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Abstract

System analysis is often needed with respect to both qualitative and quantitative
aspects. In the last two decades, several model worlds have been developed that
attempt to combine qualitative and quantitative aspects. Present emphasis is on
Timed and Stochastic Petri Net models. One of the disadvantages of these model
worlds lies with the difficulties when describing scheduling strategies with Petri Net
elements.

This paper describes the QPN world, which combines Queueing Networks and
Petri Nets, aiming at eliminating these disadvantages. The QPN world is a superset
of Queueing Networks, Petri Nets and Timed and Stochastic Petri Nets. We also
discuss the analysis of time-augmented Petri Nets in general. It is shown that several
important qualitative features need not carry over to a Timed Petri Net, although
they hold for the underlying "untimed” net. A solution to this problem is provided
by showing that important qualitative features remain invariant, if the form of time
integration is restricted by particular, easily testable conditions.
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1 Introduction

Petri Nets and Queueing Networks are familiar model worlds for describing and analysing
a variety of dynamic systems of the discrete-event type, such as computing systems (e.g.
[27]) or manufacturing systems (e.g. [28]). Petri Nets are usually employed for assess-
ing systemic correctness properties of such systems (”qualitative analysis”) whereas the
primary domain of Queueing Networks lies with assessing their performance properties
("quantitative analysis”). Taking an engineering point of view, model-based system anal-
ysis ought to be pursued with respect to all relevant system properties, in particular to
both qualitative and quantitative ones. From this point of view, either one of the above
model worlds is, in its pure form, incomplete and needs to be complemented by the other.
To overcome these insufficiencies, both model worlds have (by themselves) been enhanced
in various ways by additional modelling features, giving rise to new model worlds such as
Timed and Stochastic Petri Nets (e.g. [21]) and Extended Queueing Networks (e.g. [29]).
Those new model worlds are compared in [29] as regarding their expressive powers and
their evaluation efficiencies. One important result of that study is, that certain specific
deficiencies remain in both areas: Timed and Stochastic Petri Nets have, e.g., still diffi-
culties in describing scheduling strategies in an appropriately compact manner; Extended
Queueing Networks show, e.g., still deficits in describing sophisticated synchronisation
aspects.

In this paper, a novel model world (the QPN world”) is introduced with the objective
of combining the capabilities of Petri Nets and Queueing Networks and, consequently,
eliminating the deficiencies of both (isolated) worlds. Moreover, the QPN world to be
described forms a superset of (pure, Timed and Stochastic) Petri Nets and (standard and
various Extended) Queueing Networks.

When enhancing pure Petri Nets with timing properties, a particularly dangerous as-
pect arises from the fact that qualitative model properties need not be invariant across an
addition of time. This holds for almost all time-augmented Petri Nets (e.g. for Generalised
Stochastic Petri Nets [1]) inclusive of the novel QPN world. To alleviate this situation,
however, necessary and sufficient conditions will be provided for QPN models which guar-
antee an invariance of certain qualitative model properties across time-augmentation.

This article is structured as follows. Section 2 presents basic definitions. Section 3
provides the definition and some examples of the QPN world. In section 4, we discuss a
general method for analysing time-augmented Petri Nets and show how this method can
be used to analyse QPNs.

2 Basic definitions and preliminary remarks

2.1 Petri Nets

Definition 1 (Place/Transition Net) A Place/Transition Net is a 5-tuple
PN = (P, T,I~,I", Mgy) where

o P is a finite and non-empty set of places,
o T is a finite and non-empty set of transitions,
o PN T =10,

o [=.IT:PxT — Ngy are the backward and forward incidence functions,



o My : P — Ny is the initial marking.

Definition 2 (Basic notions of Place/Transition Nets) Let

PN = (P, T,17,I*,My) be a Place/Transition Net. te := {p € P | IT(p,t) > 0},
ot :={peP|I (pt)>0},pe:={teT| I (pt)>0} ep:={teT]|It(pt)>0}
and for T CT, P C P :Te:=J,cpte, o1 :=J,.50t, Po:= Upeppo, oP = UpeP op.
P C P is a deadlock, iff «P C Pe. P C P is a trap, iff Pe C eP. A set P C P
is marked in @ marking M, iff Ip € P : M(p) > 0; otherwise P is called unmarked or
empty in marking M. A transition t € T is enabled in a marking M, denoted by M|t >,
iff M(p) > I—(p,t),Yp € P. An enabled transition t € T may fire. The firing of t € T
yields a new marking given by M'(p) = M(p) + (It (p,t) — [~ (p,1)),¥p € P, denoted
by M[t > M'. M' is called to be directly reachable from M denoted by M — M'. Let
—* be the reflexive and transitive closure of —. A marking M' is reachable from M, iff
M —* M'. The reachability set of PN is defined by R(PN):={M | My —* M}. PN is
called bounded, iff Vp € P : 3k € Nog : YM € R(PN) : M(p) < k. PN is called live, iff
Vie T,M € R(PN):3M’' € R(PN): M —* M' and M'[t >. A marking M € R(PN)
is a home state, iff VM’ € R(PN): M' —* M. PN is an extended free choice net (FFC
Net), iff V(p,t) € PxT : I~ (p,t) < 1,IT(p,t) <1 andVp,p' € P:penp'e =0V pe=7ple.

