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Abstract

System analysis is often done due to qualitative and quantitative aspects. Queueing
networks and Petri nets are suitable and wide spread model worlds for such a form
of analysis, because for both a well founded theory exists. The problem is that Petri
nets and queueing networks are only suitable for qualitative analysis resp. quantitative
analysis. So the analyst has to create two models of the same system. In recent years
several model worlds have been developed, combining qualitative and quantitative
aspects thus reducing the modelling effort. The stress nowadays is on timed and
stochastic Petri net models. The main disadvantage of these model worlds lies in the
difficulties of describing scheduling strategies with Petri net elements.

This paper describes a new model world, the QPN world, combining queueing
networks and Petri nets for qualitative and quantitative analysis eliminating this dis-
advantage. It is shown that queueing networks, Petri nets and timed and stochastic
Petri nets are special cases of the QPN world.
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1 Introduction

Queueing networks and Petri nets are well known model worlds for the description and
analysis of a variety of systems, e.g. computer systems [22] and flexible manufacturing
systems [23]. Petri nets are used for qualitative analysis (in the sense of global correctness)
whereas queueing networks are used for performance evaluation (quantitative analysis).
In practice systems are analysed due to their qualitative and quantitative aspects. For
performance analysis Petri nets can’t be used, because of the lack of time. On the other
side queueing networks are not suitable for qualitative analysis, for they miss e.g. the
possibility of describing forking and joining of processes.

Some model worlds, like e.g. timed and stochastic Petri nets and extended queueing
networks, try to eliminate these deficits. In [24] timed and stochastic Petri nets and
extended queueing networks are compared due to their expressive power and evaluation
efficiency. One important result of the discussion there is that timed and stochastic Petri
nets have a greater modelling power if the description of scheduling strategies is integrated
in an appropriate way.

The subject of this paper is to combine (timed and stochastic) Petri nets and queueing
networks thus integrating an easy description of scheduling strategies into the Petri net
world. The article is structured as follows. Section 2 presents basic definitions. In section 3
we describe existing model worlds for the combined description of qualitative and quant-
itative aspects and list their advantages and disadvantages. Section 4 gives the definition
of a new model world, the QPN world, combining queueing networks and Petri nets. Sec-
tion 5 gives some examples of QPN models showing their suitability for the modelling of
systems. In section 6 we show that queueing networks, Petri nets and timed and stochastic
Petri nets are special cases of the QPN world.

2 Basic definitions

We assume that the reader is familiar with Petri nets, so we will put the stress on the
explanation of queueing networks.

2.1 Petri nets

In this paper coloured Petri nets defined by K. Jensen [16] are used.
Definition 1 (CPN) A coloured Petri net (CPN) is a 6-tuple CPN=(P,T,C, 1=, I, My),

where
o P is a finite and non-empty set of places,
o T is a finite and non-empty set of transitions,

PnT=0,

C'is a colour function defined from P U T into non-empty sets,

o I~ and It are the backward and forward incidence functions defined on Px T such
that I~ (p,t),I*(p,1) € [C(t) — C(p)ms],Y (p.t) € P x T,

My is a function defined on P describing the initial marking such that
Mo(p) € C(p)us,Yp € P.

!The subscript MS denotes multi-sets. C(p)ars denotes the set of all finite multi-sets of C(p).
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Every CPN can be unfolded into an uniquely determined place/transition net?. Thus
all well known notions of place/transition nets [18] can be defined for CPNs via this
transformation.

Definition 2 (Unfolding of CPNs) The unfolding of a CPN=(P,T,C,I1=,I*, M) is
performed in the following way:

1. ¥ p € P,ce C(p) create a place (p,c) of the place/transition net.
2.V teT,d e C(t) create a transition (t,c’) of the place/transition net.

3. Define the incidence functions of the place/transition net as
I=((p,e)(t,¢)) := I (p,t)(c)(c)’
I*((p. o)1, ) == I*(p, 1)(")(c).

