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Abstract. The product form results recently published for Stochastic Petri Nets are combined with
the well known product form results for Queueing Networks in the model formalism of Queueing
Petri Nets yielding the class of product form Queueing Petri Nets. This model class includes
Stochastic Petri Nets with product form solution and BCMP Queueing Networks as special cases.
We introduce an arrival theorem for the model class and present an exact aggregation approach

extending known approaches from Queueing Networks.

1 Introduction

The use of product form Queueing Networks (PQNs) as introduced in [6] for performance analysis
of computer and communication systems is widespread since the product form allows an extremely
efficient solution compared with any other analysis approach. More recently a class of Stochastic Petri
Nets (SPNs) with product form solution (PSPNs) has been introduced in various papers [10, 11, 12].
The two model classes are different and the resulting product forms are also different. In this paper we
combine both approaches in one model formalism. The basic formalism follows ideas from Queueing
Petri Nets (QPNs) as described in [5]. We start with a brief description of PSPNs and traditional
PQNs where queues are of the so called BCMP type extended by the flow equivalent server as defined
in [8, 13]. Combination of these two model classes leads to a new model class with product form
solution, named PQPNs, which includes PSPNs and PQNs as special cases in a common framework.

We show that an arrival theorem holds for this model class which is an extension of the arrival
theorem in PQNs. Furthermore, an aggregation approach is presented which allows to analyse a subnet
using only very limited information about the environment and to substitute the subnet by a simpler
aggregate. This approach extends aggregation techniques in PQNs, although the resulting aggregates
do not in general have the physical interpretation which can be given in PQNs.

The outline of the paper is as follows. The next three sections summarise very briefly PSPNs and
PQNs and introduce PQPNs and the main product form result for PQPNs. Subsequently the arrival
theorem for PQPNs is established. In section 6 an aggregation approach for PQPNs is presented. An
example is given to clarify the concepts. The appendix contains the detailed proof of the product form

result and defines some functions to compute a detailed queue state.

2 SPNs with product form solution

We start with a brief description of PSPNs following [11, 12]. For details we refer to the cited papers.
Consider a live and bounded SPN in continuous time, where all transitions have exponentially dis-
tributed firing delays. Let P denote the set of places, T the set of transitions and ' the set of token

colours. All sets are finite. Let M be a reachable marking, M (p)(¢) the number of colour ¢ tokens on



place p in marking M. I(t) is the input bag for transition ¢. Transitions are allowed to have several
output bags which are chosen according to fixed probabilities. The j-th output bag for transition ¢ is
denoted by O;(t). r(M,t) is the firing rate of transition ¢ in marking M.

A SPN of the above type has to observe the following conditions to yield a product form solution:

1. No two transitions have the same input bag, i.e., I(t) # I(s) for all s,t € T, s # t.
2. Each output bag of a transition is the input bag of some transition, i.e., O;(t) = I(s) forall t € T

and some s € T.

3. The marking dependent firing rate of each transition ¢ can be expressed as r(M,t) = ﬂ%%mg,

where ¢, @ and y are arbitrary non-negative functions.
We can define the routing chain of a PSPN as a discrete time Markov chain with one step transition
probabilities p(s, ), where O;(s) = I(t) and p(s,t) is the probability that the firing of s yields a new

input bag for t. An invariant measure of the routing chain is the solution of

() =) a(s)p(s,1) (1)

seT
A set of functions F' from T" to (0,00) is defined such that f(#)x(¢) is an invariant measure of the

routing chain.

F={f:T—(0,00): X()f(t) = Y _ X(s)f(s)p(s, ), ¥t € T} (2)

seT
Since the values of f are non-zero, the routing chain has to consist of positive recurrent classes of

transitions only. This implies the following additional structural condition.

2’. The input bag of each transition is an output bag of some transition, i.e., I[(t) = O;(s) forallt € T
and s € T

In the sequel we will denote conditions 2 and 2’ as condition 2.
Let V = {Vi,...,VRr} be the set of recurrent classes of transitions, with each V, called a subchain.

Apart from f a function ¢ has to exist for a product form solution such that

oM +1(s)) _ f(s) 5
gL +1(0) ~ f(1)

If the above conditions are observed in the SPN, then the ratio f(s)/f(¢) is unique for all transitions

in a recurrent class, although f(?) is not unique. Additionally the function ¢ is defined uniquely up to

a constant for all possible markings M. The equilibrium distribution of the PSPN has the form

1
(M) = el g(M)®(M), where GG is a normalisation constant.

3 QNs with product form solution

The basic class of product form Queueing Networks (PQNs) has been defined in [6] and are often
denoted as BCMP networks. Several extensions to the basic class appeared subsequently. Here we
consider closed PQNs, start with the original BCMP queues and introduce queues of the flow equivalent
server type with service rates depending on the state of the queue. Additional types of queues with a
product form solution can be found in [8], the results presented here can be easily extended to those
types.

Consider a closed QN including several classes of customers. Let ) be the set of queues and K the
set of classes. A queue consists of one or several waiting lines and one or several servers. We assume

that each class visits exactly one queue in the QN, such that the class index implicitly determines



the queue index. Fach QN can be transformed to meet this condition by introduction of additional
classes. Routing of customers is described by a routing matrix R = [Ry ] (k,l € K).

Matrix R can be considered as the transition matrix of a discrete time Markov chain. This Markov
chain can be decomposed into a set of ergodic subchains V = {Vi,...,Vgr}. For each subchain the

following set of equations can be solved uniquely up to a multiplicative constant.

o(l)= Y v(k) Ry YV, eV, VieV,
keVy
The v(k) are often denoted as relative visit ratios of class k. Service time distributions at the various
queues (as defined below) are described by Coxian distributions with class dependent parameters. The
distribution for class k is characterised by the number of Coxian phases denoted by ux, the service rate
of phase | (1 <1 < uy) denoted by py i, and the probabilities of entering phase [ 4+ 1 after [ denoted
by ay,;, where ay,, = 0. Let Ay, = Hf;% ar; be the probability of a class k customer to reach phase [

of the corresponding service time distribution. All queues in the PQN are of one of the five following

types:

1. The service discipline is first come first served (FCFS), service times of all customer classes are
exponentially distributed with identical mean p='.

2. The service discipline is processor sharing (PS), service times may be class specific and represented
by Coxian distributions.

3. Each customer gets his own, exclusive server (infinite server, IS), service times may be class specific
and represented by Coxian distributions.

4. The service discipline is last come first served preemptive resume (LCFS), service times may be
class specific and represented by Coxian distributions.

5. From each class of customers with a non-zero population in the queue one customer is served,
the remaining customers are waiting in class specific waiting rooms with FCFS service discipline,
service times are exponentially distributed with mean (ug(n))~! for class k and population n =

(ni,...,ng). For the mean values the relations

pr(n)p(n —eg) = p(n)ur(n — e;), where n —ep = (ny,...,np—1,np — Lyngy1,...,ng)  (4)

hold, whenever the population vectors are defined [8, 13]. This type of queue is called the flow

equivalent service center (FESC).

The detailed state of a PQN is defined by a vector # = (21,...,2¢), where z, is the detailed state
of queue p (see appendix A for a definition). Let n = (nq,...,ng) be the marginal state of the network
such that n, is the population vector or marginal state of queue p. The state z, of a queue depends
on the type of the queue. Let h,(x,) be a function which depends only on the queue type, the service

time distributions and the relative visit ratios v(k) of classes which visit p, then

Q
1
T(x) = c H hy(z,) , where GG is a normalisation constant. (5)
p=1

The functions hy(z,) can be found in [6] and in appendix A. The marginal distribution of the QN

which considers only the populations at the queues and not the detailed states can be computed as

1 8
w(n) = I dyiny) (6)

where d,(n,) is a function which depends only on the queue type, the relative visit ratios and the

mean of the service time distribution (cf. appendix A). Define furthermore



Sp(xp) = hyp(zp)/dy(n,) , where detailed state z, belongs to marginal state n,. (7)

Sp(x,) denotes the conditional probability of the detailed state z, when the marginal state is n,.
According to the population n, in queue p we can define a mean departure rate of class £ customers

as

pnp(k)/ > 1ek np(l)  for type 1 queues

g, k) = prnp(k)/ >k np(l) for type 2 and 4 queues
b prnp(k) for type 3 queues

pi(ny) for type 5 queues

where k € K and ﬁ is the mean service time of class & customers.

All types of queues observe the conditions which have been defined for the firing rates of PSPNs
in the previous section. This can be proved by setting @ = ¢ as shown in [11].