The notions deadlock and trap are important for determining the liveness of special
classes of Place/Transition Nets, like e.g. EFC Nets. If a deadlock becomes empty, it
will remain empty; if a trap becomes marked, it will remain marked. For EFC Nets the
liveness property can be characterized using the deadlock and trap notions. Utilizing this
characterization it can also be decided whether an EFC net possesses any home states,
without generating the reachability set.

Theorem 1 (Liveness and home states in EFC Nets [14, 30]) Let
PN = (P, T,I7,I", Mg) be an EFC Net.

a) PN is live iff every deadlock contains a marked trap in M.

b) If PN is bounded' and live the reachability set has home states.

Additional efficient analysis techniques for Place/Transition Nets include the analysis
of invariants [22] and certain reduction methods [12]. In order to better cope with graphical
complexity, Petri Nets with individual tokens have been introduced. In this paper we will
employ Coloured Petri Nets as defined by K. Jensen (cf. [20]):

Definition 3 (CPN) A Coloured Petri Net (CPN) is a 6-tuple CPN=(P,T,C,1~,I%, My),

where
o P is a finite and non-empty set of places,
o T is a finite and non-empty set of transitions,
o PN T =10,

o ('is a colour function defined from P U T into non-empty sets,

!'Boundedness is often checked by calculation of S-invariants.
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o I~ and It are the backward and forward incidence functions defined on Px T such
that I_(p,t),f+(p,t) € [C(t) - C(p)MS]vv (pvt) €epPxT.
The subscript MS denotes multi-sets. C(p)ars denotes the set of all finite multi-sets
of C(p),

o My is a function defined on P describing the initial marking such that
Mo(p) € C(p)us,Yp € P.

As pointed out below, every CPN can be unfolded into an uniquely determined Place/Tran-
sition Net. Consequently, all definitions and notions for Place/Transition Nets can also be
defined for CPNs, employing this transformation.

Definition 4 (Unfolding of CPNs) The unfolding of a« CPN=(P,T,C,I~,I%, My) into
a PN is performed as follows:

1. ¥ p € P,ce C(p) create a place (p,c) of PN.
2.V teT,d e C(t) create a transition (t,¢') of PN.

3. Define the incidence functions of PN as
I7((p, o)(t, ) == I~ (p, 1)(c')(¢)”
I*((p. e)(t, ) = I*(p, t)(')(e).

4. The initial marking of PN is given by My((p,c)) := Mo(p)(c).
PN = (Upep UcEC(p)(p7 ), User Uclec(t)(t,c’),f_,l"',Mo) is the unfolded C'PN.

A well founded theory exists for the qualitative analysis of CPNs: In [19] the reduction
methods for Place/Transition Nets [12] are ported to CPNs. Analysis of invariants of CPNs
is described in [18], and an efficient technique for constructing the reachability graph is
presented in [16], exploiting symmetries in the CPN.

As mentioned in the introduction, pure Petri Nets lack (deliberately!) the notion
of time, such that merely certain qualitative features of a system can be modelled and
analysed. For performance evaluation purposes other model worlds must obviously be

used.

2.2 Queueing Networks

A standard Queueing Network (e.g. [27]) - where we take "standard” to denote the most
easily analysable class of networks - comprises a set of interconnected queues. FEvery

queue (or: station, cf. figure 1) represents a service centre where customers may receive

2I7(p,t)(c¢") is a multi-set of C(p)ars and I~ (p,t)(c')(c) denotes the number of occurrences of the
element ¢ in this multi-set.



service from servers. A station contains one or several servers. A customer arriving at
a station will immediately be served if a free server can be allocated to him. Otherwise,
the arrived customer will either have to wait for a server allocation, in some waiting area,
or he will be served immediately at the expense of preempting one of the customers just
receiving service, who will in turn have to wait until later. A station-specific scheduling
strategy determines the rules (options, order etc.) of serving customers. Typical strategies
include FCFS (first come first served), a rather natural policy, or RR (round robin),
a frequently employed time-slicing policy. Work conservative scheduling strategies are
assumed throughout, which implies that the server is never idle if customers are in the
queue, and that customers do not leave the queue before having been completely served.
The service that a customer demands from a station is specified by the amount of time
it would take the station to perform this service, given that customer were the only one
present. Rather than describing service durations individually, for every customer, service
durations of an entire class of customers are specified by a corresponding random variable
(more specifically, by its distribution). Different customer classes, as distinguished by
different demand distributions, may be acknowledged by a station. Frequently employed
demand distributions include the continuous exponential and, more generally, phase-type
(Erlang, Coxian) distributions®.

