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Abstract. In this paper we propose an efficient reachability set based
Petri net analysis by introducing dynamic priorities which decreases the
number of reachable markings in most cases. It is proved that for specific
dynamic priority relations certain properties (especially liveness and the
existence of home states) do hold if and only if these properties do also
hold for the Petri net without priorities. We present an algorithm based
on these priority relations additionally exploiting T-invariants thus being
able to benefit from the structure of the net.

1 Introduction

Analysis of Petri nets by exploring the set of reachable markings is a straightfor-
ward approach, since most properties are defined on the basis of the reachability
graph[12]. Although this kind of analysis of Petri nets suffers from the well-known
state space explosion problem, it is offered by most analysis tools[7], because it
is easy to implement and in case of error detection appropriate traces (firing
sequences) are also easy to derive. Furthermore they can be applied at least in
principal to general (bounded) Petri nets, whereas efficient structural methods
have their limits, e.g. the analysis of special net classes [6].

Methods trying to cope with the state space explosion problem generate a
compressed representation of the whole reachability graph (e.g. exploiting sym-
metries or structured representations[10]) or reduce the size of the reachability
graph without affecting the relevant properties under consideration[8, 14, 17, 19].
Reduction of the size is a suitable approach when we are only interested in “global
functional” properties, which is often the case.

In this article we use dynamic priorities to reduce the number of markings in
the reachability graph. The idea is similar to that of the stubborn set method[20]:
we want to reduce the number of enabled transitions at a given marking thus
hoping to reduce the size of the reachability graph significantly. Several authors
mentioned that the stubborn set method can also be considered a dynamic pri-
ority method (see e.g. [21]), but to the best of our knowledge this method has
not been investigated further in this context.

Since we are interested in specific properties of the original Petri net, we can
not use arbitrary priority relations. In Sec. 3 we define an appropriate class of



priority relations which leave several properties of the net unaffected. The results
of this section are an extension of those given in [1] for static priorities, where
only one direction was considered starting with the assumption that the Petri
net satisfies the properties of interest. We also show that the set of enabled tran-
sitions at each marking according to the proposed dynamic priority relations can
be viewed as stubborn sets, but that ignoring does not occur, so that also fur-
ther properties can be checked, where we have concentrated on those properties
which are also important in the context of stochastic Petri nets[2]. Furthermore
the proposed dynamic priority relations also allow the investigation of specific
markings, e.g. deciding whether the initial marking is a home state.

In Sect. 4 we discuss an algorithm based on dynamic priorities also exploiting
information on the T-invariants of the net. By means of examples we demon-
strate the algorithms efficiency, showing that the reduced reachability graph is
of moderate size.

2 Basic definitions

This section recalls basic notions of Place/Transition nets (P/T-nets) with weighted
arcs (cf. [12]) and some definitions for relations.

Definition1. A Place/Transition net (P/T-net) is a triple N = (P, T, W)
with PNT =0 and W : (P x T)U (T x P)) +~ INg. P is a finite set of places
and T a finite set of transitions. W specifies the interconnection of places and
transitions.

For @ € PUT the presetis given by ez = {y € PUT | W(y,z) > 0} and the
postset by xe = {y € PUT | W(z,y) > 0} and the usual extension to sets X C
PUT is defined as o X = .y o2, Xo =] . x ®o. A marking of a P/T-net is a
function M : P +— INg, where M (p) denotes the number of tokens in p. A P/T-
net N with an initial marking My is called a P/T-system, denoted by (N, My).
A set P C P is marked in a marking M, iff 3p € P : M(p) > 0; otherwise P
1s unmarked or empty in M. A transition t € T is enabled at M, denoted by
Mt >, ifft M(p) > W(p,t),Vp € P. EN(M) := {t € T|M[t >} is the set of
enabled transitions at M. A transition ¢ € T" being enabled at marking M may
fire yielding a new marking given by M’(p) = M (p) — W(p,t) + W(t,p),Vp € P,
denoted by M[t > M’. A P-invariant is a vector v = (vy,...,v|p|) satisfying
Ziih vi % (W(t,ps) — Wi(ps,t)) = 0,¥t € T. A T-invariant is a vector v =
(v1,...,vp)) satisfying Zgll(W(ti,p) —Wi(p,t;)) xv; =0,¥p € P.

The reachability set [My > is the smallest set satisfying My € [My > and
it M € [Mqg > M'[t > M"” for some t € T then M"” € [My >. As usual, the
reachability graph comprises all markings of the reachability set as nodes and
the corresponding enabled transitions as edges. R C [My > is a final strongly
connected component of [My > iff YM € R.M' € [My > M' € [M >=
(M € [M' > and M' € ]:3) A firing sequence of N is a finite sequence of
transitions o = #1...t,,n > 0 such that there are markings My, ..., M,



satisfying M;[t; > M;y1,¥i = 1,...,n. A shorthand notation for this case is
Mi[ec > and Mi[c > M,y resp. o has concession at M iff M[c > holds. ¢
denotes the empty firing sequence and M[e > M holds for all markings M. If
a transition ¢ is part of a firing sequence o we denote this by ¢ € o. #(0,1)
denotes the number of occurrences of ¢ in o and |o| denotes the length of &.
(N, My) is safe, iff Vp € P : YM € [My >: M(p) < 1. (N, My) is bounded, iff
Vpe P:3k € Ny : VM € [My >: M(p) < k. (N, My) is live, iff Vt € T)M €
[Mo >:AM’ € [M >: M'[t > . (N, My) is dead, iff AM € [My >: EN(M) = 0.
A marking M € [My > is a home state, if YM' € [My >: M € [M' >. (N, Myp)
is reversible, iff My is a home state. N is an extended free choice net (EFC-net),
iffvpe PteT:Wpt)<1,Witp) <1 and Vi,t' € T :otNet’ =0
or et — et’. N is an equal conflict net (EC-net), if Vt,t' € T : ot Neot' = {§
or W(p,t) = W(p,t'),¥p € P. SCS = {(t,t') € T x T| ot N et' # (I} is the
relation of structural conflict sets. SC'S™ is the reflexive and transitive closure of
the relation SC'S and with [t]sc s+ we denote the equivalence class ¢ belongs to.
Tpe :={t € T|Vt' € (ot)o : W(p,t) = W(p,t'),¥p € P} is the set of transitions
which locally exhibit an equal conflict net structure and Tvgc := T\ Trc.