For later use, A,n(, k, ) denotes the rate of class k customers leaving phase [ in state z and entering
phase [ 4+ 1 of their service and let A..(x,k,[) denote the rate of class k customers in phase [ leaving

the queue in state z (see appendix A).

4 QPNs with product form solution

In this section we establish a product form solution for Queueing Petri Nets, thus combining the former
approaches. PQNs and PSPNs are special cases of this class of Queueing Petri Nets with product form
solutions.

Queueing Petri Nets (QPNs) [4, 5] combine Coloured Generalized Stochastic Petri Nets (CGSPNs)
[1, 9] with Queueing Networks (QNs) by hiding queues in special places of a CGSPN which are called
queueing places or timed places.

Figure 1 1) depicts such a queueing place and its pictorial representation is given in Fig. 1 ii). A
queueing place consists of two components, a queue and a depository for tokens having completed
their service at the queue. Tokens, when fired onto a queueing place by any of its input transitions,
are inserted into the queue. Tokens within a queue are not available for any QPN transition. After
completion of its service a token moves to the depository. The tokens are now available for all output
transitions of the queueing place. An enabled timed transition will fire after a certain exponentially
distributed delay according to a race policy as in GSPNs. Enabled immediate transitions will fire
according to relative firing frequencies. The firings of immediate transitions have priority over those of
timed transitions. A QPN describes a stochastic process which can be analysed by Markovian analysis
techniques [5].

For our purposes concerning product form QPNs, a QPN can be defined by a triple (CGSPN, Py, P;)
where CGSPN is a coloured GSPN, P; is the set of queueing places and P, is the set of ordinary
places where no queue is integrated. P; U P, constitutes the set of places P of the CGSPN.

To obtain a direct correspondence of a CGSPN and a PSPN, let us assume that each transition has
only one colour, i.e. it fires only in one mode. This can easily be achieved by unfolding all transitions.
In the following we will denote such transitions as uncoloured.

Thus a CGSPN here is a 4-tuple (CPN, Ty, Ty, W) where C'PN is the underlying Coloured Petri
Net, T7 C T is the set of timed transitions, Ty C T is the set of immediate transitions and T' = Ty U5

is the set of the CPN’s transitions. W = (wq,...,wyy|) is an array whose entry w;

— is a (possibly marking dependent) rate € IRT of a negative exponential distribution specifying the
firing delay of t; if t; € T} or
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Fig. 1. i) Example queueing place of a QPN ii) its pictorial representation, iii) its simplified interpretation, and iv) its
SPN-skeleton

— is a weight € IRT specifying the relative firing frequency of ¢; if t; € T5.

The QPNs for which we establish a product form solution are restricted as follows:

Definition 1. A product form QPN (PQPN) is a QPN with P; U Ty # (), satisfying the following

restrictions:

1. All transitions are uncoloured.
2. The input bags of immediate transitions are disjoint or equal and do not intersect with the input
bags of timed transitions, i.e.

Vs,t €Ty I(s)NI(t)=0or I(s)=1(t) and Vse Ty, teTy:I(s)NI(t)=10

3. The relative firing frequencies of immediate transitions do not depend on the marking of the QPN.

4. Qutput places of immediate transitions are not input places of immediate transitions, i.e.
Vs, t € To: O(s)N1I(t) = 0.

5. No two timed transitions have the same input bag, i.e. I(t) # I(s),Vs,t € Tj.

6. The input bag of each transition is the output bag of some other transition and vice versa, i.e.
VieT,d3seT : 1(t)=0(s)and Vt € T,3Is € T : O(t) = I(s).

7. The marking dependent firing rate of each timed transition ¢ € T} can be expressed as r(M,t) =
W, where ¢, @ and x are arbitrary non-negative functions.

8. Input transitions of queueing places have no further output places, output transitions of queueing

places have no further input places and only single tokens arrive at and leave from a queue!

(a) ¥p € PLt € T+ Yery IO ) € L and Yoeryy O)(p)(e) < 1
where C'(p) denotes the set of colours of place p.

, l.e.

! Note that in our approach customers of one queue do not necessarily correspond to customers in a different queue. In

particular, queues serve input bags of transitions which, for simplicity, have been transformed to a single token.



(b)y Vpe P,teT:
O(t)(p) #0 = O(t)(p') = 0,¥p' € P\ {p}
I(t)(p) # 0 = I(t)(p') = 0, Vp' € P\ {p}
9. All queues in queueing places p € Py are of PQN-type (cf. Sec. 3).

Restrictions 2-4 allow us to eliminate immediate transitions on the net level by defining probabilis-
tic output bags for timed transitions whose output bag coincides with the input bag of immediate
transitions. Restrictions 5-7 are the ones for PSPNs (see Sec. 2).

Each queueing place can be replaced by its simplified interpretation (see. Fig. 1 iii), where timed
transitions (€ T,) connect the place ¢ representing the former queue and the depository. Each such
timed transition corresponds to a distinct colour of its input place modelling the service of tokens of
that colour. The (marking dependent) rates of those transitions are the average departure rates for
tokens of the corresponding colour in the queue given by (8). If, e.g., the queue in Fig. 1 serves two
customer classes (token colours) a and b, then the set T, for that queue comprises two uncoloured
transitions: one for a and one for b. Substituting all queueing places by their simplified interpretation
yields a CGSPN where the marking of ¢ corresponds to a marginal state of the former queue.

Since restriction 8 holds and since the original QPN is a PQPN, this CGSPN satisfies restrictions 1-
7. After eliminating immediate transitions by defining probabilistic output bags for timed transitions,
we arrive at a net, called the SPN-skeleton of the QPN.

Definition 2. Given a PQPN and let CGSPN = ((P,T,C,1,0),Ty,T5, W) be obtained by the sim-
plified representation of all queueing places. Then the SPN-skeleton of the PQPN is defined as
CSPN = ((P,T,C,1,0),W) where

* P=P\{pe P|FtecTy:I(t)(p)# 0}
T =T\T,

*C=C

* I(t)y=I(t),YteT

The function O now denotes several (probabilistic) output bags for each transition ¢ € T':
o) = {{O(s)|8 €Ty:0(t) =I(s)} if 3" € Ty: O(t) = I(t')
{0(t)} otherwise
W= (wl,...,wm) where w; = w; if t; € T}.

The probabilities p(s,t) for choosing a specific output bag of a transition s € T which corresponds
to the input bag of t € T' are given by
wy
> wy

p(s,t) = kot €{t € TH|I(t) = (1)}

if 3t € Ty : O(s) = I(t;) and O(t;) = I(¢)

1.0 otherwise

Of course, p(s,t) = 0 if I(t) & O(s). Obviously the SPN-skeleton satisfies the conditions for product
form SPNs (cf. Sec. 2).

Fig. 1 iv) shows an example of a part of a SPN-skeleton where immediate transitions have been
removed (cf. Fig. 1 iii). The various probabilistic output bags are here depicted by different type of
lines.

During construction of a PQPN’s SPN-skeleton we have eliminated all immediate transitions. Since
markings of a PQPN, in which immediate transitions are enabled, are vanishing (cf. [1, 5]), they are

of no interest for a steady state analysis. Thus we can also employ the SPN-skeleton for specifying



the tangible markings of the PQPN: Restrictions 2 and 6 imply a zero probability for a non-empty
marking of an input place/depository of an immediate transition. Therefore we do not have to consider
such components in the state descriptor and can define the state of a PQPN directly on the basis of
its SPN-skeleton. Consider a place ¢ of the SPN-skeleton obtained by the simplified interpretation of a
queueing place (cf. Fig. 1iv) and let Py denote the set of such places. For each g € Py let T, denote the
set of timed transitions of the simplified interpretation of that queue, modelling the service of tokens
in this queue (cf. Fig. 1 iii and iv) and let T" be the set of transitions of the QPN’s SPN-skeleton.
Together with the transitions from 7}, place g represents the behaviour of the queue if we assume that
the marking of ¢ is described by the detailed state of that queue. For notational convenience suppose
that the first | P;| places are places representing the former queues. The state of a PQPN is given by
a pair (2, M) where x = (z1,...,2)p,|) and z; is the detailed state of the queue in queueing place p;
(cf. Sec. 3 and appendix A) and M is the marking of the corresponding SPN-skeleton. The marking
M (q) of a place in Py, representing the former queue, denotes the marginal state of a detailed state
&4, thus the pair (z, M) contains some redundant information. As in Sect. 3 we assume that the token
colour uniquely determines the transition, place or queue being considered. This assumption simplifies

the notation of the global balance equations given in the following.

