Qualitative and Quantitative Analysis of Timed
SDL Specifications

Falko Bause, Peter Buchholz

Informatik TV
Universitat Dortmund
Postfach 50 05 00
4600 Dortmund 50
Germany

Abstract. Timed SDL (TSDL) is a modified version of SDL designed for the
examination of qualitative and quantitative system aspects within one model
description. Because realistic communication protocols tend to be very large
a program package was developed, which transforms a T'SDL model into an
internal representation of an equivalent Finite State Machine (FSM). This
FSM representation can be efficiently analyzed by algorithms for qualitative
and quantitative protocol analysis. In particular algorithms for partial state
space exploration have shown to be very suitable. One of these algorithms
is described in detail and is slightly improved. It is shown, that this kind of
analysis leads to reasonable results, even for large models.

1 Introduction

For the description and specification of communication protocols formal description
techniques (FDTs) are widely used. Several FDTs have been standardized by the
ISO or CCITT (see [7, 9, 10, 11]) among them SDL, which is the FDT we will
focus on in this paper. FDTs were originally developed to allow the application of
(partially) automated methods for protocol analysis. Typically FDTs describe only
the logical behavior, quantitative aspects related to the performance of a protocol
are not considered. However, protocol analysis ideally covers both, qualitative and
quantitative aspects. Qualitative analysis has to ensure the correct behavior of the
protocol. Quantitative analysis provides results on the performance and indicates if
the expected quality of service can be obtained.

Quantitative analysis of a formal description requires timing information. This
motivates the recent extension of SDL to Timed SDL in [4]. Timing information can
be included in different ways, however, the most common one is the assumption of
exponentially distributed times, such that the protocol describes a Markov chain.
This assumption allows to use efficient analysis techniques from the area of Markov
chains for protocol analysis. Since many temporal aspects are rather constant than
exponentially distributed, results of a protocol analysis based on Markov chains have
to be carefully interpreted. Nevertheless, Markov chains have shown to be suitable
for protocol analysis. A classical problem is consistency between the implementation
of a protocol and its low level Markov model. Starting from a SDL specification
the confidence in consistency increases significantly, if tools support at least a semi-
automatic transformation into a low level Markov chain and executable implementa-

tion. Furthermore the importance of model based protocol analysis increases, since
qualitative and quantitative aspects are analyzed with the same model.

Although the idea of integrating timing information in FDTs and analyzing the
resulting low level Markov chain sounds rather simple, there are still several practical
and methodological problems. The integration of timing information in FDTs has
to be done carefully to be consistent with the standardization of the FDT. Software
support of the whole analysis process is absolutely necessary, since this is the only
way to ensure consistency in all steps and allow a protocol designer to use the tech-
niques without being an expert in protocol analysis. This is also important, because
most analysis algorithms are developed from a rather low level point of view. Fur-
thermore a principle problem of protocol analysis 1s complexity. The Markov chain
resulting from a realistic protocol often exceeds the limits of modern supercomput-
ers, let alone standard workstations. Therefore an exhaustive analysis is often not
possible, and one has to think about alternative solution techniques yielding not
exact, but reasonably accurate results.

In this paper we present an approach for the integrated qualitative and quantita-
tive analysis of a formally specified protocol. We introduce a timed version of SDL,
an improved algorithm for protocol analysis and a tool based on these concepts. The
usability of the approach is shown by means of an example.

The structure of the paper is as follows. In Sect. 2 TSDL and a tool for the
analysis of TSDL models are briefly introduced. Section 3 describes an improved
algorithm for protocol analysis in detail. In Sect. 4 an example protocol specification
1s analyzed.

2 Timed SDL (TSDL) and Tool Support

Timed SDL (TSDL) [4] enriches SDL [7] with timing aspects, which is the basis for
performance evaluation. The SDL version of CCITT is a real subset of TSDL and
only slight modifications are introduced, so that TSDL remains close to the standard.
This simplifies the expansion of existing SDL models to their timed version in TSDL.

