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Abstract. Generalized Stochastic Petri nets (GSPNs) comprise two types of tran-
sitions: timed and immediate. Since firing of immediate transitions has priority on
firing of timed transitions several properties of the underlying Petri net need not be
valid for the GSPN.

This article proves that liveness and the existence of home states of equal conflict nets,
a generalisation of extended free choice nets, carry over to the time-augmented net
iff conflicting transitions are either timed or immediate. This implies the existence of
the steady state distribution of the corresponding Markov process for bounded nets.
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1 Introduction

Petri nets (PNs) are a formalism for modelling concurrency and synchronisation aspects
inherent in modern distributed systems. Apart from modelling, they also provide a variety
of techniques for analysis of qualitative (functional) properties of such systems. Most of
these techniques can be applied very efficiently, e.g. invariant analysis [16] and the analysis
of special net classes [5].

Since PNs do not have any notion of time, temporal specifications were incorporated
emphasising those concepts which support a Markovian analysis of the time-augmented net.
Two well-known representatives of this class are Stochastic Petri nets (SPNs; [15, 14]) where
transitions have to fire after an exponentially distributed delay (timed transitions), and
Generalized Stochastic Petri nets (GSPNs;[2]) which additionally incorporate transitions
firing immediately after being enabled (immediate transitions). Here firing of immediate
transitions has priority on firing of timed ones.

In SPNs all qualitative properties of the PN carry over to the time-augmented net since
the reachability set and the state space of the corresponding Markov process are isomorphic.
But imposing a priority relation on transitions as in GSPNs, changes the behaviour of the
PN significantly, such that properties of the underlying PN need not be valid for the GSPN
([3], see also Sect. 5).

From a methodological point of view we should in general be interested in a combined
qualitative and quantitative analysis of GSPNs as depicted in Fig. 1. At first, certain qual-
itative aspects (such as boundedness and liveness) of the Petri net would be completely
analysed, neglecting the timing aspect. Then, if the Petri net satisfies all qualitative require-
ments, it would appear worthwhile to perform a quantitative analysis. At least two points
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Fig. 1. Principal analysis procedure for GSPNs

motivate this procedure of analysing GSPNs: firstly the net should function correctly’ irre-
spective of the timing constraints and secondly one can apply efficient Petri net algorithms
directly. For this procedure to be justifiable, all qualitative features of the Petri net would
have to remain valid after the introduction of time.

As mentioned before this 1s not the case. So the analysis procedure in Fig. 1 has to be
modified or possibly completely changed to yield a useful combination of qualitative and
quantitative analysis. What possibilities do we have to cope with this basic problem?

One way 1s to modify existing Petri net algorithms to render them suitable for analysis of
the GSPN; this might turn out a rather uncomfortable approach, as Petr1 net theory could
no longer be used directly. Furthermore, all future research in the Petri net area would have
to be adapted to GSPNs.

Another way is to develop suitable restrictions for an integration of timing aspects, such
that qualitative properties remain valid. This idea leads to the analysis procedure given in
Fig. 2. The great benefit of this is that the standard theory of Petri nets remains unaffected;
additionally, any forthcoming results on efficient algorithms for qualitative analyses would
be applicable without difficulty.

This article shows that in GSPNs exhibiting an equal conflict net structure [18], several
properties of the underlying Petri net remain valid for the GSPN iff conflicting transitions
are of the same kind, either timed or immediate. In this article we extend the theorems
presented in [3] and furthermore greatly simplify a proof there showing the existence of
home states.

The outline of the article is as follows. Section 2 recalls some basic definitions of Petri
nets and the definition of GSPNs is given in Sect. 3. Section 4 describes the quantitative
analysis of GSPNs and shows that liveness and the existence of home states are essential
preconditions. Section 5 presents several examples illustrating discrepancies between quali-
tative properties of the GSPN and its underlying PN. Section 6 establishes the announced
results.
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Basic definitions

We will use the notion "Petri nets’ (PNs) for Place/Transition-nets (P/T-nets) [16].

Definition1 Place/Transition-net. A Place/Transition-net is a 4-tuple
PN = (P, T,I7,IT) where

P is a finite and non-empty set of places,

T is a finite and non-empty set of transitions,

PNT=0,

I=, It : P x T — INy are the backward and forward incidence functions.

We will use the pair (PN, Mp) to denote the marked net with initial marking M.

Definition 2 Basic notions of P/T-nets.
Let PN = (P, T,I=,I%) be a P/T-net.

1.

te:={peP|I"(p,t)>0} ot:={peP|I (pt)>0}
poi={t €T | I(p,1) > 0}, epi={t € T| I*(p,1) > 0}
and the usual extension to sets X C P UT is defined as

oX =, cx or, Xo =, cx zo.
Two transitions ¢,t' € T are in (structural) conflict iff ot N ot’ # 0.

. A marking of a P/T-net is a function M : P — INg, where M (p) denotes the number of

tokens in p.

A set P C P is marked in a marking M, iff Ip € P M(p) > 0; otherwise P is unmarked
or empty in M.

A transition t € T is enabled at M, denoted by M[t >, iff M(p) > I~ (p,1),Vp € P.

