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Abstract. This article describes a new version of the QPN-Tool now
supporting specification and analysis of hierarchically combined Queue-
ing Petri nets (HQPNs). HQPNs are an extension of QPNs allowing the
refinement of places by QPN subnets and/or queues. HQPNs can be anal-
ysed with respect to qualitative and quantitative aspects. Quantitative
analysis is based on numerical Markov chain analysis. In contrast to con-
ventional techniques the Markov chain underlying a HQPN is analysed
by an approach exploiting the hierarchical structure of the model which
results in a tensor representation of the generator matrix. This technique
extends the size of solvable state spaces by one order of magnitude. Qual-
itative analysis of HQPNs relies on efficient analysis techniques based on
Petri net theory. The new version of QPN-Tool implements the above
analysis approaches supported by a graphical interface for a convenient
specification of complex models.
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1 Introduction

The model based analysis of computer and communication systems requires
adequate software tools to handle the inherent complexity of today’s systems.
Furthermore it is more and more agreed upon that analysis has to be performed
according to both qualitative and quantitative aspects of a system, preferably
using one model. Many modelling paradigms and analysis techniques exist for
these purposes, in particular models based on underlying Markov chains are well
suited for a quantitative analysis and can also be used for qualitative analysis by
neglecting timing information. Markov chains are often analysed by numerical
techniques, which are more accurate than simulation and more flexible than
analytical analysis techniques. However, any approach for a state based analysis
is faced with the following problems:

It has to support the modelling of complex systems, such that models are
understandable and can be easily modified, and it has to manage the state space
explosion which results from the usually exponential growth of the number of
states as a function of the size of the model specification.

A rich variety of techniques exists for a high level specification of Markov
chains; two particularly important ones concerning performance analysis are ex-
tended queueing networks and generalised stochastic Petri nets (GSPNs, [1]).



Both techniques have their specific advantages and disadvantages. The possi-
ble exploitation of the advantages of both approaches led to the development
of QPNs, combining coloured GSPNs and queueing networks in one modelling
formalism [2], and the QPN-Tool supporting the graphical specification and auto-
matic analysis of QPNs [4]. However, QPNs also suffer from the above mentioned
problems since they describe a flat model which becomes complex when the sys-
tem to be modelled 1s complex and the size of the resulting Markov chain often
exceeds the capacity of today’s computers.

A general method to handle complexity is the use of hierarchical structuring
mechanisms. This route has already been pursued in some performance mod-
elling tools, as an example we refer to HIT [6]. Furthermore hierarchical untimed
Petri net models are widespread (e.g. [16]). However, all mentioned approaches
use hierarchies only for specification purposes, while analysis is performed on the
underlying flat model. More recently a hierarchical approach for the specifica-
tion and analysis of queueing networks [9], coloured GSPNs [7] and a subclass of
HQPNs [3] has been developed. This approach allows the hierarchical specifica-
tion of models and an efficient numerical analysis that exploits the hierarchical
structure. The central idea of the analysis is to represent the huge generator ma-
trix of the underlying Markov chain by much smaller matrices, each describing
a submodel, which are combined using tensor operations. Using this technique,
Markov chains can be solved which are about an order of magnitude larger than
those analyzable with conventional techniques. A salient property of our hier-
archical approach 1s that 1t does not depend on model symmetries and leads to
exact results.

HQPNs as introduced here allow the specification of a system in several levels:
The top-level is a QPN additionally comprising special places which themselves
include HQPN subnets. The lowest levels of the hierarchy are described by QPN
subnets which are coloured GSPNs with some additional places including queues.
In this paper we describe a new version of the QPN-Tool [4] which supports the
specification and analysis of HQPNs. Specification of HQPNs is supported by
a graphical interface which allows a convenient specification and the reuse of
submodel specifications in one or several models. Analysis can be performed
according to qualitative and quantitative aspects using the same model. Quali-
tative analysis is based on established algorithms for the analysis of Petri nets.
QPN-Tool offers standard Petri net algorithms and also very efficient methods
based on special net classes [17]. Quantitative analysis can be performed us-
ing conventional analysis techniques on the flat Markov chain, which is often
preferable for small state spaces up to 50,000 states, or by the hierarchical tech-
nique, which allows the analysis of models with several millions of states on
standard workstations. For larger models, approximate analysis based on aggre-
gation/disaggregation can be performed.