Quantitative aspects are introduced by extending the specification of SDL pro-
cesses. An SDL process is an Extended Finite State Machine (EFSM) [5, 9], and
timing aspects are added with respect to transitions. At a particular point in time
an SDL process is in a certain state. A state of the entire SDL model comprises
values of global variables, states of all processes, values of their local variables and
messages of their input queues. For integration of quantitative information to the
dynamic behavior of an SDL model, 1t 1s necessary to define the amount of time
the system will remain in a particular state and/or the probabilities of transitions
to other states. Adding such information to an SDL model appropriately leads to a
stochastic process (SP). Typically two types of states occur in such a SP (cf. [1, 2]):

— tangible states in which the SP remains for a particular amount of time and
— vanishing states which the SP leaves immediately.

For every transition of a process either a time or a probability has to be specified.
This is achieved by the following modification to SDL syntax.

<transition> ::= { <transition string> [<terminator statement>] } |
<terminator statement>

[<label>] [<valuation>] <terminator> <end>
TRATE <expression> <end> |

TTIME <expression> <end> |

TPROB <expression> <end>

<terminator statement> ::

<valuation>

The valuation-expression contains the modified part of SDL’s syntax.
<expression> is a valid SDL expression (cf. [7]), which should be of type real.
TPROB <expression> 1s the probability for this transition. TTIME <expression>
and TRATE <ezxpression> are specifying the duration of the transition. These con-
structs can be used alternatively, because TTIMFE a is equivalent to TRATE 1/a.
The following TSDL code illustrates the use of the <waluation>-expression.

STATE wait_event;
INPUT message(frame_nr, ack, address);
TPROB prob_of_error;
NEXTSTATE -;
INPUT message(frame_nr, ack, address);
DECISION (frame_nr = frameexpected);
(TRUE) : OUTPUT mess(frame_nr) via channel TO host;
TPROB 1.0 - prob_of_error;
NEXTSTATE prove_ack;
(FALSE): TPROB 1.0 - prob_of_error;
NEXTSTATE prove_ack;
ENDDECISION;
INPUT timer_signal;
TASK nextframetosend := ackexpected;
TPROB 1.0;
NEXTSTATE retransmit_messages;
ENDSTATE wait_event;

TSDL additionally offers certain constructs (QUEUELEN,INSTATE,INQUEUE)
for inspecting the input queue and the state of a process. This was done for two rea-
sons:

modelling convenience SDL offers no other possibility of inspecting the messages
in a queue than reading them. These constructs allow a straightforward descrip-
tion of collisions and improve readability ([4]).

evaluation of performance figures E.g. the throughput of a protocol can be cal-
culated by determining the flow out of a process state, e.g. the sender’s ”sending
state”.

The above mentioned constructs can be used in expressions and are described
below:

— QUEUFELEN returns the number of elements in a process’ queue.
— INSTATE(<slate>) is true if the specified process is in state <stale>.
— INQUEUE(<signal name>) is true if the queue contains the

signal <signal name>.

Example:

STATE collision_on_net;
PROVIDED (queuelen > 1);
NEXTSTATE empty_queue;
PROVIDED (queuelen = 1);
NEXTSTATE read_mess;
ENDSTATE collision_on_net;

STATE empty_queue;
PROVIDED (queuelen = 0);
NEXTSTATE wait_event;
INPUT *;
NEXTSTATE -;
ENDSTATE empty_queue;

Validation and performance evaluation of protocols is only feasible with suitable
tool support. Parallel to the development of TSDL we have also implemented a
tool (cf. Fig. 1) for the analysis of TSDL models, which is based on the TSDL’s
corresponding FSM description. This form of description was chosen because most
of the analysis algorithms are described for FSMs ([8, 15, 16]).

The most important module of the TSDL-Tool 1s the TSDL-Parser and State
Generator. Given a TSDL description in textual form (like SDL/PR) and a Control
File (mainly containing additional information necessary for performance evalua-
tion), the TSDL-Parser creates an internal representation of an equivalent FSM.
This module supports the analysis modules by exporting some functions especially
for calculating the initial state and the successor states of a given state.

