world of queueing net-
work models and the world of computer systems, so that performance
studies can be conducted efficiently by analysts whose primary training is
in computer systems.

In many cases, queueing network concepts correspond directly to com-
puter system concepts: e.g., classes to workload components, centers to
devices, customers to users or job:.. These queueing network concepts

16.2. Components of Queueing Network Modelling Software 357

are made visible to the analyst with little intervention by the user inter-
face layer.

In other cases, the correspondence is not so direct. In particular, the
user interface layer smoothes the analyst’s interaction with the transfor-
mation layer. As an example, when multipathing /O is modelled, as
described in Section 10.5, the user interface layer allows the analyst to
describe the system in terms of channels, controllers, heads of string,
disks, and logical channels (in the case of an IBM configuration) and
translates this information into a form acceptable to the transformation
layer. The transformation layer then uses this information to estimate
effective service demands for the various disks, interacting iteratively with
the core routine, which evaluates a sequence of separable models pro-
vided by the transformation layer. Finally, the transformation and user
interface layers provide performance measures in a meaningful form.

A related facility allows the analyst to associate a ‘‘type’’ with a dev-
ice, and to specify the relevant characteristics of this type to the software.
This is useful during modification analysis. As a simple example, an
existing system may have an IBM 3081-D CPU, and one of the contem-
plated modifications may be an upgrade to a 3081-K. If the relative
speeds of these two processors are known to the software (in fact, they
are roughly 4.0 and 5.5), then the following sequence of interactions
would be possible:

— analyst provides all inputs for baseline model
— analyst identifies CPU as 3081-D
— baseline model is validated
— analyst specifies that CPU type should be changed to 3081-K
— software adjusts CPU service demands based on internal informa-
tion
A similar approach can be applied to other devices.

The user interface layer typically provides the ability to save, recall,
and edit model definitions during an interactive session, since model
modification is the major activity in interacting with queueing network
modelling software. Output reports also need to be stored for post-
processing.

A final example of a facility provided by the user interface layer is a
means for the analyst to “‘program’’ the package using a simple language,
similar to the ‘‘exec file”’ or ‘‘command file’ facility provided by most
contemporary timesharing systems. A simple application of this facility
would be to perform automatically a parametric study (for example, on
the effect of increasing the number of active terminals). Of course, an
analyst could conduct such a study by interacting with the software
directly, issuing separate commands to evaluate the model with each
population of interest. A better approach, though, would be to write a

358 Perspective: Using Queueing Network Modelling Software

simple program that, when interpreted by the package, accomplishes this
task. A more sophisticated application would be to implement new spe-
cialized evaluation techniques for subsystems peculiar to a particular
environment, similar to the established techniques described in Part III.

16.2.4. High-Level Front Ends

Given measurement data for a system of realistic size, it takes a
significant amount of time to calculate and enter the inputs of a queueing
network model. The process is error-prone, because of the large volume
of data. Many of the actions are repetitive. All of these factors argue
strongly in favor of a computer program that partially automates the con-
struction of baseline models of existing systems. This is one major exam-
‘ple of a high-level front end, level 4 in Figure 16.1. Other examples of
application areas in which high-level front ends are of great utility include
performance projection for proposed systems, for database systems, and
for communication networks. We touch upon each of these in turn.

Modelling Existing Systems

In Chapter 12 we discussed the parameterization of baseline models of
existing systems. To be sure, parts of this process require subtle judge-
ments on the part of the analyst. For any particular system, though, it is
possible to automate a large proportion of the labor involved in translat-
ing measurement data (stored in a specified format in a performance data-
base) into queueing network model inputs.

The feasibility of constructing such a high-level front end relies on the
fact that the general structure of queueing network models, while system
dependent, is not highly installation dependent. For example, in con-
structing queueing network models of IBM MVS systems it is reasonable
to equate ‘‘performance groups’’ with customer classes. In general, such
front ends construct fairly simple models, which subsequently are
adjusted by the analyst. Overall, the savings in time can be significant.

Modelling Proposed Systems

Performance projection for proposed systems was discussed in some
detail in Chapter 14, where we illustrated the syntax of two high-level
front ends. The interface for this application is based on the system
designer’s point of view. It deals with the natural units of the application
(e.g., estimated number of disk reads on the software side, transfer rate
on the hardware side) and translates them into a form acceptable to the
core routine of the queueing network modelling software.

16.2. Components of Queueing Network Modelling Software 359

Modelling Database Systems

In systems where database processing has a major influence on perfor-
mance, the use of a specialized high-level front end can expand the scope
of performance questions that can be addressed conveniently.

The presence of a significant database workload component does not
detract from the applicability of the techniques described in Parts II and
III to the problem of projecting performance. In fact, several of the case
studies described earlier treat systems in which database activity is
significant. There are performance questions that arise in the context of
database systems, however, that cannot be addressed conveniently using
the interface provided by general queueing network modelling software.

The efficient operation of database systems depends on many design
decisions, including:

— representation of the logical data model as a set of files

— specification of links that relate records to one another

— selection of indices to facilitate access to records having various
values for a certain attribute in a file

— choice of query processing strategy

— placement of indices and files in main memory and on various
storage devices

— allocation of buffer space for various purposes

All of these decisions have a substantial influence on the service demands
of database transactions. The purpose of a high-level front end for data-
base systems is to support investigation of decisions such as these.

In most database systems, a few transaction types are dominant. If we
represent each such transaction type as a customer class in a model, the
class can be characterized by its workload intensity and its typical pattern
of accesses to items in the database. The front end can calculate the
number of physical block accesses per transaction from the pattern of
accesses to logical data items, by taking into account the representation of
the logical database as files and links between them. In processing a
query, the order in which operations are done (the query processing stra-
tegy) and the presence of indices on selected attributes also influence the
number of block accesses. Finally, data placement decisions determine
the fraction of block accesses directed to each device, and buffer stra-
tegies determine the fraction of block accesses that require a physical data
transfer. Thus, by considering the characteristics of a database environ-
ment and the design decisions made, the front end can transform the
high-level specification of transaction types into a specification suitable for
input to a standard queueing network modelling package.

Specific database management systems impose specific restrictions.
For example, IMS and System 2000 support particular ways of linking and

360 Perspective: Using Queueing Network Modelling Software

indexing files, and provide particular tuning parameters (such as priority
specifications, and the allocation of buffer space to various uses). A
high-level front end tailored to a specific database system is most con-
venient for an analyst because all the decisions resolved within the system
can be built into the front end.

Modelling Computer Communication Networks

Many issues need to be considered in the design of computer com-
munication networks: network bandwidth, multiplexing and concentra-
tion strategies, network protocol layers, flow control policies, routing stra-
tegies, and buffering strategies. A network designer is interested in
knowing if a proposed network can handle a projected workload intensity
while providing an acceptable level of performance. A front end for this
application accepts system descriptions in terms of entities such as cluster
controllers, line speeds, host/satellite topology, and protocols. These are
transformed for the queueing network model into service demands at
various centers (e.g., the communications controller). Hierarchical
modelling, as described in Chapter 8, is useful here.

16.3. An Example

This section gives an example of the way in which advanced queueing
network modelling software can be used by an analyst to develop and
modify a model of a large contemporary computer system. We have
three objectives:

® We wish to illustrate the levels of detail that are appropriate for build-
ing a model and using that model for performance projection.

® We wish to illustrate the relationship between modelling concepts,
evaluation algorithms, and modelling software.

® We hope to indicate how such software can increase the productivity
of the analyst.

To achieve these objectives, it is necessary to include example commands
for specific queueing network modelling software. We have chosen the
package MAP for our example. Other packages have similar features.

16.3.1. Description of the Example System

The system we treat is an Amdahl 470 V/7 with 16 million bytes of
main memory. It runs IBM’s MVS operating system with two important

16.3. An Example 361

workload components, batch and TSO (interactive). Other workload
components are present, but the performance questions of interest con-
cern only batch throughput and TSO response time.

Approximately 200 disk drives, IBM 3350s, are accessible through
eight physical channels. Other devices are attached to the system (e.g.,
unit record devices and tape devices), but they have little influence over
performance in the current system or any contemplated future system.

16.3.2. Building a Baseline Model

The first step in our modelling process is to construct a baseline model
that validates well on batch throughput and TSO response time. To
present the concepts clearly, we will be showing how an analyst might
interact directly with the package in building the baseline model, rather
than using a high-level front end to partially automate the process, as
described in Section 16.2.4. As a practical consideration, though, some
software assistance is a necessity in building large models. We assume
that all necessary parameter values have been obtained from measure-
ment data in accordance with the procedures suggested in Chapters 12
and 17.

Our discussion of model building treats classes, centers, domains, and
service demands in turn.

Classes

Because of the performance questions of interest, the batch and TSO
workload components must be represented as separate classes. Multiple
class algorithms similar to those of Chapter 7 will provide the necessary
class based performance measures. In the actual system, other workload
components interfere with these two important components. We must
include this effect in the model. We do so with an aggregated artificial
third class. (Neglecting these other components would yield optimistic
results for the classes of interest.)

The definition of a class includes its name, its type, and its workload
intensity. TSO is a class of TERMINAL type with an associated number
of terminals and average think time. PRODUCTION is a class of
BATCH type with an associated average multiprogramming level. The
artificial class OTHER is specified as a class of TRANSACTION type with
an associated arrival rate, set equal to the rate at which jobs of the other
workload components complete. (This approach guarantees that the
modelled throughput of the OTHER class will equal the aggregated
throughputs of the other workload components.)

362 Perspective: Using Queueing Network Modelling Software

MAP commands to define the classes are:

CLASS TSO (create class TSO)

TYPE TERMINAL (state its type)

ONLINE_USERS 68 (specify the number of active terminal users)
THINK 12.53 (think time of 12.53 seconds)

CLASS PRODUCTION (create class PRODUCTION)

TYPE BATCH (state its type)

AVG_MPL 8 . (set its average multiprogramming level)
CLASS OTHER (create class OTHER)

TYPE TRANSACTION (state its type)
ARRIVAL _RATE .11 (arrival rate is .11 jobs/sec.)

Additional commands that further specify class attributes will be given
shortly, when other necessary components of the model have been
defined.

Centers

The model includes a center representing the CPU and a center
representing each disk drive. The definition of a center includes its name
and optional attributes such as its scheduling discipline and its
manufacturer’s model designation. The MAP commands to define the
CPU and I/O devices are:

CENTER CPU (create a center named CPU)

SCHEDULE PRIORITY (specify priority scheduling)

MODEL V/7 (inform MAP that it is an Amdahl V/7 CPU)
CENTER SYS001 (create center SYS001)

MODEL 3350 (inform MAP that is an IBM 3350 disk)
CENTER PAGO0! (create center PAGO001)

MODEL 3350 (it is an IBM 3350)

If no scheduling discipline is specified, processor sharing is assumed at a
CPU center, and FCFS is assumed at other centers. Here, the CPU has
been made a priority center. The relative scheduling priorities of classes
at this center must be given. In MAP, this is done using the PLEVEL
command:

16.3. An Example 363

CLASS TSO PLEVEL 3 (TSO has highest priority)

CLASS PRODUCTION PLEVEL 2 (PRODUCTION has middle)
(priority)

CLASS OTHER PLEVEL 1 (OTHER has lowest priority)

Higher PLEVEL values indicate higher scheduling priorities. The inclu-
sion of priority scheduling will cause MAP to evaluate the model using a
technique similar to the one described in Section 11.3.

Domains

In the actual system, the TSO workload component is subject to a
memory constraint of nine processing regions, meaning that at most nine
TSO users can be competing for CPU and I/0 service at once (other
users must queue for memory). In MAP, this is modelled by the
DOMAIN feature. The definition of a domain consists of its name and
its capacity. It also is necessary to indicate which classes are constrained
by each domain. The MAP commands to do this for our example are:

DOMAIN DOM _TSO CAPACITY 9 (create domain DOM_TSO;)
(set its capacity to 9 jobs)

CLASS TSO INDOMAIN DOM_TSO (associate TSO with domain)
(DOM_TSO)

The other classes are not associated with domains. The use of the
DOMAIN feature will cause MAP to evaluate the model using a tech-
nique similar to the one described in Section 9.3.

A final memory related command is MEMSIZE, which informs MAP
of the amount of main storage in the base configuration:

MEMSIZE 16 (16MB of main storage in the base system)

This information is used by MAP during modification analysis, as we will
see.