4. The initial marking of the place/transition net is given by Mo((p,c)) := Mo(p)(c).
PN = (Upep UcEC(p)(p7 ), User Uclec(t)(t,c’),f_,l"',Mo) is the unfolded C'PN.

A well founded theory exists for the qualitative analysis of CPNs. In [15] the reduction
method for place/transition nets [10] is transferred to CPNs. Invariant analysis of CPNs
is e.g. described in [13] and an efficient technique for construction of the reachability graph
exploiting symmetries in the CPN is presented in [11].

2.2 Queueing networks

A queueing network [22] consists of a set of interconnected queues. Each queue (station;
figure 1) represents a service center where arriving customers receive service by a server.
Each station has one or more servers. For customers arriving at a station, service will
begin immediately if there is a free server, otherwise the customer is forced to wait in a
waiting area or the service of another customer is preempted, e.g. if the arriving customer
has a higher priority. The order specifying which customer will receive its service next
is described by a scheduling strategy. Typical scheduling strategies are e.g. FCFS (first

2A place/transition net is a 5-tuple PN = (P,T,1~,17, My) where
o P is a finite and non-empty set of places,
o T is a finite and non-empty set of transitions,
e PNT =0,
o I, It : PxT — Ny are the backward and forward incidence functions,

o My : P — INg is the initial marking,.

17 (p,t)(c¢") is a multi-set of C(p)ars and I~ (p,t)(c')(c) denotes the number of occurrences of the
element ¢ in this multi-set.



come first served), which is the usual situation in real life or RR (round robin), which is
the usual scheduling for jobs requesting service at the CPU.

Each customer demands a certain amount of service, which is specified by the length
of time the server is occupied by the customer. This service time is described by a random
variable thus representing the load the station has to cope with, due to this customer.
Customers with the same service time distribution are grouped together in a class. The
usual notation for queues is A /B/m-"scheduling strateqy”, where A denotes the probability
distribution function (pdf) specifying the interarrival times of customers, B is the pdf of
service times and m is the number of servers. Typical examples are M/M/1-FCFS and
M/G/1-FCFS, where M* denotes the negative exponential distribution function and G
denotes general pdfs. If the interarrival times are not known a priori we will omit their
description, e.g. -/M/1-FCF'S.

The interconnection of queues in a queueing network is described by the paths custom-
ers may take determined by routing probabilities. Being served at station i, a customer of
class s proceeds to station j becoming a class t customer with probability r; ...+ € [0,1].
The set of classes can be partitioned into chains. Two classes of customers belong to the
same chain, if a customer of one class might become a member of the other class and vice
versa. Thus an equivalence relation is defined on the set of classes.

Queueing networks are classified into two categories, a queueing network is

e open, if arrivals and departures from and to the external environment of the network
are possible. This can be described by introducing a ficticious node 0 representing
the environment, which creates customers usually due to a Poisson process. Together
with the routing probabilities rg,; ; and 7; 5,0 the arrival and departure at each station
is specified.

o closed, if no external arrivals and departures are allowed.

A chain h with 2N {t | 3 queue 7 : (ro;¢ > 0 or 7540 > 0)} # 0 or = 0 is also said to be
open resp. closed. Note that closed chains might exist in an open queueing network.

Performance measures of common interest are information on queue length, throughput
and utilization of stations. Analysis is usually done by examination of the Markov process’
steady state distribution [12, 22]. Queueing networks are very popular in the field of
performance evaluation (quantitative analysis), because for the calculation of this steady
state distribution very efficient algorithms exist for certain classes of queueing networks
(product form solution, approximation [22]). The main problem is that queueing networks
are only capable of describing the routing of customers in the net, but there is no facility
to model e.g. forking and joining of processes.

To summarize this section we will list the main advantages and disadvantages of both
model worlds for a starting point of the discussion in the next section (see figure 2). The
list shows that it is desirable to create a model world which inherits the best of these two
worlds.

3 Model worlds for qualitative and quantitative analysis

To overcome the mentioned disadvantages several efforts were undertaken in the last two
decades. The most important and nowadays very popular trend is to add time and prob-
ability characterizations into Petri nets [1, 2, 3, 4, 5, 17].

