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Abstract

The Distributed Queue Dual Bus (DQDB) protocol or IEEE 802.6 has been accepted as
the international standard for Metropolitan Area Networks (MAN). This paper describes a
combined M/G/1 and Markov model for the steady state performance analysis of a DQDB
network. In the analysis each station is considered independently, but not in isolation,
thus avoiding the computational complexity which would otherwise be introduced by a
large number of stations. Because of this, the proposed model is not restricted to trivially
small networks frequently found in other analytical models.

The model takes into account the relative position of a station on the network, the
phase difference between the two buses as well as the relative availability of QA-slots.
Comparisons with our own simulation studies show that the analytical results lie well
within acceptable error limits in all but exceptional cases. The effect of various model
parameters on network performance are also reported.

1 Introduction

The Distributed Queue Dual Bus (DQDB) protocol or IEEE 802.6 has been accepted
as the international standard for Metropolitan Area Networks (MAN). Since it was first



proposed, there have been several performance studies of DQDB networks. Most perfor-
mance studies are, however, based upon simulation models, e.g., [3, 5, 6, 11] and only few
analytical models are reported in the literature, e.g., [4, 9, 14] and then only for either
special load situations or trivially small networks.

Potter and Zukerman[10], for instance, assume that there is no delay on the reverse
bus and that all segments arrive at the end of a slot interval. The DQDB network is
modelled by a multi-queue processor sharing model leading to accurate results under
these assumptions.

Tran-Gia in turn[12] proposes a model of nested M/G/1 queues, where each station
is represented by such a queue and service time at a station is influenced by the waiting
time of the previous station.

Mukherjee and Banerjee[9] propose a Markov model which considers the entire net-
work, with the consequence that only very small networks with 2 or 3 nodes can be
analysed.

In this paper we present a Markov model which applies to all load conditions and any
number of nodes and captures the relative position dependency amongst network stations
in DQDB. The validation of the results against those obtained from simulation show the
model to be of adequate accuracy.

2 DQDB Architecture

Figure 1 illustrated the DQDB architecture which consists of a pair of uni-directional
buses connecting the stations. We will consider there to be N stations on the network
but here is no limit to the number of stations which may be connected to the bus. The
Head Station continuously generates frames every 125 ps and transmits these along the
forward bus. Each frame is subdivided into slots of equal size and each slot in turn has
a header containing several fields including three priority request bits. The End Station
terminates the forward bus and removes all incoming frames and generates slots at the
same transmission rate and of the same sort (cf. slot description below) the reverse bus.
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Figure 1: The DQDB architecture.

Referring to Fig. 1, if station {j} wants to send data to station {¢} it would use the
reverse bus while if {i} wants to transfer data to {j} it would use the forward bus.

Each slot on either bus can be allocated either to isochronous traffic (called pre-
arbitrated slots or PA-slots) or non-isochronous traffic (called queued arbitrated slots or



QA-slots). Slots dedicated for isochronous traffic may not be used for non-isochronous
data'. In the DQDB protocol described in the following, only non-isochronous traffic is
considered. We moreover assume that a fraction « of the slots on the forward bus are
available for queue arbitrated traffic.

Each header contains, amongst others, a BUSY bit and a REQUEST FIELD. The
BUSY bit indicates whether the slot concerned contains information or is empty. The
3-bit REQUEST FIELD is intended for a 3-level priority scheme. The standard currently
recognises only one priority level, however, and the model we present is for a single priority
class. For completeness, our description of the DQDB protocol in the next section is for
the general case.

3 The DQDB Bus Arbitration Algorithm

The DQDB or IEEE 802.6 standard is well-known. In this section we describe only the
rules for accessing the bus in order to accurately relate it to our proposed Markov model.
Fig. 2 on p. 5 illustrates the bus access process schematically.

In our analyses we consider data segments to travel from station {i, i = 1,..., N} to
station {j j = 4,0 —1,...,0} (cf. Figure 1) along the forward bus. Similarly we refer to
requests as moving from station {j} to station {i} along the reverse bus.

We do not include the Bandwidth Balancing Mechanism (BWB) option in IEEE 802.6
in our model, mainly because we wanted to show that our analytical model can model the
fact that the bandwidth a station receives is a function of its position on the bus. When
BWB is introduced, the same Markovian analysis approach can be applied to analyze the
effect of this on network performance. Slot re-use is also not considered.