A variety of other tools have been developed in the last years to support
the specification and analysis of stochastically time-augmented Petri nets, e.g.:
DSPNexpress [19], GreatSPN [11], SPNP [12], TimeNET [15] and UltraSAN [23].
All these tools provide numerical solution facilities for the underlying Markov
chain, some also include simulation. Apart from UltraSAN all tools rely on flat
and uncoloured nets. As far as the authors know there exists presently one other
tool which supports Markov chain analysis based on a tensor representation of



the generator matrix, namely the tool PEPS for the analysis of stochastic au-
tomata networks (SANs) [21]. However, SANs are completely different from the
model class introduced here since they specify stochastic automata which com-
municate via synchronised transitions, rather than by asynchronous exchange
of entities. There is also work going on to transfer the results for SANs in the
GSPN area [14].

The outline of the rest of this paper is as follows. In the next section we
introduce HQPNs in some more detail and briefly explain the hierarchical anal-
ysis approach. The following section is dedicated to the QPN-Tool version 2.0.
In Sect. 4 a simple example model is presented to compare the performance of
different analysis approaches.

2 Hierarchically Combined Queueing Petri Nets

In the original QPN formalism [2] the timing aspects of a coloured GSPN [13]
are extended by the option of integrating queues into places (see Fig. 1). Such
a timed place consists of a queue and a depository for served tokens. Tokens
being added to a timed place, after a transition firing, are inserted into the
queue according to the queue’s scheduling strategy. Each colour of tokens has an
associated individual service time distribution of Coxian type. After service the
corresponding token moves to a depository, where it is available to the place’s
output transitions. Tokens in a queue are not available for firing.

Every QPN can be analysed with respect to qualitative and quantitative
aspects. The qualitative analysis of a QPN is completely based on the QPN’s
underlying coloured Petri net, where all timing aspects are neglected. The basis
for a quantitative analysis of a QPN is its corresponding Markov chain. Every
QPN describes a stochastic process. A state of this process is determined by the
cartesian product of the state descriptors of all timed places and the number of
coloured tokens within ordinary places. The initial marking of the QPN defines
the initial state of its stochastic process under the assumption that initially all
tokens contained in timed places are situated on the corresponding depository.
The state space is partitioned into two types of states similar to GSPNs [1]: van-
ishing and tangible. A quantitative analysis can be performed with conventional
techniques [2]. The complexity of a quantitative analysis is significantly reduced
if the QPN has a hierarchical structure.
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Fig.1. Example timed place of a QPN and its shorthand notation

Hierarchically combined Queueing Petri nets (HQPNs) are obtained by a
natural generalisation of the original QPN formalism. In HQPNs a timed place



may contain a whole HQPN subnet instead of a single queue (cf. Fig. 2). Such a
place is called a subnet place. A HQPN subnet might be a QPN subnet or again
a HQPN comprising additional subnet places.

The HQPN subnet of a subnet place has a dedicated input and output place,
which are ordinary places of a coloured Petri net. Tokens being inserted into a
subnet place after a transition firing are actually added to the input place of
the corresponding HQPN subnet. The semantics of the output place of a subnet
place is similar to the semantics of the depository of a timed place: Tokens
contained in the output place are available for the output transitions of the
subnet place; tokens contained in all other places of the HQPN subnet are not
available for the output transitions of the subnet place. The HQPN subnets we
consider in this context have to observe the conditions given in the description of
the hierarchical analysis approach. HQPNs can be analysed as flat models with
respect to qualitative and quantitative aspects employing well-known algorithms
of Petri net and Markov theory. In the sequel we concentrate on the new approach
for quantitative analysis.
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Fig. 2. Example subnet place of a HQPN
and its shorthand representation Fig. 3. Isolated HQPN subnet

Integration of subnet places into the original QPN formalism leads to a
hierarchical structure of a QPN model. Such a hierarchical structure can surely
contain more than just two levels but for simplicity of notation we restrict our-
selves in the following to a two-level hierarchy. Let high-level QPN (HLQPN)
denote the upper level of a HQPN. The HQPN subnets of the subnet places in
the HLQPN are denoted by low-level QPNs (LLQPNs).