The TSDL-Parser and State Generator provides analysis modules with further
information on the nature of a state. A state description also incorporates infor-
mation whether the state is vanishing or tangible. Furthermore it gives relative
probabilities, resp. times, of all transitions leaving this state. A different set of func-
tions deals with the translation of warnings and error messages into a TSDL-like
form. The TSDL-Parser encodes all generated TSDL states into an integer vector,
assigns an integer number to all transitions and exports this information to the
analysis modules. In case of an error or a warning the analysis modules can inform
the protocol analyst in a form according to the TSDL description using these func-
tions. Presently the TSDL-Tool offers three non-exhaustive analysis algorithms. An
improved algorithm based on Probabilistic Validation and Performance Evaluation
[8] (as described in Sect. 3), an algorithm for Non-FErhaustive Validation by West
[16], and Non-Ezhaustive Performance Fvalualion as published by Rudin [15]. Fur-
thermore a prototype version of a simulation module has been implemented. The
integration of exhaustive analysis based on the numerical analysis of a finite Markov
chain is underway. Appropriate analysis algorithms are described in [12]. Additional

Protocol

Control File

specification in

TSDL

\ /

TSDL-Parser

and

State Generator

Analysis Algorithms

Data Management

Fig.1. Main Modules of the TSDL-Tool

analysis algorithms can be integrated without much effort, since the interfaces of the
State Generator and the Data Management are well defined and easy to handle.

The Data Management Module offers several operations for manipulation of the
reachability tree. The efficiency of these operations have an impact on the efficiency
of the overall analysis process. Thus tuning reasons justify a separate module.

To complete the description of an analysis experiment the user must also specify
additional parameters, e.g. initial values for global variables and some parameters
for analysis algorithms. This additional information is specified by a second input
file, the Control File. A typical Control File looks like the following.

SDL-FILE token_ring.sdl;
RESULTFILE token_ring.result;
QUEUE-LENGTH 10;

EXPERIMENT experimenti; /* name of the experiment */
VARLIST;

REAL timeout 0.125; /* parameters of */

REAL prob_of_error 0.0001; /# the experiment */

MASK block stationl / process sender

instate (message_transmitted);

/* specification of analysis dependent parameters */

The entry QUEUFE-LENGTH specifies an upper bound for the queue length of
any TSDL-process. This restriction is essential for most TSDL models to keep state

space finite, which 1s a precondition of exhaustive analysis algorithms. If a message
is sent to a saturated queue, it 1s discarded, and a warning is printed.

The entry MASK describes the mask for specifying the class of marked states
(cf. Sect. 3). The expression for describing such a mask must be an extended SDL-
expression, which evaluates to a boolean value. States in which the boolean expres-
sion is TRUF are marked by the State Generator. Performance results on state level
are computed with respect to marked states.

3 TSDL Model Analysis by non-exhaustive State Space
Exploration

Although qualitative and quantitative analysis of Markov chains i1s conceptually
simple, realistic protocols yield chains with an enormous number of states often far
beyond the capacity of contemporary computers. Therefore an exact analysis is often
hopeless, which causes a need for alternatives. One common approach is simulation,
which can be used regardless of the size of the state space. However, simulation has
some serious drawbacks. Results are statistical in nature and a protocol normally
includes states which are reached very rarely, e.g. the loss or duplication of a mes-
sage. Nevertheless, these rare events are often responsible for an abnormal behavior.
Performing a straightforward simulation the number of events to be simulated in-
cluding also rare events is very large. It is not transparent which part of the state
space has been visited during simulation and which states have never been entered.
The problem of rare events is not new and also not restricted to the area of protocols.
Especially from reliability analysis several papers have been published dealing with
this problem. However, all approaches use knowledge about process behavior and
consider only quantitative aspects, the qualitative behavior is assumed to be known.
In order to detect an error in the protocol specification by simulation, on the one
hand the error state has to be entered. On the other hand it must be recognized.
The latter is not trivial in general.