Service Demands

The final components we define in the baseline model are the service
demands of all classes at all centers. A convenient way of entering the
service demand values is to have the package prompt for them in a sys-
tematic manner. In MAP, this is accomplished by specifying class and
center values of ALL. Then, in response to the DEMAND command,
MAP will print class and center names and accept the corresponding ser-
vice demands, as in:

364 Perspective: Using Queueing Network Modelling Software

CLASS ALL (ALL will cause MAP to prompt with all class names)
CENTER ALL (ALL will cause MAP to prompt with all center)

(names)
DEMAND (indicate to MAP that we want to specify service)
(demands)
7SO: (MAP prompt for TSO, to which the following)
(prompts apply)
CPU: (MAP prompt for CPU service demand)
.09 (user-specified)
SYS001: (MAP prompt for SYS001 service demand)
.04 (user-specified)

(Prompts printed by MAP are shown in italics.)

Performance Reports

Having defined the model, a number of performance reports can be
obtained for the baseline system. Examples are shown in Table 16.1.

System Performance Measures

Response Time in Memory
Class Time System Wait Throughput
TSO 5.6423 2.3868 3.2555 3.7420
PRODUCTION 12.5391 12.5391 0.0000 0.6380
OTHER 7.2880 7.2880 0.0000 0.1100

Device Utilizations

Center TSO PRODUCTION OTHER Total

CPU 0.3368 0.5104 0.0220 0.8692
SYS001 0.1497 0.1276 0.0033 0.2806

PAGO01 0.1123 0.2233 . 0.0330 0.3686

Table 16.1 — Example Performance Report

16.3. An Example 365

The model can be validated by checking its calculated performance
measures against those from several measurement periods, as described
in Chapters 2 and 12. This often is an iterative process in which the
model and its parameters are refined as a better understanding of the sys-
tem is gained.

At this point, we assume that the model has been validated successful-
ly. Once this has been accomplished, the model definition can be saved:

SAVE BASELINE (save model definition in permanent file)

The model could be retrieved subsequently, either in this MAP session or
in other sessions, using:

READ BASELINE (read the named model definition file)

16.3.3. Reflecting Anticipated Changes

In Chapter 13 we discussed the parameterization of models of evolving
systems. Many model modifications are possible. In this subsection we
will discuss modifications to the workload, hardware, and software com-
ponents of the baseline model. In doing so, we will illustrate many of the
convenience features of contemporary queueing network modelling
software.

Workload

One standard workload change is an increase in workload intensities.
To specify a new value for the PRODUCTION multiprogramming level,
the AVG_MPL command would be issued with a new value as its
operand:

CLASS PRODUCTION AVG_MPL 12 (set the new value)

A more usual specification involves a relative change, e.g., a 20% increase
in the TSO workload intensity (number of terminals), as in:

CLASS TSO ONLINE 1.2* (multiply the previous value by 1.2)

(Any unique prefix is an acceptable abbreviation in MAP; ONLINE is a
shortened form of ONLINE_USERS.)

Other workload changes might involve the service demands. New
application software might reduce the CPU path lengths for the TSO
class. This might be reflected in the model by:

366 Perspective: Using Queueing Network Modelling Software

CLASS TSO CENTER CPU DEMAND .90* (CPU demand is)
(reduced by 10%)

The service demands at the disks might change as well. New blocking
strategies for files might reduce the number of I/Os per transaction,
resulting in reduced access time per byte transferred because of smaller
total seek and latency requirements. Disk service demands can be
modified in a manner similar to above.

Having modified the parameters of the model as appropriate, perfor-
mance estimates for the proposed system can be obtained using the PER-
FORMANCE command, as was done during the validation phase of the
study.

Hardware

A typical hardware change is the upgrading of a device to a more
powerful one. In our example, the V/7 CPU miglpﬁt”be upgraded to a
ing a new MODEL has the effect of changing the service demands of all
classes at the CPU:

CENTER CPU MODEL 5860 (represent upgrade to Amdahl 5860)

This change is done automatically within the package based on built-in
knowledge of the relative speeds of these two CPUs.

Just as a CPU can be upgraded, so can disks. If some or all of the
3350 disks are changed to 3380 disks, the MODEL command can be used
to alter the service demands of all classes at the devices upgraded, as in:

CENTER SYS001 MODEL 3380 (upgrade from IBM 3350 to)
(IBM 3380)

Another typical upgrade involves a memory expansion. Going from
16 megabytes to 24 megabytes allows additional space to be allocated to
the user workloads. How this space is allocated is dependent on the
operating system memory policies. MAP uses built-in knowledge to esti-
mate how a memory expansion will affect various classes. The command:

MEMSIZE 24 (increase main memory size to 24MB)

causes MAP to alter automatically the average multiprogramming level of
the PRODUCTION class and the domain capacity of the TSO class to
reflect the use of increased main memory. (The values computed by
MAP are estimates and account only for first-order effects; the analyst
might want to modify them on the basis of more detailed knowledge.)

16.3. An Example 367

As a final hardware change, consider the introduction of an additional
controller to the I/0 subsystem to reduce path contention. (See Chapter
10 for a more complete description of the I/O subsystem architecture
being considered.) Our basic model contains no explicit representation of
[/0 paths (the effect of contention for I/O paths is reflected in the disk
service demands, which contain a path contention component), so to
model this change a more detailed representation of the I/O subsystem is
required. We illustrate the process of creating a detailed model of this
sort with an example. For purposes of exposition, we will keep the
example small.

Suppose two strings of disks can connect to memory through two con-
trollers, and these two controllers can connect through two channels.
This connection scheme comprises what we call a logical channel, and
must be represented in our detailed model. Before defining the logical
channel in MAP, the basic components should be created, as in:

CHANNEL CHI
CHANNEL CH2

CONTROLLER CTLA
CONTROLLER CTLB

The logical channel now can be defined:

LCHANNEL LCH (define the logical channel; MAP)
(now will prompt for path descriptions)

(define a channel)
(define another channel)

(define a controller)
(define another controller)

CHANNEL: (MAP prompt for channel at head of this path)
CH1 (user-specified)
CONTROLLER: (prompt for controller on this path)
CTLA (user)
CONTROLLER: (prompt for another controller on this path)
CTLB (user)
CONTROLLER: (prompt)
(user null line indicates end controller list)
CHANNEL: (prompt for another channel to head)
CH2 (another set of paths)
CONTROLLER:
CTLA
CONTROLLER:
CTLB
CONTROLLER:
(user null line, to end controller list)
CHANNEL:

(user null line, to end channel list)

Disks are grouped into sets called strings, with all disks on the same
string accessible over the same set of I/O paths (i.e., the same logical

368 Perspective: Using Queueing Network Modelling Software

channel). At this point, strings and associated information must be
defined, as in:

STRING STRI1 (create a string)
ONLCHANNEL LCH (inform MAP of the paths by)
(which disks on the string)
(' are accessible)
STRING STR2 (create another string)
ONLCHANNEL LCH (place STR2 on paths LCH)

CENTER SYS001 ONSTRING STR! (put SYS00! on string STR1)

To model the addition of a controller to the system, the logical chan-
nels affected by the new controller could be redefined to include it, and
the model re-evaluated. MAP automatically estimates the new level of
path contention, and uses this to alter the disk service demands.

Other changes, such as the addition of channels and strings or the
movement of disks among strings, can be modelled similarly.

Software

By software changes we mean changes in the operating policies or
parameters of the system, not changes in the intrinsic workload demand.
As an example, consider attempting to balance resource usage by moving
a set of TSO files from one disk, where these files are responsible for one
third of the accesses, to another. This can be represented in MAP using:

CLASS TSO MOVE .33 SYS001 SYSTMP

We can change the priority scheduling structure at the CPU simply by
specifying new PLEVEL values, as in:

CLASS TSO PLEVEL 2 (re:duce TSO’s priority level)
CLASS PRODUCTION PLEVEL 3 (give PRODUCTION priority)
(over TSO)

PRODUCTION now has priority over TSO at the CPU.

Unlimited variations are possible, but the essence of constructing and
modifying a model should be evident. The interactions between user and
package that have been illustrated are typical of those involved in perfor-
mance projection studies. The usual goal of such studies is to estimate
the performance of an existing system subjected to new workloads and
configurations. To support this activity, the software allows the analyst to
modify classes, centers, domains, and service demands in a simple

16.4. Summary 369

manner. The ability of the software to represent device-specific and
system-specific information is especially advantageous. A wide range of
alternatives can be investigated rapidly and interactively.

16.4. Summary

Queueing network modelling software can be viewed as consisting of
four levels. From lowest to highest, they are:

1. The core computational routine, which evaluates separable queueing
network models as described in Part II.

2. The approximation transformations, which interact with the core rou-
tines to evaluate detailed, non-separable models of subsystems such as
memory, disk I/0, and processors, as described in Part III.

3. The user interface, which allows the analyst to use the terminology of
computer systems, rather than the terminology of queueing networks,
and which also supports facilities such as the filing and retrieval of
model definitions and output reports, and the programmability of the
software.

4. High-level front ends, which partially automate specific tasks described
in Part IV: producing queueing network model inputs from system
measurement data, iteratively evolving the system specifications
needed for projecting the performance of proposed systems, etc.

All of these levels need not be present; indeed, simple queueing network
modelling software often consists only of the first level. However, the
higher levels are important to the professional computer system perfor-
mance analyst. The four levels need not be packaged together in a single
piece of software; it is typical for the fourth level to be separate from the
other three.

An obvious question that arises is whether queueing network model-
ling software should be developed in-house, using information from
sources such as this book, or obtained from a vendor. Most of the argu-
ments support the latter choice. Many of these arguments are
managerial, but one is technical, and we will consider it briefly.

Queueing network modelling technology has advanced rapidly in the
recent past, and can be expected to continue to do so in the near future.
That portion of a computer system performance analyst’s time not
devoted to computer system analysis is better spent staying abreast of
advances in computer systems than staying abreast of advances in queue-
ing network technology.

A quick historical review in support of this point may be of interest.
Table 16.2 shows that even at the relatively well understood level of the

370 Perspective: Using Queueing Network Modelling Software

core computational routine, advances have been recent, rapid, and
significant. At the level of the approximation transformations, progress
has been even more recent. For example, the techniques for evaluating
multiple class memory constrained queueing networks (Section 9.3) and
for evaluating multipathing I/0 subsystems (Section 10.5) both were
developed during the two year gestation period of this book. In other
words, extensive changes have taken place recently even in the algo-
rithms at the lower levels of queueing network modelling software.

rough
date

development

1965 First application of queueing network models to computer
systems:. a two center model with a population of a few
customers, evaluated using the global balance technique.

1970 First efficient evaluation algorithm, an exact technique (the
“‘convolution method”’) for single class separable models.

1975 Extension to multiple class separable models.

Concept of flow equivalent service centers using load
dependent servers.

1980 Mean value analysis and, subsequently, the highly efficient
MV A-based iterative approximate evaluation techniques for
separable models.

Table 16.2 — Advances in the Core Computational Routine

16.5. Epilogue

Given that much of what has been discussed in this book can be —
and has been — packaged in queueing network modelling software, why
have you and we together labored so long over this material? The reason
is simple: the effectiveness with which such software can be applied is
multiplied many times by an understanding of the principles and tech-
niques upon which it is based. Briefly:

® In the case of Part I, you learned that Little’s law and its relatives,
which provide the technical foundation of queueing network model-
ling, are reasonable, and are of extremely broad applicability. This
knowledge, along with an awareness of the widespread success of per-

16.5. Epilogue 37

formance studies using queueing network models, provides confidence
in the approach.

® In the case of Part II, you learned the techniques used to evaluate
separable queueing network models, and the assumptions upon which
these techniques rely. The robustness of these techniques with
respect to the assumptions was indicated. This knowledge again builds
confidence in the approach and, more importantly, it indicates the
range of applicability of queueing network models, and provides
insight into the ways in which detailed models of specific subsystems
can be constructed using separable queueing network models as a
basis.

® In the case of Part III, you learned a collection of techniques for aug-
menting the algorithms of Part II to evaluate detailed models of
specific subsystems, where it often is necessary to represent the effects
of system characteristics that violate the separability assumptions.
This knowledge will help you understand the homogeneity assump-
tions made by queueing network modelling packages in specific cases
(for example, in representing multipathing I/O subsystems), so that
you will know if these assumptions should be a source of concern in a
particular performance study. The techniques presented in Part III
also can serve as a model for similar techniques that you might devise
yourself when confronted with a unique modelling problem.

® In the case of Part IV, you learned how to parameterize queueing net-
work models to conduct studies of existing, evolving, and proposed
systems. Often a data reduction tool will not be available, and you will
be forced to work from raw measurement data. Even if such a tool is
available, it often will be desirable to augment it to accommodate the
requirements of a particular installation. You now have the knowledge
to do so.

® In the case of Part V, you learned through example how queueing net-
work models can be applied in ‘‘non-traditional’’ contexts. As com-
puter systems continue to evolve, it is important to recognize that the
applicability of queueing network technology, and of existing queueing
network modelling software, extends well beyond the confines of cen-
tralized systems with simple characteristics.