The quantitative analysis employing this hierarchical structure, called struc-
tured analysis, comprises the following steps:

1. Generation of the HLQPN state space and transition matrix.

All subnet places of the HLQPN are replaced by the subnet’s dedicated input
and output places. Each input and corresponding output place is connected via
a timed transition, which behaves like the output transition of the LLQPN and
has a nonzero transition rate. We will call such a timed transition virtual since
the firing rate might be chosen arbitrarily. The initial marking of the HLQPN
i1s given by the initial marking specified on that level. The specification of the
HLQPN is independent of the internals of the LLQPNs apart from their out-
put transitions, which determine the input/output behaviour of the LLQPNs.
Provided the HLQPN includes no timeless traps, which can be checked on the



net level [2], we can determine its state space and transition matrix containing
only tangible states. LLQPN specifications have to observe the restrictions given
below.

2. Generation of the LLQPNSs’ state spaces and transition matrices.
For a structured analysis, the subnet integrated into a subnet place 1s restricted
to HQPN subnets satisfying the following restrictions [7]:

1. The set of token colours are identical for the input and the output place. Arcs
are not allowed which connect the dedicated output place with a transition
of the subnet.

2. The macro state descriptor of the LLQPN, as needed for step 1, is given
by a fixed set of places. In the current version of the QPN-Tool this set
1s determined by the places input and actual_population. Transition {_input
i1s defined to behave like an identity function, so that transition f{_output
describes the behaviour of the HQPN subnet as seen in the HLQPN.

3. The subnet is structurally bounded, i.e. for any number n of tokens entering
the subnet, the number of all tokens in the subnet is always bounded above
by some value k,, € IN. The modeller can check this restriction employing a
local qualitative analysis of the isolated subnet (cf. Sec. 3), e.g. calculating
a cover of positive P-invariants.

4. According to our assumptions about the influence of the HLQPN on the
behaviour of a subnet we restrict this behaviour at the LLQPN level to a
kind of single step behaviour: If a token enters the subnet (being fired onto
the input place), no token can be fired onto the output place at the same (1)
point of time.

Given these restrictions the state space and transition matrix for each LLQPN
are generated in isolation (see Fig. 3). The behaviour of a LLQPN’s environment
1s completely specified by the state transitions of the HLQPN determined in
step 1.

In the quantitative analysis timed places can be viewed as special cases of
subnet places where the queue forms the HQPN subnet and the output place is
given by the depository of the timed place. A timed place trivially satisfies the
above given restrictions. It can consequently be handled as a subnet place where
the queue and the corresponding depository are considered as a LLQPN.

3 QPN-Tool version 2.0

The QPN-Tool as described in [4] has been modified to allow the specification of
HQPNs and their analysis using the efficient technique mentioned in the former
section. In the following we describe features of QPN-Tool emphasizing the newly
integrated ones.

QPN-Tool is implemented in C and is executable on Sparc-machines with
Sunview or OpenWindows under Solaris 1. It contains a graphical user interface

and a variety of analysis algorithms for qualitative and quantitative analysis of
HQPNs. Figure 4 describes the modular structure of QPN-Tool.
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3.1 Graphical user interface

The graphical user interface manages the complete user interaction. It supports
specification of HQPN models and analysis tasks. It offers a selection of analysis
algorithms and performance measures to be calculated and presents results of
qualitative and quantitative analysis.

A hierarchical model description consists of two different types of nets: a
HLQPN and LLQPNs, which may or may not contain LLQPNs themselves. We
give a brief description of a hierarchical model specification process starting with
the HLQPN:

1. The graphical description is clearly dominated by its coloured Petri net
part. This part is specified by creating and positioning places and transitions
and establishing their connections by directed arcs. Figure 6 shows an example
HLQPN. Here all transitions are immediate and all places are subnet places
except for the place Manager which is a timed place.

2. Attributes of places and transitions have to be set. This includes entering
the different colours in a list, choosing the type of transitions and places (timed
or immediate, resp. timed, subnet or ordinary) and fixing the number of tokens
for the initial marking. Timed and subnet places require additional information.
For these places, the user has to specify performance figures to be determined
in quantitative analysis (cf. Sect. 3.2). In case of a timed place, the scheduling
strategy and number of servers must be chosen. Presently available scheduling
strategies are Random, PS, Infinite Server (IS) and Priorities. For each colour,
the service time distribution is specified by its mean and coefficient of variation,
which is then approximated by a Cox distribution. In case of a subnet place, the
corresponding subnet specification (see 4. below) has to be given.