*M stands for Markov.



Advantages Disadvantages

Petri nets

® casy description of ® timing aspects are not considered

— splitting and ® description of scheduling strategies

— synchronization and might get too complex (cf. section 3)
— blocking of processes.

® efficient algorithms for proving certain

qualitative properties

Queueing networks

® timing aspects are considered ® no constructs for the description of
® casy description  of  scheduling — splitting and
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formance measures for certain classes

of queueing networks

Figure 2: Advantages and disadvantages of Petri nets and queueing networks

3.1 Timed and stochastic Petri nets

There are two principal ways of integrating timing aspects into Petri nets:

o specification of a dwelling time for tokens on a place (Timed places Petri nets;
TPPNs) [21, 25],

e specification of a firing delay for enabled transitions (Timed transition Petri nets;
TTPNs) [1, 17].

In recent years the stress is on TTPNs. TTPNs can be classified into two categories due
to their handling of enabled transitions. In TTPNs with preselection policy, input tokens
needed for firing are destroyed by the transition before starting the firing phase. After a
certain firing delay the firing phase terminates by creating the output tokens. So the firing
process of a transition in TTPNs with preselection is not atomic like in ordinary Petri nets.
If several transitions are in conflict the one to destroy its tokens first is chosen randomly.
In TTPNs with race policy each enabled transition competes for its input tokens with
eventually conflicting transitions and the fastest transition will fire first ("race”). Here
firing remains an atomic action.

The most important representatives of TTPNs are stochastic Petri nets, e.g. genera-
lized stochastic Petri nets (GSPNs) [2, 3], describing Markov processes. Due to their wide
spread use we will give the definition of GSPNs as a representative of the class of stochastic
Petri nets with race policy.

Definition 3 (GSPN, [1]) ® A GSPN is a 6-tuple GSPN=(P,T,I=,I*, My, W) where

o PN=(P,T,I=,1", My) is the underlying place/transition net

5For simplicity we omit the definition of inhibitor arcs and priority levels.
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Figure 3: -/M/1-"preempt-resume priority” station modelled by a GSPN

o W =(wn,.. .,w|T|)6 is an array whose entry w;

— is the rate € RT of the negative exponential probability distribution function
specifying the firing delay, if transition t; is a timed transition or

— is a weight € RY specifying the relative firing frequency, if transition t; is an
immediate one.

The firing of enabled immediate transitions has priority on that of enabled timed trans-
itions and happens immediately meaning in zero time.

The main advantages of timed and stochastic Petri nets are

e the possibility for qualitative analysis using efficient techniques from Petri net theory
and

e the possibility for quantitative analysis.

The main disadvantage of these time augmented Petri nets is the very difficult descrip-
tion of scheduling strategies. Figure 3 shows a GSPN model of a station serving two classes
of customers due to a ”preempt-resume priority”” - strategy using standard Petri net ele-
ments. Transition ¢ is enabled if preemption will occur. Firing of ¢; preempts costumers
of class 2. The marking of p; and ps keeps track of the occurrence of such a situation.
This is the reason for modelling the service of a customer of class 1 by two identical para-
meterized timed transitions. Note that this realization of a preemptive priority scheduling
strategy with resumption is only correct, if we assume negative exponentially distributed
service times. For easier description of scheduling strategies additional elements are often
integrated into the stochastic Petri net world, like e.g. inhibitor arcs, with the problem of
raising the modelling power up to Turing machines even for the untimed model causing
the undecidability of important analysis problems [18].

3.2 Extended Queueing Networks

There are only a few efforts undertaken in the past to add features for the description of
qualitative aspects into queueing networks.

5|T| denotes the number of elements in set T.

TA newly arriving customer with higher priority (class 1) preempts the service of the customer being
served at that moment. The preempted customer will proceed his task at the interrupted point after
completion of service of all customers with higher priority.