Theorem 3. Let QPN be a PQPN and f, g functions for the SPN-skeleton satisfying (2) and (3) resp.
Then the steady state distribution of the QPN is given by

w2, M) = 7((21s- ..,y )s M) = ég(M)@(M) IT S.(z,) 9)
pEPg

where S, is given by (7) and G is a normalisation constant.

Proof. Define the set of a queue’s input transitions by T = {s € T|3t € T, : p(s,t) > 0} and its set of
output transitions by T4 = {s € T'|3t € T}, : p(t,s) > 0}. Since each transition uniquely corresponds
to a token colour/customer class, we will use transitions to also denote such token colours/customer
classes.

Define TQ = qupQTq,T[ = qupQTZ»q and Tp = qupQToq.

Furthermore we use the following convention to denote the states of a queue:

x — (s,1) is the state just before the "arrival” of a token of colour s in phase [, leading to state x.

x + (s,1) is the state just before the ”departure” of a token of colour s in phase [, leading to state x.

E.g.if in state 2 +(s,{)—(s,{4 1) a token of colour s leaves its [-th phase and enters the next phase, we
obtain state x and, e.g., if s € C(p;),p; € Po, then @ —(s,1) = (x1,..., 51,2 — (5,0), 51, .., Z|p,|)
and z; — (s,/) is the state of the queue in p; just before “arrival” of a token of colour s in phase [,
leading to state z; of the queue in p;. For simplifying notation also define

Mpn(zg,8,0) if s € C(q) Aes(zq,8,1) if s € Cq)
Aph(wv S, l) = . .
0 otherwise 0 otherwise
With that the global balance equations of the PQPN can be written as

and  A(z,s,0)=



m(x, M) ( Z r(M,t)+

teT\Tg

S S Oy 5,0) + Al 5.1)

SETQ =1

Z Z (x, M —I(t)+ 1(s))r(M — I(t)+ I(s),s)p(s,t)

teT\(TouTq) seT\Tq
+ > (Y (@, M —I(t)+ I(s))r(M = I(t) + I(s), s)p(s, 1) +

tETo\TQ SGT\TQ

> Z )s M = (1) + I(8)Aeal + (1), 5, Dp(s,1))

SETQ =1

+ 20 D wla (s, 1), M = I(s) + 1()r(M — I(s) + I(1), 1)p(L, ) +

s€Tq teT\Tg

Z i:ﬂ(x + (&, ) — (s, 1), M —I(s)+ 1(t) Aex(z 4+ (£, 1) — (s,1),8,D)p(t, s))

tETIﬁTQ =1
Us—1
+ Z Z 7T($ + (Svl) B (Svl‘l' 1)7M)/\ph($ + (Svl) - (Svl‘l' 1)7571)
s€Tg =1

Using (9) the global balance equations all reduce to the defining equations for function f (cf. (2)).
More details are given in appendix C. O

Obviously PQNs and PSPNs are special cases of PQPNs. For PQNs, function f is equivalent to
the visit ratios and (2) are the well-known traffic equations.

5 The arrival theorem for PQPNs

In PQNs a well-known arrival theorem is the basis for algorithms calculating important performance
measures, like e.g. MVA [15], starting with an empty net and successively increasing the customer
population up to a desired value.

The arrival theorem states that the steady state probability for a state of the net upon arrival of a
customer is the same as the steady state probability for the corresponding state without this customer.
The next theorem shows that this relationship holds provided @ = .

Denote by RS(Q PN, My) the reachability set of the PQPN and by RS(SPN, Mp) the reachability
set of the corresponding SPN-skeleton.

Theorem 4. Given a PQPN with ® = ¢. Letp € Py and s € T,,. Assume that a function f satisfying
(2), that a function g for RS(SPN, My) and a function g" for RS(SPN, My + I(s)) both satisfying
(3) exist for the QPN’s SPN-skeleton. Then

PAglz+ (s,1),M+ I(s)] = 7w(x, M)

where PAg[y, M'] denotes the probability of being in state (y, M) immediately after arrival of an input
bag 1(s) at place p.

Proof. We have to show that the flow according to the arrival of an input bag I(s) leading to state
(24 (s,1), M+ I(s)) divided by the sum of all flows concerning the arrival of an input bag I(s) equals
m(x, M).



Employing the corresponding part of the global balance equations of theorem 3 (see also ap-
pendix C), the arrival theorem holds if

[ > #la, M+ 1()r(M + 1(1),1)p(t, ) +
teT\Tq

> ifr(w + (6,0, M+ I(1)Aex( 4 (2, 1), 1, D)p(t, 5)]
telinTg I=1
/[ > (> &', M+ I(t)yr(M' + I(t),t)p(t,s) +

(z',M")ERS(QPN,Mo) teT\Tg

s Z F(a' + (4, 0), M+ I()Aewl(z + (£, 1), 4, Dp(t, $))]

tET]ﬂTQ =1
=n(z, M) (10)

where the left part denotes the probability PA, and 7 is the steady state distribution for the PQPN
with the additional customer/token of class/colour s.
For a marking M + I(t) with M € RS(SPN, My) we have

g'(M +I(t)) = Cf(t)g(M) (11)

for some constant C' € IRT, because (3) defines a function up to a constant. Let S(z) = [lep, Spl@p)
Since local balance holds and the terms of the sums (22) and (26) are equal (cf. appendix C) and
for all queunes of QPN-type

Sz 4 (s, 1)) Apn(z + (s,1),8, 1)+ Aew(@ + (5,1),8,1)) = S(a)r(M 4 1(s),s)
the left part of (10) is equal to

S(a)r(M +1(s),s)f(s)g(M)P(M + I(s))
> (o, MYeRs(QPN,Mp) S (2)T(M' + 1(s), ) f(s)g(M")P(M' + I(s))

_ S(@)g(M)p(M)x(s) (“q® = oy
Z(x/,M/)eRS(QPN,MO) S(x")g(M")p(M")x(s)
_ S()g(M)B(M) o)
Z(x/,M/)eRS(QPN,MO) S(a)g(M")P(M')
=m(x, M)
which completes the proof. O

A similar theorem also holds for the transitions of the PQPN at the arrival instant of an input bag.

Theorem 5. Given a PQPN with ® = ¢. Let s ¢ T. Assume that a function f satisfying (2), that a
function g for RS(SPN, My) and a function g’ for RS(SPN, Mo+ I(s)) both satisfying (3) exist for
the QPN’s SPN-skeleton. Then

PAgJe, M+ I(s)] = m(x, M)

where PAg[x, M 4 I(s)] now denotes the probability of being in state (x, M + I(s)) immediately after
arrival of an input bag I(s) at the input places of s.

Proof. The proof is similar to the proof of theorem 4. O

The restriction @ = ¢ is, e.g., satisfied in PQNs. We will meet this restriction also in the next

section concerning exact aggregation in PQPNs.



6 Aggregation in PQPNs

An aggregation technique allowing the substitution of some queues of a PQN by a single flow equivalent
substitute queue has been introduced in [7] and extended to multiple classes and more general net
structures in [2, 3, 16]. The results of the aggregation approach are exact in PQNs, but there is
no gain concerning solution effort if only one solution run is compared. Nevertheless, aggregation is
very important since it can be used in parametric studies, where several solution runs are performed
modifying one or several parameters in the model. In this case queues with parameters that are constant
in all runs can be aggregated and the parametric study performed with the smaller aggregated net.
Another important area is the development of approximation algorithms for non product form QNs
which are often based on aggregation approaches, first examples are given in [2].

We extend the approaches from [2, 3, 16] for PQPNs and also for pure PSPNs. However, for this
purpose we have to restrict the model class appropriately since aggregation implicitly introduces certain
independence assumptions which are observed in PQNs but not generally in PSPNs. We consider the
decomposition of a PSPN into two subnets, the aggregation of subnets and the analysis of an aggregated
net. Since it has been shown that the analysis of a PQPN can be decomposed into the analysis of the
underlying SPN-skeleton and the isolated computation of the detailed state probabilities of queues it
is sufficient to present the approach for PSPNs, the results obviously hold if queues are included.

We start with the SPN-skeleton of a PQPN and assume that the conditions for a product form
solution are observed. Let T4 be a subset of the set of skeleton transitions T and let Tr = T\ T'4. The
set of transitions T4 forms the subnet A to be aggregated, the set Tr describes the rest of the net
which forms the environment of A and is also a subnet (which can also be aggregated). The following

conditions have to be observed for aggregation:

1. The input bags of subnet and environment have to be disjoint, i.e.,
UtETAI(t) N UteTRI(t) = @

A marking M of the complete net can be decomposed into a part M4 including those tokens
which are in the input bag for some t € T4 and My including those tokens which are in the input
bag for some t € T'r. Assume that places are reordered such that all places of A occur first, thus
M = (Ma, Mg). We denote M4 as the local marking of A and Mz as the non-local part of a
marking.