The interconnection of stations is usually but implicitly specified by the routes that
customers take among these stations. Again, customer routes are not normally described
as pertaining to an individual customer. Rather, the routing behaviours of an entire group
of customers, of a so-called customer chain, are specified stochastically by a set of discrete
random variables which together prescribe all routing probabilities 7; s.; ¢, with which cus-
tomers, having been served at station i according to demand class s, will proceed to station
j with demand class t. The notions of classes and chains can be utilised in different ways.
Suffice it to say that multiple chains (i.e., several different groups of customer behaviour)
can be attained by specifying multiple sets of (station, class)-pairs which are not mutually
reachable (i.e., not mutually connected by paths of non-zero routing probabilities). With
reference to reflecting an environment of the network or not, a chain can be open or closed.
In the open chain case, customers can join the chain from the environment, the arrival
instances being specified by a (usually continuous, almost consistently exponential) ran-
dom variable which describes the duration(s) of time intervals between any two successive
arrivals. In this case, possibilities of exiting from the chain, from some station(s) to the
environment, ought to reasonably also exist; formal specification may, to cover these as-
pects, employ a pseudo-station 707 (representing the environment) and enhance the set of
routing probabilities according with probabilities rg,;; for splitting the arrival stream up
into (station i, class t)-arrivals and values r; 5,0 for denoting the probability of chain exits
from (station j, class s)-visits. For the closed chain case, customer arrivals and departures
do not exist, resulting in a fixed (and to be specified) number of customers circling in such
a chain. A Queueing Network with exclusively open or closed chains is termed an open
or closed network, respectively. The coexistence of open and closed chains determines
a so-called mixed network. Obviously, many conceivable facets of station and customer
behaviours are not covered by these standard Queuing Networks. Those non-covered

aspects include typically, but not exclusively, a multitude of non-local aspects such as

?The usual notation for isolated queues is A /B/m-"scheduling strategy”, where A denotes the probability
distribution function (pdf) specifying the interarrival times of customers, B is the pdf of service times and
m is the number of servers.



state-dependent routing, blocking phenomena, splitting and forking/joining of behaviour
processes, synchronisation conditions in general. A variety of non-standard Queueing Net-
works (Extended QNs) (e.g. [25]) have consequently been devised in order to be at least
descriptively capable of coping with one or the other of these aspects.

Analysis of Queueing Networks is typically pursued with the objective of assessing
their performance properties. Corresponding measures include station and network pop-
ulations, station and network throughputs, station utilisations and, most importantly,
customer residence times at stations, in subnetworks, in chains (i.e., in the network).
The major analysis methodology (as far as practical applicability is concerned) consists
of mapping the specified Queueing Network (i.e., the combined stations/chains-complex)
onto a corresponding Markov process and subsequently evaluating this process with re-
spect to its transient or, more often, its stationary distribution (provided always that the
QN description permits this mapping, that the process allows for stationarity, etc.). In the
framework of this methodology, a large subset of the sketched standard QNs, the so-called
product form class (e.g. [24]) exhibits analytic solutions for its stationary population dis-
tributions which are, moreover, amenable to comparatively extremely efficient evaluation
algorithms. Beyond that product form class, and also covering the majority of Extended
QNs with finite population state spaces as far as the Markovian conditions are satisfied,
numerical evaluation options for Markov chains exist and have in practice been applied
for problems of respectable sizes [15]. Yet more general QNs must be attacked by discrete
event simulation and corresponding statistical techniques.

2.3 Timed and Stochastic Petri Nets

Approaching the objective of quantitative analysis in the Petri Net framework, several
approaches were undertaken in the last two decades. The most important and very popular
trend is to directly add time and probability characterizations into Petri Nets [1, 2, 3, 4,
5, 21].

Two principal possibilities exist of integrating timing aspects into Petri Nets:

o specification of a residence time for tokens in a place (Timed places Petri Nets;
TPPNs) [26, 31],

e specification of a firing delay for enabled transitions (Timed transition Petri Nets;
TTPNs) [1, 21].