The times of arrival at station {i} of slots on the forward bus and the reverse bus
respectively, are not synchronised and the operations described below are performed in
the order in which slots arrive on either bus.

Each local queue at any station {i} can be in either one of two states: the idle state
or the countdown state. A local queue enters the countdown state each time a request is
queued, and the idle state when the corresponding data segment has been transmitted.
If a local queue is not empty it is considered to be in the countdown state except for very
short time intervals between starting the segment transmission and queueing the next
request.

The following events and corresponding actions are possible:

An exogenous priority j segment s;(j) arrives at station {¢} for transmis-
sion on the forward bus:

1. If Dy(j) is in the idle state and no request of an data segment, already dispatched,
is waiting: Set
CDi(j) < Ri(5), Ri(j) <0
and D;(j) enters the countdown state.

2. If Di(j) is in the countdown state: s;(j) has to wait in D;(j).

IThe request field of any slot, however, can be used for setting a request



A priority r request arrives on the reverse bus:

3. If D;(j) is in the idle state

e if r is of the same or a higher priority, increase the priority j request counter
for the forward bus at this station by 1; i.e., Ri(j) — Ri(j) + 1;

e otherwise do nothing;

4. If D;(j) is in the countdown state:
e if 7 is of a higher priority, CD;(j) — CD;(j) + 1;
e if 7 is of the same priority, R;(j) — Ri(j)+ 1;

e otherwise do nothing.

An empty slot arrives on the forward bus:
5. If D;(j) is in the idle state:

e If Ri(j) > 0, then note the fact that, an outstanding request at priority level
{j} at some downstream station will be served by this request, by decreasing
Ri(j) by 1;

e otherwise do nothing.
6. If D;(j) is in the countdown state:

o if C'D;(j)> 0, this station is not allowed to seize the empty slot for D;(j) and
CD;(j) is decreased by 1 if the empty slot is allowed to pass;

o if CD;(j) =0, access the forward bus and transmit segment s;(j) and enter
the idle state.

4 Analytical Model

The schematic diagramme in Fig. 2 illustrates the service process for segments at any
station ¢ in the network. Segments arrive at the local queue, a single request and its
corresponding segment enters the request queue and distributed queue respectively, and
are served by the reverse bus and forward bus respectively in time 7;. The delay time T;
includes the segment waiting time in the local queue which therefor reflects the delay a
user with a packet comprising several segments may experience.

The performance measures we use in our analyses are the bus access time and the
segment delay time. These we define as follows:

1. The Mean Bus Access time, T; at station {i}. This is the time elapsed from the
moment a request is queued at the station until the instant both the request and the
corresponding segment have left. This time does not include the propagation delay
on the bus nor the waiting time in the local queue at {:}.

2. The Mean Segment Delay time, T; at station {i}. This is the time elapsed from the
moment a segment arrives at the local queue until the instant it and its corresponding
request have left station {i}. It therefore includes the queueing time of a segment at
a station and therefore is a good representation of the delay a multi-segment packet
may typically experience at a station.
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Figure 2: Schematic of segment service process at station .

For our analysis we will assume that time is discrete and measured in units of 4, the
interarrival time of slots at a station and that distance is measured in slot lengths. Since
we only consider one priority class the parameter j is dropped in the following discussion.
We moreover assume that,

1. the arrival process of segments at the local queue at station {i} is Poisson with
parameter A;, and

2. the slot occupancy pattern is determined by a Bernoulli process, and
3. a station has infinite buffer capacity, and

4. the segmentation and reassembly time of messages is negligible.

Recently, Conti et al.[2] used a discrete Markov process to model the slot occupancy
pattern on the forward bus rather than assume it to be a Bernouli model as we do. This
may well be a better approximation but, our simpler assumption does not detract from the
validity of the proposed analytical approach. We show in Sec. 5 that our model already
vields adequate results. If one so wishes, a Markov arrival process model can be used with
our proposed method without difficulty.