In the following we will call P/T-nets also Petri nets.

Definition 2 relations (cf. [9]). Let T denote some set. p C T x T is a rela-
tion. pis reflexive iff (t,1) € p,Vt € T. p is irreflexive iff (t,1) ¢ p,Vt €T. p is
symmetric iff (L, V') € p = (U',1) € p. pis asymmetriciff (L, 'Y € p= ', t) & p.p
is transitive iff (¢, ), (t',1") € p = (1,1") € p. p is an equivalence relation iff p is
reflexive, symmetric and transitive. If p 1s an equivalence relation, then fort € T,
[t], denotes the equivalence class t belongs to. p=1 := {(t,t') € TxT | (¢, 1) € p}.

F= (L) €T x T|(t.t) ¢ pup'}.

In the following we do only consider irreflexive, asymmetric and transitive
relations p for which p is an equivalence relation and which take all elements of
T into account, i.e. {t € T|F € T : (t,t') € por (V',t) € p} =T. Trivially reflex-
1ve, symmetric or non-transitive relations will affect analysis of liveness aspects
negatively (cf. [1]). Assuming that 7 is an equivalence relation will simplify the
further discussion, since the equivalence classes of p determine transitions of the
same priority level/class.

3 Petri nets with dynamic priorities

A common method of defining priorities for P/T-nets is to impose an additional
relation p C T x T on the set of transitions[3]. Dynamic priorities (cf. [11]) are
usually defined in dependence on the current marking.

Definition 3. A priority P/T-net is a pair (N, p) where N is a P/T-net and
pE []NlolDI —C T x T] is a function defined on ]NlolDI defining a priority relation
for each possible marking of the net.

The dynamics of such a priority P/T-net is characterised by an enabling rule
taking these priorities into account.



Definition4. A transition ¢ € T is p-enabled at a marking M, denoted by
Mt >,, if M[t>and V¢’ € T: M[t' >= (t,t') & p(M).

Note that dynamic priorities are a generalisation of static priorities where
the priority relation is fixed for all markings.

All other definitions given in Sect. 2 can be easily reformulated for priority
P/T-nets in the context of p-enabling. Similar to [1] we will prefix or subscript
all notions for priority P/T-nets with “p”, e.g. we will denote the p-enabling of
a firing sequence f € 7™ at a marking M € ]NlolDI by M[f >,. In the following
(N, p, Mp) is a P/T-system with priorities and (N, Mp) is the corresponding
underlying P/T-system without priorities.

Using priorities for the purpose of analysing the underlying Petri net is surely
limited to specific functions p. Consider the trivial example of Fig. 1. If we
define, e.g.; p such that (¢',t) € p(M) for all markings M then the priority
P/T-net would have a smaller reachability set than the original net. Obviously,
when considering liveness this priority relation would be of no use for us, since
the original net is live, whereas the priority P/T-net is not. To cope with such
situations an obvious idea is to define that all transitions of a structural conflict
set should belong to the same priority class. In [1] a net with static priorities
(see Fig. 2) is presented. Here the reachability graph of the priority P/T-net (cf.
Fig. 5) would not allow checking liveness of (N, Myp), although all transitions of
a structural conflict set have the same priority. This problem does not occur in
the example net of Fig.2, when we demand for all transitions of Txge to belong
to the lowest priority class. If we are interested in further properties especially
those concerning specific markings additional restrictions need to be imposed on
the priority relation. In the net of Fig. 4 we have Tygc = {t1,%1} and Fig. 5
shows the reachability graphs of (N, M) and (N, p, My) where Tngc belongs
to the lowest priority class and ¢3 always has priority on all other transitions. If
one is now interested in whether My is a home state, the information given by
[My >, is not sufficient. A priority relation where amongst Tiwvgpc additionally
all transitions enabled at, in this case, My belong to the lowest priority class (i.e.
also 13 should have a low priority; cf. Fig 5) would lead to a situation where My
is a home state of (N, p, My) as well.

p
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Fig. 1. Trivial example for liveness (static priorities)




Fig. 2. Live P/T-net; Non-live with static priorities
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Fig. 3. Reachability graphs: PN (left); PN with priorities (right)

We will exploit the above developed ideas now for the dynamic priority case,
heading for those priority relations which ensure that specific properties of the
original Petri net do also hold for the net with priorities and vice versa.

For an arbitrary, but fixed (possibly empty) S C T define

Tlgw = TNEC U U[t]SCS* (1)
teS
and for M € ]Nlopl define
2 ={teTIV €T (t',t) ¢ p(M)} (2)

i.e. 2y is the set of transitions with the lowest priority at marking M. T

comprises all transitions of Ty g and additionally SC S*-sets of transitions from
TEC~ Note that Tl(?”” = TNEC~

T/ denotes the set of transitions which have to belong to the lowest priority
class. As we have realised for the net of Fig. 2 all transitions of Tnxg¢ should
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(i.e. Twnge C 1}5,) and considering the net of Fig. 4 we have seen
that additional transitions should be included as well. From our observation (cf.
Fig. 1) that transitions in structural conflict should belong to the same priority
class, all other transitions of [t]scs+ should thus also be included.
Furthermore, now with dynamic priorities in mind, it is obvious that the
priority levels for transitions of Trc \ 7}3,, need not be the same at all markings.
In summary the following restriction seems to be a good candidate to en-
sure that the reachability graph of the priority P/T-net can be used to check

properties of the underlying P/T-net.