In the recent past, the major preference is on TTPNs. TTPNs can be classified into
two categories regarding the manner of handling enabled transitions. For TTPNs with
preselection policy, input tokens needed for firing are destroyed by the transition before
the firing phase is started. After a prescribed firing delay, the firing phase terminates by
creating the output tokens. The firing process of a transition in TTPNs with preselection,
thusly, is not atomic like that of ordinary Petri Nets. If several transitions are in conflict,
the one to destroy its tokens first is chosen randomly. Alternatively, for TTPNs with race
policy, all enabled transitions compete with each other for their input tokens, and the
fastest transition will fire first ("race”). Here, firing remains an atomic action.

The most important representatives of TTPNs are those Stochastic Petri Nets, e.g.
Generalized Stochastic Petri Nets (GSPNs) [2, 3], that describe Markov processes. Due
to the widespread use of GSPNs, we add their particular definition as a representative of

Stochastic Petri Nets with race policy. GSPNs consider two types of transitions: timed
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Figure 2: -/M/1-"preemptive-resume priority” station modelled by a GSPN

transitions, firing a specific time after enabling, and immediate transitions, firing imme-

diately (i.e. in zero time).

Definition 5 (GSPN, [1]) * A GSPN is a 6-tuple GSPN=(P,T,I=, 1T, Mo, W) where
o PN=(P,T,I7,I", My) is the underlying Place/Transition Net
o W =(wn,.. .,w|T|)5 is an array whose entry w;

— s the rate € RY of an exponential distribution as specifying the stochastic firing

delay, if transition t; is a timed transition or

— is a weight € RT as specifying the relative firing frequency, if transition t; is

an immediate transition.

The firings of any enabled, immediate transitions have priority over that of any simulta-

neously enabled, timed transitions.

Timed and Stochastic Petri Nets offer the possibilities for both qualitative analysis,
using efficient techniques from Petri Net theory, and for quantitative analysis, using nu-
merical Markov techniques or simulation.

Their main disadvantage (as mentioned in the introduction) is their awkwardness in
describing scheduling strategies. The following example is meant to illustrate this point.
Figure 2 shows a GSPN model of a station serving two classes of customers according to

76 _ strategy, using standard Petri net elements. Transition

a ”preemptive-resume priority
ty is enabled if preemption is to occur. Firing of #; preempts customers of class 2. The
markings of p; and py keep track of the occurrence of such a situation. This is the reason
for modelling the service of a customer of class 1 by two identically parameterized timed
transitions. Note that this realization of a preemptive priority scheduling strategy with
resumption is only correct if exponentially distributed service times are assumed; otherwise

a yet more complex model would have to be devised.

*For simplicity we omit the definition of inhibitor arcs and priority levels.

5| T'| denotes the number of elements in set T.

®A newly arriving customer with higher priority (class 1) preempts the service of the customer being
served at that moment. The preempted customer will continue his task, at the point of interruption, after
completion of service of all customers with higher priority.
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Figure 3: Timed place of a QPN

3 The QPN world

3.1 Definition

In the QPN world [7, 11] timing aspects are added to the places of a (Coloured) Petri Net
(cf. figure 3) in an non-standard, structured manner: A queue (station) may be integrated
into a place. A corresponding timed place consists of two components, the queue (station)
and a "place of deposit” for tokens (customers) having completed their service at this
queue’. The behaviour of the net is as follows. Tokens, when fired onto a timed place
by any of its input transitions, are inserted into the queue according to the station’s
scheduling strategy. Tokens in a queue are not available for the QPN transitions. After
completion of its service, a token (customer) is moved to the ”place of deposit”. Tokens on
this 7place” are available for all output transitions of the timed place. An older version of
the QPN world [7, 11] forced all transitions to fire immediately after being enabled. In the
version described here we also integrate standard timed transitions, obtaining yet more
convenient modelling capabilities. An enabled timed transition will fire after a certain
delay® specified by a random variable. Enabled immediate transitions will fire according
to relative firing frequencies. We assume that tokens are neither generated nor destroyed
in queues. As a consequence, qualitative analysis can partially be achieved by analysing
the underlying Coloured Petri Net?.

Definition 6 (QPN) A Queueing Petri Net (QPN) is an 8-tuple
QPN:(P; T; C;I_v I+7 MO) Q} W) where
o CPN=(P,T,C,.1~,I%, My) is the underlying Coloured Petri Net
o Q= (q1,...,qp)) is an array whose entry ¢;

— denotes the description of a queue taking all colours of C(p) into consideration,
if p; is a timed place or
— denotes the value (keyword) untimed, if p; is an untimed place.

o W = (wy,...,wy) is an array of functions whose entry w; is defined on C(t;) and

Ve C(t)wie) is
— the description of a distribution specifying the firing delay, if transition t; is a
timed transition w.r.t. colour ¢ € C(t;) or

— a weight € RT specifying the relative firing frequency, if transition t; is an

immediate one w.r.t. colour ¢ € C(t;).