. A transition ¢ € T being enabled at marking M may fire yielding a new marking given

by M'(p) = M(p) — I~ (p,t) + It(p,t),Vp € P, denoted by M[t > M'. M’ is direcily
reachable from M denoted by M — M’. Let —* be the reflexive and transitive closure
of —. A marking M’ is reachable from M, iff M —* M’.



7. The reachability set of (PN, My) is defined by R(PN, My) := {M | Mo —* M}.

8. RC R(PN,My) is a final strongly connected component of R(PN, My) iff .
YM e R,M' € R(PN,My) : M' € R(PN,M)— (M € R(PN,M') and M' € R).

9. A firing sequence of PN 1is a finite sequence of transitions f = ¢;...%,,n > 0 such that
there are markings My, ..., M, 1 satisfying M;[t; > M;11,¥i = 1,...,n. A shorthand
notation for this case is Mi[f > and Mi[f > M,,1 respectively. f has concession at
M iff M[f > holds. ¢ denotes the empty firing sequence and M[e > M holds for all
markings M. If a transition £ is part of a firing sequence f this will be denoted by ¢t € f.

10. (PN, My) is bounded, iff Vp € P : 3k € Ny : VM € R(PN, My) : M(p) < k.

11. (PN, My) is live, ift Vi € T,M € R(PN, M) : 3M’ € R(PN, M) : M'[t >.

12. A marking M € R(PN, My) is a home state, iff YM' € R(PN,My): M € R(PN,M’).

13. PN is a free choice net (FC-net), iff Vp € Pyt € T : I (p,t) < 1,It(p,t) < 1 and
Vi,t'eT :otNet' =Por|et]=]et|=1.

14. PN is an extended free choice net (EFC-net),iff Vpe Pt €T : I~ (p,t) < 1,IT(p,t) < 1
and Vi, €T :etNet! =Por ot = ot'.

15. PN is an equal conflict net (EC-net), iffVt,#' € T : otNet' = @ or I~ (p,t) = I~ (p,t'),Vp €
P.

EC-nets are a generalisation of EFC-nets and they unveil similar properties. [18], e.g.,
proves the existence of home states in live and bounded EC-nets. EC-nets exhibit the same
characteristic as EFC-nets, namely that if a transition is enabled then all conflicting transi-
tions are enabled as well. We will use this property extensively in Sect. 6.

3 Generalized Stochastic Petri Nets

Generalized Stochastic Petri nets [1, 2] are obtained by allowing transitions to belong to
two different classes: immediate transitions and timed transitions. Tmmediate transitions
fire in zero time once they are enabled. Timed transitions fire after a random, exponentially
distributed enabling time. Timed transitions are drawn as boxes and immediate transitions
are drawn as bars. Novel definitions of GSPNs (cf. [9]) also incorporate inhibitor arcs and
different priority levels for immediate transitions. PNs with inhibitor arcs have the power of
Turing machines [16] and problems like reachability and liveness problem become undecid-
able. In bounded PNs a net with inhibitor arcs can always be represented by a semantically
equivalent P/T-net. Thus in the definition given here inhibitor arcs and for simplicity several
priority levels are excluded adopting the GSPN formalism in [2].

Definition3. A GSPN (cf. [1, 2]) is a 4-tuple
GSPN = (PN, Ty, To, W) where

— PN = (P, T,I=,I%) is the underlying P/T-net
— Ty C T is the set of timed transitions, T} # 0,
— T C T denotes the set of immediate transitions, Ty NTo =0, T =T, U T,
— W = (wy,...,wp)) is an array whose entry w;
e is a (possibly marking dependent) rate € IRT of a negative exponential distribution
specifying the firing delay, if transition ¢; is a timed transition, i.e. t; € T} or
e is a (possibly marking dependent) weight € IR specifying the relative firing fre-
quency, if transition #; is an immediate transition, i.e. {; € T5.

Similar to the underlying Petri net we will use the pair (GSPN, My) to specify the marked
net with initial marking My. If obvious from the context, the marked net will also be denoted
by GSPN.

According to the definition of GSPNs the enabling of transitions is defined as follows.



Definition4. A transitiont € T of a GSPN is GSPN-enabled at M | denoted by M[t >gspn,
it M(p) > I~ (p,t),Vp€ Pand (3" €T5: M(p) > I~ (p,V'),VpEP =t €T>).

I.e. a transition is enabled iff the usual enabling rule for P/T-nets holds and if there
exists an immediate transition ¥ being enabled in the sense of P/T-nets, then ¢ must also
be an immediate transition, since otherwise the firing of ¢’ has priority on the firing of ¢.

With respect to the enabling rule in GSPNs, all definitions given for P/T-nets (cf.
Def. 2) can be defined accordingly for GSPNs. To distinguish between the correspond-
ing notions for the underlying Petri net, we will use subscripts PN and GSPN, e.g.
M[t >pPN, M[t >GSPN, M[f >pN, M —tspn M’ etc. or R(GSPN, Mo) etc.

Several transitions may be simultaneously enabled at a marking M. The set of enabled
transitions, denoted by ENp (M), is defined as follows.