To repeat some comments made in the Preface, queueing network
models, while not a panacea, are the appropriate tool in a wide variety of
applications. Computer system analysis using queueing network models
is a blend of art and science, requiring both education and experience.
We hope to have contributed, and wish you success in applying queueing
network models in your work.

372 Perspective: Using Queueing Network Modelling Software

16.6. References

Our discussion of the structure of queueing network modelling
software is based on the treatment by Graham, Lazowska, and Sevcik
[1982]; this paper is the source of Figure 16.1. '

BEST/1, available since the late 1970s and considerably updated since
then, is one of the earliest commercial queueing network modelling pack-
ages [BGS 1982al. More recent packages include CMF/Model [Boole &
Babbage 1983], RESQ [Sauer et al. 1982], and MAP [QSP 1982a, 1982b].

An example of a high-level front end for modelling existing systems is
CAPTURE/MVS [BGS 1982b], which prepares BEST/1 input from MVS
performance monitor data.

A view of how to structure a hierarchical tool for database perfor-
mance projection, including a sequence of database workload descriptions,
is provided by Sevcik [1981]. A front end interface for projecting perfor-
mance of System 2000 databases is described by Casas Raposo [1981].

[BGS 1982a]
BEST/1 User’s Guide. BGS Systems, Inc., Waltham, MA, 1982.

[BGS 1982b]
CAPTURE/MVS User's Guide. BGS Systems, Inc., Waltham, MA,
1982.

[Boole & Babbage 1983]
CMF/Model. Boole & Babbage, Inc., Sunnyvale, CA, 1983.

[Casas Raposo 1981]
I. Casas Raposo. Analytic Modeling of Data Base Systems: The
Design of a System 2000 Performance Predictor. Technical Note 25,
Computer Systems Research Group, University of Toronto, July 1981.

[Graham et al. 1982]
G.S. Graham, E.D. Lazowska, and K.C. Sevcik. Components of
Software Packages for the Solution of Queueing Network Models.
Proc. CPEUG 82 (1982), 183-187.

[QSP 1982a]
MAP User Guide. Quantitative System Performance, Inc., Seattle,
WA, 1982.

[QSP 1982b]

MAP Reference Guide. Quantitative System Performance, Inc., Seattle,
WA, 1982. ’

16.6. References 373

[Sauer et al. 1982]
Charles H. Sauer, Edward A. MacNair, and James F. Kurose. The
Research Queueing Package, Version 2: Introduction and Examples.
Report RA 138, IBM T.J. Watson Research Center, 1982.

[Sevcik 1981]
K.C. Sevcik. Data Base System Performance Prediction Using an
Analytical Model. Proc. 7th VLDB Conference (1981), 182-189.

Part VI

Appendices

The four Appendices contain detailed information omitted from the
body of the book.

Chapter 17 uses an example based on a specific system (IBM’s MVS)
and a specific monitoring tool (RMF) to illustrate the parameterization of
queueing network models, which was described in general terms in
Chapter 12.

Chapter 18 contains a Fortran program implementing the exact mean
value analysis algorithm for evaluating single class queueing network
models. Chapter 19 extends this program to multiple classes. It is our
intention that these programs be used for educational experimentation
with simple models;, we advocate the use of commercial queueing net-
work modelling software for ‘‘serious’” computer system analysis.

Chapter 20 discusses the evaluation of queueing network models con-
taining load dependent service centers, and describes how the programs
in Chapters 18 and 19 can be modified to accommodate such centers.

375

Chapter 17

Constructing a Model from RMF Data

17.1. Introduction

In Chapter 12 we described in general terms how to determine the
input parameter values of a queueing network model from knowledge of a
system, measurement data, and accounting data. In this chapter we are
more specific: we consider the determination of parameter values for
models of computer systems running IBM’s MVS operating system, using
information obtained from the MVS Resource Measurement Facility
(RMF). We choose MVS for special treatment for several reasons:

® More large installations run MVS than any other single operating sys-
tem.

® Many performance analysts who work with other systems have MVS
experience in their backgrounds.

® The measurement and monitoring facilities associated with MVS have
greater variety and sophistication than those of most other systems.

While this chapter will be of greatest utility to those involved with
MVS and RMF, the techniques and difficulties that we illustrate are simi-
lar to those that arise in the context of many systems. To facilitate
understanding by persons not familiar with MVS and RMF, Sections 17.2
and 17.3 provide introductions to the concepts and terminology associated
with them. Of necessity, our discussions are relatively superficial, and
pertain to specific releases of MVS and RMF.

Following the structure of Chapter 12, Sections 17.4, 17.5, and 17.6
treat customer description, center description, and service demands,
respectively. Section 17.7 indicates how performance measures can be
derived from RMF reports for the purpose of model validation. In each
of these sections we first describe the techniques used to determine the
corresponding parameter values from RMF reports, and then, in a
“‘double-boxed” paragraph, illustrate these techniques in the context of a
specific example. This example is based on standard RMF reports from
an installation running MVS on an Amdahl 470 V/8 with 16 megabytes of
main memory, 12 physical channels, and roughly 150 IBM 3350 disk

376

17.2 Overview of MVS 377

drives. The workload consists of two components: interactive (TSO) and
batch. The RMF reporting interval was one hour during an afternoon
peak load period. This system is much simpler than many large MVS
installations (for example, it has fewer workload components). It
suffices, however, to illustrate the basic parameter determination tech-
niques.

As we have emphasized throughout the book, the goals of a particular
modelling study must be taken into account in the construction of a
model. In our example we assume that the system changes to be investi-
gated are moderate changes to workload intensities. There are two
significant implications of this assumption:

® We need not include a sophisticated representation of the disk 1/0
subsystem, as described in Chapter 10, since we would not expect the
various components of disk service demands to change significantly
under the modifications being investigated.

® We do not require a careful breakdown of paging activity by workload
component (difficult to obtain from RMF alone), since we would not
expect the level of paging activity to change significantly.

17.2. Overview of MVS

In this section we introduce some aspects of IBM’s MVS operating
system, which runs in many major computer installations. MVS has
several components and features that relate to performance, and thus are
important to the modelling of MVS systems.

Workload components in MVS are defined in the [Instaliation Perfor-
mance Specification (IPS). A set of performance groups is established, each
of which optionally is divided into a set of performance periods. An
incoming transaction, based on its identity, enters the first performance
period of some particular performance group.

A service objective is associated with each performance period, which
states the desired rate at which service units are acquired by transactions
belonging to that period. Service units are computed as the weighted
sum of logical I/0 operations, main storage occupancy (in units of 50
kilobyte-seconds), and CPU service (measured in 100ths of a second and
adjusted by a factor reflecting the speed of the processor). The weights,
called service definition coefficients, are set by the installation manager.

The System Resources Manager (SRM) controls the allocation of
resources. The SRM’s decisions are based on the progress of transactions
relative to their associated service objectives. As transactions reach
specified thresholds of attained service, they move from one performance
period to the next. The service objectives of successive performance

378 Appendices: Constructing a Model from RMF Data

periods call for lower and lower priority for resource allocation. The
thresholds are chosen so that most of the transactions that enter a period
complete within that period. This has the effect of providing good
response times to short transactions by discriminating against longer tran-
sactions.

Competition for memory is handled by defining a set of domains,
establishing a limit on the number of transactions that can be active
simultaneously in each domain (the domain capacity), and associating each
performance period with some domain. Transactions in periods associ-
ated with the same domain compete with one another for memory.

Typical performance groups defined in MVS installations include batch
(possibly split into components such as production and test) and TSO.
Other performance groups correspond to started tasks (jobs that never ter-
minate). Started tasks may include such major subsystems as the IMS
Control Region and associated Message Processing Regions, CICS,
TCAM, and JES, as well as lesser tasks such as RMF and other perfor-
mance monitors.

17.3. Overview of RMF Reports

In Chapter 12 we described software monitors in general. RMF is a
software monitor that records information during system operation with
modest overhead (typically, 2% to 3%). RMF uses a combination of sam-
pling and event recording. For example, queue length distributions at vari-
ous resources are determined by sampling, while the number of physical
I/0 operation (SIOs) is accumulated by event recording.

RMF generates a number of standard reports. These reports provide
far more data than is needed for our purposes. Table 17.1 (which is
divided into four parts) presents some relevant data items excerpted from
various RMF reports for our example system. The following paragraphs
briefly describe the content of the various reports.

The CPU Activity Report, shown in abbreviated form in Table 17.1a,
provides information on the CPU and its usage. It includes the length of
the observation interval, the CPU model number, the percentage of time
that the CPU was idle (WAIT TIME PERCENTAGE), the average
number of TSO users (TSO AVG ASIDS), and the CPU queue length
distribution (not shown in the table) broken down in various ways.

Note that RMF always expresses percentages out of 100 (e.g., 32.09
rather than .3209 in Table 17.1a); we would calculate CPU busy time as:

Bepy = INTERVAL X (1 — (WAIT_TIME_PERCENTAGE / 100))

17.3. Overview of RMF Reports 379

CPU Activity
INTERVAL 60 min.
CPU MODEL 0470
WAIT TIME PERCENTAGE 32.09%
TSO AVG ASIDS 78.5

Table 17.1a — RMF CPU Activity Report

The Channel Activity Report, shown in abbreviated form in Table
17.1b, has two parts. The first reports on each physical channel, indicat-
ing its type, volume of activity (CHANNEL ACTIVITY COUNT, the
total number of operations during the observation interval), and utiliza-
tion, among other quantities. The second reports on each logical chan-
nel, indicating the physical channels to which it corresponds, its activity
rate (measured in operations per second), and its queue length distribu-
tion (only the average queue length is shown in the table). There also is
information on the percentage of requests that are delayed by congestion
in the I/0 subsystem, and the components responsible for such delays.

The Direct Access Device Activity Report, shown in abbreviated form in
Table 17.1c, describes individual devices. It provides information on logi-
cal channel attachment, physical I/0 count, utilization, queue length dis-
tribution (only the average queue length is shown in the table), and aver-
age service time (not shown in the table). There also is information (not
shown) concerning the causes of request delays and the proportions of
time that devices are used in various ways. The Tape Device Activity
Report (not shown) provides similar information for tape devices. Note
that, in contrast to the convention used throughout this book, the queue
length information reported in the Device Activity Reports does not
include the customer in service.

The Workload Activity Report, shown in abbreviated form in Table
17.1d, differs from the reports described so far in that it presents resource
usage information broken down by performance group and performance
period. In the table, group 0 (with one period) is overhead tasks, group 1
(with two periods) is batch work, and group 2 (with three periods) is
TSO. Three parts of this report are shown in the table. The first part
indicates the installation’s service definition coefficients. As described in
Section 17.2, resource consumption is reported by RMF in service units
that are determined by these coefficients. The second part indicates
resource consumption. The service units acquired during the observation
interval by each performance group (GRP NUM) and performance period
(GRP PER) are given for I/O (I0C), main storage occupancy (MSO),
and CPU (CPU), as well as in total (TOT) and on a per-second basis
(PER SEC). (RMF sometimes reports a fourth form of service

380 Appendices: Constructing a Model from RMF Data

Physical Channel Activity
CHANNEL PERCENT
CHANNEL CHANNEL ACTIVITY CHANNEL
NUMBER TYPE COUNT BUSY
0 BYTE MPX 392 0.00
1 BLOCK MPX 130696 29.46
2 BLOCK MPX 70544 12.41
3 BLOCK MPX 77220 15.82
4 SELECTOR 64 0.00
5 BLOCK MPX 65876 12.58
6 BLOCK MPX 904 12.27
7 BLOCK MPX 130120 27.76
8 BLOCK MPX 87212 15.38
9 BLOCK MPX 70648 15.82
A SELECTOR 23296 5.25
B BLOCK MPX 98156 1.83
Logical Channel Activity
REQ AVG
LOG PHYS PER QUEUE
CHN CHN SEC LNGTH
1 1,7 71.1 0.56
4 2,8 42.6 1.01
6 3,9 40.2 0.22
10 5 8.4 0.19
11 5,9 5.7 0.17
12 6 0.3 0.00
17 B 5.9 0.13
(Other Logical Channels had insignificant usage.)

Table 17.1b — RMF Channel Activity Report

acquisition for each group and period: SRB, which roughly corresponds
to directly attributable CPU overhead activity.) The third part indicates,
again for each group and each period, the resource consumption rate of
an average transaction (AVG ABS (absorption) RATE, measured in ser-
vice units per second), the number of swaps, the average number of
ready requests (AVG TRANSACTS, which includes swapped-out
requests so is not a good estimator of multiprogramming level), the com-
pletion count (ENDED TRANSACTS), and the response time (AVG
TRANS TIME).