In extended queueing networks like e.g. RESQ ([20, 24]) some elements for the de-
scription of synchronization aspects are added to the queueing network world. Additional
elements are passive resources, fork, join and split nodes (see figure 4). Fach passive
resource consists of a number of tokens representing the resource units available for cus-
tomers arriving at the allocation node. If no token is available the customer is forced to
wait, otherwise he passes the allocation node taking a free token. At the release node
the token is given back to the passive resource, so that it is available for other customers
arriving or being blocked at the allocation node. Figure 5 presents a central server model
with memory constraints modelled by a passive resource (cf. [24]).

Further elements are fork and join nodes, where a customer creates several child pro-
cesses resp. synchonizes with former generated processes. At split nodes child processes
are created, but no synchronization takes place in the future.

The advantages of this form of extended queueing networks are similar to that of
queueing networks:

e casy description of scheduling strategies,

e possibility for quantitative analysis using efficient algorithms from queueing network
theory,

o possibility for description of some forms of synchronization aspects.
The main disadvantages of extended queueing networks are

e the lack of algorithms for qualitative analysis, although it looks easy to borrow them
from Petri net theory,

e not all forms of parallel systems can be modelled. In [24] the reader will find an ex-
ample demonstrating the difficulties in specifying the time-out behaviour of protocols
using this model world.

The author has no knowledge of further directions in adding features to queueing net-
works, which have become as popular as RESQ. The reason is that most researchers are
interested in new efficient techniques for performance evaluation and do not bother about
expressive power. A combination of (generalized stochastic) Petri nets and queueing net-
works is given in [7], where one model world is used to calculate parameters for the other
model world. So there is no combination on the description level.

To summarize this section we list the disadvantages of the above described model
worlds:

Disadvantages:

Timed and stochastic Petri nets | Extended queueing networks
difficult description of some parallel systems can not
scheduling strategies be described appropriately

The next section presents the QPN world, which combines the advantages of (timed and
stochastic) Petri nets and queueing networks, so that these disadvantages disappear.

4 The QPN world

The main idea in creation of the QPN world [8, 9] was to add timing aspects to the
places of a (coloured) Petri net (cf. figure 6). This idea reminds the reader of the TPPN
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approach mentioned in section 3.1. In QPNs time is integrated in a more powerful way,
because we don’t restrict our model to the specification of a dwelling time for tokens.
In QPNs a whole queue (station) may be integrated into the definition of a place. Such
a timed place consists of two components, the queue (station) and a ”place of deposit”
for served tokens (customers)®. The behaviour of the net is like follows. Tokens, fired
by the input transitions of such a timed place, are inserted into the queue due to the
specified scheduling strategy. Tokens in a queue are not available for the transitions of the
QPN. After completion of service the token (customer) is placed on the "place of deposit”.
Tokens on this 7place” are available for all output transitions of the timed place. In an
older version of the QPN world [8, 9] all transitions fired immediately after enabling. In
the version described here we also integrate timed transitions to receive greater modelling
convenience. Like in TTPNs an enabled timed transition will fire after a certain delay®
specified by a random variable. Enabled immediate transitions will fire due to relative
firing frequencies. We assume that no token is generated or destroyed in a queue, so that
qualitative analysis can be partially done by analysing the underlying coloured Petri net.

Definition 4 (QPN) A queueing Petri net (QPN) is a 8-tuple
QPN:(P; T; C;I_v I+7 MO) Q} W) where
o OPN=(P,T,C,I~, I, My) is the underlying coloured Petri net
¢ Q=(q,...,qp|) is an array whose entry g;

— denotes the description of a queue taking all colours of C(p) into consideration,
if p; is a timed place or
— equals the keyword untimed, if p; is an untimed place.

o W = (wy,...,wy) is an array of functions whose entry w; is defined on C(t;) and
Ve C(t)wie) is
— the description of a probability distribution function specifying the firing delay,
if transition t; is a timed transition due to colour ¢ € C'(t;) or

— is a weight € R specifying the relative firing frequency, if transition t; is an
immediate one due to colour ¢ € C(t;).