"This notion of a place should not be confused with the term ”place” in Petri Nets.

8We assume the race policy here.

®This also implies a finite state space of the stochastic process described by the QPN, if the underlying
CPN is bounded.



The firings of immediate transitions have priority over those of timed transitions. The
graphical representation of transitions and untimed places is similar to that of GSPNs; a
pictorial representation of a timed place is given in the right part of figure 3.

Each QPN describes a stochastic process. The state space of this stochastic process is
spanned out by the state spaces of all queues of timed places and by the marking spaces
of all places of the net. There are two type of states (cf. [2]):

e tangible states: If no immediate transition is enabled, only timed actions can occur,
either due to the firing of a timed transition or due to the change of a queue state.
If all timed actions are specified by exponential (or phase-type) random variables,

the stochastic process can be a Markov process.

e vanishing states: If an immediate transition is enabled, its firing has priority over all
timed actions. The stochastic process leaves such a state immediately; in the case of
multiply enabled, immediate transitions, the one to fire is chosen according to the

relative firing frequencies.

The initial state of the stochastic process can be constructed using My in the following
way. In case of an untimed place, the marking is given as in an ordinary Coloured Petri
Net. In case of a timed place, only the "place of deposit” (see figure 3) is marked with
the tokens specified by My, all queues are considered empty. Qualitative notions, like
boundedness, liveness and the existence of home states (cf. definition 2) can be directly

defined for the QPN world in the context of the state space of this stochastic process.

3.2 Examples

The QPN world is a very powerful, albeit easy to handle and understand, model world.
Some examples will demonstrate its usefulness.

Figure 4 presents a central server model with memory constraints:
QPN:(P,T,C,I_, I+7 Mo,Q,W) where

e CPN=(P,T,C,I—,It, My) is the underlying (Coloured) Petri Net!? given in figure 4,

e ) = (untimed, -/M/oo-IS, -/M/1-PS, untimed, -/M/1-FCFS, -/M/1-FCFS) !,

o W = (wy,...,wr) is the array of functions whose entry w; is defined on C'(¢;) and
(for simplicity we define) Ve € C(t;) : wy(c) := 1. Note that all transitions are
immediate.

Figure 5 demonstrates that open Queueing Networks with generally distributed inter-
arrival times can be modelled by QPNs.

Figure 6 depicts that time-outs can easily be described with QPNs. After some pro-
cessing time the host either deposits a message in the buffer (with probability ws) or
continues with a local task (with probability wy). The sender takes any message from the
buffer and transmits it to the receiver. t3 represents the timer. t4 and 5 represent receipt
of an incorrect and correct acknowledgement, respectively.

1%Tn this example, we consider only one class of customers (colour of tokens), so the CPN is simply
determined by the given Place/Transition Net.

1S (infinite server) assumes that every arriving customer will be immediately receive service by
an available server; the waiting area of a station with this scheduling strategy is always empty. PS

(Brocessor sharing) is a limit case of the RR strategy; all customers are served simultaneously with

1
number_of _customers_actually_present

of a server’s capacity.
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3.3 Expressive Power

As demonstrated in section 3.2 by way of examples, the QPN world is descriptively more
powerful than most of the other model worlds. In [10] it is shown more formally that the
QPN world constitutes a superset of (Coloured) Petri Nets, Queueing Networks and several
forms of Timed and Stochastic Petri Nets. As an example, we present a construction
procedure, proving that every standard Queueing Network can be represented by a QPN:

e For each station i of the Queueing Network create a uniquely determined timed place

p; and an entry ¢; with the description of the queue for the array Q.

o Lor each pair (i,j) of interconnected queues, i.e. 3 classes s,t: 7,5, > 0, create a
transition ¢; ;) of the QPN.

e Define C: PUT — set_of _classes by
C(a) = {t | 3 queve i,class s:r;5;: >0} ifa=p;,€P
L Al t) | rise > 0F ife=1;;€eT

o The incidence functions I~ and IT for a pair (pi,t(mk)) are defined as

_ 1 ifi=jands=c¢
I (it (. ))(€) :={ A

1 ifi=kandt=c
(i) (5. ))(c) = { Pk

Ve Cpi),(s,t) € Cltgr)

e The initial marking is given by the number of customers in closed chains:
k if k is the number of customers in chain h 3 ¢ with

' o c € C(p;) and V queues j, ¢’ € C(p;): 12
Mo(pi)le) = deh, My(p;)(¢)#0= (¢t =7 and c=¢)
0 otherwise

e Q:=(q,...,qp)

o All transitions are immediate, and the array W is given by
W = (W 1), Wa,2) -+ > W, [P|)s - - - W(P|,P))) Where w(; ;) is defined as
w(i7j)((s,t)) = Tisiit V(S,t) € C(t(%]))

The source and sinks of an open chain can be modelled by the constructs given in figure 5.