3. The incidence functions of the coloured Petri net (cf. [13]) have to be speci-
fied. This is possible at each transition of a graphical submodel. Such a submodel
describes the locally unfolded net regarding a single transition and its input and
output places. A special feature of QPN-Tool fills the submodel automatically
with the transition’s colours and all input and output places including all of



their colours. Thus only arcs and their weights have to be specified manually.
This kind of specification remains unchanged from version 1.0, see [4] for more
details.
4. The specification of subnet places follows the same steps as the specifica-
tion for the HLQPN. Similar to the local unfolding of a transition QPN-Tool
automatically fills the subnet with the dedicated input and output places and
input and output transitions (Fig. 7, see also {_input and {_output in Fig. 2). The
ordinary place actual_population is also inserted automatically.

The automatically generated subnet can be extended by the user to a com-
plete HQPN itself (cf. the user specified part in Fig. 2). The corresponding spec-
ification mechanisms are identical to the ones of the former described HLQPN.

QPN-Tool Version 2.0, curren Loexamp
flLeft button - Move object
Middle button - Create node
Right button - Show operation menu

Fig.6. Example HLQPN

In order to simplify the utilisation of a subnet specification for different
places, QPN-Tool allows to declare an ‘external’ subnet by a filename. If the
subnet contained in this file has input/output places with colour sets different
from the colour set of the subnet place, the colours are matched by order of
appearance in the colour lists. This matching is brute-force, but from a user’s
point of view it is easy and convenient to use. Figure 7 shows a subnet of Proc_1
which is re-used for subnet places Proc_2, ..., Proc_5 in Fig. 6.

3.2 Analysis techniques of QPN-Tool

Typically analysis goals either refer to qualitative properties, e.g. absence of
deadlocks, liveness or boundedness, or to the determination of performance mea-
sures. Within QPN-Tool qualitative properties are investigated by a so-called
qualitative analysis which is based on Petri net theory. Performance measures,
on the other hand, are computed by analysis of the corresponding Markov chain,
which is called quantitative analysis. A major advantage of a hierarchical model
description 1s that isolated LLQPNs can be analysed assuming a well-behaving
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environment and that the HLQPN can be analysed assuming well-behaving

LLQPNs.

Ahead of any qualitative analysis a consistency check is performed, where
naming inconsistencies and mismatches between different levels of a hierarchical
model are recognized. Subsequent to the consistency check, the embedded CPN
of an isolated subnet or the HLQPN 1itself is unfolded and classified in terms of
an uncoloured Place/Transition net: marked graph, state machine, free choice,
etc. This classification neglects timing information, replaces a subnet place by
its input and output place and connects these places via a virtual transition.
It supports the choice of a suitable analysis algorithm for a local qualitative
analysis, as special algorithms are available for certain net classes, see Fig. 5.



Qualitative analysis For a qualitative analysis of a HQPN, it can be trans-
formed to a flat CPN neglecting all timing aspects and inserting all subnets for
their corresponding subnet places. Figure b presents the selection of qualitative
analysis algorithms implemented in QPN-Tool; it follows mainly version 1.0, [4].
Apart from ‘classical’ algorithms like reachability graph analysis and calcula-
tion of P- and T-invariants, novel algorithms for special net classes are offered.
Qualitative analysis within QPN-Tool aims at liveness and boundedness. If the
HQPN does not exhibit these properties, information from the employed algo-
rithm is extracted in order to indicate the reason for a HQPN being unbounded
or not live. All implemented qualitative analysis algorithms are based on Petri
net theory and consider the underlying untimed CPN;, i.e., timing aspects such
as firing delays and frequencies are ignored, and a timed place is replaced by two
places and a transition connecting these places.

The same set of Petri net analysis algorithms can be applied to the HLQPN.
In this case every subnet place is replaced by an input and output place and an
additional transition obtained from t_output in the corresponding subnet. For
1solated subnets only invariant analysis can be performed.

Conventional and structured quantitative analysis Quantitative Analysis
is pursued with the objective of assessing performance properties for a HQPN.
Different performance measures are offered for

ordinary places: token population
timed and subnet places: utilisation, throughput and token population

The calculation of performance measures results in mean values for steady state.
For token populations variance and distribution are additionally calculated. Re-
sults can be computed for all colours of a place separately or aggregated overall
colours.