An alternative to simulation is numerical analysis restricted to a subset of the
state space. Obviously analyzing only a subset of all states can give results only
about the states in the subset. Behavior beyond this subset remains unknown. But
in contrast to a simulative analysis the detection of errors 1s much easier. The number
of states which have been considered is known and, most important, the results are
more detailed. Appropriate techniques yield lower bounds for the mean time to
failure (MTF) and for the time (7y) between two visits of the initial state sg. Such
results are of practical importance, since they show that the protocol will be error-
free on the average, at least for a time equal to the lower bound of M T F'. If the lower
bound 1s large enough, i.e., in the range of the mean time between other failures like
hardware errors, this result 1s sufficiently secure. The common approach of Markov
chain based analysis is to generate the state space or a part of the state space and
afterwards analyze the behavior on this generated part. If only a subset of states is
analyzed, the major problem of the two-step approach 1s to decide which states are
important and have to be included in the subset and which states can be neglected.
Such decisions normally need a lot of user experience and are therefore not suitable
for integration in a tool for semi-automatic protocol analysis. Even more promising

is the integration of state space generation and analysis in one step, which is done
in [8]. A similar idea is used in [13] for the analysis of steady state availability in
repairable computer system models. The former approach has been used for the
analysis of TSDL models in [4]. In this section we present a modified version, which,
is based on continuous time Markov chains instead of discrete time chains and is
more efficient in terms of memory and time requirements, if we focus on specific
results.

Although the protocol is analyzed on the level of a Markov chain, errors in the
SDL specification can be detected during the analysis (e.g., if a state is generated
which describes a strange situation at the SDL level). Performance results can also be
directly interpreted on the SDL specification of the protocol. These are additional
advantages of an approach that integrates high level specifications with efficient
analysis algorithms instead of analyzing an isolated low level model.

Using TSDL for protocol specification, two different kinds of transitions exist:
immediate and timed. Immediate transitions describe probabilistic choices, needing
a negligible amount of time. Timed transitions need an exponentially distributed
amount of time for the transition to occur. We assume that immediate transitions
have priority over timed transitions and that the choice among activated transitions
of the same priority level (immediate/timed) is done in a probabilistic way, i.e., each
immediate transition is valued with a probability and each timed transition with a
rate. The probability of firing a specific transition is given by the probability/rate of
this transition, divided by the sum of probabilities/rates of all activated transitions
of the same priority level. Thus the state space of the stochastic process described
by the TSDL model contains to types of states: vanishing states and tangible states
(cf. Sect. 2). The analysis of TSDL models is similar to the analysis of Generalized
Stochastic Petri Nets [2]: during calculation of the steady state distribution of the un-
derlying Markov chain, vanishing states are eliminated. This can cause a sometimes
significant reduction in the size of the state space. In [4] an algorithm is presented
to delete vanishing states during state space generation. This yields to a model with
only tangible states, i.e., to each state s; a value p;; describing the transition rate
to state s; can be directly generated. The state generator of the TSDL tool provides
a function which generates all successor states s; of a state s; and the transition
rates p;;. Vanishing states are implicitly eliminated. If the elimination of vanishing
states yields an error, this indicates a so called “timeless trap”, which 1s an error
in the model specification [3]. The following informal description of this algorithm
abstracts from any details of generating successor states with the help function Suce.

The main idea of the algorithm is to partition the set of all states S of the
protocol into three subsets:

1. S, the set of “explored states”, including all states which have been completely
analyzed by generating all successor states.

2. The set of unexplored states Sy, , containing all states which have been detected
as successors of explored states, but which have not been further analyzed.

3. S including all states, which have not even been detected. S can be finite or
infinite.

During analysis, states are transferred from S, to S. by generating all successor
states and inserting them into Sy, if necessary, and by updating the analysis on the

set S..

If we interpret all states from S, U S as an absorbing set and the set S, as
a transient set of states, then analysis of the system can be performed with tech-
niques based on absorbing Markov chain analysis. Using this approach, we can detect
deadlocks on S, described by a closed subset of S, with no possibility of leaving this
subset. Performance results can be computed by determining the mean time the pro-
cess stays in S, after starting in sg. If we assume the worst case scenario that each
state outside is an error state, then the sojourn time in S, is the mean time to failure,
in other scenarios it is a lower bound to the mean time to failure. The time between
two visits of sy can also be computed. This value describes the turnaround time of
sp 1f we assume the best case scenario, that the process returns immediately to sq
after leaving S.. In all other scenarios this value is a lower bound for the turnaround
time. An upper bound for the turnaround time also would be important to know,
but is unfortunately infinite until S, = S, since one of the non-explored states might
yield a deadlock with an infinite sojourn time. More general performance results
can be computed by marking states using the MASK in the Control File (e.g., all
states after a successful transmission of a message can be marked). Considering the
explored state space S, C S, we can calculate the time the process stays in marked
states and the throughput of these states. Both quantities are approximations or in
some special cases bounds for the results on the complete state space.