Definition5. Let M be a marking of the GSPN. ENp (M) := {t e TIM[t >cspn}

4 Quantitative analysis of GSPNs

This section briefly summarises the quantitative analysis of GSPNs (cf. [2]). The state space
of a GSPN is the disjunct union of tangible and vanishing states, denoted by T and V
respectively. In tangible (vanishing) states only timed (immediate) transitions are enabled.
So R(GSPN,My) =T UV where T'={M € R(GSPN, My)|[ENp(M)NTy =0} and V =
R(GSPN, My) \T In the following the notions ’state’ and 'marking’ are used synonymously
and we assume that the state space is finite. The probability p;; of changing from M; €
R(GSPN, My) to M; € R(GSPN, My), if M;[ty >gspn M; for some t; € T is given by

Wi

Pij =
Zn:tneENT(M,) W

Corresponding to the separation of the state space in two subsets we can define four matrices
C = (pij)ar,ev v D= Pii)arev arerr B = Pij)arer a,ev and F = (Pij) s, e ar e

Since the sojourn time in vanishing states is zero by definition, we are only interested
in tangible states. Thus it is sufficient to solve the global balance equations of the reduced
embedded Markov chain given by

F=w(F+EY C'D); > &=1, (1)
k=0 j:M;eT

provided > 72, C* = (I — C)7! exists. If (1) has a unique solution the steady state
distribution of the GSPN’s stochastic process is given by

0 if M; €V
o 7 > wy) ™ )
= kit € ENT(M]') o ~ ( )
- I ! M]' eT
> m ) w)
n:MnET k:ty € ENp(M,)

and performance measures can be computed from this steady state distribution as usual.
The description above shows that two important preconditions have to be satisfied for a
successful quantitative analysis of GSPNs:

a) > r—,C* must exist and
b) Equation (1) must have a unique solution.



Both requirements can be expressed in terms of qualitative properties of the GSPN.
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The existence of > p—, C* corresponds to the notion ’trap’. Define u; := 1 — Zi:l
u; > 0 1f the sum in row ¢ of matrix C is less then 1 and u; = 0 if it is 1. We can separate
the set of vanishing states into two subsets Jo := {M;|u; = 0} and Jy := {M;|u; > 0}. If the
stochastic process is in a state M; € Jy, it can only transit to another vanishing state, being
in a state M; € J; there is a positive probability to reach a tangible state. The existence
of the limit in (1) can be analysed by inspecting the structure of the reachability set with
respect to vanishing states. If the process can always reach tangible states, then this limit
exists.

Cij-

Definition6 trap; cf. [17].
C has no trap <= VM; € Jo : IM; € J; : M; € R(GSPN, M;).
Otherwise C has a trap.

Theorem 7 [17]. C has no trap <> (I — C)"" = 3232, C* exists.

Since C consists of the transition probabilities between vanishing states, we speak of a
timeless trap. If there is no timeless trap, we can determine the global balance equations of
the reduced embedded Markov chain. Note that a timeless trap can only exist if the GSPN
is not live, since all timed transitions are not live. According to the firing rule in GSPNs a
timeless trap can be defined as follows:

Definition8. A GSPN has a timeless trap, iff IM € R(GSPN, M) :

1.VkeIN:JgeTy:|g| >k and M[g >gspn
2.V eI (M[f >aspn= [ €T3)

where |g| denotes the length of ¢. Since T is a finite set, a timeless trap implies that some
immediate transitions fire infinitely often. Figure 3 depicts an example of a timeless trap,
which is constituted by firings of the immediate transitions 7 and tg. Note that the definition
of a timeless trap directly coincides with the notion of a trap of matrix C'.

— timed transition

— immediate transition

Fig. 3. GSPN with a timeless trap

o



Another condition for the existence of a steady state distribution is the existence of a
unique solution of (1), i.e. the finite reachability set of the GSPN has to contain exactly one
final strongly connected component [10]. Such a component exists iff the GSPN has at least
one home state.

5 Qualitative Analysis of GSPNs

The former section demonstrated, that the absence of timeless traps, liveness and the exis-
tence of home states, are essential preconditions for the existence of a steady state distri-
bution. In the qualitative analysis of a GSPN we obviously want to exploit the underlying
Petri net part of the GSPN as discussed in the introduction. Unfortunately the incorpora-
tion of timing aspects, especially introducing a priority relation on transitions, changes the
properties of the Petri net significantly. In this section we will have a closer look on this
phenomenon.

2%

An unbounded Petri net, e.g., may yield a bounded GSPN. The PN of Fig. 4 contains
an unbounded place p, but the GSPN is bounded. Since R(GSPN, My) C R(PN, My) the
reverse, fortunately, does not present a similar problem. According to the analysis procedure
proposed in Fig. 1 this is a desired result, since a “positive” qualitative property of the PN
carries over to the GSPN irrespective of the timing constraints imposed on the net.