4.1 M/G/1 model of the segment service process

Since segment arrivals (or equivalently, request arrivals[2]) to the local queue are assumed
to be Poisson, we view the combination of the local queue and service process in Fig. 2
as an M/G/1 queue. In that case we use the well known Kolmogorov-Chapman equation



which relates the service and turnaround time:

2

T, = T+ ———t—
2(1 = pi)

(1)

where p; = T;A;, as always, and 7'_72 is the second moment of the bus access time.

In order to compute the moments of the bus access time we derive an ergodic Markov
chain model of the bus access process. By modifying this model appropriately to create an
absorbing Markov chain, and by using an appropriate starting distribution of that chain,
we compute the required first and second moments [8§].

4.2 Markov model of the Bus Access Time

In order to understand the description of the Markov chain in this section it is important
to fully understand all the sequences of events concerning the arrival and transmission
of requests and segments. A station cannot transmit a segment prior to queueing (as
opposed to transmitting) a request for that segment. Refering to Fig. 2, once a request
has been queued, the request (segment) will be sent independent of whether or not the
corresponding segment (request) has already been transmitted. No request for a new
segment transmission can be queued at a station, before the previous segment and its
corresponding request have been transmitted. Hence the definition of the bus access time
as the time elapsed from the instant a request arrives until both the request and its
corresponding segment have left the station.

All events at a station {7} and their corresponding probabilities in our analysis are
assumed to be synchronised to the start of the slot on the reverse bus. There may be a
phase difference, however, between the forward and reverse buses which will vary from
station to station, depending on the location of the station on the bus. In our analysis we
assume that a data slot arrives on the forward bus at station {i} a fraction 5;; 0 < 3; < 1
of a slot length after the arrival of the request slot on the reverse bus. This implies
that during one slot interval, it is possible that a segment may arrive, its request be
queued and (possibly) transmitted during the same slot interval if a free request bit
becomes available. The corresponding segment in turn, may have to wait, or may also
be transmitted immediately during the same slot if the data slot arriving a fraction 3; of
time later is free. If 3; = 0 the request and the segment can obviously not leave in the
same slot time.

Under heavy load, it is more likely, however, that an arriving segment will find itself
at the back of the distributed queue. Let p; ;35 = 1,...,k; be the probability that a new
segment for transmission on the forward bus will enter position j in the distributed queue.
The quantity k; is the maximum length of the distributed queue seen by station {7i}. This
value depends upon the following:

e The position of station {i} relative to other stations on the reverse bus. This is clearly
so since station {¢} can receive requests from all stations (1,...,7— 1) downstream.

e The distance in slot units from the Head Station of the reverse bus to station {i}.
The longer this distance, the more likely it is that downstream stations will generate
multiple requests per station due to the effect of unfair data slot use.

Note that §; and k; allow us to model this effect of unfair slot usage.



Define the following probabilities for any station {i} at steady state:

FR; = "P{theslot on the reverse bus is free}
FD; = "P{the next slot on the forward bus is free}

Let (u,v) be the state descriptor of the Markov chain which describes the events
discussed above, and let

o u = 1 if the request r; is waiting in ); and u = 0, otherwise.

e v wherev = 1,2,...,k; is the position of s; in the distributed queue. » = 0 indicates

that no segment is queued for transmission.

The resultant state transition diagramme is illustrated in Fig. 3.
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Figure 3: State transition diagramme of the Markov model at station {i}.
The various probabilities pg";l), pgg,o) and pg}j’o)
the segment in the distributed queue, are given by formulas in Fig. 4

For p(1:9) the probability 1 — 7;(0,0) (7;(0,0) is the probability of an idele station) is
used as an approximation for the probability that there is another segment waiting in the
local queue, which may use the current data slot. The probabilities F'R; and FD; are as

where 7 = 0,...,k; is the position of

defined above.
Each pgj;’v) specifies the probability of entering state (1,7) from the upper three black

printed dots in Fig. 3. The black printed dots are the entry and exit points of an absorbing
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Figure 4: Transition probabilities of the Markov chain

Markov chain for calculation of the first two moments of the bus access time. The upper

index (u,v) describes the states from where state (1, ) is entered.
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This is the probability of entering state (1,7) just after leaving state (1,1) or (0,1)
and assuming there is another segment waiting for transmission (with probability
1 —7;(0,0)). In this case p; ; describes the probability of entering position j of the
distributed queue (calculated in section 4.2.2).