The firing of immediate transitions has priority on that of timed transitions. The
graphical representation of transitions and untimed places is similar to that of GSPNs
and a pictorial representation of a timed place is given in the right part of figure 6.

5 Examples of QPNs

The QPN world is a very powerful, although easy to handle and understand, model world.
Some examples will demonstrate its usefulness.

Figure 7 presents the central server model with memory constraints, which was mod-
elled with RESQ primitives in figure 5:

QPN:(P7T707[_7]+7M07Q7W) where
e CPN=(P,T,C,I—,It, M) is the underlying (coloured) Petri net!® given in figure 7,

8Do not mix this notion of a place with the term ”place” in Petri nets.
9We assume the race policy here.
1%Tn this example we consider only one class of customers (colour of tokens).
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Figure 8: Open queueing network modelled by a QPN

e ) = (untimed, -/M/oo-IS, -/M/1-PS, untimed, -/M/1-FCFS, -/M/1-FCFS) !,

o W = (wy,...,wr) is the array of functions whose entry w; is defined on C'(¢;) and
(for simplicity we define) Ve € C(t;) : wy(c) := 1. Note that all transitions are
immediate.

The structure of this model is distinctly described by the underlying (coloured) Petri net,
so that qualitative analysis can be easily performed using techniques from Petri net theory.
The place invariants of the Petri net e.g. prove that the number of tokens (customers) in
the CPU and I/0 stations is limited by the number of initially available memory partitions,
thus giving the analyst more confidence in the ”correctness” of his model.

The next example demonstrates that open queueing networks with generally distrib-
uted interarrival times can be modelled by QPNs (figure 8).

Furthermore time-outs, which aren’t possible to model using RESQ primitives ([24])
can be easily described with QPNs (figure 9). After a certain time the host deposits a
message in the buffer with probability wsy or will proceed his local task with probability w.
The sender takes the message from the buffer and transmits it to the receiver. t3 represents
the timer, t4 and 5 represent the reception of an incorrect resp. correct acknowledgement.

6 Expressive Power

A key issue for new model worlds is their expressive power in comparison to other model
worlds. Looking at the examples in section 5 one might suppose that the QPN world is
more prowerful than most of the other model worlds. In this section we show that the QPN
world is a superset of (coloured) Petri nets, queueing networks and timed and stochastic
Petri nets.

118 (infinite server) assumes that every arriving customer will be immediately served with full server
capacity, so the waiting area of a station with such a scheduling strategy is always empty. PS (processor
sharing) is a special case of the RR strategy. Here all customers are served simultaneously with

1 of the servers capacity.

number_of _customers_actually_present
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Figure 9: Time-out modelling with QPNs

e QPNs D CPNs
It is obvious that every CPN=(P,T,C,I~,I*, My) can be represented by a
QPN=(P,T,C,I~,I", My,Q,W) where Q=(untimed, ... ,untimed) and all transitions

are immediate.

¢ QPNs D queueing networks
Each queueing network can be represented by a QPN using the following construction
procedure:

— For each station i of the queueing network create a uniquely determined timed
place p; and an entry ¢; with the description of the queue for the array Q.

— For each pair (i, j) of interconnected queues, i.e. 3 classes s,t: 7; 5.;; > 0, create
a transition ¢(; ;) of the QPN.

— Define C: PUT — set_of_classes, so that for each class c¢ of customers of the
queueing network
C(a) = {t | 3 queue ¢,class s : 755+ >0} ifa=p;, €P
o {(S,t) | 755, > 0} if v = t(l,]) eT
— the incidence functions I~ and IT for a pair (Pz’,t(]‘,k)) are defined as
_ o 1 ifi=jands=c
1= (is (5, 1)) .—{ A

1 fi=kandt=c
I+(pi7t(j,k))((87t))(c) = { 0 otherwise

Ve Cpi),(s,1) € Cltgr)

11



— the initial marking is given by the number of customers in closed chains:
k if k is the number of customers in chain h 3 ¢ with