Other properties unveil greater problems. E.g. there is no implication between the liveness
of a GSPN and its underlying Petri net. This fact is well-known for deterministically timed
nets [12]. Figure 5 shows a non-live GSPN, whose PN is live. ¢ is only enabled at the initial
marking which is the only marking where p; and p, are marked simultaneously. Note that
the initial marking is not a home state. Figure 6 on the other hand depicts a live GSPN
with a non-live underlying Petri net. After firing ¢ and ¢3 the PN is dead. With regard to
the GSPN the firing sequence #3t3 can not occur since ¢; is an immediate transition having
priority on the firing of ¢5. According to the analysis procedure depicted in Fig. 1 we are
especially interested in conclusions concerning the liveness of a GSPN whose underlying PN
is live. The following lemma shows that total deadlocks can not occur in such GSPNs.

Fig.4. GSPN bounded, PN not bounded

Lemma 9. Let GSPN be a Generalized Stochastic Petri net, whose underlying Petri net is
live. Then YM € R(GSPN,My): 3 €T : M[t >qspn-

Proof. Since the enabling rule of GSPNs (cf. Def. 4) is a restriction of the enabling in P/T-
nets, we get R(GSPN, My) C R(PN, Mjy). Liveness of the underlying Petri net implies:
VM € R(GSPN,My) : €T : M[t >pn. I t € Ty then also M[t >gspn holds and we
are done. If ¢t € T} then =M [t >gspny might only hold if there is an immediate transition,
which prevents the enabling of ¢, i.e. ' € Ty : M[t' >gspn and thus ¢’ is GSPN-enabled
at M. O



So in such GSPNs there is always some enabled transition, although there might be no
live transition (see Fig.7), ie. At € T : VM € R(GSPN,My) : 3IM' € R(GSPN, M) and
M'[t >aspn.

Furthermore, although the PN contains home states, this may not hold for the GSPN.
Figure 8 illustrates such a situation. After firing transition ¢; or t5 the GSPN ’enters’ one
of two final strongly connected components of the reachability set. These are characterised
by markings of the form (2,0,...) and (0,2,...) respectively which are part of only one
component.

Fig.5. PN live, GSPN not live

/2

Fig. 6. GSPN live, PN not live

All these examples illustrate that the analysis procedure in Fig. 1 has to be modified.
As described in the introduction we head for a restriction on the possible timing constraints
such that a combined qualitative and quantitative analysis of GSPNs as depicted in Fig. 2
becomes practicable. Finding such restrictions for general net structures is difficult. We
restrict ourselves to EC-nets. Another reason for this limitation i1s that a subclass of EC-
nets, namely EFC-nets, has been studied exhaustively [5, 7] and qualitative properties can
be characterised by efficiently testable conditions, e.g. [13].
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Fig. 7. GSPN with no live transitions
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Fig.8. GSPN with no home states

6 Qualitative Analysis of EC-GSPNs

Definition10. A GSPN is an FC-GSPN, iff its underlying Petri net is an EC-net.

Since in EC-nets conflicting transitions are enabled simultaneously, it seems obvious to
demand that conflicting transitions should be either timed or immediate. In fact we need to
impose only one condition on an EC-GSPN, which we shall call EQUAL-Conflict, such that

the analysis procedure of Fig. 2 is applicable.

Definition11. A GSPN = (PN, Ty, T>, W) satisfies condition FQUAL-Conflict, iff
Vi, €T cotNet! 20 = {t,t'} C Ty or {t,¢'} CTh.

Condition EQUAL-Conflict exactly states that conflicts may only occur between transi-
tions of the same kind. Obviously this condition is important in the analysis of the liveness
of a GSPN. We will show that it ensures the absence of timeless traps and that liveness and
the existence of home states carry over to the GSPN.



Theorem 12. If we are given an EC-GSPN whose underlying Petri net ts live and bounded,
then: Condition EQUAL-Conflict =—> GSPN has no timeless trap.

Proof. Assume the GSPN has a timeless trap, because of lemma 9 i.e.
M € R(GSPN,My) :YfeT* . (M[f >cspn=— [ € T5).
Since PN is bounded the GSPN is bounded as well. Thus R(G.SSPN, Myp) is finite and there
exists a final strongly connected component (cf. Def. 2) Cyy C R(GSPN, My).
Define T := {teT|AM’ € Cyy : M'[t >gspn} and P =T

T can be referred to as the set of live transitions with regard to Cyr. Because of our
assumption we have T #+ 0 and T C T5. Since the Petri net 1s live and bounded, it is
strongly connected [5]. So one of the following two cases holds (see Fig. 9):

a) Ip, € P:p,e D {tytjyand t; e T, t; € T\ T,
The assumption of a timeless trap yields ¢; € T3 and thus if M'[t; >gspn for some mark-
ing M’ € Cyr, the EC-net structure and condition EQUAL-Conflict imply M'[t; >gspn
contradicting ¢; ¢ T.

b) 3, €T :t,e D {pi,pi} and pp € P,p; € P\ P.
Since ¢, € f, t, fires infinitely often with regard to Cjy and our assumption of a timeless

trap. Because of p; ¢ P = of, place p; 1s not bounded, contradicting the boundedness
of the GSPN.