4 Combined Qualitative and Quantitative Analysis using
QPNs

4.1 A general procedure for the analysis of time-augmented Petri Nets
and associated difficulties

As already mentioned, efficient techniques for a qualitative analysis of Petri Nets have been
developed in the last decades. Looking at the historical development of time-augmented
Petri Nets it seems obvious to attempt a combined qualitative and quantitative analysis
using the following procedure (see figure 7): At first, certain qualitative aspects (such

as boundedness and liveness) of the Petri Net would be completely analysed, neglecting

12Note that this recursive definition does not yield a uniquely determined initial marking for a given
Queueing Network; this does, however, not effect the overall behaviour of the net.

10



the timing aspect. Then, if the Petri net satisfied all qualitative requirements, it would
appear worthwhile to perform a quantitative analysis. For this procedure to be justifiable,
all qualitative features of the Petri Net would have to remain valid after the introduction
of time. Unfortunately, this needs not be the case.

Consider figure 8 where a GSPN is presented with a live underlying Place/Transition
Net. Examination of the GSPN’s state space yields its non-liveness, since t* can only fire if
places p; and py are simultaneously marked. Hence, liveness of a Petri Net can disappear
with the incorporation of time.

Similar observations hold for the existence of home states, which is demonstrated for
the GSPN world in [8]. In figure 9, the same effect is demonstrated for the QPN world
using two classes of customers (colours of tokens). The stations of the timed places py and
ps serve arriving customers (tokens) employing a FCFS-scheduling strategy. Service times
are assumed exponentially distributed. If transition ¢; (or ¢3) is enabled, the token of the
input place is transferred to place py (or ps) and a token of the complementary type is put
on place ps (or pg). Transitions 5 and t4 merge only tokens of the same kind. Scheduling
the tokens in a FCFS-manner yields two strongly connected subsets in the state space
of the QPN, such that home states do not exist. The subsets are characterized by the
sequencing of customers in both queues (either ”a” ahead of ”b” or ”b” ahead of "a”).
The main problem for quantitative analyses in such cases is, that the analyst might not be
aware of this situation. Using e.g. simulation, only one of these two subsets of the state
space is analysed (”by accident”), leading to dangerous misinterpretations of the modelled
system (cf. [8]).

Another undesired effect of integrating timing aspects is the occurrence of so-called
‘timeless traps’ [9]. A typical example of a timeless trap is shown in figure 10. Because
of the priority of immediate transitions over all timed actions, transitions ¢; and #o will
fire forever, with no way out of this situation'®. The main problem here is that the
stochastic process can reach a situation from where all reachable states are vanishing.
The description of a corresponding Markov process can hence, not be extracted from the
QPN model, although all timing specifications are given by exponential random variables

(cf. [9]).

4.2 A solution strategy

All examples of the last section illustrate that the analysis procedure in figure 7 has to
be modified or possibly completely changed to yield a useful combination of qualitative
and quantitative analysis. What possibilities do we have to cope with this basic problem?
One way is to modify existing Petri Net algorithms to render them suitable for analysis of
the time-augmented nets; this might turn out a rather uncomfortable approach, as Petri
Net theory and existing software products could no longer be used directly. Furthermore,
all future research in the Petri Net area would have to be adapted to time-augmented
Petri Nets. The other way is to develop suitable restrictions for an integration of timing
aspects, such that results of a qualitative analysis remain valid for quantitative analysis.
This idea leads to the analysis procedure given in figure 11. A great benefit of proceeding
in this manner is that the standard theory of Petri Nets remains unaffected; additionally,
any forthcoming results on efficient algorithms for qualitative analyses would be usable

1*That situation will occur if the consumer has consumed all items of the buffer, and the producer is in
his production phase.
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time-augmented Petri net

timing constraints -+ Petri net

qualitative analysis

quantitative analysis

Figure 7: Principal analysis procedure for time-augmented Petri Nets

ﬂlegen_c[: _______ _|

1 timed transition

Figure 8: GSPN with dead transitions
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Ps

QPN = (P,T,C, I, 1%, My, Q, W) where
i CPN: (PaTaCaI_,I-I—,MO) iS given by

— P={p1,...,ps}

7T:{t1,...,t4}

- C(x)={a,b},Ye e PUT

1 if (x = y) and
[=1Aj=1V[i=2Aj=2)V

- ot =4 [=3A7=2VIi=4n;=3]y
[i=bAj=4]V[i=6Aj=4]