Definition5 Condition DEC.

A priority P/T-net satisfies condition dynamically EQUAL-Conflict (DEC) iff

VM eN  vieT  Mt>, = a)t € T\ TS5, = V' € [t]scs- : M[t' >, and
b) t E 7}5717 :> QM = 7}571)

In the following we prove that condition DEC ensures that liveness and the
existence of home states can be verified on the basis of the reachability graph of
the priority P/T-net.

The concept of p-enabling restricts the firing sequences of a P/T-net, in
particular all firing sequences of the priority P/T-net are also firing sequences of
the underlying P/T-net but not vice versa. Thus the reachability set of (N, p, Mg)
is a subset of the reachability set of (N, My).

Lemma6. [1]Let M : P—INg,t €T, feT*.

1 M[f>,= M[f>
2. M >,C[M >
3. Mi>= W e€T: M[t' >,
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Fig. 5. Reachability graphs: original Petri net (top), ¢z high priority (bottom left), s
low priority (bottom right)

Lemma 6(3) states that for each marking with an enabled transition we have
at least one p-enabled transition, which follows from the restrictions imposed on
p(M) at the end of Sect. 2.

The next lemma establishes the basis of the priority relations considered in
this paper. It merely states that a firing sequence starting at some marking M
(€ [My >,) and ending at a marking M’ where only transitions of 7}° are

enabled has a permuted counterpart having p-concession at M. This implies
that M’ is in [My >, as well.

Lemma 7 (cf. [1]). Let (N, p) satisfy condition DEC. Let M, M’ be some mark-
ings and g € T* be a firing sequence such that M[g > M' and

VieT: Mt>=teT,. (3)
Then 3G € Perm(g) : M[§ >,.

where Perm(g) denotes the set of all permutations of g. The proof of lemma 7
is given in the appendix.

Note that all deadlock markings of (N, My), i.e. markings satisfying EN (M) =
(), trivially satisfy (3). Thus this lemma directly shows that all deadlock states
of [My > are also in [My >,.



Markings in [My > satisfying (3) are thus also in [My >,. Obviously those
markings will be helpful, when considering properties of the Place/Transition-
net with and without priorities. Thus it is desirable that such markings do really
exist. The main problem is the case, when T,‘?}w = (J, because then only deadlock
markings satisfy (3). In the following we will assume 7;?, # 0. The discussion
of the empty set-case, implying an EC-net, will be postponed to the next sub-
section.

Lemma 7 is only applicable if we can ensure that the P/T-net will eventually
reach a marking satisfying (3). It might happen that transitions of 7,7, are
ignored, i.e. only higher priority transitions are fired. For the priority P/T-net
this implies that it is caught in a trap. Fig. 6 shows an example of a p-trap which
is constituted by the firing of ¢ and ¢'. Lemma 9 shows that this situation does
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Fig. 6. Example of a p-trap
Definition8 p-trap. (N, p, My) has a p-trap ift IM € [My > with

<O

A
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1.VkeIN:3geT*:|g|>kand M[g >, and
2.Vf €T ( M[f>= fe(T\T3,)" ).

Lemma9. Let N be strongly connected and (N, My) be bounded. If (N, p) sat-
isfies condition DEC, then (N, p, My) has no p-trap.

Proof. Assume (N, p, My) has a p-trap. Since (N, My) is bounded, [M' >, is
finite VM’ € [My > (cf. lemma 6), thus [M >, contains a final strongly connected
component Cyy C [M >,. Define T := {t € T|3M' € Cy : M'[t >,} and
P := oT. T can be regarded as the set of p-live transitions with respect to Chy.
Since N is strongly connected and because of our assumption of the existence of



a p-trap implying T+0 and (T"\ T) # 0 (note that in this case also Tpe C
T, CT\T and Tgc C T), one of the following two cases holds:

a: dp, € P:pe D {tyt;}and t; € Tot; € T\T.
Since condition DEC holds, part a) implies that if M’[t; >, for some M’ €
Chr, then M'[t; >,, contradicting ¢; ¢ T'.

b: 3, ET:trtQ {pr,pi} and py € P,p; € P\ P.
S~ince t, € T, t, might fire infinitely often with regard to Cys. Since p; ¢

P = oT', place p; is not bounded, contradicting boundedness of (N, My).

Thus assuming the existence of a p-trap was wrong which completes the proof.
0

Lemma 9 actually shows that we can always reach a marking M € [M, >
satisfying (3). E.g. if we have a dead net the deadlock marking trivially satisfies
(3). If we do not reach a dead marking, then there is always a firing transition and
thus the second part of definition 8 does not hold, 1.e. we always reach a marking
M’ with 3t € 773, : M'[t >, . Since [My >,C [Mp > and condition DEC holds,
M’ satisfies (3).

Now we can use lemmas 7 and 9 to consider liveness and the existence of
home states for priority P/ T-nets satisfying condition DEC.

Theorem 10. Let N be strongly connected, (N, p) satisfying condition DEC and
(N, Mg) be bounded. Then the following holds:

. (N, p, My) is p-bounded.
. (N, My) dead <= (N, p, My) p-dead
. (N, My) live <= (N, p, My) p-live
. (N, My) has home states <= (N, p, My) has p-home states
. Let M be a marking of (N, p) satisfying (3) then
M is a home state of (N, My) <= M is a p-home state of (N, p, My)

N N R I

Proof. (1) Obvious, since [My >,C [My >.