2. Rates of transitions from T4 (Tr) are allowed to depend only on M4 (M), i.e.,

r((Ma,0),t)fort € Ty
r(M,t) =
r((0, MR),t)for t € Tz

where 0 denotes the empty marking.

Let RS(SPN, Mp) be the reachability set of the PSPN. We define
DA(MR) = {MA|(MA,MR) S RS(SPN, MO)} and DR(MA) = {MR|(MA,MR) S RS(SPN, MO)}

i.e., the set of all markings which are reachable in A when the marking of the rest is My and the set of
all markings in R which are reachable when M 4 is the marking of A. The independence of transition

rates from non-local markings implies @ = ¢ and the following decomposition of the function @

P((My, MR)) = PA(M4)PR(MR)

10



& 4 and ¢ are functions defined on the markings of the subnets A and R and are used to determine

the firing rates for transitions in a subnet.

%X(ﬂ fort € Ty

r((Ma, MR),t) = (12)

%X(ﬂ for t € Tr

Like for the analysis of a PSPN as a whole, appropriate functions have to be found for the subnets.
The above decomposition of @ implies that firing rates of a transition in a subnet are independent of
the environment. The next step is to decompose the invariant measures of the routing chain and the
function ¢g. We define fa(t) = f(t) for t € T4 and fr(s) = f(s) for s € Tr. Below it will be shown

how these measures can be computed locally for A and R. Now let

g(Ma, MR) = ga(Ma)gr(Mr)

where
(M4, 0) = I(t) + 1(s))$2D for s,1 € Ty with p(s, 1) > 0
: (13)
gA(M4) =< g((Ma,0) — I(t))fa(t) for t € T4 and some s € T with p(s,t) > 0
g((M4,0)+ I(s))fAl(s) for s € T4 and some t € Tr with p(s,t) >0

and gr(Mp) defined accordingly.

The values can be computed recursively starting with g(Mp) = g((Mo.a, Mor)) = ga(Mo.a) =
gr (Mo r) = 1.0 and computing all possible successors M + I(s)— I(t) with p(s,t) > 0 (see [12]). With

this decomposition the stationary solution can be expressed as

T((Ma, MR)) = égR(MR)QjR(MR)gA(MR)@A(MA)

Theorem 6. Let mR(MR) = > a,ep (M) T((Ma, MR)) be the marginal distribution of the net ne-
glecting the detailed marking of subnet A. mr(Mg) can be computed as

TR(MR) = Fgr(MR)PR(MR)AA(MR)

where Ay(Mr) = 3 ga(Ma)@a(Ma)
Ma€D A(MR)
Proof. The proof is straightforward substituting the definition of A4(Mp) into the equation. O

Since Ay(Mr) is independent of r(M,t) for t € Tr, the value can be computed once and used
afterwards for parametric studies modifying transition rates in R. However, the above result is not
really based on aggregation, since A is not analysed in isolation. For an isolated analysis we start with
the computation of the invariant measures of the routing subchains f4(t) (¢t € T'4). If a subchain V,
visits only A, then f4(s) can be computed for all transitions s in this subchain using only information
about subnet A. In the same way we can compute fr(t) for transitions from subchains which visit
only R using only information about subnet R. Thus it remains to consider subchains V, including
transitions from 7'y and T’r. We define the following matrices: H’j including all probabilities p(s,t)
for s,t € TaNV,, H} » including probabilities p(s,t) for s € T4 NV,, t € Tr O V,, Hp including
probabilities p(s,t) for s,t € TNV, and Hy, 4 including probabilities p(s,t) for s € TrOV,, t € T4NV,.
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Let 27 be a vector of invariant measures for t € T4 NV, (cf. (1)). The vector is computed up to a

constant as the solution of
ey = aly(Hy+ Hyp(I — HR) 'Hi 4) = e H] .

It is easy to show that the vector 24 equals the corresponding subvector of the invariant measure
x as computed in equation (1) up to a constant. Thus the values f4(t) can be determined up to a
constant using the above matrices. The computation of 2’y depends on the rest of the net due to
matrices including an index R. There are some situations where the analysis is independent of R, e.g.,
if Hp 4 contains one element in each column. The latter case corresponds to PQN submodels with
a single input port per routing chain. Thus parametric studies can also include modifications of the
probabilities p(s,t) in R, if the above matrix is not modified. The matrix H’; describes the subnet
in “short-circuit” for routing subchain r, which is realised by setting firing rates of transitions from
V, in R to infinity. We denote by p(s,t) the corresponding probabilities, i.e., transition s fires and
generates an input bag for ¢ as the next transition with finite rate with probability p(s,t), transitions
from T’z are skipped in zero time. Accordingly matrices H7, can be defined for the “short-circuited”
environment.

Thus we have for subnet A the values fa(t) and ®4(M 4). However, the set of reachable markings
M 4 depends on RS(SPN, My), the reachability set of the complete net. In PQNs aggregation of a
subnet can be performed by short-circuiting the subnet assuming zero service times for all queues of the
environment, analysing the short-circuited subnet for all possible population vectors and substituting
the subnet by a flow equivalent service center. A similar approach will now be developed for PQPNs.
In contrast to PQNs, routing chains in PQPNs are not in general disjoint. Therefore the population
of a PQPN can change and the aggregation approach from PQNs is not directly usable.

In what follows an approach is described which allows to compute the reachability set of a subnet
without computing the reachability set of the complete net. We present two different steps. The first
consists of finding sets of independent subchains of the routing chain such that the overall reachability
set can be expressed as the cross product over subspaces. The second step shows that the set of
markings reachable in the subnet is the same for all environment markings in a local reachability set
computed from the short-circuited subnet. Using the second step, macro markings can be defined which
correspond to the subnet population in PQNs, but might be much more complex in PQPNs or PSPNs
since the population is not unique. Afterwards conditional probabilities for micro markings belonging
to one macro marking are computed locally. The combination of the conditional probabilities of micro
markings in a macro marking together with the probability for the macro marking (as computed from
an aggregated model) yields the exact solution of a PQPN. This approach is efficient since we do not
have to enumerate the complete reachability set during analysis.

We start with the decomposition of the routing chain into independent subchains. Two subchains
Vi1, Veg € V are disjoint, if for all 1 € V1, &5 € Vig : I(t1)N1(t3) = 0. A subset V' C V is closed if each
V, € V' and each V; € V\ V' are disjoint and for each pair V5, V, € V' a sequence Vq,...,V,_1 € V'
exists such that V; and V;1; (0 < j < r) are not disjoint.

Theorem 7. Let V be the set of routing subchains of a PSPN, decomposed into closed subsets
{V1,...,Vr} and let 7(M,t) > 0 for M — I(t) > 0. Let My be the initial marking which can be
uniquely decomposed into (Mg, ..., MEY such that M} includes all places and colours which belong to
some I(t) fort € V.. Let RS"(SPN, M{) be the reachability graph of PSPN including only transitions
Sfrom V. with initial marking M, then

RS(SPN, My) = < RS"(SPN, M) .
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Proof. Since the input bags of transitions from different closed subsets are disjoint, the decomposition
of markings according to the subsets is unique. Furthermore, the enabling condition of a transition
t € V" depends only on M". The firing rate r(M,t) is allowed to depend on the complete marking,
however, as assumed r(M,t) > 0 whenever ¢ is enabled. Thus firing of transitions in the closed subsets

is completely independent yielding the above decomposition of the reachability set. O

Since the SPN-skeleton of a PQPN is a PSPN we can use the above theorem to compute the possible
population vectors of the queues; detailed queue states can be determined from this information and
from the type and parameters of the queue. In pure PQNs each subchain forms its own closed subset
with the consequence that the population in a subchain is constant. In PSPNs the computation of
the set D 4(Mg) can be decomposed into computations of D’ (M%). If the closed subset V" includes
only one subchain, then the behaviour is similar to PQNs with constant population now expressed in
terms of input bags for transitions from V", therefore the detailed state of R is not needed for the
computation of markings in A, only the population in R is necessary.

Theorem 7 describes a way to decompose the computation of the reachability set in the computation
of a couple of subsets, however, it does not allow the isolated analysis of these subsets. In the sequel
we introduce another decomposition of the PQPN which decomposes the analysis of the PQPN into
the analysis of isolated subnets and an aggregated net describing interactions between subnets. The
key question is, for which markings Mg, M}, holds Da(Mg) = Da(Mp), or, in other words, can we
reduce the reachability set of the environment when computing the reachability set of subnet A (and
vice versa).