0 otherwise

VpiEP,tjET;V$ayE{aab}

1 if (x =y) and

Feit)@®) = 1 it (2 # g) and
[[=3A7=1V[i=6Aj=3]

0 otherwise

VpiEP,tjET;V$ayE{aab}

- MO(Pi)(l‘)I{ Lofi=1 Ve € {a, b}, p; € P

0 otherwise

JM/1-FCFS ifi=1Vvi=5

untimed otherwise

e Q=1(q1,---,9s5) Withqz'z{

o W= (wy,...,wq) with wy(z)=1,Vi=1,...,4 and x € {a,b}

Figure 9: QPN with no home states
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producer consumer

buffer 15

Figure 10: GSPN with a timeless trap

time-augmented Petri net

timing constraints 4+ Petri net

qualitative analysis

additional restrictions

quantitative analysis

Figure 11: Modified analysis procedure for time-augmented Petri Nets

without difficulty. To find such restrictions for general net structures is difficult. We limit
our examination here to EFC Nets. Another reason for this restriction is that this class of
Petri Nets has been exhaustively studied in the last decades, and many qualitative features
can be characterized by efficiently testable conditions.

In the next section, we will demonstrate that an easily testable restriction guarantees
the transfer of all desired features to the QPN if they are present in the underlying CPN.
As the QPN world is a superset of several Stochastic Petri Net worlds [10], these results
are valid for these worlds, too.

4.2.1 Extended free choice QPNs

To handle the above mentioned problems, we first consider the single-class case only, i.e.

we assume
() | C(p) |=1,Vp € P.

The underlying Petri Net of the QPN can now be defined as a Place/Transition Net in a
straightforward way, simplifying our notation. Furthermore we assume:

o that at least one timed transition or one timed place is defined in the QPN'* and
that all timing constraints are specified by continuous probability distributions with

unlimited support.

Motherwise we would only have the description of a Petri Net without timing aspects.
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e that all queueing disciplines are work conservative.

Definition 7 (Extended free choice QPN) A QPN is an extended free choice QPN
(EFC-QPN), iff the unfolded CPN PN=(P,T,I~,I%, My) is an EFC net.

Definition 8 (Condition EQUAL-Conflict) A QPN=(P,T,C,1~,1", My,Q, W) satis-
fies condition EQUAL-Conflict iff

Vi, €T :3p e Pce C(p),d € C(t)," € C(t'):
= (p, D)) % T (p, (") (e) > 0 =
either t,t' are both timed or are both untimed transitions
w.r.t. colours ¢ € C(t),c" € C(1).

Condition EQUAL-Conflict implies that conflicts can only occur between transitions
of the same kind.

Assumption (*) ensures that every QPN can be represented by an equivalent single-
class QPN using the procedure given in definition 4. If PN is the unfolded CPN, the
descriptions of queues are not affected, and the ”timing information” for a transition can
be directly attached to a transition (t,c’) of the Place/Transition Net, if t is a timed or
immediate transition w.r.t. colour ¢ € C(t). To simplify our notation, we will use this
unfolded QPN in the following theorems.

Theorem 2 (Timeless traps in EFC-QPNs) Let QPN=(P,T,C, 1=, 1%, My, Q,W) be
an FFC-QPN with a bounded and live underlying Petri Net.
QPN satisfies condition EQUAL-Conflict = QPN does not have any timeless traps.

Proof: Assume a timeless trap exists.

— 3T C T :Vt € T :tis untimed, and of is a set of untimed places, and the stochastic
process can reach a situation where all transitions of 7' will fire forever, and all transitions
of T\T are dead. Let P := oT. The assumptions at the beginning of this section ensure
T\T U P\P # (. Boundedness and liveness of the underlying Petri Net yields its strong
connectedness ([13]), so that one of the following two cases can occur:

a) Ipe P:pe D> {t,t"}, teT,t' e T\T.
t is enabled iff t’ is enabled, as the QPN is an EFC Net satisfying condition EQUAL-
Conflict. This contradicts our assumption of the existence of a timeless trap (where
all transitions of T\T would have to be dead).

b) IteT :te D {p,p'},pe P,p' € P\P.
As t can fire forever and p’ € P\ P, this place is not bounded which contradicts the
initial assumption. O

Condition EQUAL-Conflict is merely sufficient for the avoidance of timeless traps, but
not necessary. The next theorem shows that this condition is necessary and sufficient for
the liveness of EFC-QPNss.