3.1 The Analysis Algorithm

After the informal introduction of our algorithm we give a formal specification and
start with the definition of some necessary notations. Let |S| be the number of states
in the set S. Let M be a matrix of order |.S.|x|S.| and ¥ a matrix of order |S,| x| Sy]-
Element M (i, j) later includes the mean time the process will stay in state j before
leaving S., if the actual state is i. W (i, k) is the probability that the process will enter
k as the first state after leaving S, if the actual state 1s i. The values in the matrices
are updated during analysis. We use two notations for states here, s; describes the
state as given from the state generator, including the decoded specification of all
states of the TSDL processes. Inside the sets S, and S, each state gets a unique
number ranging from 1 to |S.| or |S,| resp. States are numbered consecutively, i.e.
a state added to a set receives the last number. If a state j i1s deleted from S,
then all state numbers larger than j are decremented by 1. Nevertheless, the state
description s; has to be stored to compare newly generated states with the states
from the sets S. and S,. We refer to a state either by its state description s; or by
the unique number ¢ in the sets S, or S, depending on the context. The algorithm,
as given in [4, 8] for discrete time chains, consists of the steps described below. We
do not give the proofs here, since they are similar to the original work.

Algorithm 1 Partial state space exploration

I) Initialization:
Sy = {s0},Se := 0.
IT) Choose next state to be explored:
If | Sy |> 1 then choose s; € S, such that W(0,¢) > W(0,j),¥s; € Sy.

IIT) State exploration for state s;:
Define Suce(s;) as the set of successor states of s;. Suce(s;) and the transition
rates u;; are generated by the State Generator. Define p; := ZsieSucc(s,) i
a) Sy := Sy —{si}, 5 =5+ {si}.
Add a new row and column i to M with
M(4,7) := i,M(i,j) =0, M(j,0):=W(j,0)* M(i,4),Vs; € Se,i# j.
If |Se| > 0 then
delete column i from W and add row i initialized with 0.
b) Vs; € Succ(s;) :
if 5; € .5 then
Sy = Sy + {5]'}.
Add a new column j to matrix W by setting

W(k‘,_]) = M(k,i)*/,tij,vsk € S.. (1)
else if s; € .5, then
Wik,j) =Wk, j)+ M(k,i)* pi;, Vs € Se. (2)

else if s; € S, then
if 1 — M(j,7)#* pi; # 0 then

Mk,)iz .
M(]C, l) = M(k, l) + 1—1\(4(j3)i;;N1jM(']’ l)a
W(k,t) = W(k, 1) + (228 (1) (3)
VSkHSI S S€7St S Su

else s; was the last unexplored state and the
whole state space has been explored (exhaustive analysis).
IV) Calculate Results

MTF =Y M(0,i) (4)
VARMTF)=2.0 Y (M(0,i) > M(i,j))— MTF (5)
Vi = M0, D T = ﬁ Y MGH 6

$7€ESe,5;#8:

Stop, if termination condition is satisfied, see below.
Goto step Il.

Matrix W 1s stochastic after the complete exploration of a state, which can be
verified using results from the theory of absorbing Markov chains. If in (3) the
denominator of the fraction equals zero, this indicates a closed set of states which
can never be left. Therefore this situation occurs if j is the last unexplored state
and the analysis becomes exhaustive. This case can be easily handled to get exact
results by defining a vector = on S, with #(é) = > pn/p; * M(k,) for ¢ # j and

7(j) = 1.0/p;. @ normalized to 1.0 is the stationary vector of the Markov chain
underlying the whole protocol. & 1s the basis for determining performance quantities
like throughputs and sojourn time. Since the complete Markov chain is irreducible,
this shows a correct protocol at the level of the state space. On the other hand, if a
closed set of states is detected and the analysis has not completely explored the state
space, this indicates a specification error because the system will never return to the
initial state sq. Since the state description includes the states of the TSDL processes,
error states can be indicated to the user at the level of his protocol specification,
rather than on the level of some Markov chain underlying the protocol.