17.3. Overview of RMF Reports 381

Direct Access Device Activity
DEVICE %

DEV LOG ACTIVITY DEV AVG Q
ADR CHN COUNT BUSY LNGTH
100 1 32796 39.1 .01
101 1 6072 9.1 .00
108 1 43912 355 21
109 1 33008 42.1 .01
117 1 40136 28.6 .13
11B 1 40424 28.6 .15
1D2 1 35876 30.6 .02
298 4 6144 7.2 .00
2Cl1 4 18644 17.9 13
2C8 4 20476 18.8 .24
2C9 4 16900 13.9 .07
2CB 4 18068 15.5 .08
2D3 4 10372 6.8 .02
2D8 4 10288 5.7 .02
2DB 4 5376 5.4 .01
2DC 4 23632 11.7 .03
330 6 12492 8.4 .00
332 6 8760 5.6 .06
335 6 23392 15.5 .03
339 6 34736 41.7 .01
33A 6 20288 12.7 .01
33B 6 24900 20.5 .07
33D 6 18128 14.6 .04

(Another 133 disk volumes had device busy percentages of

less than 5%. The sum of their % DEV BUSY was 50.2, in-

dicating a total of 1807 seconds of busy time.)

Table 17.1c — RMF Direct Access Device Activity Report

The Paging Activity Report provides a complete breakdown of paging
activity from a system perspective. (Unfortunately, paging activity is not
broken down by performance group.) A second part of this report sum-
marizes swapping activity. It gives both logical and physical swap counts
broken down by type. It also gives the total number of swaps, the swap-
ping rates, and the average number of pages involved in each page in and
page out. The Page/Swap Dataset Activity Report indicates the devices

382 Appendices: Constructing a Model from RMF Data

Workload Activity

SERV DEF COEF:

IOC =5
CPU = 10
MSO = 3
<—— INTERVAL SERVICE ——>
GRP GRP ' B PER
NUM PER IOC CPU MSO TOT SEC
000 1 62 147 42 251 70
001 1 681 966 1130 2771 771
001 2 25 109 142 276 77
001 ALL 706 1075 1272 3053 848
002 1 654 1749 416 2819 783
002 2 359 622 196 1177 327
002 3 644 1178 395 ' 2217 616
002 ALL 1657 3549 1007 6213 1726

(I0C, CPU, MSO, and TOT service units are
expressed in thousands.)

AVG

AVG NUM AVG ENDED TRANS
GRP GRP ABS OF TRANS- TRANS- TIME
NUM PER RATE SWAPS ACTS ACTS (SECS)
000 1 34 4 2.00 4 21
001 1 183 142 4.32 - 52 15.94
001 2 116 56 .65 12 482.18
001 ALL 174 248 4.97 64 103.36
002 1 210 24160 3.84 24292 0.46
002 2 242 836 1.34 660 8.72
002 3 353 496 1.76 356 27.54
002 ALL 253 25492 6.96 25308 1.05

Table 17.1d — RMF Workload Activity Report

used for various types of paging and swapping. Because our example
model is not intended to be used for situations in which paging activity is
expected to change substantially, our parameterization will not involve
information from these last two reports, and they are not shown.

17.4. Customer Description 383

17.4. Customer Description

In Chapter 12 we indicated that the identification of customer classes
in a model is based primarily on the workload components to be dis-
tinguished with respect to their performance.

In a queueing network model of an MVS system, a customer class
sometimes represents a single performance group, sometimes a single
performance period of a performance group, and sometimes an aggrega-
tion of several performance groups. For example, a TSO performance
group might correspond directly to a class, or each TSO performance
period might be represented as a separate class (for example, in order to
be able to report response times for trivial TSO transdctions). Perfor-
mance groups corresponding to production batch and test batch might be
aggregated into a single class.

Certain performance groups correspond to various started tasks. Some
started tasks are significant workload components (e.g., CICS, IMS Con-
trol Region, IMS Message Processing Regions), and should be
represented as customer classes in the model. Others can be treated as
system overhead (e.g., JES, RMF, and TCAM); the resource usage of
these ‘‘overhead’ performance groups must be distributed carefully
across the customer classes of the model.

When a customer class corresponds to two or more performance
groups, the statistics in the Workload Activity Report must be aggregated.
For most quantities, aggregation involves addition over the relevant per-
formance groups. However, for those quantities that refer to a single
transaction rather than to an entire performance group (AVG ABS RATE
and AVG TRANS TIME are the two examples in Table 17.1d), an aver-
age weighted by throughput must be calculated. For example:

AVG_TRANS_TIME 45 =

S, [ENDED_TRANSACTS , x AVG_TRANS_TIME]
geG

> ENDED_TRANSACTS,
geG

where G is the set of performance groups that correspond to the custo-
mer class. In the rest of this chapter we will assume that such aggrega-
tion of Workload Activity Report data items has been carried out when-
ever necessary.

Once classes are identified and associated with performance groups,
the next task is to specify the type (transaction, batch, or terminal) and
workload intensity of each class. General guidelines for choosing the type
of a class were given in Chapter 12. RMF treats TSO specially (in provid-
ing the average number of active terminals, for example). Consequently,

384 Appendices: Constructing a Model from RMF Data

TSO can be represented as a terminal class. Without information from
other sources (e.g., specialized subsystem monitors), all other classes
must be treated as either batch (if the number of active tasks is known)
or transaction (possibly with a memory constraint to limit the number of
customers active simultaneously).

Values for workload intensity parameters can be calculated from RMF
data items as suggested in Table 17.2, using data items from the CPU
Activity and Workload Activity Reports. For transaction classes, the cal-
culation is based on the assumption that throughput is equal to the arrival
rate. The formula shown for batch type classes estimates the average
number of ready requests residing in main memory. (As noted in Section
17.3, the RMF data item AVG TRANSACTS includes non-resident ready
requests.) This formula is known to be less reliable than the other for-
mulae presented in this chapter, often yielding a result that significantly
over-estimates the actual number of ‘‘threads of control’’ that are con-
currently active. This is an instance where ‘‘calibration’”> may be
appropriate. One approach used frequently in practice is to represent the
workload initially as a transaction class, calculating its arrival rate as
ENDED TRANSACTS / INTERVAL. After the model has been
evaluated once, the workload can be converted to a batch class whose
population is determined from the outputs of this initial evaluation.

Transaction:

A = ENDED_TRANSACTS / INTERVAL

Batch:

PER_SEC_INTERVAL_SERVICE
AVG_ABS_RATE

total rate of service delivery.
rate of service delivery per active job

Terminal (TSO only):
N = TSO_AVG_ASIDS = number of active terminals
TSO_AVG_ASIDS
ENDED_TRANSACTS / INTERVAL
— AVG_TRANS_TIME

_ number of active terminals .
= — average response time
throughput

N =

7 =

Table 17.2 — Workload Intensity Parameter Value Calculation

17.5. Center Description 385

EXAMPLE: Workload Component Identification
(from the IPS and the Workload Activity Report of Table 17.1)

We choose to treat performance group O as overhead. It
will not be represented as a class; its resource consumption
will be apportioned among the user classes.

Performance Workload Customer Class
Group Component Class Type
000 overhead (none) —
001 batch BATCH batch
002 interactive TSO terminal

EXAMPLE: Workload Intensity Calculation
(from the IPS and Tables 17.1 and 17.2)
NBATCH = 848/ 174 = 49

NTSO = 78.5

Zrso = — 85 _ 105 = 10.1 secs.

25308 / 3600
TSO is assigned to a domain with a capacity of 8.

17.5. Center Description

The structure of the model is determined primarily from knowledge of
the configuration.

The Device and Channel Activity Reports may reveal some system
components that are so lightly utilized that they need not be included in
the model. For example, of the hundreds of disk drives in a large instal-
lation, it typically is the case that less than 25% of them will have utiliza-
tions of 5% or more in any observation interval. (In our example system,
23 disks had utilizations of 5% or more, while 133 disks had utilizations
of less than 5%.) Obviously, any disk with a utilization of zero can be
omitted from the model. In addition, though, a single delay center can
be used to represent the aggregate effect of all disks with utilizations of
less than 5%. The service demand of a class at this delay center is calcu-
lated as the sum of the busy times attributed to the class at all these

386 Appendices: Constructing a Model from RMF Data

disks, divided by the total number of request completions for the class.
Such an aggregation reduces the amount of work involved in constructing
a model ‘“‘by hand”. Because queueing delays are insignificant at
resources with utilizations of less than 5%, little error is introduced.
When a program is used to obtain parameter values from measurement
data, as described in Section 16.2.4, it is easiest to represent all devices in
the model, no matter how light their use.

As recommended in Chapter 10, disk channels are represented impli-
citly in our example by ‘‘inflating’ disk service demands to reflect path
contention. Other channels are represented explicitly, while the devices
to which they connect are not. The reason that other devices (e.g.,
tapes) need not be treated in as much detail as disks is that they do not
have the same capability of concurrent activity independent of the chan-
nel. Unit record devices and their channels often are omitted from
models since spooling allows their activity to be overlapped fully with
other processing. Some other lightly used channels may be either omit-
ted or represented as part of a single delay center for similar reasons.

17.6. Service Demands

Along with the workload intensity parameters, the most critical values
that must be derived from measurement data are the service demands of
the customer classes at each center. The most difficult step in doing this
is allocating CPU and I/0O busy times to customer classes. This can be
done only roughly using RMF data alone. To apportion busy times more
accurately, supplementary information from other sources, e.g., the Sys-
tem Management Facility (SMF) or the Generalized Trace Facility
(GTF), is needed. For this discussion, however, we assume that only
RMF data is available.

In Chapter 12 we presented several methods for allocating unattri-
buted CPU activity (Section 12.5.1) and I/0 activity (Section 12.5.2) to
customer classes. The basic quantities required by these methods are
available from RMF, as shown in Tables 17.3 (CPU) and 17.4 (1/0).
Note that if RMF is reporting SRB INTERVAL SERVICE (see Section
17.3), this should be added to CPU INTERVAL SERVICE in calculating
attributed CPU activity. Note also that a breakdown of most physical
I/0s by device and by class can be obtained by the analysis of certain
types of SMF records, although we restrict ourselves to RMF here.

After attributing CPU and I/O activity to customer classes, the service
demands for each class at each device are calculated by dividing the busy
time attributed to a class at a center by the number of completions
observed for the class (ENDED TRANSACTS).

17.6. Service Demands

387

1
23
1
4

TSO terminals

EXAMPLE: Model Structure
of Centers

Type

queueing
queueing
delay

queueing

Representing

CPU

23 disks with utilization = 5%
133 disks with utilization < 5%
4 channels (5, 6, A, B)

1

23 disks

10

CPU

133 disks

— 1O

*:O

Tape channels

——) e

Special I/O device channel

____,D__,

Drum channel

388 Appendices: Constructing a Model from RMF Data

Measured CPU Busy Time:

Bepy = :
INTERVAL X (1 — (WAIT_TIME_PERCENTAGE / 100))
Accounted CPU Busy Time by Class:
y _ CPU_INTERVAL_SERVICE .
¢.CPU" ™ 'CPU_SERV_DEF_COEF X CPU_speed_factor
where CPU_speed_factor is determined by the model.

Swapping Overhead Factor by Class:
SW. = NUM_OF_SWAPS .

Table 17.3 — RMF Items for CPU Activity Allocation

Disk Device Busy Time:
B, = INTERVAL X (%_DEVICE_BUSY , / 100)
Physical I/0s by Device:
P, = DEVICE ACTIVITY_COUNT ,

Logical I/O’s by Class:
; - IOC_INTERVAL SERVICE,
¢ IOC_SERV_DEF_COEF

Table 17.4 — RMF Items for I/O Activity Allocation

The two approaches to CPU activity allocation used below to treat the
example system represent two extremes. While the TSO overhead factor
certainly is higher than that for BATCH, it certainly is not as high as is
indicated by the ratio of the reported swapping activity for the two classes.

17.7. Performance Measures

In order to validate a baseline model we need to determine from
measurement data not only the input parameter values, but also the per-
formance measure values. Table 17.5 indicates how various performance
measure values can be obtained from RMF reports.

17.7. Performance Measures

389

EXAMPLE: CPU Activity Allocation to Classes

First approach of Section 12.5.1; assumes that overhead is proportion-
al to accounted usage.

Bepy = 3600 X (1 — .32) = 2448 secs.

Aparcn.cpy = 1075000 X factor Arsp cpy = 3549000 X factor

where factor need not be calculated since this approach uses
only relative, not absolute, accounted CPU time

Cgarcy = 64 Crso = 25308
1075000 1
D = 244 1 _
BATCH,CPU = 2448 X o 3549000 < G4 o:89 secs.
Drso.coy = 2448 x ———3539000____ o L1 _ 474

1075000+ 3549000 25308

EXAMPLE: CPU Activity Allocation to Classes

Second approach of Section 12.5.1; assumes that swapping is the pri-
mary source of overhead.