If the local queue is empty, indicated by state (0,0), and a new segment arrives at
station {i} (with probability A;), this segment can be transmitted in the same slot
interval provided the data slot is free (probability F'D;) and station {i} assumes to
be in head of the distributed queue (probability p;1) and has the opportunity to see
the beginning of the data slot, which surely depends on the point of arrival with
respect to 6. Now, an arriving segment will see this data slot with probability 5;,
because arrivals can happen at any point in time. Thus the probability for entering
state (1,0)is A;8;F'D;p; 1. Similar arguments hold for determining the probabilities
pgg,o) for 7 > 0. If a new segment arrives after recognition of the beginning of a free
data slot (probability 1— 3; F'D;), it will enter position j given by its request counter.
If the segment arrives early, thus seeing the beginning of a data slot, it will decrease
the countdown counter provided the data slot is free. This all will happen with
probability 8;F D;. Thus it will enter position j of the distributed queue, although
the request counter contains 7 + 1 at the point of queueing the segment.

These probabilities are little bit more tricky. Leaving state (1,0), there is a pos-
sibility of a segment arrival in the time interval §.2 The probability of this case
happening can be approximated by 7;(0,0). This newly arriving segment will see
a free data slot with probability §;FD;, thus entering position j of the distributed
queue provided the value of the request counter was 7 + 1. If the request counter
was 1 the newly arrived segment is transmitted in the considered interval causing a
re-entrance to (1,0). With the complementary probability (1 — 7;(0,0)) an already
waiting segment will surely see the data slot and use it with probability FD;.

If the request counter is greater than 1 (j > 0) a new arriving segment (probability

ZNote that all states describe the situation at station {i} at the beginning of a slot arrival on the reverse

bus.



7;(0,0)) moves forward in the distributed queue with probability §;,F'D; or stay
in its position given by the request counter at the point of arrival with probability
1=p;FD;. In the other case (probability 1—7;(0,0)) the following segment recognizes
the data slot, thus moving forward in the distributed queue with probability F'D; or
remaining in its position with probability 1 — F D;.

The probabilities of leaving a state (u,v) are straightforward. In a state (1,75),j > 0,
a request can be transmitted and/or the segment advances in the distributed queue. E.g.
the probability that these events both occur in the same interval é is given by FR; F'D;.

The transition probabilities of the complete Markov chain are given by multiplication
of the above described probabilities attached to the arc from a state to its successor state.

Note that since the transition probabilities from states (1,0), (1,1) and (0,1) depend
upon 7;(0,0), we have to use an iterative solution method for the steady state distribution
of the Markov chain.

The probabilities F'R; and F'D; as well as the probabilities p; ;; 7 =1,...,k; at every
station {i} are parameters of the Markov model. We compute those next.

4.2.1 The probabilities F'R; and F'D;

Since we assume ergodicity the mean number of segments arriving at station {¢} (per unit
time) must equal the mean number of served (transmitted) requests or, equivalently, the
mean number of served (transmitted) segments on the forward bus.

Thus station {¢} will receive the service capacity of station {i — 1} on the reversebus
minus the mean number of served requests at station {i — 1}. In other words,

FRi=FRi1 — Ni—1, i=2,...,N (5)

One can also prove this from the fact that
k;
FR;=FRi4[1 =Y mi1(1,5)], i=2,...,N.
7=0

Note that F Ry = 1.
A similar argument holds for the probability £'D;:

FDZ':FDH—I_AH—lvizlv--'vN_l (6)

and F' Dy = a is the fraction of slots dedicated to QA-traffic.

4.2.2 The probabilities p; ;

The probabilities p; ;, 7 =1,2,...,%; can be computed from the Markov chain illustrated
in Fig. 5 where the state space in that case is the combined value of the countdown and
request counter C'D; + R; + 1 at station {i}. Again, k; is the maximum length of the
distributed queue seen at station {i}. In Fig. 5 we have written P = (1 — F'R;)(1— FD;)
and ) = FD,FR;.

The steady state probability p; ; of a state j in this Markov chain is an approximation
of the probability that a segment at the time queueing its request will be in position j of
the distributed queue with respect to its local information.