Thus our assumption is not valid, which completes the proof. ad

t; ty
a:

Pr

Pk E/Q 7
b: 0

Fig. 9. lllustration of proof

In the following we will prove that condition EQUAL-Conflict is sufficient for ensuring the
existence of home states for an EC-GSPN whose underlying Petri net is live and bounded.
The proof of this theorem requires some preparations. During the proof we will additionally
see that condition EQUAL-Conflict is sufficient and necessary for liveness.

We use the fact that the existence of home states is equivalent to the directedness prop-
erty [8], which is:

R(GSPN,M)N R(GSPN,M') # 0,YM, M’ € R(GSPN, My)

First of all let us consider an example to get an impression how the firing of transitions
is influenced by the two kinds of transitions appearing in GSPNs. For simplifying notation
markings are denoted by formal sums over the set of places. Figure 10 depicts a live and
bounded EC-GSPN with initial marking My = p;. Consider two markings M = p» + p3 and
M’ = p3 + pa of the GSPN’s reachability set (My[t; >gspn M and Mo[ts >gspny M').
Since the underlying Petri net is a live and bounded EC-net it has home states [18] and
thus the directedness property holds. E.g. M” = ps + ps € R(PN,M)N R(PN,M’) is a

10



marking reachable from M and M’ after occurrence of the firing sequences f = t3 and
g = lals (see Fig. 11 and Fig. 12 for the general case). Both firing sequences do not have
concession in the GSPN, since transition tg is GSPN-enabled at M and at M’. Concerning
firing sequence g the firing of immediate transitions (h = {st7) interleaves with the firing
of transitions in g. We can construct a firing sequence § comprising all transitions of ¢ and
additionally some immediate transitions such that M'[§ >gspn and M"[h >gspn yielding
a marking M’ = ps + pr + ps € R(GSPN,M’YN R(GSPN,M"). § can be constructed
stepwise as follows. At M’ t5 is the only GSPN-enabled transition. Afterwards 5, t7 and
tg are GSPN-enabled. Since t5 is part of ¢ it 1s obvious to select this transition next and its
firing yields a marking ps + ps + ps where 7 and ¢5 are both GSPN-enabled. Choosing 7
leads to a marking where finally ¢4 is GSPN-enabled. Note that the sequence of transitions
of ¢ 1s permuted in ¢.

Similarly we can find a firing sequence f = tgtstrts which is a permutation of f,h and
h = t5. h is GSPN-enabled at M’. This leads to a marking M = pr+2ps € R(GSPN,M)N

R(GSPN, M’) illustrating that the directedness property holds for M and M’ with reference
to the GSPN.

During construction of the firing sequences h and h we have to carefully select the corre-
sponding immediate transitions. Consider, e.g., the marking ps+ ps + ps we have encountered
during construction of §. In that marking we have the choice between t7 and t9 and selec-
tion of t9 and t19 might have resulted in a non-terminating construction. We can avoid such
situations if transitions (not part of g) have to be selected from a circuit-free allocation on
the subset of immediate transitions. Such an allocation will be called a 77-allocation.

The example implies the following idea for proving the existence of home states (cf.
Fig. 12). Since live and bounded EC-nets have home states we have the following directedness
property: VM, M’ € R(GSPN, My) : AM"” € R(PN, M)NR(PN, M'). Choose two arbitrary
markings M, M’ € R(GSPN, My). We have to show that the directedness property holds
for the reachability graph of the GSPN as well, i.e. 3IM" € R(GSPN, M)N R(GSPN, M").
Let f,g € T* be two firing sequences with M[f >py M'" and M'[g >py M. We will
then construct firing sequences h € Ty and § € Perm(gh) such that M"[h >cspy and
M'[§ >gspn where Perm(g) denotes the set of all firing sequences which are permutations
of g. Similarly we construct firing sequences he T; and f € Perm(fhh) with M’[h >GSPN
and M[f >aspn yielding the existence of a markmg M" € R(GSPN, M)NR(GSPN, M').
For the proof we need the following definitions:

Definition13.

a) difference of two firing sequences (cf. [17]). f,g e T*,t € T.

f—e=1J
poee{ e
T\ AR A eTT it g fLand f= fitf
f=tg:=(f-t)—y
b) permutation. The set Perm(f) of all permutations of f € T* is
Perm(f) =49 €T | (f —9)g — f) =<}
¢) allocation. An allocation « is a mapping « : P +— T with «a(p) € pe,¥p € P.

d) Ti-allocation. An allocation « is a Ti-allocation iff Vpy € P : a(po) € Ty or
Ip1,...,pr € P: with p;yq1 € a(p;)e,Vi=0,...,k— 1 and a(py) € T1.

Subtracting g from f cancels all transitions of ¢ in f, provided they are part of f, where
cancelling starts at the “beginning” of f. E.g. tat it tststy — t4t7t1ts = tatits. As usual
concatenation has precedence on difference, i.e. fg —h = (fg) — h.

Firing transitions of a Tj-allocation directs the token flow to timed transitions. Obviously
Ti-allocations exist for every strongly connected net.