CPU_speed_factor of Amdahl 470 V/8 = 420
CPU_SERV_DEF_COEF = 10
1075000

Aparcn.cru = 0% 10 = 256 secs.
3549000 _
Arso.cru = 320 %10 = 824 secs.
SWBATCH = 248 SWTSO = 25492
248 [_]
_ ———————248 25492 X 12448 (256+824) 3
fBATCH =1+ 256 = 1.05
25492 []
25892 (448 — (256+824
Fo = 4 298+ 25092 28(68)=264
TS0 824 '
1.05 x 256
Dgarcrcry = — = 4.2 secs.

2.64 x 824
Drso.cry = T 23308 = 0.086 secs.

390 Appendices: Constructing a Model from RMF Data

EXAMPLE: Disk Activity Allocation to Classes

In the absence of information to the contrary, assume that each
class uses each disk in proportion to its overall I/O activity.

Note that the I/0 activity of performance group 0 is allocated im-
plicitly to the two classes in proportion to their accounted usage.

‘ 706

BATCH_share_of_IOC_INT_SERV = o= = 298

TSO._share_of IOC_INT SERV = —107 __ _ 395
—SHAEOLIPR 706 + 1657 ‘

Calculations for disks 100 and 101 (the other 21 individually
represented disks are treated similarly):

298 x .391 x 3600

Dgsrcr pioo = 64 = 6.576
Drsp pio = .7027><21§>?9’88>< 3600 _ 0.039
Daarcy oy = 298 X .06941 X 3600 __ 1.531
Drso.oir = 702 ngz(l)gx 3600 _ 0.009

Calculations for the aggregate disk center (the total busy time of
the 133 other disks is 1807 seconds):

Dgarct pace = '2985—41807 = 8.442
702 x 1807
Drso.pagc = % = 0.050

17.8. Summary

In this chapter we have illustrated the application of the general tech-
niques presented in Chapter 12 to a specific case. Our example treated
data obtained from RMF reports concerning an MVS system. We saw
that many queueing network model inputs and outputs are provided
directly by RMF, while others must be calculated indirectly, with varying
degrees of reliability. Similar techniques are applicable and similar
difficulties are encountered in dealing with other computer systems.

17.8. Summary 391

EXAMPLE: Non-disk Channel Service Demands

Tape Channels (assume BATCH is responsible for all tape usage):

1258 x 3600

Dparcr.cns = - 7.076 Drso.cvs = 0
.0525 x 3600

Dparcr.ca = 6—4 = 2933 Drso.ca = 0

Electronic Drum (assume that it is used for swapping and hence
should be attributed to the TSO class):

.0183 x 3600
Dparcr.cus = 0 Drso,cus = 55308 = .0026
Special I/0 Device (assume that it is used only by BATCH):
1227 x 3600
Dgarcrcue = I E— ——6.902 Drso.cve = 0

Throughput by Class:
_ ENDED_TRANSACTS .
¢« INTERVAL

Response Time by Class:
R. = AVG_TRANS_TIME .

CPU Utilization:
Uecpy = 1 — (WAIT_TIME_PERCENTAGE / 100)
Device Utilization:

U. = % _DEV_BUSY , /100

Device Queue Length:
0. = AVG_Q_LNGTH , + (%_DEV_BUSY , / 100)

Table 17.5 — RMF Items Giving Performance Measures

392 Appendices: Constructing a Model from RMF Data

EXAMPLE: Performance Measures

Rpsrcy = 103.4 Rrso = 1.05
UCPU = 680/0

UDIOO = 3910/0 QDlOO = 40
Upion = 9.1% Opior = .09

17.9. References

The first published discussion of determining queueing network model
parameters from measurement data was given by Rose [1978]. Since
then, Levy [1980] and Irwin [1983] have presented more detailed treat-
ments of RMF specifically. Lindsay carried out some experiments to
investigate the accuracy of some of the data items obtained from RMF
[Lindsay 1980].

A special issue of the the IBM Systems Journal concerning capacity
planning contains several papers relating to the use of measurement data
from MVS systems. Bronner surveys capacity planning techniques and
describes the relationship among various sources of measurement data for
MVS systems [Bronner 1980]. Schardt describes some techniques for
using measurement data to tune MVS systems [Schardt 1980]. Schiller
describes the SCAPE model, an alternative to queueing network models

which is tailored to deal with many special aspects of MVS environments
[Schiller 1980].

Information on MVS and its System Resources Manager (SRM) can
be found in papers by Beretvas [1978] and by Lynch and Page [1974],
respectively. Chiu and Chow [1978] describe a hybrid model of the inter-
nals of MVS (see Section 15.6), while Buzen describes a queueing net-
work model based on the MVS external interface [Buzen 1978].

[Beretvas 1978]
Thomas Beretvas. Performance Tuning in OS/VS2 MVS. IBM Sys-
tems Journal 17,3 (1978), 290-313.

[Bronner 1980] ;
LeeRoy Bronner. Overview of the Capacity Planning Process for Pro-
duction Data Processing. IBM Systems Journal 19,1 (1980), 4-27.

17.10. Exercises 393

[Buzen 1978]
Jeffrey P. Buzen. A Queueing Network Model of MVS. Computing
Surveys 10,3 (September 1978), 319-331.

[Chiu and Chow 1978]
Willy W. Chiu and We-Min Chow. A Performance Model of MVS.
IBM Systems Journal 17,4 (1978), 444-462.

[Irwin 1983]
Robert T. Irwin. RMF Equations: Obtaining Job Class Results from
RMF. Journal of Capacity Management 1,3 (1983), 230-261.

[Levy 1980]
Allan I. Levy. Introduction to Practical Operational Analysis: An
MVS Perspective. Proc. CMG XI International Conference (1980),
208-214.

[Lindsay 1980]
David S. Lindsay. RMF I/0 Time Validation. Proc. CMG XI Interna-
tional Conference (1980), 112-119,

[Lynch and Page 1974]
H.W. Lynch and J.B. Page. The OS/VS2 Release 2 System Resources
Manager. IBM Systems Journal 13,4 (1974), 274-291.

[Rose 1978]
Clifford A. Rose. A Measurement Procedure for Queueing Network

Models of Computer Systems. Computing Surveys 10,3 (September
1978), 263-280.

[Schardt 1980]
R.M. Schardt. An MVS Tuning Approach. IBM Systems Journal 19,1
(1980), 102-119.

[Schiller 1980]
D.C. Schiller. System Capacity and Performance Evaluation. /BM
Systems Journal 19,1 (1980), 46-67.

17.10. Exercises

1. Use the multiple class mean value analysis implementation in Chapter
19 to evaluate the model for which parameters were derived in this
chapter. (This will require extending the Chapter 19 implementation
to handle terminal classes and delay centers. Note that you will not be
able to represent the non-integer customer populations or the TSO
domain capacity using this implementation.) Compare the results to
the RMF performance measure values shown in Section 17.7.

394 Appendices: Constructing a Model from RMF Data

2. “‘Calibrate’ the value of Ng,rcy as suggested in Section 17.4. (This
will require extending the Chapter 19 implementation to handle tran-
saction classes.) How are the various performance measure values
affected?

3. Use Algorithm 9.2 to represent the TSO domain capacity. (This will
require extending the single class mean value analysis implementation
in Chapter 18 to handle load dependent service centers, as described
in Chapter 20.) Note that the iteration is simplified by the fact that
the batch population is fixed. How are the various performance meas-
ure values affected?

4. Based on information contained in Section 16.3, describe how you
would specify this model using the queueing network modelling
software package MAP.

Chapter 18

An Implementation of Single Class, Exact MVA

18.1. Introduction

In this appendix we provide a Fortran implementation of the most
basic queueing network evaluation technique: the use of mean value
analysis to obtain the exact solution of a separable queueing network
model consisting entirely of queueing centers and containing a single class
of batch type.

The algorithm on which this program is based is described in Chapter
6. The interested reader will find it educational to extend the program to
accommodate two other characteristics described in that chapter: delay
centers, and choice of batch, terminal, or transaction class types. The
extension to multiple classes is given in Chapter 19. The extension to
load dependent service centers is discussed in Chapter 20.

As noted in the overview of Part VI, our intention is that this program
be used for educational experimentation with simple models. Its value as
a capacity planning tool in no way approaches that of commercial queue-
ing network modelling software. For a better idea of the interactions pos-
sible with that type of software, consult Chapter 16.

18.2. The Program

The program appears on the next two pages. Two statement labels
(2001 and 2003) are included for reference in Chapter 20 and are not
used in the program.

Note that some Fortran implementations impose restrictions on for-
matted I/O. It is best to include an explicit decimal point in real-valued
input (but not integer-valued input) when using the program.

395

396 Appendices: An Implementation of Single Class, Exact MVA

program single

c
¢ A maximum of 25 centers are allowed.
c
integer Ncusts,Ncents,n,center
real demand(25)
real glen(25)
real rtime(25)
real tput,sysr
c
write (6,5)
5 format (27h Input number of customers:)
read (5,10) Ncusts
10 format (i4)
write (6,15)
15 format (25h Input number of centers:)
read (5,10) Ncents
write (6,20)
20 format (25h Input service demand for)
do 25 center=1,Ncents
write (6,30) center
30 format (10h Center ,i2,1h:)
read (5,35) demand(center)
35 format (f8.4)
25 continue
c

¢ Now that the network is described, we perform the evaluation.
¢ Begin by initializing to the trivial solution for zero customers.
c

do 40 center=1,Ncents

glen(center) = 0.0

40 continue
c
¢ The algorithm solves successively for each population.
c

do 45 n=1,Ncusts

c
¢ First, compute the residence time at each center.
c
sysr = 0.0
do 50 center=1,Ncents
2001 rtime (center) = demand(center)*(1.0+qlen(center))

sysr = sysr + rtime(center)
50 continue

18.2. The Program

c
¢ Next, use Little’s law to compute system throughput.
c

tput = n / sysr

c
¢ Finally, use Little’s law to compute center queue lengths.
c
do 55 center=1,Ncents

2003 glen(center) = rtime(center) * tput
55 continue
c
45 continue
c
¢ Print results.
c

write (6,60) tput
60 format (20h System throughput: ,f8.4)

write (6,65) Ncusts/tput
65 format (23h System response time: ,{8.4)
c

write (6,70)
70 format (22h Device utilizations:)
do 75 center=1,Ncents
write (6,80) center,tput*demand(center)

80 format (i5,2h: ,f5.3)
75 continue
c

write (6,85)
85 format (23h Device queue lengths:)
do 90 center=1,Ncents
write (6,95) center,qlen(center)

95 format (i5,2h: ,f8.4)
90 continue
c

end

397

Chapter 19

An Implementation of Multiple Class, Exact MVA

19.1. Introduction

In this appendix we provide a Fortran implementation of the exact
mean value analysis algorithm for separable queueing network models
consisting entirely of queueing centers and containing three classes of
batch type.

The algorithm on which this program is based is described in Chapter
7. The interested reader will find it educational to extend the program in
three ways: to allow more than three classes, to allow delay centers, and
to allow a choice of batch, terminal, or transaction types independently
for each class. The extension to load dependent service centers is dis-
cussed in Chapter 20.

As with the program in Chapter 18, our intention is that this program
be used for educational experimentation with simple models. Its value as
a capacity planning tool in no way approaches that of commercial queue-
ing network modelling software. For a better idea of the interactions pos-
sible with that type of software, consult Chapter 16.

19.2. The Program

The program appears on the next four pages. Two statement labels
(2001 and 2003) are included for reference in Chapter 20 and are not
used in the program.

Note that some Fortran implementations impose restrictions on for-
matted I/0. It is best to include an explicit decimal point in real-valued
input (but not integer-valued input) when using the program.