(2) “=": (N, Mp) dead implies the existence of a marking M and a firing
sequence g € T™ : My[g > M and EN (M) = §. Since M satisfies (3) we
have M € [My >, as well (cf. lemma 7) and thus (N, p, Mp) is p-dead,
since EN,(M) C EN(M) by definition.

“e=:" (N, p, My) dead implies the existence of M € [My >,C [My > with
EN,(M) = §. Because of the conditions we imposed at the end of Sect. 2
on p(M), we have EN (M) = @ (cf. also lemma 6(3)), 1.e. (N, My) is dead.

(3) “=": Assume (N, p, Mp) is not live, i.e. IM € [My >,: € T : VM’ €
(M >, =M'[t >,. (N, My) being live and bounded implies (N, M) is
live and bounded, since M € [My >,C [My > . Together with lemma 9
this implies the existence of ¢, h € T* and markings M, M’ € [M > with
M[g > M[th > M’ such that M’ satisfies (3). Employing lemma 7 there
exists § € Perm(gth) with M[§ >, contradicting our assumption.



“=": Assume (N, My) isnot live. T.e. IM € [My >: FH € T :YM' € [M >:
= M'[t >. Now (N, M) is bounded as well and so the preconditions of
lemma 9 are satisfied, implying the existence of M € [M >C [My >
satisfying (3) yielding M € [My >, . From our assumption we have
YM' € [M >: =M'[t > implying YM’ € [M >,C [M > -M'[t >,
contradicting p—liveness of (N, p, My).

(4) The existence of home states is equivalent to the directedness property [4]
which is

VM, M’ €[My>:[M>0[M >£10
or in terms of priority P/T-nets:
VM, M' € [My>,:[M >,N[M" >,#0.

“—": So, choosing arbitrary markings M, M’ € [My >,, there exists a
marking M"" € [M > N[M' >, since (N, My) has home states. Let f, g €
T* denote the corresponding firing sequences, i.e. M[f > M" and M'[¢ >
M". Again lemma 9 ensures the existence of M” € [M” >, with M"
satisfying (3). Lemma 7 finally implies M’ e [M >, and M" e M’ >,,
ie. M" €M >, N[M' >,.

“<=": Assume (N, My) has no home states. Thus IM, M’ € [Mo >: [M >
N[M' >= (. Using lemma 9 we can find markings M € [M > and
M' € [M’' > both satisfying (3). Thus lemma 7 implies M € [My >,
and M’ € [My >, . Since (N, p, My) has p—home states we have [M >,
N[M’ >,#  contradicting our assumption.

(5) “=": M being a home state of (N, My) means (cf. Def. 1) YM' € [My >:
M € [M' >. Since [My >,C [My > we have VM’ € [My >,: M € [M' >
and because of lemma 7 we further have VM’ € [My >,: M € [M' >,.

“<=": M being a p—home state of (N, p, My) means VM’ € [My >,: M €
[M' >,. Now assume that M is not a home state of (N, My), i.e. AM' €
[My >: M ¢ [M' >. Since (N, My) is bounded and M’ € [My > there
is a final strongly connected component Cyy: € [M’ >. Lemma 9 yields
the existence of M € Cyp satisfying (3) and thus by lemma7 again
M € [My >,. Since M is a p—home state there exists f € T™ with
M[f >, M. Thus M &€ [M > giving M € [M’ > contradicting our
assumption. a

Part 5 of theorem 10 1s, e.g., of interest if we want to check for reversibility. In
that case we only have to define p such that M satisfies (3),1.e. EN(My) C T3,
Although one should notice that in the worst case we might get [My >= [My >,
giving no performance improvement for the reachability analysis.

The set EN,(M) given by dynamic priorities satisfying condition DEC can
be viewed as a special case of the transition sets defined by the stubborn set
method [18, 19]. This follows directly from theorem 2.7 in [18], which simplifies
the stubborn set definition for nets without self-loops:

Assuming nets without self-loops, i.e. ot Nte = B,Vt € T a subset T, C T is

semistubborn at M, iff Vt € T} :

10



ds € ot : M(s) < W(s,t) and es C T
or (Vs € ol : s C T or (se C T, and M(s) > W(s,1))).

T, 1s stubborn at M, iff T, is semistubborn at M and
eTs Vs €ot:M(s) > Wi(s,t) and se € Ty.

If EN,(M)N1T;, =0 then the set EN,(M) is stubborn at M, since Vt €
EN,(M) we have Vs € ot : s¢ C EN,(M) and trivially M (s) > W(s,t). And
when EN,(M)NT};, # 0 holds, then 2y = T}° implies EN,(M) = EN(M)
and we can select all transitions of the net as the stubborn set.

In contrast to the basic stubborn set method, dynamic priorities satisfying
condition DEC do not suffer from the ignoring problem as shown in lemma 9

and furthermore specific markings can be investigated (see Th. 10 part 5).

3.1 EC-nets with dynamic priorities

Let us now consider the case T,‘?}w = (f, which implies that the net is an EC-net

(cf. (1)). Condition DEC now simplifies to

Definition11 Condition DEC for EC-nets.
A priority EC-net satisfies condition dynamically EQUAL-Conflict (DEC) iff
YM e NPl v e Mt >, = V' € [t]scse - Mt >,

Theorem 12. Let N be a strongly connected EC-net, (N, p) salisfying condition
DEC and (N, My) be bounded. Then the following holds:

1. (N, My) not dead <=(® (N, My) live <= (N, p, My) p-live =) (N, p, My)
not p-dead
2. (N, p, My) has p-home states = (N, My) has home states

Proof. (1) (a): see, e.g. [16].