11
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p1 ///////ﬂps
N

/
ts pa ty

Fig.10. Example of an EC-GSPN

tetstrts tolstrly
tetr

Fig. 11. Part of the reachability graph

f € Perm(fhh) g € Perm(gh)

Fig. 12. Existence of home states (idea of proof)
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Lemma 14. If GSPN s strongly connected, then there exists a Ti-allocation c.

Proof. We can construct such an allocation as follows.

Define a(p) = t,¥t € Ty, p € oi. If a place has more than one timed output transition choose

an arbitrary timed transition.

If « is defined for p € P, but not defined for some p’ € e(ep), define a(p’) = ¢ for some

arbitrary t € p’ e N e p.

Since P is finite, this construction procedure terminates and obviously « is a T}-allocation.
0

Lemma15. Let GSPN be bounded, o an allocation and M € R(GSPN, My) some mark-
mng.

If there is an infinite sequence of transitions (t;,);en, with t;, € a(P)N Ty and Vj € IN :
M[t“ . "tij >GSPN

then o 15 not an T4 -allocation.

Proof. Since T is finite, there exists at least one transition ¢ € (;.);eN, which fires infinitely
often, i.e.

EItET:VkE]N:EIk/E]N,k/>k:t:tik,
Choose an arbitrary place p € {e. Since « is an 7y-allocation there exists ¢ € T with

a) a(p) =1 or
b) Jpo,...,px € Pito,...,lxg €T :po=p, ity =t,1; € ep;r1,¥i=0,....k — 1 and a(p;) =
t;,Vi=0,...,k.

In case of a) p is not bounded, since ¢ fires infinitely often. In case of b) we can find transitions
t;,t;+1 where ¢; fires infinitely often and ;11 occurs only a finite number of times. This holds,
because t fires infinitely often and ¢ is excluded from firing, since ¢ € T}. Similar to the first
case there exists a place p € {; e N e 1,41 being not bounded. ad

Lemmea 15 asserts that the construction process terminates if we select all additionally
firing transitions from a 7}-allocation. The next lemma states a well-known property of
non-conflicting transitions concerning a reordering of firing sequences.

Lemma16. Let PN be a P/T-net and M denote some marking.

a) t,i' €T :etNet! =0. Then M[t >pn, M[t' >py=> M[tt’' >pn.

b)teT heT*:Vt'ch:otNet' =0. Then M[ht >pn, M[t >pn=—> M[th >pN.

c) Given f,9,q € T* h € Perm(f — g) where ¥Vt € g,t' € q: ot Net’ = we have
M[f >pn, Mlhqg >pn=> M[fq >pN.

Proof. a)+b) [19], Lemma 3.1.
¢) Obvious, since all transitions of g are not in conflict with transitions of q. So additional
firing of transitions in ¢ does not disable transitions of g. a

The next lemma is the key for proving liveness and the existence of home states in EC-
GSPNs. It states that if a firing sequence has concession in the Petri net then a permutation
of this firing sequence with additionally interleaved immediate transitions has concession in

the EC-GSPN provided condition EQUAL-Conflict holds.

Lemma17. Let GSPN be an EC-GSPN satisfying condition EQUAL-Conflict and whose
underlying Pelri net is live and bounded. Let M € R(GSPN, My) be a marking of the GSPN,
o a Ty -allocation and f =ty ...t € T* such that M[f >pn M’ for some marking M'. Then
the following holds:

Af = ti,...t;, € Perm(f) and 3Fh; € ((P)NTo) \ Ui {ts, )", 5 = 1,...,k with
M[hltil cohits, >aspy and M/[hl .. hy >agspNn (see Fug. ]3).
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Fig. 13. Illustration of lemma

Proof. The firing sequences f and h;,j =1,...,k can be constructed as follows:

Set f::E;hj =e,Vj=1,....k;M:=M and r := 1.
while f # ¢ do
ifdte f M[t >GSPN
then choose t € f with M[t >aspn such that
() 3Af1, foeT*: f= fitfoand V' € f1 c ot Net' = ()
Set f:=f—tir:=r+1;f:=ft; M := Succ(M,t)
else choose t € a(P) with M[t >GSPN
Set h, := hpt; M := Suce(M 1)

where Succ(M,t) is the marking obtained after firing ¢ at M. We will show that the
following properties hold after each iteration of the while-loop:
a) M[fhy...h, >pn
b) fAe=—=3tef: M}t >pn
c) hy € (a(P)NT2) \ Uy, {ti, })"

First let us note the following:

L. Since the GSPN is an EC-net satisfying condition EQUAL-Conflict we have
ENp(M)Na(P)#0. .

2. It there is a transition ¢t € f with M [t >gspn then all transitions in conflict with ¢ are
also GSPN-enabled. Furthermore we have

Vi' € hpyt €t ..t} et Net = 0. (3)
3. hy € (a(P)\UF_, {t; })*,Vr = 1,..., k follows directly from the construction.

ad a) From construction we have M [ty ...t >py and M[hit;, ... hpt;, >pn. We will show
Mty .. .tph1 ... h. >py by induction on r.
Base: r = 1. M[t; ...t >pny and M[hy >py imply M[t; ...t hy >py by lemma 16¢)*
Step: Assuming M [ty ...txh1 ... h, >py we have toshow M [ty ...t hy ... hpehey1 >pN.
Since hltil .. ~hrtir S Perm(tl cotghy . ~hr_tiT+1 .. ~tik) and M[hltil .. ~hrtiThr+1 >pN
property 2 and lemma 16¢)? yield M[ty ...t hy .. hyy1 >pN.

