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1 Introduction

In the last Petri Net Newsletters [2] we have given an example showing an undesired situ-
ation in analysing the Markovian process described by a Generalized Stochastic Petri Net
(GSPN:[1]). Another problem is, that it is not always possible to extract the description
of a Markov process from a GSPN. This is our topic here.

2 The timeless trap

In figure 1 we see a simple producer/consumer-system. Imagine that producing and con-
suming are time consuming actions, whereas the time to transport the goods can be
neglected.

If the consumption is a very fast process the consumer often wastes his time, waiting
for the producer to fill the buffer. So the system becomes more efficient if we modify it in
the following way. During waiting for an article to arrive in the buffer, the consumer can
proceed doing some local tasks. On the other hand we don’t want the goods in the buffer
to get mouldy. So the consumer should be able to consume articles arriving in the buffer
very quickly. Therefore the delay for performing the local tasks should be neglectible. A
possible GSPN representing our system is given in figure 2. Now the stochastic process can
proceed as follows. After the producer has filled the buffer with one item, the consumer
empties the buffer and consumes the article, so that the situation in figure 3 is observable.
Because the firing of immediate transitions has priority on that of timed transitions, the
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Figure 1: Producer/Consumer-System with limited buffer capacity
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Figure 2: Modified Producer/Consumer-System
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Figure 3: Example of a timeless trap

stochastic process described by this GSPN has to fire the transitions in the "Timeless
Trap’-box everlasting.
So how does the Markovian process looks like?

3 GSPNs and Markov processes

The reachability set of a GSPN consists of two types of markings (states; see [1]):
e markings enabling only timed transitions are called tangible states and
e markings enabling immediate transitions are called vanishing states.

A GSPN describes a stochastic process, which dwells a certain (exponentially distributed)
amount of time in tangible states and leaves vanishing states immediately. We assume
that the GSPN is bounded, implying a finite reachability set (state space). Let
A; be the firing rate of a timed transition ¢; and E(z) the set of enabled transitions in
marking (state) z.! If F(z) consists of timed transitions, the probability for ¢; € E(2) to
fire is ﬁ Otherwise, if E(z) consists of immediate transitions this probability
t E(=z

is speciﬁeéeb(y)the random switch. Looking at the embedded Markov chain, we have the
following transition probability matrix:

C D 0 0
peaene (€ 0) (20
where

cj=Pli—jiieV,jeV] dij =P — jueV,jeTl],

!Note that either E(z) C 11 (set of timed transitions) or £(z) C Tb (set of immediate transitions).



= :‘PH'__+j;i€iTLj€‘vlvfﬁ :‘PU __+j;i€irmj€iTL
T is the set of tangible states, V is the set of vanishing states, TNV = 0.

The elements of matrix A are specified by the random switch and the elements of matrix
B can be calculated using the firing rates of timed transitions. Because the sojourn time
in vanishing states is zero, we are only interested in tangible states. Before calculating
the steady state distribution one has to eliminate all vanishing states yielding a reduced
embedded Markov chain with probability transition matrix P’:

Pli= (ol ). plye= fii + 3 e Plr — .

rev

where P[r — j] := P[the stochastic process starts in state r and reaches
the tangible state j, and all states reached in the
meantime are vanishing states], r € V,j € T.

Let Plr N j] := P[the stochastic process starts in state r and reaches
the tangible state j after exactly h steps, and all states
reached in the meantime are vanishing states], r € V,j € T.

o0

Plr — 7] Z [r N jl-
h=0
Defining

vields G(h) = C* x D. With & := (

) , where ¢,; := P[r — j] we have

= ZG(h) = ZCh x D, if ZCh exists.
h=0 =

h=0 h=0

So P = I'+ E x (G and the steady state distribution % of the reduced embedded Markov
chain is given by

F=Fx Py F=1,

seT

if a unique solution for # exists!? The steady state distribution 7 of the Markovian process
is given by
-1
Tj X (EkeE(j) ’\k) )
T = - —, JeT.
2seT s X (EkeE(s) /\k)

A prerequisite for the existence of P’ is the existence of 3252, C'*. How can we characterize
the existence of this limit?

Define u; := 1 — ZLV|1 Cij-

w; > 0 if the sum in line i is less then 1 and «; = 0 if it is 1.

2cf. with the negative example in [2]



Figure 4: GSPN not satisfying condition NoTT
Definition 1 (trap; cf. [5]) Jo:= {i | u; = 0} and Jy := {i | u; > 0} 3.
C has no trap <= Vi € Jo : 45 € J1 reachable from i. Otherwise C has a trap.
Theorem 1 ([5]) C has no trap <= (I — C)™" = 325, C" exists.

Because C consists of the transition probabilities between vanishing states, we speak of
a timeless trap. If there is no timeless trap, we can extract the description of a Markovian
process from a GSPN. So how can we avoid such traps?

4 Avoidance of timeless traps

Definition 2 (Condition NoTT; [3]) o
Condition NoTT' :<== YT CTy:5 T # () = oT # Te,

Theorem 2 ([3]) Condition NoTT = GSPN has no timeless trap.

Sketch of Proof: Assume there is a timeleNSS tfa and}et T bNe the s§t of immediateNtran—
sitions firing everlasting. Define § = (oT\Tog U (T o\e T). If T # 0 we have S # ()

because otherwise 7' = T'e contradicting condition NoTT. There are two cases to consider

a)3Isc ol \Te.

Because of s ¢ Te not all transitions of

T can fire everlasting, contradicting our assumption.
byIsecTe\oT.

Because of s ¢ T and all t € T firing everlasting the

GSPN is not bounded, contradicting our global assumption. O

Condition NoTT is not necessary for the avoidance of timeless traps, which is shown
by the GSPN in figure 4. A closer look at the proof of theorem 2 shows that the following
statement is valid:

Theorem 3 Condition NoTT = 3hg € N: Ch =0, Yh > he.

This property is especially important, if one wants to eliminate vanishing states during
state space generation (see e.g. [4]).
Condition NoTT can be verified very easily by the algorithm in figure 5.

°If the stochastic process is in a state ¢ € Jo, it can only transit to another vanishing state, being in
state y € J; there is a positive probability to reach a tangible state.

NoTT stands for No Timeless Trap.

Ty is the set of immediate transitions (see [2])

as usual ef denotes the set of input places and te the set of output places of a transition t and

ol :={ot|teT) To:={te|t T}
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The

T};] = TQ
while oTr # Trre do
begin
Sy = (OTH \THO) U (TH . \ . TH)
VYt € Ty do
if (ot NSy)U(ten Si)#0D
then T := Ty \ {t}
end
iftTy =0
then Condition NoTT is satisfied
else Condition NoTT 1s not satisfied

Figure 5: Algorithm for testing condition NoTT

Conclusions

avoidance of timeless traps is a basic requirement for the extraction of a Markov

process description from a GSPN. Condition NoTT is a sufficient condition for doing so.
Although it is not necessary, it hints at critical subnets. Furthermore the elimination of

vanishing states during state space generation is straight forward for GSPNs satisfying
condition NoTT.
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