(¢): “=": obvious.

“—=": (similar to (a)) Assume (N, p, My) is not p—live, i.e. IAM €
My >,: € T:VM' € [M >,: =“M'[t >,. Because of condition
DEC and the EC-net structure, all transitions of [t]scs+ are dead as
well, ie. Vt' € [t]scs+ : VM € [M >,: =M'[t >,. Since (N, p, My)
is p—bounded (cf. theorem 10(1)) all transitions of e(e[t]scs+) are
also not p—live, i.e. AM € [M >,: Vt' € o(o[t]gcs+) : “"M[t' >,.
Repeating this argument and thanks to the strong connectedness of
N finally all transitions will be dead contradicting the p—deadlock-
freeness of (N, p, My).

(b): Finally we show: (N, My) not dead <=9 (N, p, My) not p-dead giv-
ing us (b) implicitly. Now (d) is directly implicated by lemma 7 and
Th. 10(2), since all deadlock markings of [My > are in [My >, and vice
versa. That completes the proof of part (1).

11



(2) Here we can distinguish between two cases: (N, My) being live and being
non-live. If the net is live then together with boundedness the existence of
home states is guaranteed ([16]), so we have nothing to show. Therefore let
us assume that (N, My) is non-live. This implies that (N, My) is dead (see
part (1)). Since all deadlock markings of [My > are part of [My >, as well,
the theorem follows. O

4 Petri net analysis employing dynamic priorities

Using the results of the former sections might give us an efficient analysis pro-
cedure based on the usually smaller reachability set of the net with dynamic
priorities. The main problem is to define a suitable priority function p. A first,
trivial idea is that we can define such a priority relation on the fly during reach-
ability set generation. From the definition of DEC we know that at a marking M
where a transition t € Trc \ T}, is enabled we can always select the complete
set [t]scs» for firing, which is enabled at M as well, i.e. we can assign the highest
priority to [t]scs+ C EN(M) and act analogous. Last not least, when all former
considered cases, which correspond to condition DEC part a) can not be applied,
we might select all transitions of EN (M) for p-firing thus satisfying part b) of
condition DEC. E.g. in the simple Petri net of Fig. 7 we could fire all transitions
in sequence starting with ¢; and ending with ¢ thus having implicitly defined a
dynamic priority relation satisfying condition DEC. For this special net we could
therefore manage to generate a reachability set [My >, of size N independent
of the initial marking.

k| |[Mo > |||[Mo >, ||stubborn

1 92378 10 54

2| 10015005 10 99

312.119e+08 10 144

412.054e+409 10 189

5(1.257e+10 10 234

Y ] p:2 il 10]4.263e+12 10 459
i‘\ t O ?tN 15(1.421e+14 10 684
20(1.761e+15 10 909

Fig. 8. Reachability set sizes for the chain
Fig. 7. Simple chain with N =10 and M, = (k,...,k).

Since the transitions determined by dynamic priorities satisfying condition DEC
can be viewed as special cases of stubborn sets we also present the sizes of the
reachability sets for N = 10 obtained with the stubborn set method using the
incremental algorithm of the tool PROD [13] (see Fig. 8). The parameter k de-
termines the number of tokens for all places p; at the initial marking.

The intention of these comparisons is to give an impression on the efficiency
of the algorithm we are going to develop.
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The key issue in reducing the size of the reachability set is to select the ap-
propriate SCS*-set of transitions amongst all such enabled sets. In general as
indicated by this trivial example the size of [My >, might be small if we only
fire each transition (respectively SCS*-set) as often as determined by positive
T-invariants. Although the worst case complexity of invariant calculation is ex-
ponential, from a practical point of view the computing time is often moderate.

In the following let us assume that the net is covered by positive P- and T-
invariants, thus ensuring boundedness and satisfying a necessary condition for
liveness, and that a cover of positive T-invariants is given explicitly. The idea
of firing T-invariants leads to a straightforward algorithm for marked graphs.
For general net structures such an algorithm is not so simple to find, since
condition DEC forces us to fire SC'S*-sets of transitions. If we assume a depth
first search approach during generation of the reachability graph one approach is
to fire all SC'S*-sets as often as specified by the corresponding T-invariants. Since
T-invariants take only single transitions into account, we have to define some
“Invariant weight” TNV (V, Q) for a subset @) C T given an (appropriate) set V
of positive T-invariants covering the net. Given INV(V, Q) we can exploit this
information as follows: Build up a list of SCS*-sets for transitions in 7'\ 7;3, C
Tgc, where each SCS*-set ) has been inserted as often as given by INV(V, Q)
and use this list as proposed in the algorithm of Fig. 9. Since each SC'S*-set @
occurs as often as specified by INV(V, Q) in the corresponding list, the algorithm
in a way mimics the firing of T-invariants and should perform well when greater
parts of the net locally have an EC-net structure.

Calculate EN,(M) in each generation step of the reachability analysis as follows:
Let @1,..., Q. be the equivalence classes of SCS* for transitions of T'\ T>,,.
Define @ := Ui_ {Q:|Q: C EN(M)}
if @ =0return EN(M)
else
begin
find first element e in list_EC with e € Q
remove e from list_F.C and insert it at the end of list_EC
return e
end

Fig. 9. An algorithm for determining FN,(M).

There are some problems still to solve. Firstly how to initialise the list and
secondly how to define, amongst finding V', INV(V, Q) appropriately. Addition-
ally the most general problem with this approach is that during reachability
graph generation the exploration of other branches has to be postponed so that
we have to store the information which part of the T-invariant has been already
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fired. Obviously this would increase the overall storage requirement for this ap-
proach tremendously, since in the worst case this information has to be stored
at all markings. Therefore we propose the heuristics, that the list is kept global,
hoping that once we have fired the transitions of a T-invariant, the (ordering of
the) list is still helpful for other, currently non-explored markings.