398

19.2. The Program 399

program multpl
c
¢ A maximum of 3 classes and 25 centers are allowed.
¢ Classes 2 and 3 are limited to a maximum of 10 customers each.
¢ Class 1 has no limit on its population.
c
integer Ncents,center,class
integer n1,n2,n3
c
¢ Ncusts(c) is the population of class c.
¢ N is a temporary population vector required by MVA.
c
integer Ncusts(3),N(3)
c
¢ demand(c,k) is the service demand of class ¢ at center k.
c
real demand(3,25)
c
¢ gqlen(class 2 pop.,class 3 pop.,k) is a 3-dimensional array
¢ containing the queue length at each center k for each possible
¢ combination of class 2 and class 3 network populations. The
¢ population of class 1, the outermost class in the iteration,
¢ need not appear as an index. Population indices run from 1 to
c 11 to represent populations from 0 to 10 because some Fortran
¢ implementations restrict the base of array dimensions to be 1.
c
real qlen(11,11,25)

c
c rtime(c,k) is the residence time of class ¢ at center k.
c
real rtime(3,25)
c

c tput(c) and sysr(c) are the throughput and response time of class c.
c
real tput(3),sysr(3)

write (6,5)
5 format (30h Input number of customers for)
do 10 class = 1,3
write (6,15) class

15 ‘format (9h Class ,il,1h:)
read (5,20) Ncusts(class)
20 format (i4)

10 continue

400 Appendices: An Implementation of Multiple Class, Exact MVA

write (6,25)
25 format (25h Input number of centers:)
read (5,20) Ncents
write (6,30)
30 format (25h Input service demand for)
do 35 center=1,Ncents
write (6,40) center
40 format (10h Center ,i2,1h:)
do 45 class=1,3
if (Ncusts(class) .eq. 0) goto 45
write (6,50) class

50 format (11h Class ,il,lh:)
read (5,55) demand(class,center)

55 format (f8.4)

45 continue

35 continue

c

¢ Now that the network is described, we perform the evaluation.
¢ The algorithm iterates through all possible population vectors.
c
do 60 nl =0,Ncusts(1)
do 65 n2=0,Ncusts(2)
do 70 n3=0,Ncusts(3)
if (n1+n2+n3 .eq. 0) goto 70

N(1) = nl
N(Q2) =n2
N(3) = n3
c
¢ First, compute the residence time at each center.
c
do 80 class = 1,3
sysr(class) = 0.0
if (N(class) .eq. 0) goto 80
c
N(class) = N(class) — 1
do 85 center=1,Ncents
2001 rtime(class,center) =
X demand(class,center) *
X (1.0+qlen(N(2) +1,N(3) +1,center))
sysr(class) = sysr(class) +
X rtime(class,center)
85 continue

N(class) = N(class) + 1

19.2. The Program 401

c
¢ Next, use Little’s law to compute system throughput.
c
tput(class) = N(class) / sysr(class)
80 continue
c

¢ Finally, use Little’s law to compute center queue lengths.
c
do 90 center=1,Ncents
glen(n2+1,n3+1,center) = 0.0
do 95 class=1,3
if (N(class) .eq. 0) goto 95
2003 glen(n2+1,n3+1,center) =
X glen(n2+1,n3+1,center) +
X rtime(class,center) * tput(class)
95 continue
90 continue
c
70 continue
65 continue
60 continue
c
¢ Print results.
c
do 100 class=1,3
if (Ncusts(class) .eq. 0) goto 100

c
write (6,105) class
105 format (7h Class ,il,lh:)
write (6,110) tput(class)
110 format (22h System throughput: ,f8.4)
write (6,115) Ncusts(class) / tput(class)
115 format (25h System response time: ,f8.4)
c

write (6,120)
120 format (24h Device utilizations:)
do 125 center=1,Ncents
write (6,130) center,tput(class)*demand(class,center)
130 format (i7,2h: ,f5.3)
125 continue

402 Appendices: An Implementation of Multiple Class, Exact MVA

write (6,140)
140 format (25h Device queue lengths:)
do 145 center=1,Ncents
write (6,150) center, tput(class)*rtime(class,center)

150 format (i7,2h: ,f8.4)
145 continue

c

100 continue

c

end

Chapter 20

Load Dependent Service Centers

20.1. Introduction

The mean value analysis (MVA) algorithms developed in Chapters 6
and 7 allow service centers of only the queueing and delay types. As
noted in Chapter 8, though, it is possible to extend these algorithms to -
evaluate models containing load dependent service centers — centers at
which the service rate (the reciprocal of the service time) varies with the
number of customers present. These extensions are the subject of the
present appendix.

On occasion, individual components of computer systems are
represented most naturally using load dependent centers. An example is
a disk device where accesses are served in an order that attempts to
minimize head movement. The greater the number of requests queued
at such a device, the smaller the time required to satisfy each, on aver-
age, since the effectiveness of the scheduling policy increases with queue
length.

The most important use of load dependent centers, though, is to
implement Aow equivalent service centers (FESCs). The construction and
use of FESCs was detailed in Chapter 8, and numerous applications were
noted in Chapters 9 and 11.

In discussing the modifications to M VA necessary to accommodate
load -dependent centers, we restrict our attention to closed queueing net-
works (batch or terminal workload types) and to the exact MVA algo-
rithms (Algorithm 6.2 for the single class case and Algorithm 7.2 for the
multiple class case). We begin by recalling the three principal steps of
mean value analysis:

1. Compute the residence time at each center for each class, based on
the service demand of the class and the average number of customers
seen upon arrival to the center by a customer of that class.

403

404 Appendices: Load Dependent Service Centers

2. Compute the throughput of each class as the number of customers of
that class divided by the sum of its residence times at all centers (plus
the think time, if the class is of terminal type).

3. Compute the queue length of each class at each center as the product
of its throughput and its residence time at that center.

The exact MV A algorithms involve the iterative application of these steps
at increasing populations, with the results of Step 3 at one iteration used
to compute the queue lengths needed in Step 1 of the next iteration.

The load dependent versions of the algorithms involve revisions to
Steps 1 and 3 — modified equations that are applied to load dependent
centers:

® Consider Step 1, the estimation of the service center residence times.
For load independent centers, this quantity is calculated using the
(load independent) service demand and the average number of custo-
mers seen upon arrival to the center. For load dependent centers, ser-
vice rates vary with queue length, so the residence time equation used
in Step 1 must be augmented by terms reflecting the varying queue
lengths and corresponding service rates.

® Consider Step 3, the estimation of the service center queue lengths.
For load independent centers, only the average queue length is
required by Step 1, so only this quantity is calculated in Step 3. For
load dependent centers, the queue length distribution — the proportion
of time that each possible customer population exists at a center — is
required, so must be calculated in Step 3.

Load dependent service rates indicate the rate of customer comple-
tions at a center as a function of its current customer population.
Because these rates inherently are per visit, while the result of the
residence time equation is the total time spent at a center (i.e., the time
per visit multiplied by the number of visits), service center visit counts
appear as multiplicative factors in the load dependent version of the
residence time equation. Thus, it appears that load dependent centers are
more complicated to parameterize than load independent centers not only
because of the need to give many service rates instead of a single service
demand, but also because of the need to provide service center visit
counts. Fortunately, this latter complication can be avoided: it is possi-
ble to rewrite the residence time equation in a way that obviates explicit
visit count information. This transformation is shown in the last section
of this appendix, where implementation considerations are addressed.
We have chosen to include the visit count factors in the initial presenta-
tion because intuition is sacrificed in the transformation.

As in Part II of the book, our presentation is organized as a discussion
of the single class case, followed by a discussion of the multiple class
case. Implementation issues are discussed in a final section.

20.3. Multiple Class Models 405

20.2. Single Class Models

We consider models with K service centers and a single customer
class of batch or terminal type. Let w, (j) be the service rate of center k
when there are j customers there. Let p; (j | n) be the proportion of time
that center k has j customers present when the number of customers in
the entire model is #n. The following expressions are substituted for Steps
1 and 3 of the load independent MV A algorithm for each load dependent
center k. (The load independent equations still are used for all load
independent centers in the model.)

1. Compute the residence time at load dependent center k:
n ;
Ri(n) = V, S —L—p (j=11n=1)
k k jél () JZ3V)

where V) is the number of visits each customer makes to center k.
(As noted earlier, this term is required since R, represents the total
time spent at a center, while the w, are service rates per visit.)

3’. Compute the queue length distribution for load dependent center k:

X(n)

e () pG—=11n—=1) j=1,..,n
pGln) = 1

i=1

20.3. Multiple Class Models

We consider closed, multiple class models with K service centers and
C customer classes. There are two ways in which service centers in mul-
tiple class models can exhibit load dependent behavior:

® The simpler is for the service rates of all classes to vary in an identical
manner as functions of the total number of customers at the center.
For instance, suppose that the service rate of class 4 at a particular
center with four customers (of any class) present is 1.5 times the ser-
vice rate of class 4 at that center with two customers present. Then
this simpler form of load dependence would require that the service
rate of class B at that center with four customers present be 1.5 times
its rate with two customers present.

406 Appendices: Load Dependent Service Centers

® The more complex form of load dependence, required for the imple-
mentation of FESCs, allows the service rates of the classes to vary
independently of one another, and to be functions not of the total
number of customers at the center, but of the actual mix of customers
there. (In this case the service center is scheduled using the fictitious
composite queueing discipline, discussed in Chapter 8.)

We begin with the first form of load dependence. The service rate
wex () indicates the rate at which class ¢ customers would complete at
center k if they were in service alone (i.e., any customers of other classes
were queued but not in service) and there were a total of j customers at
the center. (Again, these are rates per visit.) For this form of load
dependence, the modifications to load independent MV A are straightfor-
ward extensions of those used in the single class case. Let the population

of the model be @# = (n,, ny, ..., i), so that n = ch is the total
c=1

number of customers in the model. Then for load dependent centers,

Steps 1 and 3 are replaced by:

1". Compute the residence time of class ¢ at load dependent center & :
R.,(@) = —-1,)
ek () Agl M(}) o G—

where V., is the number of visits made by each class ¢ customer to
center k.

3’. Compute the queue length distribution for load dependent center k:

C X @) , -
G 1w cél//«c/\(/)pk(/_lln_l") J=1,..,n
Py n) = | -
1_2Pk(/ln) j=0
=

Now we consider the second form of load dependence, in which the
service rates of each class depend on the number of customers of each
class present at the center. (As explained in Section 8.4, only certain
such sets of rates are valid. Further details can be found in that section.)

Let 7 be the customer population of the model, and let
n_,: = (nyy , Nyk 5 ..., Hcy) be the customer population at center k,
where n. ; is the number of class ¢ customers at center k. The load
dependent service rates of class ¢ at center k are denoted w, (7;). As
with the simpler form of load dependence, the MVA algorithm for
centers of this type involves the substitution of new expressions for Steps
1 and 3 of the load independent algorithm:

20.4. Program Implementation 407

I". Compute the residence time of class ¢ at load dependent center k :

e g

Rc,k(ﬁ) = V;‘,k =
all my Mee,k ()

ol =1, In—1.)

3". For each class ¢ compute its queue length distribution at load depen-
dent center k:

X, ()
T I ST 7
De k (H_;: (7)) = - Mo \ Py B
1= 2 Dy (n/\- [ﬁ) _ _
all i, >0 =T

20.4. Program Implementation

Fortran implementations of mean value analysis for closed models
with load independent queueing centers are given in Chapters 18 and 19
for the single and multiple class cases, respectively. These programs can
be modified to accommodate load dependent centers as follows:

® Alter the model definition section to allow load dependent centers to
be identified and to allow load dependent rates to be provided for
these centers.

® Alter the model definition section to allow service center visit counts
to be provided.

As noted earlier, it is possible to rewrite the residence time equations in a
way that obviates explicit visit count information, thus reducing the
number of input parameters required. If this were done, the two steps
outlined above would be modified. This will be discussed shortly.

e Initialize the queue length distributions at all load dependent centers
for the zero population case. The distribution values should be set to
one for the empty queue and to zero for all other queue populations.

e Substitute the appropriate Step 17 for the calculation of rtime (state-
ment 2001 in the Fortran programs) for each load dependent center.

e Substitute the appropriate Step 3” for the calculation of glen (statement
2003 in the Fortran programs) for each load dependent center.

® The output sections of the programs print queue lengths for each
center assuming that glen has been set by statement 2003. This will
not be the case for load dependent centers; their average queue
lengths will need to be calculated at the conclusion of the iteration,
and these values assigned to glen.

408 Appendices: Load Dependent Service Centers

For many applications of FESCs, it is most convenient to avoid the
specification of visit count information. Two examples of this follow:

® [f the visit counts are determined by the structure of the model, they
can be written into the residence time equations as constants, rather
than being input by the user. For example, the techniques suggested
in Section 9.3 for evaluating memory constrained queueing networks
replace the central subsystem with a single FESC. It is clear that cus-
tomers make one visit to this FESC per interaction, and so the visit
count must be one. (See the example in Section 9.3.1.)

® Sometimes it is most convenient to define the FESC by specifying the
rate at which a single customer would complete all of its service, plus
a set of service rate multipliers that indicate the speed of the service
center with a certain customer population relative to its speed with a
single customer. For instance, in modelling a tightly-coupled dual
processor (see Section 11.2) it is most natural to describe the proces-
sor by giving the service demand of a single customer (say, 10
seconds) and the relative rate at which instructions are executed as a
function of the number of customers present (say, 1.0 with one custo-
mer and 1.8 with two or more customers). This information can be
used by applying the following transformation to the residence time
equations 1 (here we show the single class case for ease of notation):

Let the service rate multiplier for center k with j customers in its
queue be denoted «y (j), which is defined by:

Mk ()
Mk (1)

Then we can rewrite the single class residence time equation 1” as:

ay(j) =

R,\.(n) —1 |n—1)

(1) Zl gy AU

Since the reciprocal of the service rate with one customer in the queue
is simply the service time per visit (S,), this leads to:

_ n —j’— . _
R.(n) = D, j§1 ak(j)pk(] 11n—1)

The required inputs now are the nominal service demand and the set
of service rate multipliers.