The states of the Markov chain describe the sum of request and countdown counter,
because this sum will change independently of a segment being queued at station {7} or
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Figure 5: Markov chain model of countdown and request counter at station {z}.
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not. Upon queueing the request of a new segment C'D; is zero and state j indicates the
position of this segment in the distributed queue.

The transition probabilities of the Markov chain are determined by the DQDB proto-
col. If an occupied request slot and no free data slot arrive at station {¢} (with probability
(1= FR;)(1 = FD;)) the sum increases and in case of arrival of a free request slot and a
free data slot, this sum decreases (with probability FR;FD;).

The steady state distribution p; ; can be easily calculated and is given by:

if k; > 3:
Filp, =10k
Pij = - , (7)
FRF! ™ "pix, 7=k
where
1-F
Pix = (8)
? FR;—1 ki
L+ (St B
with
(1—=FR)(1—FDy;)
F=
I'D;F'R; (9)
ifk, =2:
D o P
pz,l — FD7—|-P7 pz,? — FD7—|-P

if by =1: pip=1.

The only parameter of the Markov chain still to be determined is k;. In Sec. 4.2 we
have mentioned that this parameter depends on the location of a station, given by its
index, and on the length of the bus measured in slot units.

If we consider large networks where the distance between stations is several slots, which
is a realistic assumption, we can practically determine k; by the following heuristic. In
Eq. (8) k; influences the expression Ff’ and thus the probabilities p; ; and p; ; respectively.
If Ff’ gets very small, which is eventually the case for F; < 1, the probability p;,
is negligible and a further increase of k; will not change the steady state distribution
significantly. So k; can be calculated from Ff’ < ¢ for small ¢, if F; < 1. Now F; < 1 <=
FR;+ FD; > 1. Eq. (5) implies

i—1 i—1
FRi=FR - > M=1-> X\
k=1 k=1

10



and analogously from Eq. (6) we get
N N
FD;=FDy—- Y Xp=a- Y X\
k=i+1 k=i+1

Thus
N
FRi+FD;=(1+a)=> X\
K

In steady state F'Dy > 0 holds, which implies a > Zi\f:? A and so

N N
FRi‘|‘FDi>1‘|‘ZAk—Z/\k

k=2 k=1

feti

_ 1 : =1

Now (A;— A1) > 0is a reasonable assumption, because station 7 (i > 1) will naturally send
more segments on the forward bus than station 1, because it has more possible receivers
in that direction.

Therefore k; can be calculated from FZk’ < € giving k; > %F%' So choosing

_ log(e)
" log(F)

+1

will lead to reasonable results for large networks.

5 Results

Unless indicated otherwise, we used a uniform network load in our experiments, given by
21\

A= NN +1)

(10)
Note that station {0} does not contribute to load on the forward bus, for there is no
station to communicate with.

All results are for the performance of a single bus only. Since the two buses are assumed
to be identical (which the model does not insist upon) one can easily compute the effect
of the combined traffic.

Note, as well, that the advantage of our analytical model is the fact that one can
model a DQDB network with a very large number of stations. Results can be computed
for any number of stations. In the following we give results for NV = 100. It should be
clear, however, that this choice is arbitrary.

11



5.1 Model validation

In order to validate our analytical model we developed a simulation of a DQDB network
using the modelling tool HIT [1]. Simulation is expensive of computing time, and as is
the case with most DQDB simulation models reported in the literature [3, 5, 6, 11], we
had to limit the number of stations to a managable number of 39.

For the same reason we had to restrict the choice of parameter values and load profiles
to a manageble number. For instance, we kept [ constant at a value of 0.5 in all the
experiments. Fig. 6 shows the results for a bus utilisation of 40% and 70% QA-slot avail-

4.5

4.0

3.5

simulation

—AC

~

;3.0 t——of

| analytical

2.5 i/\
\
T~
2.0
1.5
0 5 10 15 20 25 30 35 40

station number, {7}
Figure 6: Model validation for bus a utilisation of 40% and 70% QA-slot availability.

ability. The analytical results reflect, at worst, an error of 18.6 percent of the simulated
value at all stations. The mean absolute error, however, is 8.8% which, considering the
assumptions of the analytical model, is very reasonable. Fig. 7 considers the case of a bus
utilisation of 90% and 100% QA-slot availability. It is evident that for stations 1 through
29 the mean error of the simulated value is 6.8% and at worst 22 percent.