1
—_—— ————————
3 3
T ty .
7T—m 3 : 3 11
O O
T m 11
——
ts ts

Fig. 10. EC-net with M, = (31,0, 0)

Considering an appropriate definition of INV(V, Q) let us consider the net
of Fig. 10 first with m = 0 to get some insight in what might happen. A set
of positive T-invariants is e.g. V = {(7,0,3,0),(0,11,0,3)}. According to con-
dition DEC, e.g., t; and {5 should be both p-enabled at My (provided they are
enabled at My). So we have to define INV(V,{t;,t2}). The problem is now
that the invariant weights of the individual transitions differ, e.g. we can choose
INV(V,{t1,t2}) = 7 giving |[Mo >, | = 338 or INV(V, {t1,t2}) = 11 giving
[[Mo >, | = 471. (We assume that initially {¢4} and {¢3}-elements occur before
{t1,t2}-elements in the list.)

On the other hand one can also select V' = {(77,77,33,21)} (a linear com-
bination of the former ones) yielding |[My >, | = 131 thus indicating that it is
more appropriate to select V such that all transitions of a SCS*-set have the
same weight. Of course this is not always possible. If we define m = 4 in the
net of Fig. 10 a set of minimal T-invariants is V' = {(0, 11,0, 3),(77,0,33,12)}.
Adjusting the weight of {5, i.e. defining V' = {(0,77,0,21),(77,0,33,12)} does
not determine a unique weight for ¢4. Choosing INV(V, {t4}) = 12 results in
a reachability set size |[My >, | = 315, whereas INV(V,{t4}) = 21 gives us
[[My >, | = 277. From that point of view it seems to be more appropriate to
choose the maximum, since then the chances are better that a T-invariant can
be completed before other transition firings interfere, which themselves have to
be recognised for completion of further T-invariants later on.
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Definition13. If V is a set of positive T-invariants we define the invariant
weight of a transition t; € T as INV(V,t;) = mazyev{v;} where v; denotes
J-th component of v. This notation is extended to sets S C T by INV(V,S) =
maries {IINV(V, 1)}

Another fact which might influence the size of the reachability set is the initial
order of elements in the list. If we start with a list containing 77 {t1, {2 }-elements
followed by 21 {t4}-elements and 33 {{3}-elements we obtain 452 markings. The
reason for this is that the enabling degree of t; and t5 is greater than the enabling
degree of the other transitions enabled at My, so that the firing of ¢35 and #4 is
postponed more than necessary. To take this phenomenon partly into account
we use the initialisation procedure of Fig. 11 to build up the list. (Obviously,
others can be devised taking the enabling degree more gradually into account.)
The enabling degree of a transition and for sets of transitions can be defined as
follows:

Definition 14. The enabling degree of a transition ¢t € T' at marking M is de-
fined as ED(M,t) = maxkew,{k|Vp € P : M(p) > kW (p,t)} and its extension
to sets S C T is given by ED(M,S) = minges{ED(M,t)}.

The minimum is selected for sets here, since it determines how often a com-
plete(!) set can be fired.

Let Q1,...,Q, be the equivalence classes of SCS* for transitions of 7'\ 17,
Define @ := U:=1 Qr.
list_EC := empty
while @ # 0 do
begin
select Q; € Q with Vi € {1,...,r}: ED(Mo,Q;) > ED(Mo, Q;)
for k :=1 to INV(Q;) do insert Q; at the end of list_EC
Q:=Q\ Qs;

end

Fig. 11. Initialisation procedure

The proposed algorithm should be a good alternative when the information
provided by the T-invariants is not so trivial. This is e.g. the case for the weighted
T-system presented in Fig. 12 [15]. The net models a painting line where several
parts are processed at the same time. One interesting feature of this example
(see [15]) is that at least 8 empty pallets are needed initially to make the system
live. Fig. 13 shows some results for different initial markings. Not surprisingly,
the exploitation of T-invariants leads to smaller reachability sets, since when
the number of tokens increases all transitions can be fired exactly as often as
specified by their T-invariant weight.



walting waiting Waiting painted
for priming for paiting for drying parts

:5 I]5 :2 [I2 33[]3 :
to ts ty

¢

1
remaove
fix part empty pallets painted parts

-

e (Ve
T

Fig.12. A painting line

Mo(p)| |[Mo > |||[Mo >, ||stubborn
7 161 48 48

10 1001 91 107

20 10626 91 129
200| 70058751 91 368
500|2.6566e4-09 91 368

Fig. 13. Some results for the painting line with V' = {(30, 6,15, 10, 30)}.

Fig. 14 and 16 present two (extended) free choice nets and the corresponding
results are given in Fig. 15 and 17 respectively. The net of Fig. 16 is taken from
[6] and is a well-known example for a free choice net whose initial markingis not a
home state. According to theorem 10(5) we have also defined 75, = S := {¢,#'}
giving the potential to check whether the initial marking is a home state. These
results are given in the column “|[My >,> | home”. Note that for the analysis
of liveness only 7 markings need to be generated by setting T,‘?}w = (. Both
tables show that the approach of considering T-invariants is more suitable when
the marking of the net comprises several frozen tokens. Not surprisingly, finding

deadlocks with the stubborn set method is more efficient, see k = 3 in Fig. 15.

k||[Mo >, ||stubborn
3 10523 9513
4 5468 11078
6 5472 11446
8 5476 11814

10 5480 12182
20 5500 14022
30 5520 15862

5 [| 5 O 2, 2 3 3 100 5660 28742

Fig.15. Some results for the paint-
ing system with initial markings
Fig.14. A painting system Mo = (k,k,k,k,0,...,0).
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n b2 k||[Mo >, ||stubborn||[Mo >, | home
; Ly 1 7 7 7
10 7 35 97
100 7 305 997
1000 7 3005 9997
Fig.17. Results for initial markings
Fig. 16. A free choice net Mo = (k,k,0,...,0).