Index

A, see Arrivals
Abstraction in modelling, 20-22, 217
Accumulated time in system (W), 42
Accuracy of models, 14, 16, see also Separ-
able models, robustness
Active customer (memory constrained sys-
tem), 185
ADEPT (tool for modelling proposed sys-
tems), 329-32
Aggregate (hierarchical modelling), 152-
58, see also Flow equivalent service
center
Aggregate performance measures for mul-
tiple class models, 62-63
Algorithms
asymptotic bounds, 79
balanced system bounds, 93
disk I/0 '
non-RPS, 228
RPS, 232
multipathing, 239
hierarchical decomposition, 161
mean value analysis
single class exact, 115
single class approximate, 118
multiple class exact, 141
multiple class approximate, 143
multiple class mixed exact, 146
memory constraints
single class, 188
multiple class, independent, 193-94
multiple class, shared, 195-96
open models
single class, 111
multiple class, 137
priority scheduling, 259
swapping
dedicated device, 199
shared device, 200
variable overhead, 307
Amdahl] (case studies) see IBM
IMS capacity, 106-9 .
using modelling software, 360-69
using RMF, 376-94
Appropriateness of queueing networks, 14

Approximate solution techniques
for separable models, see Mean value
analysis, approximate
for non-separable models, see Disk 1/0;
Memory; Processors
Approximation transformations (modelling
software), 356
Arrival instant queue length in separable
models, 112, 114, 139-40
Arrival instant theorem for separable
models, 114, 140
and balanced system bounds, 126
Arrival rate (\), 41
Arrivals (A4), 40
Assumptions, testing of, 33-36, see also
Validation
Assumptions of separable models, see
Separable models, assumptions
Asymptotic bounds, 72-87, see also Bounds
on performance
Algorithm 5.1, 79

B, see Busy time
Balanced system bounds, 86-93, see also
Bounds on performance
Algorithm 5.2, 93
Balanced systems, utilizations in, 90
Baseline model, see Existing systems
Basic observable quantities, 40-42
Batch workload, 58, see also Closed
models
Benchmarking, 3, 30-31
Block size (1/0), 290-91
Books on performance, 18-19
Bottleneck, 72-73
effect of removing (example using
asymptotic bounds), 82-84
secondary, 82-83
Bounds on performance (Chapter 5), 70-
97
advantages, 70-71, 94
asymptotic bounds, 72-87
Algorithm 5.1, 79
examples and case studies, 77-87

410 .

Bounds on performance (cont'd.)
balanced system bounds, 86-93
Algorithm 5.2, 93
and arrival instant theorem, 126
optimistic and pessimistic bounds, 71
Busy time (B), 41

C, see Completions; Customer classes
Cached 1/0 devices, 244-45
CAD/CAM system (performance projec-
tion of proposed system), 329-32
Capacity planning, see Evolving systems
Capture ratio (measurement), 285
Carrier sense multiple access with collision
detection (CSMA-CD), 340
Case studies and examples
Amdahl
IMS capacity, 106-9
using modelling software, 360-69
using RMF, 376-92
asymptotic bounds, 78-87
bottleneck removal
bounds), 82-84
CAD/CAM system (proposed), 329-32
capacity planning
Amdahl 470, IMS, 106-9
PDP-10, 132-33
communication network
324-27
concurrency control (database), 343-47
CPU replacement, 27-29, 33-36
CTSS, 102-3
Cyber 173, 133-34
database concurrency control, 343-47
disk 1/0
non-RPS, 227-29
RPS, 232-33
disk load balancing
asymptotic bounds, 85-87
Univac 1100, 312-13
Ethernet, 339-41
evolving systems, 309-15
FCFS scheduling
class-dependent service times, 263-64
highly variable service times, 266-67
FESC for memory constrained system,
189-90
forced flow law, 48-50
global balance, 163-69
hierarchical modelling, 163-66
hierarchical workload characterization
(instructional computing acquisi-
tion, Prime, VAX), 30-34, 51-52

(asymptotic

(proposed),

o Index

Case studies and examples (cont'd.)
IBM
early virtual memory system, 206-9
processing complex (workload balanc-
ing), 24-27
360, 104-6
3790, 8130, 8140 (insurance com-
pany), 35-37, 78-82
IMS (Amdahl 470, capacity planning),
106-9
instructional ~ computing acquisition
(Prime, VAX), 30-34, 51-52
insurance company (IBM 3790, 8130,
8140), 35-37, 78-82
Little’s law
and forced flow law, 48-50
and memory constrained systems, 49-
50, 55-56
at various levels, 44-46
loosely-coupled multiprocessor (Cyber
173), 133-34
memory, 206-17
memory constrained system
FESC, 189-90
Little’s law, 49-50
modelling software, use of (Amdahl
470), 360-69
modification analysis, 309-15
asymptotic bounds, 85-87
IBM processing complex, 24-27
IBM 360, 104-6
multiple class models, 129-34
multiple class solution techniques, 137-
38, 142, 144-45, 147
multiprogramming level
182-84
MVS
Amdahl 470 (using RMF), 376-92
IBM processing complex, 24-27
SRM, 347-50
non-RPS disks, 227-29
paging, 202-5
PDP-10, 132-33
Prime (instructional computing acquisi-
tion), 30-34
priority scheduling, 259-61
proposed systems, 324-27, 329-32
RMF usage (Amdahl 470), 376-92
RPS disks, 232-33
single class models, 102-9
of heterogeneous workloads, 130-31
single class solution techniques, 112-13,
116-17, 119
single service center, 5-8

variability,

Index

Case studies and examples (cont'd.)
SNA flow control, 336-39
software resources, 342-43
swapping
moving from drum to disk (Univac
1100), 314-15
to a shared device, 200-201
tightly-coupled multiprocessor (Univac
1100), 310-11
Univac 1100, 309-15
upgrade from single to dual processor
(Univac 1100), 310-11
variation in multiprogramming level,

182-84

VAX

instructional computing acquisition,
30-34, 51-52

memory modelling, 209-17
virtual memory, 202-5
workload balancing (IBM processing
complex), 24-27
Center description, 59
for models of existing systems, 283
from RMF, 385-86
Central subsystem, 45, 58, 185-86
Channel Activity Report (RMF), 379-80
Channel contention (1/0)
non-RPS, 225-30
RPS, 230-33
Channel holding time (I/0), 227
Classes, see Customer classes, Customer
description
Closed classes in mixed models, 144-48
Closed models, 58, 62, 112-19, 139-45
Communication networks, see Computer
communication networks
Complementary network (hierarchical
modelling), 152-55
Completions (C), 40, 47
Components of modelling software, 354-60
Composite queueing (FESCs), 157
Computational algorithms, see Algorithms
Computer communication networks (case
studies)
Ethernet, 339-41
projecting performance of proposed sys-
tem, 324-27
SNA, 336-39
Concurrency control (database) (exam-
ple), 343-47
Conducting a modelling study (Chapter 2),
20-39
list of specific points, 38-39
Conferences on performance, 17-18

411

Contention time (1/0), 224
Controller (1/0), 234-35
Core computational routine for separable
models, see Mean value analysis
evolution, 369-70
in modelling software, 354
CPU, seeProcessors
CPU Activity Report (RMF), 378-79
CPU replacement, parameterization to
reflect, 301
case study, 27-29, 33-36
CRYSTAL (tool for modelling proposed
systems), 327-28
CSMA-CD, 340
CTSS (case study), 102-3
Customer classes (C), 62
Customer description, 57-58
for models of existing systems, 279-82
from RMF, 383-85
Cyber 173 (case study), 133-34

D, see Service demand
DASD, see Disk 1/0
Database modelling
approaches, 343-47
high-level front ends, 359-60
Decomposition, see Flow equivalent ser-
vice center; Hierarchical modelling
Definition of models, 9-12
Delay service center, 59
Derived observable quantities, 40-42
Device homogeneity, 120, 147
Direct Access Device Activity Report
(RMF), 379, 381
Disk 1/0 (Chapter 10), 222-52, see also
Algorithms, disk 1/0
alternate modelling approaches, 248-49
inferring parameter values from meas-
urement data, 245-47, 249
load balancing
asymptotic bounds example, 85-87
Univac 1100 case study, 312-13
non-RPS example, 227-29
representation using modelling software,
247, 367-68
RPS example, 232-33
service time, components of, 224
Domains, 191-96
in MVS, 378
representation using modelling software,
363
Dynamic reconnection (I/0), 237

412

Effective disk service time, 224
End effects in measurement, 43-44, 277
Ethernet, 339-41
Evaluation of models, 13-14
closed and mixed, see Mean value
analysis
open, see Open models
Event monitor, 276
Evolution of core computational algo-
rithms for separable models, 369-70
Evolving systems (Chapter 13), 296-319,
see also Parameterization
case studies and examples
simple example, 24-27
using asymptotic bounds, 85-87
IBM 360, 104-6
Univac 1100, 309-15
using modelling software, 365-69
primary and secondary effects, 296-97
Examples, see Case studies and examples
Execution graphs (for workload characteri-
zation), 329-30
Existing systems (Chapter 12), 274-95, see
also Parameterization
RMF example, 376-94
Experimentation, 3
External arrival homogeneity, 120, 149

FCFS, see First-come-first-served
FESC, see Flow equivalent service center
File placement
techniques for modelling, 303-4
Univac 1100 case study, 312-13
First-come-first-served scheduling, 128
class-dependent service times, 262-64
highly variable service times, 263-66
Flow balance assumption, 51-52
Flow control (SNA case study), 336-39
Flow equivalent service center (FESC),
152-75, see also Load dependent
service center
and separability, 159-60, 191-92
and transaction workloads, 157
applications
Ethernet, 339-41
memory constrained system, 185-96
SNA flow control, 336-39
tightly-coupled multiprocessor, 254-56
cost of evaluating a model containing,
157, 159, 191-92
desired characteristics, 155-58
evaluating high-level models, 159-60
obtaining parameters, 158-59

Index

Flow equivalence and hierarchical model-
ling (Chapter 8), 152-175, see also
Flow equivalent service center;
Hierarchical modelling; Load
dependent service center

Forced flow law, 47-50

Front ends for modelling software, 358-60

Fundamental laws (Chapter 3), 40-56

table of, 53

Global balance, 162-69
cost, 162-63
details, 166-69
to evaluate model of SNA, 336-39
to model priority scheduling, 163-66
Goal-oriented scheduling, 262

Hardware modifications, see Evolving sys-
tems
parameterization to reflect, 300-303
representation using modelling software,
366-68
Heads of string (17/0), 235-36
Hierarchical modelling, 152-75, see also
Flow equivalent service center;
Hybrid modelling
Algorithm 8.1, 161
applications
Ethernet, 339-41
memory constrained systems, 185-96
SNA flow control, 336-39
detailed example, 163-66
Hierarchical workload characterization,
30-34
Homogeneity assumptions, 120, 147-49
and memory modelling, 179-80, 191-92
Hybrid modelling, 16, 170-73
of MVS SRM, 347-49

IBM (case studies), see Amdahl
early virtual memory system, 206-9
processing complex (workload balanc-
ing), 24-27
360, 104-6
3790, 8130, 8140 (insurance company),
35-37, 78-82
IMS (Amdahl 470 capacity planning case
study), 106-9
Inflation of service demands, see Load
concealment

Index

Inputs and outputs of models (Chapter 4),
4-14, 49, 57-68, 99-101, see also
Parameterization

Insight, sources of, 35-37

Installation Performance
(IPS) (MVS), 377-78

Instructional computing acquisition (case
study, Prime, VAX), 30-34

Insurance company case study (IBM 3790,
8130, 8140), 35-37, 78-82

1/0 subsystem, see Disk 1/0

I/0 subsystem modifications, parameteri-
zation to reflect, 302-3

IPS (IBM MVS Installation Performance
Specification), 377-78

Iterative solution techniques

for separable models, see Mean value
analysis, approximate

for non-separable models, see Disk 1/0;
Memory; Processors

Specification

Journals on performance, 17-18
K, see Number of centers

Last-come-first-served (LCFS) scheduling,
129
Latency time (1/0), 224
LCFS, 129
Little’s law, 40, 42-46 .
and flow balance assumption, 51-52
and forced flow law, 48-50
and mean value analysis, 112, 139
and memory constrained systems, 49-50,
55-56
application at various levels, 44-46
used to derive asymptotic bounds on
performance, 76-77
Load concealment
in evaluating mixed models, 145
in modelling shared disks, 243
Load dependent service center (Chapter
20), 120-21, 149, 156-58, 403-8 see
also Flow equivalent service center
evaluating models containing, 159-60,
403-8
MVA algorithms for, 403-8
use in modelling tightly-coupled mul-
tiprocessor, 254-56, 310-11
Load independent service center, 120-21,
149, see also Queueing service
center