Due to the input/output relation of the transitions several flows of tokens in a PSPN can be defined
without considering the specific marking. For a marking M 4 of subnet A we define RS(A, M 4) as the
reachability set of A where all routing subchains are short-circuited by setting transition rates in R
to infinity and the initial marking is M 4. Accordingly RS(R, MR) is defined for R. We assume in the
sequel that r(M,t) > 0 for M — I(t) > 0.

Theorem 8. For a reachability set RS(A, M 4) the following relations hold:

1. RS(A, M 4) is irreducible for each M 4.

2. If (Mg, Mg) € RS(SPN, M), then (M, M) € RS(SPN, M) for each M'y € RS(A, My) and
each Mz € RS(R, MR).

3. DA(Mg) = Da(My) for Mj; € RS(R, Mg) and Dr(M4) = Dr(MY) for My € RS(A, M 4).

Proof.

1. Follows immediately from the irreducibility of the routing subchains, since f(t) > 0.

2. Since M/ € RS(A,My), a sequence of transitions exists in the short-circuited subnet A such
that M4 is transformed into M. Since such a sequence exists, there also exists a sequence in
the complete net which possibly contains certain transitions from R. However, the firing of these
transitions from R uses only one input bag which is “routed through” R and afterwards generates
a new input bag in A. This sequence of transitions does not depend on the marking of R and
does not influence the marking of R. Thus marking (M4, M) can be transformed into (M'y, Mz)
which can be transformed into (M, M7,) using the above arguments for R instead of A.

3. Follows from 2). g

Referring to the short-circuited subnet we can define an aggregation of markings, i.e., M 4 and M/
are aggregated, if My € RS(A, M 4). Markings of the aggregated reachability set are denoted by small
letters and {2 4(m_4) denotes the set of markings which is represented by m 4. The same quantities can
be defined for R. Let rs(agg, (mo,a, mor)), with Mo 4 € 24(mg 4) and Mo r € 2r(mor), be the
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aggregated reachability set. For notational convenience we use in the sequel the notations M4 + (%)
and Mg + I(s) instead of (M4,0)+ I(¢) and (0, Mg) £ I(s) fort € T4 and s € Tr.

Theorem 9. Let My € RS(A, My) and t,t" € V, N Ty, then M)y + I(t') € RS(A, M4+ 1(t)).

Proof. There exists a sequence of transitions transforming M4 into M, without using tokens from
the newly arrived input bags I(t) or I(t'). Since ¢t and ¢’ belong to the same routing subchain there
exists a sequence of transitions transforming input bag I(¢) into input bag of I(¢') without using any
additional token. 0

Unfortunately we cannot conclude in general that M/, — I(¢') € RS(A, M4 — I(t)) for all My €
RS(A, M4) with Mg —1(t) > 0 and M’ — I(t) > 0. In the sequel of this section we restrict the class
of PSPNs such that

My € RS(A, MA) = M/ — I(t') € RS(A, M4 — I(1))

for My — I(t) > 0 and MY — I(t') > 0 and ¢,¢ € V., N Ty4. This assumption implies that we can
remove from a given marking M4 an input bag for some transition from a fixed routing chain and
the resulting aggregated marking is independent from the specific transition. The assumption helps
to compute the aggregated reachability set, although the aggregation approach presented below does

not really rely on it. We define the following notation
Lalma+1(13)) = RS(A, Ma+ I(1))

for some My € 24(ma) and ¢t € T4 N V,. In a similar way 24(m4 — I1(t;)) and the corresponding
quantities for R can be defined. Since the reachability sets RS(A, M 4) and RS(R, M) are irreducible,
the same sets are generated for each M4 € 24(ma) and Mg € 2r(mg) and each t,¢' € V,. Under
the above conditions the reachability graph of the complete PSPN can be expressed as

RS(SPN, MO) = U QA(mA) X Qn(mn)
(ma,mr)€rs(agg,mo)
The ageregative analysis is performed in two steps. First, the subnets A and R are analysed in isolation
for each 24(m4) and 2r(mg) by assuming infinite transition rates for transitions that are not in
the subnet to be analysed (short-circuit analysis). Subsequently, an aggregated model is analysed to
determine the distribution among aggregated markings.

We start with the short-circuit pre-analysis of a subnet and show here the results for subnet A. Of
course, similar results hold for R. Assume that short-circuit analysis is performed for macro marking
ma and let M4 € 24(m4) be one micro marking included in the macro marking which serves as
initial marking. The short-circuited subnet is characterised by the functions @4 and y to express
transition rates, f4 calculated from the invariant measure of the routing chain in the short-circuited
subnet and p(s,t) describing the probability that a firing of transition s generates an input bag for
t in the short-circuited subnet. Subnet A analysed in short-circuit yields a function g4 recursively

computed as
f(s)
f(t)

for s,t € T4 and p(s,t). The above relation allows to compute g4 uniquely up to a constant. The next

GA(M A+ 1(s) = I(1)) = ga(Ma) (14)

theorem relates g4 and g 4.

Theorem 10. Let g4 be computed from (14) and let g4 be computed via (13), then

ga(My)  ga(My)

!
a0~ ga(MT) Jor all My € RS(A, My).
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Proof. Assume that g4 is known, then we can choose g4(M4) = ga(M4). Now consider M/ =
M+ 1(s)—1(t) for s,t € Ty.
For p(s,t) > 0 we have

ga(My) = !JA(MA)% = gA(MA)];Ei)) = ga(M}y) .

Now let p(s,t) = 0 and p(s,t) > 0. A sequence of transitions ty,...,t, € T exists with p(s,t;) > 0,
p(ti,tig1) > 0 and p(t,,t) > 0 which transforms M4 into M’y and leaves the marking of R unchanged.

This sequence yields

f(s) () fltn—1) f(tn) . f(s) - /
() flta) ™7 f(t)  f(t) gl A)f(t) = ga(My) .

By induction we can conclude that the result holds for all M’y € RS(A, M 4). 0

gA(M}y) = ga(Ma)

The proof of the above theorem also shows that g4 exists whenever g4 exists. Similarly we can
compute gr(Mp). The steady state distribution of micro markings in a macro marking in a short-

circuited subnet is given by

GAMA)PA(M4) gR(MR)Pr(MR) (15)
Galma) Gr(mg)

where M4 € 24(ma), Mr € 2r(mg) and G a(ma), Gr(mpr) are appropriate normalisation con-

Ta(Ma) = TR(MR) =

stants.
Since theorem 10 holds, the above values also represent the conditional probabilities of markings
in a subset of markings in the complete net, i.e.,
> m((Ma, M)

) > m((My, M)

MY e a(ma) Mj €02r(my)

T(Ma) =

for some (m4, mg) € rs(agg, mo), Ma € 24(ma) and Mgr € 24(mg).

We have not defined a representation for macro markings (m.4, mz). In contrast to PQNs, where
macro states include the population in a subnet, there might be no straightforward interpretation of
such a marking in a PSPN, although (m4, mg) can usually be interpreted in terms of input bags for
transitions from the subchains. Under the restrictions made, transitions on the aggregated reachability
set are well defined and a specification of the behaviour of a net to compute the steady state distribution
of the macro markings can be given. For each routing subchain V, which visits A and R we define
transitions "y and t% such that

¥ I(ty) = O(lz) and [(1) = O(t)).

F oty tR) = plig, ) = 1.

*matI(ty)) = m/y for Ma£1(t) = My, where My € Qa(ma), My € 24(m/y)andt € T4NV, and
mgr £ 1(ty)) = mpy for Mg £ 1(t) = My, where Mg € 2r(mp), My, € 2gr(mpy) andt € TrNV,.

* The marking dependent rates are expressed as

r(ma, )= X ®(Ma) > r(Mat) 3 p(t,s)
MAeR (M 4) teT A NV s€TrNV,
(16)
r(mp,tg) = > m(Mgr) ¥ or(Mg,t) > p(ts)
MRE.QR(mR) t€TRNVy seT ,NVy
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The conditions do not completely specify a physical representation of aggregated markings. How-
ever, a specification in terms of the number of input bags of transitions for the different routing chains
is possible, but has to take into account that subchains are not disjoint. The resulting net consists of
two transitions for each routing subchain V, which visits A and R. The following analysis, of course,

can be performed without a physical interpretation of the aggregated marking.

Theorem 11. Define ® 4(my4) = > PA(MA)ga(Ma) and x(ty)= > z(t) > plt,s),
MAEQA(T)’LA) tETAnVr SETROVT
then ~
, DPa(ma— 1T ,
rlonas ) = PAEAZ I,
b a(ma)

where x is the invariant measure defined in (1).