The proposed algorithm seems to perform better than the stubborn set
method once the number of tokens is large which is e.g. the case in models
for flexible manufacturing systems. Furthermore the dynamic priority method
as presented in this article does not suffer from the ignoring problem and allows
to check properties of specific markings. Not surprisingly the price for this has
to be paid. Finally we consider a larger net from [5]. The net has been slightly
modified in order to be live. We further defined 7}°, such that it can be checked
whether the initial marking is a home state. The results given in Fig. 19 show
that the proposed algorithm produces reachability sets of manageable size in
comparison to the reachability set of the original Petri net.
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A  Proof of lemma?

Definition 15.
a) Difference of two firing sequences. f,g € T*,t € T.

f—e=Ff
f—t~—{ foiftgf

T\ fAfe i fi €Tt frand f = fitfo
f—tg=(f-t)—yg

b) Permutation. The set Perm(f) of all permutations of f € T* is
Perm(f) :=={g €T | (f —9)lg = [) = ¢}.

Subtracting g from f cancels all transitions of ¢ in f, provided they are part
of f, where cancelling starts at the “beginning” of f. E.g. tot 1t 1t3t5ts —tat7t1ts =
tot115. As usual concatenation has precedence on difference, i.e. fg—h = (fg)—h.

The next lemma states well-known properties of non-conflicting transitions
concerning a reordering of firing sequences.

Lemma16. [1] Let N be a P/T-net and M denote some marking.

a) t,t' €T :etNet' = 0. Then MI[t >, M[t' >=— M]tt' >.

b)yteT,heT* V' ch:otnet! =0. Then M[ht > M[t >= M|[th >.

c) Given f,g,g € T*,h € Perm(f — g) whereVt € g,t' € q : ot Net' = B we
have M[f >, M[hq >=—= M|[fq >.

Proof of lemma 7:
If ¢ = € the lemma trivially holds with ¢ := ¢.
So assume g =ty ...l #¢€. § =1;, ...1;, can be constructed as follows:
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Set g :=¢;f:=¢gand r:=1.
while f # ¢ do
if (3 e f: M[gt>,) then
choose t;, € f with M[gt;. >, such that
Afi, o €T f = fiti, fo and Vt € f1 : =M [gt >, (*)
Set fi=f—t,.;9:=gt;;r:=r+1

od

The algorithm concatenates the leftmost p-enabled transition of f to the firing
sequence ¢. The main part of the proof 1s to show the algorithm’s termination.
Define

sp = min({l, ... k}\ U;;%{ip}), r=1,...,k

From this definition we directly get s,41 > s, and
=1 - 1 -
Uit C Ui

i.e. the set {1,...,5. — 1} is a subset of {i1,...,4._1}.
With that the following property holds before each iteration of the while-loop:

f#e= Ml[jt,, > (4)

Proof by induction on r:

Base: r =1
Since s1 = 1, M[t; > holds because of M[g >.
Step: r—r+1
So assume M [gts, > holds. If the condition of the if-statement does not hold,
then 7 is not incremented and we are done.
Now assume that the condition of the if-statement is satisfied. We have
to show M([gt; t, ,, > where § is the firing sequence in step r. We have
ot Not, ., =0Vt €ty,...t;, —t1...t, ,,—1 since otherwise t, ., would
have been already chosen for firing, because of (*) and condition DEC.
From construction we have M[t;, ...#;, > and since M[g > additionally
M[tl .. .t5r+1_1t5r+1 > holds.
Employing lemma 16c)' we get M[gt; ¢, ,, >.
It remains to show that the while-loop terminates. Let us assume that it does
not terminate, i.e. we reach a situation where ¥’ € ¢ — §: ="M [gt’ >,. Because
of (4) there is some enabled transition and thus there exists t ¢ g — g : M[§t >,
and condition DEC implies

o' Net =0,V cg—3i (5)

since otherwise ¢ would be p-enabled as well. Furthermore we have ¢t & T)3, ,

since otherwise (4) and condition DEC b) imply 3’ € ¢ — § : M[§t’ >, contra-
dicting our assumption of a non-terminating while-loop. Employing lemma 16
again?, (5) implies M'[t > contradicting (3). So the while-loop terminates which
accomplishes the proof. a

' Choose f =ty ...Li,,h =t .. ba i1, G =ty oo bip — b1 b —1,4 = bs, 4y

2 Choose f=g,§=g—gandg=t. Noteg—(g—g§)=gsince t€g=t€g.
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The following part was NOT included in the proceedings of the
18th International Conference on Application and Theory of Petri
Nets, Toulouse (France), June 1997.

Considering only liveness issues one can modify condition DEC as follows
giving a better reduction on the reachability graph size. The idea 1s inspired by
the stubborn set method.

Definition 17 modified condition DEC (MDEC).
A priority P/T-net satisfies the modified condition dynamically EQUA L-Conflict
(MDEC) iff

vMeNF v e T Mt >, = a) V' € [t]sose - Mt >, or
b)tEQM:>QM:Tl§w.

What has changed is that now also transitions belonging to 7}3, might be of
higher priority than all other transitions provided that all transitions in struc-
tural conflict, i.e. all transitions of [t]scs+, are enabled as well. Unfortunately
lemma 7 does not hold in this case, so that we are not able to consider specific
markings of the net.