! Choose f =g =1t1...t; and ¢ = hi.
2 Choosef:tl...tkhl...hr,g:tir_'_l...tik and ¢ = hyy1.
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ad b) Assume f # ¢. Define
sp = min({1, ... k}\ U;;%{ip}), r=1,...,k
From this definition we directly get s,41 > s, and
P -
Ui it S Uiz}
i.e. the set {1,...,s, — 1} is a subset of {71,...,4,_1}.
Thus ¢y ...t5,—1 € hity, .. .¢;,_, h, using the convention ¢ .. .t; ;= if k> j.
Property 2 gives Vi’ € hy...h, : o’ Net; — § and (*) additionally implies
VE € (tiy . i — 11t 1) ot Net, =0
Since ty...ts._1 € hity, ...t;,_, hy lemma 16¢)3 gives M[hit;, ... hsts, >py and so
MIts, >pn. Since 5, € f, we have b). .
ad ¢) It remains to show that h, € Ti. From property b) we get M[t >py for some t € f.
There are two cases to be considered:
cl) t € Ty. Then also M[t >¢spn and h, = ¢ € Ty
c2) t € Ty. Since transitions of T5 are not in conflict with ¢ (condition EQUAL-Conflict)

t remains PN-enabled. If some transition of 77 gets GSPN-enabled then also ¢ is
GSPN-enabled. Thus h, € T3

According to lemma 15 the while-loop eventually terminates and since
M[tl...tkhl...hk >pn and h, € T;,VTE {1,,]6‘} we ﬁnally get M/[hlhk >GSPN
which accomplishes the proof. ad

Employing lemma 17 the proofs of the following theorems are straight-forward.

Theorem 18. Let GSPN be an FC-GSPN whose underlying Petri net is live and bounded.
Then
Condition FQUAL-Conflict <= GSPN 1s live.

Proof.

“=—=": Choose an arbitrary transition ¢ € T" and an arbitrary marking
M € R(GSPN, My) C R(PN, My). Since PN is live there exists f € T with M[f >pn
and t € f. Lemma 17 states the existence of a firing sequence o € Perm(fh) where
h €Ty and Mo >gspn . Since t € o liveness of the GSPN follows.

“«=": Assume that condition EQUAL-Conflict does not hold,
le. It €T :otNet' £ 0 and {t,¢'} € Ty and {t,t'} Z T5.
Since the GSPN is an EC-GSPN, obviously ¢ and # can not be both live, contradicting
the liveness of the GSPN.

0

Theorem 19. Let GSPN be an FC-GSPN whose underlying Petri net is live and bounded.
Then
Condition FQUAL-Conflict —> GSPN has home states.

Proof. (cf. Fig. 12) As underlined before we have to show the directedness property for the
GSPN, i.e.

R(GSPN,M)N R(GSPN,M') # 0,YM, M' € R(GSPN, My).

So choose two arbitrary markings M, M’ € R(GSPN, Mgy). Since live and bounded EC-
nets have home states, see [18], AM"” € R(PN,M)N R(PN,M’). Let f,g € T* be two

® Choose f = hatig .o tio_sheyg=h1..  he(ts, .. ti_, —t1...%s,—1) and ¢ = ¢s,.
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firing sequences with M[f >py M’ and M'[g >py M”. Lemma 17 implies the existence
of h € T* and § € Perm(gh) such that M"[h >gspNn M’ and Mg >aspn M’ for some
marking M’ € R(GSPN, My).

Since M[fh >pn M’ the same argumentation applies to the firing sequence fh. So by
lemma 17 there exists h € T* and f € Perm(fhil) with M’[/Nz >cspy M and
M[f >GsPN M" for some marking M" e R(GSPN, My).

Thus M" € R(GSPN,M)N R(GSPN, M') which completes the proof. O

7 Conclusions

P1 {I P3

ta

Fig.14. Mo is not a home state

We have presented a restriction (condition EQUAL-Conflict) on the timing constraints of
an equal conflict GSPN, such that liveness and the existence of home states of the Petri
net carry over to the time-augmented net. The restriction can obviously be checked very
efficiently and hence it does not affect the overall complexity of qualitative analysis using
PN algorithms. Concerning liveness and the existence of home states in combination this
restriction is necessary and sufficient thus supporting a combined qualitative and quantita-
tive analysis of GSPNs (cf. Fig. 2). In [4] it is shown that condition EQUAL-Conflict is also
important in the context of Queueing Petri nets, an extension of coloured GSPNs.

The results presented in this article are also fundamental for the development of efficient
quantitative analysis techniques of GSPNs (cf. [11] for SPNs), since before heading, e.g.,
for product form representations of the steady state distribution one first has to show its
existence.