QPN-Tool offers in its current version two main options for a quantitative
analysis: conventional and structured. The conventional analysis technique trans-
forms the HQPN into a flat QPN model, maps this QPN model onto a corre-
sponding Markov chain, and subsequently analyses this chain with respect to its
steady state distribution. The QPN’s state space is fully explored causing quan-
titative analysis to be restricted to QPNs with a finite state space of acceptable
size.

The conventional numerical analysis includes three main steps:

1. exploring the state space
2. computing the steady state distribution
3. calculating the performance measures

It is able to handle state spaces with around 200, 000 states depending on the
structure of the CTMC and the available memory. Different algorithms for the
calculation of the steady state distribution are offered.

The idea of the structured analysis 1s to avoid the generation and storage
of the complete generator matrix and instead exploit the model structure also
for analysis. The underlying ideas are described in [7, 9]. Here we give only a
brief summary of the approach. In a first step the HQPN is transformed into a
two level hierarchy including one HLQPN and several LLQPNs. Afterwards a



single state in the complete state space can be represented by a unique state of
the HLQPN and a unique state for every LLQPN. Therefore the complete state
space can be generated by combining subspaces of the LLQPN state spaces ac-
cording to a state of the HLQPN. Subspaces of LLQPN state spaces are defined
by the marking of the places input and actual_population. Like the state space,
the generator matrix is structured into submatrices according to the state of the
HLQPN and every submatrix can be represented by the generalised tensor (kro-
necker) product/sum of submatrices describing local transitions in the LLQPNs.
These structured representations of state space and generator matrix are very
compact since the size of the overall state space and also the size of the generator
matrix grows with the product of the sizes of LLQPN state spaces and matrices.
Thus, the combination of a few LLQPNs, with a few hundred states each, yields
an overall state space with several millions of states.

Structured analysis results from the observation that the matrix structure can
be exploited during the analysis. Exploitation of this structure means that state
space generation and iterative solution becomes more efficient in terms of mem-
ory requirements and sometimes also in terms of CPU time requirements. The
underlying numerical techniques are essentially the same as in the conventional
case, only the basic operation, the vector matrix multiplication, is implemented
in a different form. Thus, structured analysis is an exact approach, as far as
iterative numerical analysis techniques are exact, and does only rely on the hi-
erarchical structure, not on symmetry assumptions. For structured analysis we
have to perform the same three steps as above, however, the single steps are
slightly different. Exploration of the state space consists of

1.1 exploration of the HLQPN state space and elimination of vanishing states.
This yields all possible populations (macro states) for all LLQPNs and all
queues in the queueing places. Additionally all possible arrivals to LLQPNs
are described.

1.2 exploration of the LLQPN state spaces and elimination of vanishing states.
The state space and the transition matrix are generated for the LLQPN in
combination with an environment generating the same inputs as the HLQPN,
but without quantitative information about possible interarrival times.

This approach accelerates generation of the state space for large models,
since a number of small state spaces instead of one very large state space is
generated. Additionally the generation can be easily parallelised since state space
and matrix generation for a LLQPN depend only on the state space of the
HLQPN and not on other LLQPNs.

Subsequently the second step 1s performed and the Markov chain is analysed
by an iterative technique using only HLQPN and LLQPN matrices. For details
about the realisation of the algorithms we refer to [7, 9]. The approach allows to
analyse Markov chains with several millions of states, see Sec. 4 for an example.
The last step is the computation of the required performance measures from the
stationary solution vector, exactly as for a flat analysis.

An approximate analysis technique, which is integrated in QPN-Tool, is based
on repeated aggregation/disaggregation of LLQPNs. State space generation for
this method is performed as described above. However, for an analysis the com-
plete probability distribution vector is never generated. Instead, the LLQPNs



and the HLQPN are analysed in isolation by assuming all other parts of the
model are aggregated. Analysis of an isolated LLQPN/HLQPN yields new pa-
rameters for the aggregates, which are used for the isolated analysis of other
parts. This process is iterated until a fixed point is reached. Although the tech-
nique is a heuristic it often yields sufficiently accurate results in a very short
time, even for large models.