' o c € C(p;) and V queues j, ¢’ € C(p;): 12
Mo(pi)(e) := deh, My(p;)(¢)#0= (¢t =7 and c=¢)
0 otherwise
- Q:= ((]17- . 7Q|P|)
— all transitions are immediate and the array W is given by
W = (W 1), Wa,2) -+ > W, [P|)s - - - W(P|,P))) Where w(; ;) is defined as

w(i7j)((s,t)) = Tisiit V(S,t) € C(t(%]))

The source and sinks of an open chain can be modelled by the constructs given in
figure 8.

e QPNs D timed and stochastic Petri nets
There are a variety of timed and stochastic Petri nets which can be modelled by
QPNs. First of all we will show that GSPNs C QPNs by construction:

— The QPN’s underlying CPN is directly defined by the underlying place/transi-
tion net of the GSPN with one colour for each place and transition (cf. defini-
tion 2).

— Q := (untimed, ..., untimed).

— Define the matrix W of the QPN using matrix W of the GSPN by w?PN(C) =
w&3PN for the uniquely determined colour ¢ € C(t;).

Here is a list of other timed and stochastic Petri nets representable by QPNs:

* SPNs [17], because SPNs C GSPNs!3,

* Sifakis” timed Petri nets [21] belong to the TPPN class with deterministic dwelling

times for tokens on places. Such a timed Petri net can be modelled by a QPN
as follows.
The QPN’s underlying CPN is directly given by the place/transition net of the
timed Petri net. All places of the QPN are timed with a IS scheduling strategy
and deterministic service times given by the deterministic dwelling times of the
timed Petri net. All transitions are immediate with weight 1.

* The stochastic Petri nets in [25] are similar to the timed Petri nets of Sifakis. The
only difference is that deterministic dwelling times are exchanged by exponen-
tially distributed times. If we use these service time specification for the queues
of timed places, the same construction procedure is applicable.

Extended stochastic Petri nets (ESPNs) and deterministic stochastic Petri nets
(DSPNs) [17] can be represented in a similar way like GSPNs, if we assume
that all additional Petri net elements integrated into these worlds, e.g. inhibitor
arcs, are not taken into consideration. In both variants of stochastic Petri nets
timed and immediate transitions are defined. In ESPNs firing delays of timed
transitions may be described by general pdfs and in DSPNs all timed transitions
have deterministic or exponentially distributed firing delays.

*

12Note that this recursive definition does not yield a uniquely determined initial marking for a given
queueing network, but this has no effect on the overall behaviour of the net.
13In SPNs all transitions are timed with exponentially distributed firing delays.

12



* Also some timed and stochastic Petri nets of the preselection class can be repres-
ented by QPNs by modelling the preselection phase with immediate transitions
(cf. [4]), e.g. Zuberek’s stochastic Petri nets [26].

¢ QPNs and extended queueing networks

Because of QPNs D queueing networks, we have to prove that the additional elements
of figure 4 can be represented by appropriate QPN elements. It is obvious that
fork, join and split nodes can be directly represented by Petri net elements of the
QPN. The only critical RESQ primitive is the passive resource. Release, creation
and destruction of resource units are representable by appropriate transitions of the
QPN. Unfortunately the allocation node is not directly representable, because it
acts like a timeless (!) queue with a user defined scheduling strategy [20]. The
FCFS strategy e.g. can’t be modelled by standard Petri net elements [14]. So QPNs
can only simulate allocation nodes with a random access strategy, which are also
representable by standard Petri net places.

7 Conclusions

We have shown that the QPN world is a very powerful model world due to expressive
power. The convenient notation is excellently suitable for Petri net as well as queueing
network analysts. The modelling process is supported in the following way. First of all
the designer can describe the logical structure of the system using standard Petri net
elements. After verifying certain qualitative features, timing aspects can be integrated in
a very convenient way for performance evaluation. The main advantage of the QPN world
is its ease in describing scheduling strategies.

Furthermore the QPN world can be used as a starting point for the development of
a reasonable proceeding for combining qualitative and quantitative analysis (cf. [8, 9])
exploiting efficient algorithms developed in the last decades for the other model worlds.
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