It is important to note that we have proved that condition EQUAL-Conflict is relevant for
EC-nets concerning the properties ’absence of timeless traps’, ’liveness’ and ’the existence of
home states’. It is very difficult to find similar restrictions for general net structures and/or
other properties.

E.g., the nets depicted in Fig. 3, 5 and 8 satisfy condition EQUAL-Conflict, but the
mentioned qualitative properties of the underlying PN do not hold for the GSPN. Extending
condition EQUAL-Conflict for general nets is not trivial, see [3].

So one is at least tempted to assume that condition EQUAL-Conflict is essential for EC-
nets concerning also other qualitative properties. But even if the net structure is extremely
simple this might not be the case.

E.g., a marking M is a home state of a live and bounded EFC-net iff M marks all traps
[6]. This property does not even hold for GSPNs with a marked graph structure satisfying
condition EQUAL-Conflict. Figure 14 depicts such a GSPN where My marks all traps, but
is not a home state of R(GSPN, My). Thus My is not a recurrent state with reference to the
Markov chain of the GSPN. We conjecture that this characterisation of home states holds
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for tangible markings, i.e. for all markings M € R(GSPN, My) with ENp(M) C T} we have
“M 1s a home state iff M marks all traps”.

The last example shows that developing efficiently testable restrictions on the timing

constraints is sensitive to the particular property even for EC-nets. In this article we have
concentrated on qualitative properties being essential for a quantitative analysis. We think
that the analysis procedure proposed in Fig. 2 can be extended to other qualitative properties
and/or net classes by taking the PN behaviour partly into account, also giving efficiently
testable restrictions on the possible forms of integrating time into nets.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

M. Ajmone-Marsan, G. Balbo, and G. Conti. Performance Models of Multiprocessor Systems.
MIT Press Series in Computer Science, 1986.

M. Ajmone-Marsan, G. Conti, and G. Balbo. A class of Generalized Stochastic Petri Nets
for the performance evaluation of multiprocessor systems. ACM Transactions on Computer
Systems, 2:93-122, 1984.

. F. Bause. Zur funktionalen Analyse zeitbehafteter Petri-Netze unter besonderer Bertick-

sichtigung elementarer Voraussetzungen fur eine quantitative Analyse. PhD thesis, Universitat
Dortmund, 1991; also DeutscherUniversitatsVerlag, 1992.

F. Bause. Queueing petri nets — a formalism for the combined qualitative and quantitative
analysis of systems. In 5th International Workshop on Petri Nets and Performance Models,
Toulouse (France), Oct. 1993.

. E. Best. Structure theory of Petri nets: The free choice hiatus. In Advances in Petri Nets, Part

I, pages 168-205. Springer-Verlag, 1986.

. E. Best, J. Desel, and J. Esparza. Traps characterize home states in free choice systems. The-

oretical Computer Science, 101:161-176, 1992.

E. Best and P.S. Thiagarajan. Some classes of live and safe Petri nets. In Advances in Petri
Nets, pages 71-94. Springer-Verlag, 1987.

E. Best and K. Voss. Free choice systems have home states. Acta Informatica, 21:89-100, 1984.

. G. Chiola, M. Ajmone-Marsan, G. Balbo, and G. Conte. Generalized Stochastic Petri nets: A

definition at the net level and its implications. IEEE Transactions on Software Engineering.
19(2):89-107, Feb. 1993.

E. Cinlair. Introduction to Stochastic Processes. Englewood Cliffs, 1975.

S. Donatelli and M. Sereno. On the product form solution for Stochastic Petri nets. In Proceed-
ings of the 13th International Conference on Application and Theory of Petri Nets, Sheffield
(UK), pages 154-172, 1992.

S. Ghosh. Some comments on timed Petri nets. In Proceedings of the AFCET Workshop on
Petri Nets, Paris (France), pages 151-163, 1977.

P. Kemper and F. Bause. An efficient polynomial-time algorithm to decide liveness and bound-
edness of free choice nets. In K. Jensen, editor, Proceedings of the 13th International Conference
on Application and Theory of Petri Nets. Springer-Verlag, Berlin, 1992.

M.K. Molloy. On the Integration of Delay and Throughput Measures in Distributed Processing
Models. PhD thesis, University of California, 1981.

S. Natkin. Les Reseaux de Petri Stochastiques et leur Application a I’Evaluation des Systemes
Informatiques. PhD thesis, CNAM, Paris, 1980.

J.L. Peterson. Petri Nets and the Modelling of Systems. MIT Press Series in Computer Science,
1981.

U.N. Bhat R. Lal. Reduced systems in Markov chains and their applications in queueing theory.
Queueing Systems, 2:147-172, 1987.

E. Teruel and M. Silva. Liveness and home states in equal conflict systems. In Proceedings of
the 14th International Conference on Application and Theory of Petri Nets, Chicago (USA),
pages 415-432, 1993.

W. Vogler. Live and bounded free choice nets have home states. In Petri Net Newsletters,
pages 18-21. Special Interest Group On Petri Nets and Related System Models, Gesellschaft
fir Informatik (GI), Germany, 4 1989.

17



This article was processed using the INTpX macro package with LLNCS style

18