Proof. First notice that @ 4(m.4) equals the normalisation constant G 4(m.4) used in (15). The following
relations are used in the proof:

g(My) = %Q(MA + I(t)) for some ¢ € T4 according to (11)

Pa(My)=Pa(M4+ I(t))d%-l('f)zﬁl for some t € T4 according to (12)

TA(M4) = m!]A(MA)QjA(MA) for M4 € 24(my) according to (15)
For notational convenience we prove the result for m4 + I(t%):
- Y PalMa)gaMa) 3 w(t) 3 p(ts)
Da(ma) AR MAEQ4(m 4) teT NV, s€TRNVy

=~ A — =~

Pa(ma+1(1)) Pa(ma+1(t))
For some fixed t' € T4 NV, we can represent the numerator of this fraction depending on M4 + I(t')
instead of M 4.

> PAMA+I(E)ga(Ma+I(W)r(Ma+I(E) )/ (FE)x(X) >0 @) >0 pl(ts)

Maeralma) tET 4NV s€TRNVr

D A(ma+I(t7y))

> TAMAHIW)r(Ma+ L), ) /x(t) 3 w(t) 3 plts) (%)
MAeR 4(m4) teT 4 NVy s€TRrNV;

Now consider for some s,t € T4 NV,

F(Ma+ 1(s)r(Ma+ 1(s),5)29 =

s

]

Sga(Ma + I(s))Q‘A(MA)X(S)ﬂ%

z(s
Lga(Ma+ T(0)PAMa+ I(1)r(Ma+ 1(1), 1) 52102 —

T(Ma+ 1(1))r(Ma+ 1(1),1)
Substituting this relation in (*) yields
> Y TAMa+I(O)r(Ma+I(0).0) > p(t,s)
MAER 4(my) tET ANV, s€TrNV,

which relates the short circuit throughput of each transition in A to the rate of the aggregate transition.
By taking into account that r(M4,t) = 0 for M4 — I(t) # 0, the above result is equivalent to the one
computed for r(m4,t’;) using the short-circuit pre-analysis results in (16). a
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Note that the transition rate of the substitute transition has a representation which has the same
form as any other transition in a PSPN. This implies that the aggregated net is a PSPN when the
original net is a PSPN. Let 7(m.4, mg) be the steady state probability of marking (m 4, mg) which

can be expressed as
1 ~

T(ma,mgr) = QEA(mA)QR(mR)

where G is an appropriate normalisation constant. The above result follows directly from the product

form, since g(m4, mg) can be chosen as 1 for all (m4, mg) € rs(agg, mo).
Theorem 12. The steady state distribution of the complete PSPN can be expressed as
T(Ma, M) = T(ma, mr)TA(Ma)7Tr(MR)
for (ma,mp) € rs(agg, mo), Mg € 24(ma) and M € Q2r(mg).
Proof. We have
T(ma, mr)TA(Ma)TR(MR) =

> gA(MA)D A(M4) > 9r (MR)PR(MR)
MAG‘QA(mA) MRG‘QR(mR)
> gA(MA)D A (M 4) > IR (MR)PRr(Mr)
(m g ,mp)€rs(agg,mo) M gE€R 4(m 4) My eRR(my)

GAMA)P A (M4) IR (MR)PR(MR)
> GAMA)P 4(My) > GR(MR)P 4(MR)
M€ A(m4) Mp €Rr(mR)

Since theorem 10 holds, we can substitute ¢ by ¢ in the numerator and denominator of the last two
fractions giving
9AM AP 4 (M 4)gr (MR )PR(Mr)

JAMA)P 4 (M 4) > IR (MR)Pr(MR)
(m g, mp)Ers(agg,mg) M 4 €2 4(m 4) Mp €Rx(my)

g(M A MR)NP((M4,MR))

g((MAvMR))ds((MAvMR))
(MA,MR)GRS(SPN,M())

T(Ma, Mg)

O

Consequently the complete analysis can be decomposed into the isolated analysis of each subnet for
each possible macro marking and the analysis of an aggregated net. The enumeration of the complete
reachability set is not necessary. The aggregation approach can be interpreted as an extension of
flow equivalent server aggregation in PQNs, where the aggregates are described by single queues
with state dependent service rates. We conceive that the approach may be extended to perform
approximative analysis of QPNs which slightly violate the conditions for a product form solution.
Similar approaches for QNs are well known and can be adopted in the given framework. Additionally,
the aggregation approach can easily be extended to decompose the net into more than two subnets,
or to use aggregation hierarchically by decomposing a subnet into sub-subnets.

17



P2

(b, ¥)

Fig. 2. Example of a PQPN

7 Example

In this example we consider processes which fork into two subprocesses. Processes and subprocesses
require independently service at a queue with PS discipline. Service times at the queue are assumed
to have a Coxian distribution with two phases and (sub)process specific service rates.

Figure 2 shows the PQPN for this example using the expression representation for CPNs [14]. Place
p1 is the queueing place including a queue whose service discipline is PS. Assume that we start with
an initial marking of (b,d’) on ps. (b,b) denotes a process which forks into subprocesses: b and b’ due
to firing transition ¢;. After firing of ¢; subprocess b (b') might enter the queue by firing t5 (t4) or
the process (b,b) enters the queue by firing transition ¢3. When completing its service a subprocess
might reenter the queue again or joins with its counterpart by firing ¢3 and the process (b,d") enters
the queue. Note that, after forking, the subprocesses of a process might directly join again. Fork and
join operations take some time as realised by the timed transitions ¢y, t5, t3 and 4.

For simplicity we assume that the firing rates of all timed transitions are independent of the current
marking and are defined as r(M,t) = x(t),Vt € Ty. The relative firing frequencies of all immediate
transitions are set to 1.0. As mentioned before, the service time distribution of a (sub)process at the
queue is given by a Coxian distribution with two phases and parameters as specified in Sec. 3.

Using the simplified interpretation for queueing places gives the SPN-skeleton with the following

rates:

T(M,t) = X(t), Vi € {t17t27t37t4}
M(p1)(2)
Zze{b,b’,(b,b’)} M(p1)(2)

where x(£.) := [(fpy,21) ™"+ apy 21 (i 22) 77 V2 € {b, 0, (b, 1)} is the mean service rate for a class

r(M,t.) =

x(t,), Vz € {b,0,(b,b)}

z token in the queue and {ty, 1,14y} = Ty for queueing place p;. Thus T = {t1,ty, 13,14, tp, by, L))
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is the set of transitions of the SPN-skeleton.
Since all output transitions of p; are immediate, the depository is not part of the SPN-skeleton, and
we will denote the place representing the former queue also by py.

All probabilities p(s,t) are 1.0, since there is only one enabled transition per routing subchain. Fur-

thermore
M (p1)(b) 1 p1) (b ) M (p1)((bb")) L
(M) = )™ ——x(ty)]” toon)]”
(17)
and defining ® = ¢ we have r(M,1) = % x(1), vt e T.
A function f of the PQPN’s SPN-skeleton satisfying (2) is e.g. f(¢) = ><( ERANS T and
() = (XU XUz o) Xa) yvro o XUs) wy(ean) (18)
x(t1) x(1y) X(ty) X(tp1)
satisfies (3) for all reachable markings M. Since (cf. appendix B)
o) =TT+ 0 Ut et + i (e (bl Ly g
p1\tp1 Pl 1 2 P1,k,1 p1,k,1Hp1,k,2 Lip, 1 Uk, N Lip, .2 3/k,2!

for a state z,, = ((y1,1,¥1.2), (Y21, ¥2,2)), multiplication of (17), (18) and (19) gives the steady state
distribution up to a constant (cf. (9)).

Note that if we start with several (b,b')-tokens on py at the initial marking, the subprocesses being
joined might be different from the subprocesses generated during the fork operation.

We now extend the example by a second subnet, which is described by a simple PQN including two
queues and use here the specification as a PQPN to fit in our framework. A possible interpretation of
the extended model is a client server scenario. The PQPN introduced above specifies processes running
on a client, each process type, represented by token colours b, ' and (b,b’), requests service from a
server or cycles in subnet 1, leaving the CPU (in place p;) and entering places ps3, ps. We assume that
communication times between client and server are negligible and need not to be considered in the
model. The server consists of two queues describing cpu (queue 2) and memory (queue 3). Each request
needs several cycles between both queues before it is satisfied and returns to the client. Queune 2 is a
PS queue with Cox 2 service time distribution and queue 3 is a FCFS queue with exponential service
time distribution. The transitions ts, tg and {7 realise the cycling of jobs in subnet 1. We introduce
new transitions tg, tg9 and t1g describing the movement from subnet 1 into the new subnet 2. Newly
arriving tokens entering subnet 2 enter the queue 2, which is part of place ps. After leaving queue 2 a
token either enters queue 3, embedded in place pg, or returns to subnet 1 which means that a token
of the appropriate colour is added to place po, ps or py, respectively. The complete model is shown in
figure 3.