Results of protocol analysis can be computed after each newly added explored
state. MTF (eq. (4)) is a lower bound for the mean time to failure and equals
the mean time before the first exit from S, after starting in sq. The variance of
the time before the first exit from S, (= VAR(MTF)) (eq. (b)) provides some
additional information about the protocol behavior on the set of explored states. A
large variance indicates that there are still several situations where the process leaves
the set S, quite rapidly compared with the mean value and it might be necessary
to explore some more states. A small variance shows that the time of the first exit
from S, 1s likely to be close to the mean.

For performance analysis T;, a lower bound for the time between two visits to a
state s; € S., and the mean number of visits V; in s; between the start in sg and
leaving S, are also important (eq. (6)) results. Using appropriate states (often sg is
appropriate) the duration of a message transmission or the message throughput can
be bounded.

Termination of the algorithm is ensured by user-given limits to the number of
explored states (rather unsatisfactory but possibly necessary due to space or time
restrictions), the values of MTF, VAR(MTYF), V; or T; and any combination of

these values.

3.2 Example

Fig. 2. State transition diagram

The following example illustrates two steps of the algorithm for a state space whose
first seven states are depicted in Fig. 2.
Let p;; be the transition rate from state s; to state s;.

Initialization: Sy := {sg}, Se := 0.
IT) Choose sq. It is the only possible state.
IIT) Swuee(so) = {s1, 83,54}, o = po1 + Hos + Hoa
a) Sy =0,5={s0}, M= (5)
b) Vs; € Suce(so) :
s; = 81 ESZSU I{éﬁ},ﬂ:
5j:53E§:S ={s1,s3}, W= .
s; =54 €518y ={s1,53,54}, W = (£ L2 foa)
IV) MTF = ul_o
Next iteration:
IT) Assume po1 > pos and oy > poa thus choosing state sq.
IIT) Suce(sy) = {sa2}, pt1 = p12
a) Sy = {s3,s4},5. = {s0,51}, 5] =2,]5]| =2,
L ol Hos flos
= ()= ()
b) Vs; € Suce(s1) :
S; = 89 € S Sy = {52,53,54}, |Su =3,
HolMiz Hos Hos Hol Mo
w= (a5) = (% %

Hos
Ho
M1 0
IV) MTF = M(0,0)+ M(0,1) = = 4 Fo-.
Note that only the entries M(0,4) for newly explored states have to be added
to the M T F-value of the previous iteration.

If s5 is the next state to be explored, states s; and sg will be detected yielding
the state transition diagram depicted in Fig. 2. Notice that transitions originated in
non-explored states are not detected yet.

3.3 Time and Space Requirements

Obviously it is necessary to store two matrices of order |S.| x |S.| and |S.| x |Sy], a
data structure including the state descriptions s; and for each state of S, U S, the
information in which set it is located. If we assume |S,| to be not much smaller than
|Su|, which is a realistic assumption, then space requirements are in O(]S.|?).
Time requirements for the introduction of a new transition depend on the location
of the destination state (i.e., which of the formulas (1) - (3) are used). (1) and (2)
require |S.| operations, whereas (3) needs |S.|? + |S.||Su| operations. The whole
number of operations can be approximated by ZIWS;L O(n?) = O(|S:]?). Since the
number of transitions originated in a fixed state depends on the number of TSDL
processes, rather than on the number of states, the analysis effort lies in O(]S.|?).

3.4 Modifications and Improvements

Normally it is not necessary to compute all values V; and T;. The computation
of MTF, Vy and Ty is often sufficient for protocol analysis. In this case the time

and space complexity of the algorithm can be decreased significantly. We define two
vectors my and m, each of order |S.| by

my(i) ==), cs. M(i,k) and mo(é) := M(i,0). The required results can be
expressed using these vectors.