Theorem 3 (Liveness in EFC-QPNs) Let QPN=(P,T,C,I~, 1", My,Q, W)

be an EFC-QPN with a bounded and live underlying Petri Net.
QPN satisfies condition EQUAL-Conflict < (PN is live.
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Figure 12: Sketch of proof

Proof:

?=—:" Assume the QPN is not live. Then the dynamic behaviour of the QPN can reach
a situation, where a t € T exists which will never again be enabled. Therefore, a place
p € ot exists which will never again be marked. This holds due to the EFC net structure
and to the work-conservation of all scheduling disciplines. Therefore, all transitions t' € ep
are dead as well.

= ISmpty € 5 dead €T : 0Scpty C Teaq and Sempty® = Tgeqq due to the EFC net
structure. => 0S¢5ty C Sempty® and Sepmpty is an unmarked deadlock, which contradicts

the liveness of the underlying Petri Net (cf. theorem 1).
?<—=":" obvious, as the firings of immediate transitions have priority those of timed ones. O

A very important result is that condition EQUAL-Conflict also ensures the existence of
home states for live and bounded EFC-QPNs. If the QPN is a description of a Markovian
process, this implies the existence of a stationary distribution.

Theorem 4 (Home states in EFC-QPNs (cf. [7, 11])) Let

QPN=(P, T,C, I, I, My,Q,W) be an EFC-QPN with a bounded and live underlying Petri
Net.

QPN satisfies condition EQUAL-Conflict = QPN has home states.

Sketch of proof:

Because of assumption (*) and due to the work conservation of all scheduling disciplines,
it is sufficient to consider a reduced state space description, where a queue state is repre-
sented by the number of present customers only. For each state of the QPN’s stochastic
process, we define a corresponding marking of the underlying CPN by adding the popula-
tion of a queue and of the corresponding ”place of deposit”, for all timed places. The set of
attained markings is a subset of the reachability set of the underlying CPN. Now assume
that the state space of the QPN does not include any home states. This implies that the
set of corresponding states has at least two strongly connected disjoint subsets (cf. [30]).
Let M and M’ be two markings of the two subsets (see figure 12). The reachability set
of the EFC Net has home states following theorem 1 (e.g. M" in figure 12), such that
there exist firing sequencies f,g € T* : M[f > M" and M'[g > M". Let T}, be the set
of immediate transitions. The QPN’s liveness (cf. theorem 3) implies the existence of a
firing sequence h € TZ such that permutations f and § of fh and gh, respectively, can
be constructed with M[f > M" and M'[§ > M" and f and § fireable with respect to
the QPN’s stochastic process. M” is a member of both subsets contradicting our initial
assumption. O
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Up to now we have only considered QPNs with one class of customers (tokens; cf. assump-
tion (*)). The next theorem extends our results provided that all queueing disciplines are

of a specific form.

Definition 9 (Condition STATION) A QPN=(P,T,C,1~,I%, My,Q, W) satisfies con-
dition STATION iff
Vp; € P:  ¢; is untimed
or
the scheduling discipline is of the following type:
Ve € C(p) - if customers of this class reside at the station,
then at least one of them is served at any point in time.

Disciplines like PS or IS satisfy condition STATION, because all customers are served
simultaneously, whereas FCFS does only satisfy this condition if | C'(p) |= 1. If more than
one class of customers exists, customers of a particular class will not be served at a point

in time, at which a customer of another class occupies the server.

Theorem 5 (QPNs with several classes of customers (tokens)) Let
QPN=(P,T,C, 1=, 1", My,Q,W) be an EFC-QPN with a bounded and live underlying Petri
Net.

QPN satisfies condition EQUAL-Conflict and Condition STATION

—

o QPN does not include a timeless trap and
o QPN is live and

o QPN has home states.

Proof:

Unfolding the QPN yields a single-class QPN satisfying our assumption (*). As we have
not introduced any further assumptions with respect to specific service rates of customers
in queues or to firing rates of timed transitions, the theorem follows directly from theo-
rems 2, 3 and 4. O

5 Conclusions

The QPN world presented in this paper is a superset of Petri Nets, Queueing Networks
and several forms of Timed and Stochastic Petri Nets [10]. It offers a convenient and
familiar notation for the combined description of qualitative and quantitative aspects of a
system. Furthermore, QPNs can serve as a basis for theoretical discussions of this subject.

We have pointed out the basic problems which occur when combining qualitative and
quantitative analyses of time-augmented Petri Nets, and we have presented a straightfor-
ward method for a useful analysis procedure. For certain classes of QPNs, sufficient and
necessary conditions have been given which leave all qualitative features of an untimed
model valid for the timed model, too. We believe that the discussion presented in this
paper can serve as a starting point for future research, in particular by extending the
results for EFC-QPNs to further net classes, e.g. to simple nets.
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