413

Local area networks, 339-41
Logical I/0 operation, 287-91
Loosely-coupled multiprocessor, 237, 242-
43, 253
Cyber 173 case study, 133-34

M, seeMemory constraint
MAP (queueing network modelling
software package), 360-69 '
Mean value analysis (MVA), 108-19, 134-
48, see also Algorithms, mean value
analysis; Evaluation of models;
Open models
approximate, 117-19, 142-45
calculating outputs from, 116, 142
exact, 112-17, 139-42
implementations, 395-402
key equations, 112, 139
load dependent centers, 403-8
mixed models, 144-48
population precedence, 115-16, 140-41
residence time equation, 112, 139
Measurement, 21
choice of interval, 43-44
event recording, 276
sampling, 276
to parameterize FESCs, 158
useful data items, 275-79
using RMF, 376-94
Measurement data, inadequacy of, 34-36
Measurement interval duration (7), 40
Memory (Chapter 9), 179-221, see also
Memory constraint; Multiprogram-
ming level; Paging
admission policies, hybrid modelling of,
17273
assumptions made in separable models,
179-80
case studies
early IBM virtual memory system,
206-9
VAX/VMS, 209-17
robustness of separable models, 180
Memory constraint (M), 184-96, see also
Algorithms, memory constraints
Little’s law used to evaluate, 49-50, 55-
56
representation using modelling software,
363
Memory expansion, parameterization to
reflect, 209-17, 301-2
Method of stages (global balance), 268-69

414

Mixed models, 62, 144-48
Algorithm 7.4, 146
Modelling, alternatives to, 4
Modelling cycle, 22-27
Modelling methodology, see Conducting a
modelling study
Modification analysis, 12-13, see also
Evolving systems
Multipathing 1/0, 237-41
Algorithm 10.3, 239
Multiple class models (Chapter 7), 127-51,
see also Algorithms
advantages, 127
case studies illustrating use, 129-34
contrast with single class models, 130-31
disadvantages, 127-28
examples illustrating evaluation, 137-38,
142, 144-45, 147
inputs and outputs, 62-64
scheduling disciplines in, 128-29
Multiprocessor, see Loosely-coupled mul-
tiprocessor; Tightly-coupled mul-
tiprocessor
Multiprogramming level
non-integer, in mean value analysis, 144
variability (case study), 181-84
MVS (case studies), see SRM
Amdahl 470 (using modelling software),
360-69
Amdahl 470 (using RMF), 376-92
IBM processing complex (workload
balancing), 24-27

N, seeNumber in system
Non-integer multiprogramming level in
mean value analysis, 144
Non-RPS disks, 225-30, see also Disk 1/0
Algorithm 10.1, 228
Non-separable models, see Disk 1/0;
Memory; Processors
approaches to evaluating, 162, 177-78
need for, 65-67
Notation, table of, 53
Number in system (/N as input, Q as out-
put), 60-61, see also Little’s law
Number of centers (K), 58, 63

Objectives of modelling study, importance
of understanding, 27-30

Observation interval, 43-44

One step behavior, 120, 147

Open classes in mixed models, 144-48

Index

Open models, 58, 62, see also Algorithms,
open models
evaluation, 109-13, 134-38
Operating systems
modelling detailed algorithms, 347-49
modelling upgrades, 305-6
Operational analysis, xii-xiii, 123, 150
Optimistic bounds on performance, 71
Outputs of models, see Inputs and outputs
of models
Overhead
Algorithm 13.1, 307
attribution of , 285-87
using RMF, 386, 388-91
modelling changes in, 306-8
of paging activity, 202-5

Packages, queueing network modelling, see
Queueing network modelling
software

Paging, 201-5

Parameterization, 12-13, see also Evolving
Systems; Existing systems; Inputs
and outputs of models; Proposed
systems

RMF example, 376-94
software assistance, 358-60
types and sources of information, 275-79

Path (1/0), 222-23, 231

Path busy, estimating probability of (I/0),
240-41

Path elements, estimating utilizations of
(170), 238, 240

Path selection (1/0), 237

PDP-10 (case study), 132-33

Performance database, 279

Performance group (MVS), 377

Performance measures, 22, see also Inputs
and outputs of models

from RMF, 388, 391-92

Performance-oriented design, see Proposed
systems

Performance period (MVS), 377

Performance projection, see Evolving sys-
tems; Proposed systems

simple example, 24-27

Pessimistic bounds on performance, 71

Physical 1/0 operations, 287-91

Population, see Number in system; Little’s
law

Population precedence (MVA), 115-16,
140-41

Index

Primary and secondary effects of
modifications, 12-13, 20-21, 248,
296-97

Prime (case study, instructional computing
acquisition), 30-34

Priority scheduling, 256-62

Algorithm 11.1, 259

representation using modelling software,
362-63

an approach using global balance, 163-66

Processing capacity, see Bounds on perfor-
mance .

of open models, 109, 134-35

Processor sharing scheduling, 129

Processors (Chapter 11), 253-71, see also
CPU replacement; Multiprocessor;
Scheduling discipline

Program listings

single class exact MVA, 395-97
multiple class exact MVA, 398-402

Projecting performance, see Evolving sys-
tems; Proposed systems

Projection phase (modelling cycle), 22-27

Proposed systems (Chapter 14), 320-34

case studies, 324-27, 329-32

0, see Number in system; Queue length
Queue length (Q), 60-61, see also Little’s
law
at channel (1/0), 227
in open models, 111, 136
Queue length distribution, 62
for load dependent centers, 405-7
Queueing network modelling software
(Chapter 16), 354-73
approximation transformations, 356
core computational routine, 354
example use, 360-69
high-level front ends, 358-60
user interface, 356-58
Queueing service center, 59
Queueing theory, 16

R, see Residence time; Response time
Ready customer (memory constrained sys-
tem), 185
Reconnect (I/0), 230
algorithms, 237
failure, estimating probability of, 241
Relationships among observed quantities,
table of, 54
Remote terminal emulation, 27, see also
Benchmarking

415

Residence time (R), 42, 61, see also
Mean value analysis; Open models;
Response time

Residence time equation (MVA), 112,
139, see also Mean value analysis

for load dependent centers, 405-7
modifications
for biased processor sharing, 261-62
for FCFS with class-dependent service
times, 262-63
for FCFS with highly variable service
times, 265
for priority scheduling, 258

Residual service time, 265

Resource Measurement Facility (RMF)
(IBM), use of, 376-94

Response time (R), 42, 61, see also Mean
value analysis; Open models;
Residence time

Response time law, 46

to estimate think times, 282
to evaluate memory constrained system,
207

Retry (1/0), 230

RMF (IBM Resource Measurement Facil-
ity), use of, 376-94

Rotation time (I/0), 230

Rotational position sensing (RPS), 230-33,
see also Disk 1/0

Algorithm 10.2, 232
Routing homogeneity, 120, 147
RPS, see Rotational position sensing

S, see Service time per visit
Sampling monitor, 276
Saturated system, 72, 109, 134-35
Scheduling discipline, see First-come-first-
served, Last-come-first-served;
Priority; Processors, Separable
models, scheduling disciplines in
Secondary bottleneck, 82-83
Secondary effects of modifications, 12-13,
296-97, 306-9
Seek time (1/0), 224
Sensitivity analysis, 33-36
Separable models, 15
advantages, 121-22
arrival instant theorem, 114
assumptions, 20-22, 62, 147, 149
inputs and outputs, 57-68
limitations, 64-66, 121
robustness, 121, 180, 222-25, 248, 261,
264

416

Separable models (cont'd.)
scheduling disciplines in, 59, 62, 128-29,
253-54
theoretical foundations, 119-21, 147, 149
Service center, 4-8, see also Center
description
Service center flow balance, 120, 147
Service center types, 59
Service demand (D), 48-49, 59-60
estimation of
for models of existing systems, 283-91
CPU, 285-87
1/0, 287-91
difficulties, 284
using RMF, 386, 388-91
inflation, see Load concealment
Service objective (MVS), 377
Service rate (i) (FESC), 156-58, see also
Flow equivalent service center;
Load dependent service center
Service rate of tightly-coupled multiproces-
sor,’255-56
Service time per visit (S), 41
Service time homogeneity, 120, 149
Shadow CPU technique (priority schedul-
ing), 258-61
Shared disks, 242-43
Simulation, 15-16
in hybrid modelling, 170-73
to parameterize FESCs, 158
Simultaneous resource possession, 185
Single class models (Chapter 6), 98-126,
see also Algorithms
advantages, 98, 122, 127-28
case studies illustrating use, 102-9
examples illustrating evaluation, 112-13,
116-17, 119
inaccuracy when workload is hetero-
geneous, 130-31
inputs and outputs, 57-62
limitations, 98-99
Single server queue, 4-8
SNA (IBM System Network Architecture),
336-39 .
Software modifications, parameterization
to retlect, 303-6
Software resources, 342-43

Software specifications, refinement of

(modelling proposed systems),
324-36

Solution of models, see Evaluation of
models

Index

SRM (IBM MVS System Resources
Manager)
description, 377-78
hybrid model of, 346-49
State, see Global balance, details of
States of a customer (memory constrained
system), 185
Static reconnection (1/0), 237
Stochastic analysis, xii-xiii, 123, 150
Swapping, 196-201
moving from drum to disk (Univac 1100
case study), 314-15
to a dedicated device, 197-99
Algorithm 9.4, 199
to a shared device, 198-201
Algorithm 9.5, 200
System Network Architecture
(IBM), 336-39
System Resources Manager (IBM MVS)
see SRM

(SNA)

T, see Measurement interval duration
Tape 1/0, 290-91, 386, 387, 391
Terminal workload, 58
Think time (Z), 46
estimating, 282, 384
Thrashing, 202-5
Throughput (X), 41, 61
bounds on, 72-73, 76-77
in memory constrained systems, 187-88
in open models, 109, 134-35
versus multiprogramming level, 181-84
Tightly-coupled multiprocessor, 253, 254-
56
upgrading from single to dual processor
(Univac 1100 case study), 310-11
Tolerances, in validation, 292
Transaction (database), 344-46
Transaction workload, 58, see also Open
models
calculating utilization, 51-52
Transfer time (1/0), 224
TSO (IBM Time Sharing Option) (case
studies), 24-27, 360-69, 376-94

U, see Utilization

Unattributed busy time, apportioning,
285-91

Univac 1100 case studies, 309-15

User interface for modelling software,
356-58

Index

Utilization (U)), 41, 61
Utilization law, 41-42, 45
and flow balance assumption, 51-52

V| see Visit count
Validation, 22-27, 291-92
Validation phase (modelling cycle), 22-27
Variability in multiprogramming level,
181-84
Variance in service time, 265-66
VAX (case studies)
instructional computing acquisition, 30-
34, 51-52
memory modelling, 209-17
Verification phase (modelling cycle), 22-27
Virtual memory, 201-5
Visit count (V), 47-50

W, see Accumulated time in system
Waiting customer (memory constrained
system), 185
Workload Activity Report (RMF), 379-80,
382
Workload balancing (IBM processing com-
plex case study), 24-27
Workload characterization
hierarchical, 30-33
in modelling proposed systems, 323-34
using RMF, 376-94

417

Workload components
identification, 279-81
maodifications, parameterization to
reflect, 399-400
Workload intensity, 57-58, 62, 63, 100-101
determining for existing systems, 281-82
from RMF, 383-85
Workload measures, 22
Workload modifications
parameterization to reflect, 297-300
PDP-10 case study, 132-33
representation using modelling software,
365
Workload representation in single class
models, 99-101
Workload types, 57-58
selecting for models of existing systems,
279-81
from RMF, 383-85

X, see Throughput
Z, see Think time
A, see Arrival rate

M, seeService rate

	Contents.pdf
	Preface
	Part_I
	Chap_01
	Chap_02
	Chap_03
	Chap_04
	Part_II
	Chap_05
	Chap_06
	Chap_07
	Chap_08
	Part_III
	Chap_09
	Chap_10
	Chap_11
	Part_IV
	Chap_12
	Chap_13
	Chap_14
	Part_V
	Chap_15
	Chap_16
	Part_VI
	Chap_17
	Chap_18
	Chap_19
	Chap_20
	Index