Let the initial marking of the PQPN be given by two tokens of colour (b,b') at place py. The
aggregated markings of the first subnet can be expressed by the number of colour b and the number of
colour b’ tokens in the subnet; a token of colour (b, ') counts for both colours b and ¥’. The aggregated
reachability set of the second subnet is described by the number of colour b, b’ and (b,d’) tokens,
here (b,b') counts as a normal colour which is independent of b and b’. The physical interpretation of
the aggregated marking results from the input/output bags for the three routing chains. In the first
column of table 1 the aggregated states of the complete PSPN are listed. States are encoded as 5
tuples, the first two entries include the number of colour b and & tokens in the first subnet, the last
three values describe the number of colour b, b' and (b, ') tokens in the second subnet.

The next step is to analyse both subnets in isolation by short circuiting the environment for each

routing subchain, here represented by the colours b, b’ and (b,d"). This analysis step has to be performed
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Fig. 3. Complete net with both subnets

for each aggregated state which implies 8 solution runs for subnet 1 and 13 solution runs for subnet
2. The example has been analysed by assuming firing rate 10 for transitions #y,...,14, mean service
time 1 for b, b’ at all queues, mean service time 2 for (b, b) at the queues in the places py, ps and mean
service time 1 for (b,d") at the queue in place pg. Weights of the immediate transitions are chosen such
that colour b and b’ tokens stay with probability 0.9 in a subnet and colour (b,b’) tokens stay with
probability 0.8 in a subnet. Since the marginal probabilities of the PQPN depend only on the means
of the service times, no further assumptions about the service time distributions at the PS queues are
necessary. The service time at the FCFS queue has to be exponential. The short circuit throughputs
for these parameters and the different routing chains are given in table 1. These throughputs determine
the firing rates of substitute transitions for the subnet.

A PSPN model where both subnets are substituted by appropriate places and transitions is pre-
sented in figure 4. The firing rate of transition ¢; is given in the ¢+ 1-th column of table 1 and depends
only on the marking of the corresponding subnet (i.e., the places p; and p for subnet 1 and ps, p4
and ps for subnet 2). The aggregate for subnet 2 is, of course, a standard flow equivalent service
center. The aggregate for subnet 1, however, is more complex: tokens of colours & and &' are joined
to form a token of colour (b,b’) in subnet 2. Analysis of the aggregated net yields the aggregated
steady state probabilities 7(m_4, mg). Short circuit analysis yields conditional probabilities of micro
markings in macro markings. From these results all steady state performance results can be computed,
e.g., the probability of two tokens (or customers) of colour (b,8") in the queue included in ps is given
by 7(0,0,0,0,2)Tsupnet2((0,0,2)(0,0,0)), where markings of subnet 2 are denoted as a pair of triplets
including the number of b, b" and (b, ') tokens in ps and pg, respectively.
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| subnet 1 subnet 2
agg. marking b b’ (b,b%) b b’ (b,b%)
(2,2,0,0,0)[4.919¢-2 4.919¢-2 6.497e-3| - - -
(2,1,0,1,0)[6.605¢-2 3.230e-2 6.401e-3| - 5.263e-2 -
(2,0,0,2,0)[9.910e-2 - - - T.01le2 -
(1,2,1,0,0)[3.230e-2 6.605¢-2 6.401e-3[5.263e-2 - -
(1,1,1,1,0) 4.846e-2 4.846e-2 8.881e-3|3.506e-2 3.506e-2 -
(1,1,0,0,1)|4.846¢-2 4.846¢-2 8.881e-3| - - 1.538e-1
(1,0,1,2,0)[9.091e-2 - - |2.627¢-2 5.253e-2 -
(1,0,0,1,1)[9.091e-2 - - - 3.523e-2 1.030e-1
(0,2,2,00)] - 9.910e2 - [7.01le2 - -
(0,1,2,1,0)] - 9.091e2 -  |5.253e-22.627e-2 -
(0,1,1,0,)] - 9.091e2 - [3.523e-2 - 1.030e-1
(0,0,2,2,0)] - - - |4.199e-2 419962 -
(0,0,1,1,1)] - - - |2.640e-2 2.640e-2 T.755¢-2
(0,0,0,0,2)] - - - - - 2.015e-1

Table 1. Short-circuit throughputs for subnet 1 and 2

Fig. 4. Aggregated representation of both subnets

8 Conclusions

Queueing Petri Nets are a superset of Queueing Networks and (Generalized) Stochastic Petri Nets.
They are suitable for modelling synchronisation and concurrency situations as well as sharing of
resources which appear in most distributed systems. From the specification point of view, one great
benefit consists of not being forced to model queues by ordinary (CGS)PN elements which simplifies

the description of systems. Queueing places can be viewed as simple subnets of a hierarchically specified

model.

Besides their descriptional power, QPNs also lead to new insight into the analysis of systems.
In this article we have introduced product form QPNs (PQPNs) which combine PSPNs and PQNs in

one model formalism, namely the QPN formalism. Furthermore, we presented an arrival theorem and

discussed exact aggregation in PQPNs.

Future work is directed to the development of algorithms like MVA and LBANC [15] in the context
of product form Queueing Petri Nets, and to the investigation of approximative analysis techniques,

based on the presented aggregation technique for QP Ns, but with violation of product form conditions.
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Detailed states in PQNs

In this appendix we describe some details of PQNs which can be found in [6, 15].

Let 2 be the detailed state of a queue, n its population vector, n(k) the number of class k customers

and ny the total number of customers. ,u,:l is the mean service time of class &; iy 1, ag; and uy are the

parameters of the Coxian distribution for class k. K denotes the total number of classes. The detailed

state description depends on the queue type:

For type 1 (FCFS) we have z = (21,...,2,,), where 2; describes the class of the customer in
position 2. x7 is the class of the presently served customer.

For type 2 and 3 (PS and IS) we have z = (y1,...,yx), where yp = (yk1,-- ., Yk, ) and yg is the
number of class k customers which are in the [-th phase of their service time distribution.

For type 4 (LCFS) we have 2 = (21,..., 2, ), where z; = (2F, 2l) and zF is the class of the i-th
customer in LCFS order and 2! is the phase of the service time distribution the customer is in.
For type 5 (FESC) the state is completely defined by the marginal distribution of customers, i.e.

r =n.
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The function h(x) used in (5) is defined as

ny

(%)nz 2H1 v(z;) for type 1 queues
ny! f[l ;ﬁl( v(k )Mk y i l( )for type 2 queues
h(z) = k]_[1 uﬁ (v(k)f:ll)yk l(ykll ) for type 3 queues
:ﬁl(v(zk) MZ?Z; ) for type 4 queues
v(n )kil( (k ))n for type 5 queues

where v(n) = v(n — eg)ur(n) and v(0) = 1.0.
The function d(n) used in (6) is defined as

K
nel(G)" ;}:[1 re(v(k))"®) for type 1 queues
K B
! v(k) \n(k) for t 9 and 4
d(n) = nIEkl;Il (k)'( U ) or type 2 an queues
294
kljl ﬁ(vﬁ))n(m for type 3 queues
h(x) for type 5 queues

where n is the marginal state for the detailed state .

The functions A,;, and A, are given by

yk ! o Mk 1R for type 2 queues
yk,l,uk,lak,l for type 3 queues

A k,l)=
ph(@: 1) priar  if e =((k,1),...) for type 4 queues
0 otherwise
1 if 2 = (k,...)and [ = 1 for type 1 queues
Ykl

Mk, (1 — agy) for type 2 queues
Zlk,l,uk,l(l — ay,) for type 3 queues

Ael’ 7k7l = .

(2,k,0) prei(l—ag;) if 2 =((k,1),...) for type 4 queues
pi(n) for type 5 queues
0 otherwise

B The conditional probability S,

Let p € Pg and z denote the detailed state of the corresponding queue. The conditional probability
Sp (cf. (7)) is given by

P Hk 1 n(k)! for type 1 queues

n U A
S (n() )" P T (5240 SLT) - for type 2 and 3 queues

nLE! [T ( - OV TR (k) (g )M (R)) for type 4 queues

1.0 for type 5 queues
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The conditional probabilities 5, for slightly different states of a queue can be easily related to
each other. These relations can be exploited in the proof of the product form theorem for PQPNs, see

appendix C. Define the following notations:

x — (s,1) is the state just before the "arrival” of a token of colour s in phase [, leading to state x.

x + (s,1) is the state just before the ”departure” of a token of colour s in phase [, leading to state x.