MTF = mx(0) Vo = mo(0)po Ty = (mz(0) —me(0))/Vo (7)

For the exploration of a new state s; and the update of the vectors and matrix
W we temporarily need a third vector m; including the ¢-th column of M. Step
IT) of the algorithm proceeds as previously, only the matrix elements M (k,i) are
substituted by m; (k). The same is done with equations (1) and (2). In equation (3)
the different vectors and matrix W are used. The new equation is given below, the
situation is the same as in (3), s; is the state to be explored and a transition to
5; € 5S¢ 1s newly introduced.

mp (k) = ma (k) + 72 (7). mo (k) = mo(k) + T2 ()

mi(k) = mi(k) + (BB, (5 Wk, 1) = Wk, t) + 2Bl yy(jog), (8)

_ml(j)ﬂli _mz(j)ﬂz7
VSk S Se7st S Su

The proofs for the formula above are based on a straightforward summation in
(3). With the above transformation the storage requirement for matrix M is reduced
from |S,|? to 3|S.|. The same holds for the number of operations. If results V; and
T; have to be computed for other states than sy we can proceed in exactly the same
way. For each state a new vector m; is needed.

The algorithm can be further improved, if we can assure that for a state s; € S,
(s; # sg) no state s; € S, U S exists with a transition from s; to s;. In this case s;
can be simply eliminated. However, to verify this condition, state generation has to
be run in reverse order.

4 Analysis of an Example Protocol

For illustrating the suitability of the algorithm presented in Sect. 3, we choose a
token ring protocol described in [6, 14].

In our model the token ring consists of three stations communicating via the ring
and a monitor station for error detection. Typical errors are loss of a token, multiple
circulation of a busy token and duplication of a free token. For our example we only
consider loss of tokens. The monitor can detect a lost-token error, if it has not seen a
free or busy token for a certain period of time. It will then transmit a special shut-off
signal for cleaning the ring. When this special signal returns to the monitor, which
implies that all stations have received it, the monitor generates a new free token.

Messages to transmit arrive at each station according to a Poisson distribution
specified by parameter A. The length of each message is described by an exponential
distribution determining its transmission time. For simplicity we consider only one

class (type) of messages. Transmission of a message is completed in 43 time units in

the average, where a time unit is the signal delay between two neighboring stations.

Each station is assumed to have an unlimited buffer capacity for arriving messages.

Thus the state space of the model is not limited and an exhaustive state space
analysis is not feasible in principle.

1.0

0.9

0.8

0.7 4

0.6 1

0.5

0.4

HO ot DN ot

0.3

0.2

0.1

A = 0.008

A = 0.001

0.0
0

T
100

T
200

T
300

T T
400 500

T
600

Number of explored states

Fig. 3. Utilization of one station of the token ring

T
700

T
800

Simulation Numerical analysis
Parameters||{CPU time|simulated model |#visited ||[CPU time MTF #explored
time states states
A =0.001 519.8 [1.34631 x10° 86 400.2 [3.30623 x10°[800
A = 0.005 526.1 |1.59401 x10° 190 546.7 |1.09079 x10° (800
A = 0.008 519.6 |1.98084 x10° 248 698.5 |0.67446 x10°(800

Table 1. Comparison of both analysis methods

Figure 3 shows the utilization at a certain station of the token ring for different
arrival rates of messages at this station and for different number of explored states.
The arrival rate of the two other stations is kept fixed to 0.005. Utilization only

4.0

A = 0.001

3.5

3.0

2.5 7

* 3=

2.0
1.5 4
1.0

0.5

0.0

T T T T T T T T
0 100 200 300 400 500 600 700 800

Number of explored states

Fig.4. Lower bound for Mean Time to Failure

slightly changes after exploration of 600 states, so a further increase of the number
of explored states will not lead to significant different results.

Figure 4 shows the lower bound of the Mean Time to Failure (MTF) for the
experimental series shown in Fig. 3. For a low utilization of the chosen station,
MTF increases significantly with the number of explored states, because error states
will be explored more frequently. Increasing the arrival rate of one station implies
that the corresponding events are more probable, thus decreasing the slope of MTF.

Table 1 illustrates the advantages of the non-exhaustive state space exploration
algorithm compared with a simulation of the Markov chain. Although CPU time is
approximately the same for both analysis techniques, there is a significant difference
in the number of explored and visited states resp. Furthermore the reader should
note, that the simulated model time cannot be directly compared with the MTF,
because the simulation might be in an error state not yet detected, whereas in the
algorithm of Sect. 3 an error, e.g. a livelock, has been surely detected.