In the latter case, and for stations at the end of the bus, however, the analytical results
underestimated the segment delay time. In Sec. 5.2 below we offer an explanation for this
phenomenon.

In the next four sections we give the results of experiments where we considered various
parameter values or load scenarios to illustrate typical uses of the analytical model.

5.2 Delay time as a function of bus utilisation

Fig. 8 illustrates the analytical results for 100 percent QA-slot availability and various

bus utilizations. In each case the network traffic was as described by Eq. (10) above.
The segment delay time T’; increases with higher bus utilisation as is to be expected.

For any one utilisation however, the delay time gradually decreases towards the end of the

12
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Figure 7: Model validation for bus a utilisation of 90% and 100% QA-slot availability.

bus and then increases sharpely. This phenonenom, confirmed by our various simulation
experiments, is identical to that observed by Jacquet[7] for high utilisations.

This particular behaviour is explained by the fact that the probability that a segment
which arrives at the distributed queue will discover many segments ahead of itself, is
directly proportional to the value F; [cf. Eq. (9)]. In Fig. 9 we have plotted this value F;
versus the station number {i} for a bus utilisation of 90 percent and a = 1.0..

A higher value of F; due to increased A and hence smaller values of F'FR; and FD,,
implies that segments at station {i¢} have longer to wait in the distributed queue. When
F; decreases sharply towards the end of the bus, however, the lower value of F; is offset
by the increased delay experienced by requests waiting for a free request bit, since near
the end of the bus, FR; <« 1. This effect is accentuated by the load scenario used in our
experiments, where stations near the end of the bus have the most segments to send.

5.3 Delay time as a function of QA-slot availability

We next tested the model for sensitivity towards the availability of QA-slots. The results
for o = 1.00, 0.925 and 0.910 are illustrated in Fig. 10.

From Fig. 10 it is clear that the effect of a lower QA-slot rate is to accentuate the
characteristic behaviour of segment delay time as a function of station position on the
bus. Comparing the curves of F; in Fig. 9 for @ = 0.910 and a = 1.000 we note that
at any station {i} for i = 1,...,40 (say), the value of F; is much higher in the case of
a = 0.910 and segments are more likely find themselves in a longer distributed queue than
would be the case for @ = 1.000. Towards the end of the bus the effect of a low value of
FR; is again dominant as mentioned above.

The authors have seen only one previous attempt [12], to include the effects of QA-slot

13
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Figure 8: Effect of bus utilisations (\) on T;.
availability on network behaviour in an analytical model.

5.4 Non-uniform network load

In Fig. 11 the effect of high traffic rates at one station (such as a file server) on the
performance of the other stations on the network is illustrated. The traffic intensity was
kept constant at all stations except at the one arbitrarily chosen station (number 15),
where the arrival rate of segments was increased as illustrated. QA-slot availability was
100% and bus utilisation was chosen very high at 90%. The model accurately reflects the
inevitable queue which develops downstream from a very busy station. By the time the
end of the bus is reached however, the delays experienced by segments at those stations
is as bad as that at the stations downstream from the one busy station.

6 Conclusions

The DQDB MAC protocol is deceptively simple and devising an analytical model that
is computationally tractible and which can describe the operation of a DQDB network
accurately has evaded researchers to date. In this paper, however, we describe and anal-
yse such a model using Markovian analysis techniques. The model is computationally
tractable and accounts for such network vagrancies as relative station position, QA-slot
rate and relative phase difference between request bus and data bus.

An important discovery we made during the course of our experimentation, is that at
high bus utilisations the relative phase shift between the forward and reverse buses are
unimportant, even for very large networks. This result we verified by simulation for a 40
station network and analytically for network of up to a 100 stations.

Equally interesting is the effect of the availability rate of QA-slots on the forward
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Figure 9: Explaining the observed performance of the DQDB network.

Although it is clear that a lower slot availability will increase the delay times, the

performance of individual stations along the bus would seem to be more sensitive to this
parameter than to bus utilisation.

A distinct shortcoming of the model is the fact that the absolute position (in say, slot
distances) of any one station from the Head Station or from each other are not represented.
For large networks and under steady state analysis this omission would appear not to
matter that much. Nevertheless, we believe the analysis techniques presented here may
be adapted for such a model.
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