The conditional probabilities 5, for some different states of a queue are related as follows:

type of queue factor of S,(z) for
Spx = (s, 1)) Sp(e+ (s, ) |Sp(x = (s,D) + (s, m))| Sp(w+(4,1) = (s,1))
n n(s)+1 n(t)+1

FCFS n(i) P 1 n(s)

Hs 1 s Acl As,m Hal Ys,l (n(t)‘l‘l) Mt Ysa Hel
PS,IS A st () F DI GmES | R e oD | n) e (et D) e At

ny Ps1 (n(s)+1) pe Hsi Asm n(t)+1 fhs1
LCFS n(i) ths (nx+1) ps zA pem As s fhs fheg O
Note that for FCFS queues only [ = m = 1 makes sense. The above given table can be read as

follows. E.g., for a FCFS queue we have:

Sp(x = (s,1)) = —==5,(z)

C Detailed proof of the product form theorem for PQPNs

With the notations defined in the proof of theorem 3 the global balance equations can be rewritten as

m(x, M) ( Z r(M,t)+ (20)

teT\(ToUTg)

S (M) + (21)

tETo\TQ

> (Aprl, 5, 1)+ Aew(2,5,1)) + (22)
s€Tg

5 Y (e, + Al 1) (23)

SETQ (=2

> S ow(a, M = I(t)+ I(s))r(M — I(t) + I(s), s)p(s, 1) (24)

teT\(TouTy) SGT\TQ
+ > (Y (@, M —I(t)+ I(s))r(M = I(t) + I(s), s)p(s, 1) +

tETo\TQ SGT\TQ

> Z ), M — I(t) + I(s))Aex(z + (s,1),5,1)p(s,1)) (25)

SETQ =1

+ 20 > ma— (s, 1), M= 1I(s) + I(t))r(M = I(s) + (1), 1)p(1, 5) +

s€Tq teT\Tg
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S Yo (1) = (510 M = 1)+ L) Aerle + (1.1) = (5, 1), Dp(t, ) (26)

tET]ﬂTQ =1

Us—1

+ O > w(@t(s,0) = (s, L+ 1), M)App(@ + (s,0) = (5,0 + 1), 5,1) (27)
seTq I=1

Terms (20) and (24) correspond to the flow not affected by queues, (21) and (25) to the flow through
transitions in Tp, (22) and (26) to the flow through the first phase of service in each queue, and (23)
and (27) to the flow through all other phases of service in a queue.

In the following we will show that local balance holds by equating the corresponding terms of the
sums of (20) = (24), (21) = (25), (22) = (26) and (23) = (27).
Let S(z) = HpEPQ Sp(wp)-

ad (20) = (24): We show ¥t € T\ (To UTp) :
MO = 3w M= IO+ I =IO+ I p(et) (29
Since ¢ ¢ To, we have p(s,t) = o,vje To. Thus (28) becomes
@ M)OL0) = 3 w0 = 0+ He)rOf = 10+ 1(6) )p(s:0)

After substituting 7(«, M) with the right part of (9) we obtain the defining equations for function
f as for PSPNs (cf. (2)).
ad (21) = (25): Weshow Vi € Tp \ T :

m(x, M) (r(M,1))

(> mle, M= I(t)+ I(s))r(M = I(1) + I(s), s)p(s,1) +

SGT\TQ

3 Z ) M = I(t) + I(8))Aea( + (5,1), 5, D)p(s,1))

SETQ =1

Using (9) and (3) we obtain

B(M)r(M,1) =
B> @(M—I(t)ﬂ(s))ﬁ‘j))r(zw (1) 4 1(5). (s 1) +
s€eT\Tg
S J(s) G(M — I )+1(s))§: MM(H(S,U,S,Z))
sETQ t =1 S($)
implying
o(M — I(1))x(1) =
f(s)

o 7(0) p(s, 1) +
f(s) . o(M = I(t)x(s) =Sz +(s,1))
2 T =T+ 1(5),5) 25

Aew(® + (8,1),8,1))
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Since t ¢ T, the last equation holds if
r(M = I(t) + I(s),s) = r(M + I(s), )

i 5 x;é SO\ (a4 (50, 8,0)

which can easily be shown to be satisfied for all queues of PQN-type.
ad (22) = (26): Here we show Vs € Ty :

m(x, M) ( (Apn(,s,1)+ Aex(2,5,1)))
= (Y wa—(s,1), M= I(s)+ I(t))r(M = I(s) + I(1),)p(t, ) +

teTI\TQ

Z iﬂ(x + () — (s, 1), M — I(s)+ 1(t) Aex(z 4+ (£, 1) — (s, 1),8,D)p(t, s))

teT,NT, =1
Using (9) and dividing by 2®(M)g(M)S(x) yields:

(Apn(z,8,1) 4+ Ap(2, 8,1))

_ BT — 1) + 1)V — 1) + 10,086~ (1) F0)
(2 #(01) EEIR L
BOL— T+ 10) J(0) St (D= (1)
D )Y (@ +(1,0) = (5,1),1.1)

implying

(Apn(z,8,1) 4+ Ap(2, 8,1))

_ oM — H)N(D) S(e — (1) (1)
= 2 oD S gn
(M — I(s) + I(t)) f(1) 92+ (D)~ (s.1))
te%jb @(M) f(s)p(t78)§[ S(x) ’\el’(x + (tvl) - (571)7tvl)])
yielding
Fs)Apn(,8,1) + Aew(2, 5, 1))
-y I D) ) g +

e, X8 S(x)

B = I(s)+ 1(1)) & 82+ (1) = (5,1))
A oo =D sw

This equation is satisfied if the following hold:

a) (App(z,s, 1)+ Aew(z,s,1)) = Ipx(s)
b) r(M,s)S(x—(s,1)) -1

er(® 4 (1,1) = (5, 1), 1, DIX() f(1)p(t, 5)

@X]\(/;) I S(i) ) l
o) U q;(M()S))((; () s 1 (“(g(;)‘ (1)) (w4 (10) = (s, 1), 8,1)] =

where I, € R is some positive value.

Fusing conditions a)+b) and b)+c) we obtain two conditions:

o) r(M,s) = %(/\ph(@s,l)—l— Nenl, 5,1))
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S+ (L) = (5,1))

2 X(s) Sy ¢_(M)X(t) 1= S(x) ex(@+ (1, 1) = (s,1),1,1)]
<~
r(M, s)P(M) X)) _ S(z) w e+t 1) = (s, 1))
P00~ I(5) +IIN(s) — S (s ==l sy ele #0206
<~
st = s (U D=l ot 40 - ()80 =
w S+ (@0 — (s, 1
M — I(s) + I(1),8) = 320 | (;(95_25,1()) Dol + (4,1 = (5,1),1,1)]

Note that s,¢ € T holds for this case.
Both conditions are satisfied for queues of PQN-type. Note, that for FCFS we have u; = 1 and for
other type of queues we have 3% Ay (1 —aqsy) = 1.
ad (23) = (27): We show Vs € T :

U s

m(x, M) ( Z(/\ph(x, s, 1)+ Aew(z,8,1)))

[=2

Us—1

STow(e+(s,0) = (s, 0+ 1), M)App(a + (s,0) = (s, + 1), 5,1)

=1

For FCFS queues and the flow equivalent service center there is nothing to show, since service
times are exponentially distributed (us = 1) and thus 0 = 0 trivially holds.
So let us consider some other type of queue. Shifting the index [ — [ 4+ 1 on the left side this

equation becomes

Us—1

m(x, M) ( Z (Apr(z, s, 04+ 1)+ Aep(z, 5,14+ 1)))

= > wa+(s,0) = (s, 0+ 1), M)App(a + (s,0) = (5,0 + 1),5,1)

=1

Equating the individual terms of the sums yields

m(x, M) ( (Apn(z, s, 1+ 1)+ Aew(z, 5,04 1)))
= w(a+ (s,0)= (s, 1+ 1), M) pp(x + (s,1) = (5,0 4+ 1),s,1)

Using (9) we obtain

S(z) (Ao, s, 1+ 1) + Aep(z, 8,04 1))
= Sz +(s,01) = (s, 1+ 1) Al + (s,01) — (s, + 1), 5,1)

which holds for all queues of type PS, IS or LCFS.

With that the global balance equations hold and 7(z, M) given by (9) is the steady state distribution.
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