5 Conclusions

We have presented an integrated approach for protocol specification, qualitative and
quantitative analysis based on an extended version of SDL (TSDL). The approach
has motivated the implementation of a prototype version of a tool which allows
the formal specification of communication protocols and their subsequent analysis
using techniques which originally have been described on a rather low level. One of
these techniques, the Probabilistic Validation and Performance Fvaluation has been

improved in terms of space and time requirements and is presented in some more
detail.

The environment introduced so far, is extendable towards other analysis algo-
rithms and allows the use of all these algorithms from a common interface even for
an inexperienced user. In particular non-exhaustive analysis techniques seem to be
a suitable approach for protocol analysis, since they can be used for models with a
very large or infinite state space, which cannot be analyzed by exhaustive techniques.
Furthermore they provide more accurate results than simulation.

References

1. M. Ajmone-Marsan. Stochastic Petri Nets: an Elementary Introduction. Advances in
Petri Nets. G. Rozenberg (ed.), Lecture Notes in Computer Science 424, 1989, pp. 1-29.

2. M. Ajmone-Marsan, G. Balbo, G. Conte. A Class of Generalized Stochastic Petri Nets
for the Performance Evaluation of Multiprocessor Systems. ACM Transactions on Com-
puter Systems, Vol. 2, No. 2, Mai 1984, pp. 93-122.

3. F. Bause: No Way Out oo The Timeless Trap. Petri Nets Newsletters 37, December
1990, pp. 4-8.

4. F. Bause, P. Buchholz: Protocol Analysis Using a Temed Version of SDL, Proceedings
of the IFIP TC/WG 6.1 Third International Conference on Formal Description Tech-
niques for Distributed Systems and Communications Protocols, FORTE’90, November
1990, pp. 239-254.

5. F. Belina, D. Hogrefe: The CCITT-Specification and Description Language SDL, Com-
puter Networks and ISDN Systems, September 1989.

6. W. Bux et al: A Local-Area Network Based on a Reliable Token-Ring System, Proc.
Int. Symposium on Local Computer Networks, (ed.) P. Ravasio, G. Hopkins, N. Naffah,
North Holland 1982.

7. CCITT Z.100: CCITT SPECIFICATION AND DESCRIPTION LANGUAGE SDL,
COM X - R 15 - E, Genf, March 1988.

8. D. D. Dimitrijevic, M.-S. Chen: An Integrated Algorithm for Probabilistic Protocol Ver-
tfication and Evaluation, IBM Research Report RC 13901, August 1988.

9. D. Hogrefe: ESTELLFE, LOTOS and SDL, Springer-Verlag, 1989.

10. ISO DIS9074 FEstelle: A Formal Description Technique based on an Fxtended State
Transition Model, 1987.

11. ISO DIS8807: Lotos: A Formal Description Technique, 1987.

12. U. Krieger, M. Sczittnick, B. Miller-Clostermann: Modeling and Analysis of Modern
Telecommunication Networks by Markovian Techniques: Foundations, Algorithms and
an Example, IEEE Trans. on Comm., special issue on Computer-aided Modeling, 1990.

13. J. C.S. Lui, R. R. Muntz: Evaluating Bounds on Steady State Availability of Repairable
Systems from Markov Models, Proc. of the First Int. Workshop on the Numerical So-
lution of Markov Chains, Raleigh, 1990, pp. 469-489.

14. H. Rudin: Validation of a Token-Ring Protocol, Proc. Int. Symposium on Local Com-
puter Networks, (ed.) P. Ravasio, G. Hopkins, N. Naffah, North Holland 1982.

15. H. Rudin: An Improved Algorithm for Estimating Protocol Performance, IBM Research
Report, RZ 1314, April 1984.

16. C. H. West: Protocol Validation by Random State Fxploration, IBM Research Reports,
RZ 1482, Zurich, 1986 (also in: Proceedings of the 6th Int. Workshop on Protocol
Specification, Testing and Verification, (ed.) B. Sarikaya, G. V. Bochmann).

This article was processed using the IXTRX macro package with LLNCS style