Fig. 20 shows a counterexample. Defining p such that {¢;,¢5} has priority on
{ts,14} at My shows that the reachable marking (2,0) is not p-reachable, i.e.
(2,0) & [Mg >,, although it satisfies (3) with 7;>  :=T.

low

Fig. 20. Counterexample for p-reachability of specific markings in the context of con-
dition MDEC

First we show that no transition is ignored, i.e. p-traps do not exist. The
proof uses the same arguments as before.

Lemma18. Let N be strongly connected and (N, My) be bounded. If (N, p) sat-
isfies condition MDEC, then (N, p, My) has no p-trap.
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Proof. Assume (N, p, My) has a p-trap. Since (N, My) is bounded, [M' >, is
finite VM’ € [My > (cf. lemma 6), thus [M >, contains a final strongly connected
component Cyr C [M >,. Define T :={teT|3IM" € Cy : M'[t >,} and
P := oT. T can be regarded as the set of p-live transitions with respect to Cys.

Since N is strongly connected and because of our assumption of the existence of
a p-trap implying T # @ and (T'\ T) # () (note that in this case also Tiwygc C

T, CT\T and Tge C T), one of the following two cases holds (cf. Fig. 21):
7. T\T,P\P
t; — ty
a:
Pk E/Q n
b: :

Fig. 21. [llustration of proof

a: dp. € P ped{tit;}andt, €T t; e T\T.
Since condition MDEC holds, part a) implies that if M'[t; >, for some
M’ € Cy, then M'[t; >,, contradicting #; ¢ T.

b: J,eT: {2 {ps,p1} and py € P,p, € P\ P.
Since t, € T, t, might fire infinitely often with regard to Cs. Since p ¢
P =T, place pr is not bounded, contradicting boundedness of (N, Mjy).

Thus assuming the existence of a p-trap was wrong which completes the proof.
0

The lemma shows that not all transitions of 7}7, can be ignored. Furthermore
the arguments of the proof actually show that no transition can be ignored
provided it is enabled at some marking of the set Cys. In that case the set T\ T
denotes the set of ignored transitions giving us the same contradictions, because
of boundedness and strongly connectedness of (N, My).

As shown by the net of Fig. 20, lemma 7 does not hold, but in the context
of condition MDEC we can prove a similar statement in the context of strongly
connected and bounded nets. Since the sets EN,(M) for priorities satisfying
condition MDEC are also special cases of stubborn sets the following lemma
states the same as theorem 1.29 of [19].

Lemma 19. Let N be strongly connected, (N, My) be bounded and (N, p) satisfy
condition MDEC. Let M € [My > and g € T™* be a firing sequence such that
Mg >. Then

dh € T* : 3§ € Perm(gh) : M[§ >,
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I.e. one can always find an extension of a firing sequence such that a permu-
tation of this extension has concession in (N, p) as well.

Proof. If ¢ = ¢ the lemma trivially holds with § := ¢.
So assume g =ty ...t €. § =t;, ...t;, can be constructed as follows:

Set g :=¢;f:=g¢and r:= 1.
while f # ¢ do
if (3t e f:M[gt>,) then
choose t; € f with M[gt;. >, such that
Afi, foeT*: f=fit; frand Vt € f1 : = M[§t >,
Set f:=f—t,;9:=gti;r=r+1
else
choose an arbitrary ¢ € T* with M[§t >, and
set g := gt

od

Analogous to the proof of lemma 7 we have for
sp=main({1,... k}\ U;;%{ip}), r=1,...,k
that the following property holds before each iteration of the while-loop:
f#e= Mlgt;, > (6)

With that the termination of the while-loop is directly implied, since
EN(M) # 0 guarantees EN,(M) # § and ignorance does not occur due to
lemma 18. Thus f = ¢ will eventually hold. (Note that [My > is finite.) O

Thanks to lemma 18 ignorance does not occur, so that the following holds
using the same arguments as given in [19].

Theorem 20. Let N be strongly connected, (N, p) salisfying condition MDEC
and (N, My) be bounded. Then the following holds:

1. (N, My) dead <= (N, p, My) p-dead
2. (N, My) live <= (N, p, My) p-live

The application of condition MDEC for our approach leads to the following
algorithms, where now the SC'S*-sets of all(!) transitions are considered.

With these slightly modified algorithms liveness can be examined on a usually
smaller reachability set of the priority P/T-net with a general net structure.

Fig. 24 shows the corresponding results for the benchprod model (cf. Figs. 18
and 19).
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Calculate EN,(M) in each generation step of the reachability analysis as follows:
Let Q1,..., Q. be the equivalence classes of SC'S* for transitions of 7.
Define Q = J]_, {Q:|Q: € EN(M)}
if @ =0 return EN(M)
else
begin
find first element e in list_ALL with e € Q
remove e from list_AT.l. and insert it at the end of list_AT.I,
return e
end

Fig.22. A modified algorithm for determining FN,(M).

Let Q1,..., Q. be the equivalence classes of SC'S* for transitions of 7.

Define @ := U:=1 Qr.

list_ALL := empty

while @ # 0 do

begin
select @; € Q@ with V5 € {1,...,r}: ED(Mo,Q;) > ED(My, Q;)
for k:=1 to INV(Q;) do insert Q; at the end of list_ALL
Q:=Q\ Qi

end

Fig. 23. Modified initialisation procedure

k||[[Mo > |||I[Mo >, ||stubborn
1 172 100 28
2 2361 298 36
5 71560 877 93
7| 223894 1263 119
11| 977842 2035 171
13|1665856 2421 197

Fig. 24. Some results for the benchprod model with priorities satisfying the condition
MDEC using the modified algorithm
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