The implemented structured analysis module currently supports two levels
of the hierarchy, hierarchical LLQPNs are simply flattened and subsequently
analysed. The approach can be extended to use several hierarchical levels, but
this presumably does not extend the size of solvable models, since most of the
memory is used for the vector rather than for the generator matrix represen-
tation. Thus, from a solution point of view it is not necessary to support more
than two levels, however, for specification convenience arbitrary hierarchies are
highly recommended and are supported in QPN-Tool.

4 Example

The following example demonstrates the advantages of the structured analysis
of HQPNs compared to conventional techniques.

The HLQPN of our example system is shown in Fig. 6: 5 workstations Proc_1,
..., Proc_5 with a local disk each, and a special diskless workstation Manager
with two processors and a joint processor sharing scheduling strategy. All work-
stations are connected via a bidirectional bus which has to be used exclusively.

The b workstations Proc_1, ..., Proc_5 are identically specified by the subnet
given in Fig. 7: A customer/token entering the subnet is forked into several jobs
which are processed at the CPU. Several disk accesses might be necessary before
a job completes its service at that workstation. A served job is modelled by a
token of appropriate colour on the place Done. If all corresponding jobs have
completed their service, they join again by firing transition t_output and the
resulting customer/token may leave the subnet.

The system is used for an iteration problem, each workstation calculates a
specific part of the iteration vector. This part is transmitted to the Manager via
the Bus. When the Manager has received all parts of the new iteration vector,
it updates its local copy and distributes the updated vector to all workstations
via broadcasting. We assume that calculation of the fixed point takes a huge
number of iterations and therefore only consider the iteration process, neglecting
all convergence issues in our model.

The model is analysed for an increasing number of jobs running on the work-
stations. All experiments were performed on a workstation with 16MB main
memory and 48MB virtual memory, time 1s measured in seconds as real time
which is a more appropriate measure than CPU time. Table 1 and 2 summarise
the results for some configurations. We assume that all workstations are identi-
cal, thus in the structured analysis approach we need to generate only matrices
for workstations with different populations. It can be seen that the size of the
state space grows rapidly with an increasing number of jobs in the system. The
first column contains the total number of jobs, the second column in table 1 and
2 the number of tangible 4+ vanishing states and the number of tangible states,



respectively. The number of tangible states is identical for the conventional and
structured approaches, however, in the structured approach vanishing states are
eliminated locally, such that only the tangible part of the complete state space
i1s generated. The number of tangible states equals the state space size of the
Markov chain. For the conventional approach first all states, tangible and van-
ishing, have to be generated, subsequently the vanishing states are eliminated.
For a structured analysis only HLQPN and LLQPN state spaces have to be
generated and vanishing states can be eliminated locally. The largest state space
which has to be handled for a structured analysis is the HLQPN state space con-
sisting of 272 tangible and 682 vanishing states. The LLQPN state spaces are all
smaller for the above parameters. The time needed to compute the state space
and to eliminate vanishing markings is given in column four. Apart from the
smallest configuration with only b jobs, the structured approach is much faster,
in spite of the strictly sequential implementation of the structured state space
generation, which means that the generation process is started several times
which increases the effort for smaller state spaces. The generation time for the
structured approach is nearly independent of the state space size, whereas the
generation time for the conventional approach depends heavily on the number
of states to be generated and the number of vanishing states to be eliminated.

# jobs|# tang. + vanish. states|non-zeros|generation time|time per iter.
5 3.56e+3 7.94e+3 7.60e+1 5.00e-1
10 4.59e+4 1.86e+5 2.90e+2 1.38e+1
12 1.05e+5 4.87e+5 5.97e+3 7.12e+2

Table 1. Results for conventional analysis

# jobs|# tang. states|non-zeros|generation time|time per iter.
5 1.32e+3 1.19e+3 1.69e+2 5.50e-1
10 2.29e+4 1.20e+3 1.79e+2 2.20e+0
12 5.60e+4 1.23e+3 2.17e+42 4.60e4-0
15 2.10e+5 1.22e+3 1.82e+2 1.98e+1
20 1.30e+6 1.23e+3 1.85e+2 2.03e+2
23 3.30e+6 1.30e+3 2.55e+2 3.14e+3

Table 2. Results for structured analysis

Column three contains the number of non-zero elements which have to be
stored to represent the generator matrix. For the structured approach the num-
ber of elements is nearly invariant for an increasing number of jobs. On a first
glance at table 2 it might be surprising that we need more elements for 12 than
for 15 jobs; however, this is caused by the different workstation populations for
12 jobs which requires the storage of two sets of matrices, one for workstations
with 2 running jobs, and one for workstations with 3 running jobs. For 15 jobs
all workstations receive 3 jobs. The storage of iteration and solution vectors is



the limiting factor of structured analysis. The conventional approach requires a
huge number of elements to be stored, although the generator matrix is sparse
and we use, of course, a sparse storage scheme. The storage of the generator
matrix becomes the limiting factor of the conventional approach. We were able
to handle up to 12 jobs with the conventional approach, which equals a model
with slightly more than 100,000 states; for larger populations the elimination of
vanishing markings exhausts available memory. The structured approach allows
to handle models with up to 23 jobs and more than three millions tangible states
and additional vanishing states which are never generated in the complete state
space. Of course, the solution of such a model is time consuming, if vectors do
not fit into main memory.

The time needed for one iteration of the vector with the iteration matrix is
given in column five for the conventional and structured approach, respectively.
It is obvious that the structured approach takes a similar time for small state
spaces and 1s much faster for larger models. The latter is caused by the extremely
time consuming paging operations needed for the conventional method whenever
the generator matrix does not fit into primary memory. The time required for
a complete solution depends on the transition rates, the solution technique,
the initial vector and the required accuracy. However, starting from an initial
vector obtained by the approximation method as described above, the model can
be analysed for a rather wide variety of parameters with between 40 and 300
iteration steps to yield an estimated accuracy of 1078 for the solution vector.
Thus it is possible to solve all models on a standard workstation, although the
analysis of the largest configuration would take quite long. Using slightly more
powerful machines would reduce the solution time to one night.

It should be noticed that the above model can be analysed more efficiently
by exploiting symmetries in the model specification to generate first an exactly
reduced Markov chain, which is afterwards solved using the structured approach.
Examples for the reduction of a similar model are given in [3], the technique
extends results on Stochastic Well-Formed Nets [10] and is described in [8].
Symmetry exploitation is currently not available in QPN-Tool, work towards an
implementation is underway.

5 Conclusions

The new version of QPN-Tool supports the specification and efficient analysis of
hierarchically combined Queueing Petri nets (HQPNs).

It attacks the two major problems of model-based system analysis:

Largeness of model specifications: HQPNs combine coloured GSPNs, queue-
ing networks and offer hierarchical specification facilities. This yields specifica-
tion advantages which result in a compact model specification: from coloured
GSPNs we obtain simple description methods for synchronisation, fork and join-
operations, from queueing networks we gain natural description methods for
queues and scheduling strategies and finally the hierarchical approach results
in the capability of reusing submodels and of keeping a clear and structured
design. The specification of HQPNs is encouraged in QPN-Tool by a convenient
graphical user interface. Even novice users get quickly acquainted with HQPNs.



A simple and convenient specification technique is very important for increasing
user acceptance [22].

Largeness of state spaces: Quantitative analysis, especially numerical anal-
ysis of finite Markov chains, notoriously suffers from the so-called state space
explosion problem. Modern tensor based iteration techniques extend the set of
solvable state spaces by about one order of magnitude. This 1s possible if the
model is structured adequately. QPN-Tool manages to exploit the hierarchical
structure obtained by the hierarchical modelling specification for a structured,
tensor based quantitative analysis.

A further advantage of HQPNs 1s that they combine the description of qual-
itative and quantitative system aspects in one modelling formalism. QPN-Tool
supports these directions and again exploits the hierarchical structure of the
model. It offers qualitative analysis algorithms based on Petri net theory for a
so-called local analysis of isolated subnets and for a global analysis of a complete
HQPN. This assists a user to identify well-defined parts/modules of his system
and it especially facilitates error recognition.

Altogether QPN-Tool combines several modelling formalisms into a formal-
ism, which is supported by a convenient graphical user interface, and combines
qualitative and quantitative analysis techniques, which are able to exploit the
hierarchical structure given by a model specification.

Future developments of the QPN-Tool are dedicated to the integration of
simulative techniques. Further prospects concern exact and approximate aggre-
gation techniques based on the hierarchical description and the exploitation of
model symmetries. The integration of immediate queueing places [2] and queues
with further scheduling strategies is planned as well [5]. At present the graphical
user interface is being recoded for the X Window system.
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