Abhstract Petri Net Notation

Falko Bause Peter Kemper Pieter Kritzinger

Forschungsbericht
der Universitat Dortmund
1994

Lehrstuhl Informatik IV
Universitat Dortmund
D-44221 Dortmund
Germany

e-mail: {bause,kemper}@Is4.informatik.uni-dortmund.de

Pieter Kritzinger is from
Data Network Architecture Laboratory
Department of Computer Science
University of Cape Town
Private Bag, RONDEBOSCH
7700 South Africa
psk@cs.uct.ac.za

Abstract

The need to interchange the description of Petri Net models amongst re-
searchers and users was recognised as long ago as 1988. This document
proposes an Abstract Petri Net Notation (APNN) in which various nets
can be described using a common notation. The use of the notation in the
context of Petri Net software tools is shown and the general requirements
for such a notation to be generally acceptable, are suggested. Keywords in
the notation are similar to IATpX-commands in order to support readabil-
ity. By employing an appropriate style-file a net description can thus be
included directly into a I#TpX source document. The notation is given for
untimed Place/Transition Nets and Coloured Petri Nets as well as Gener-
alised Stochastic Petri Nets and Hierarchical Petri Nets.

So eine Arbeit wird eigentlich nie fertig,
man muss sie fir fertig erkldren,
wenn man nach Zeit und Umstinden
das Moglichste getan hat.

— J.W. Goethe, Italienische Reise, 1787.

1 Introduction

Petri Nets[17] have become widely accepted as a formalism for describing
concurrent systems and an active community of researchers exist in the field.
As the theory of Petri Nets developed, so were software tools developed to
assist the analysis of Petri Nets[12].

It was thus recognised as long ago as 1988 by Berthelot et. al. [9] that
it would be an advantage if Petri Net researchers could share their model
descriptions in some common notation or interface and thereby exploit the
existing variety of tools and user interfaces amongst themselves. Such an
interface would have the functionality illustrated in Fig. 1 where the F;
indicate translations from one to the other of the functions illustrated in
that figure.

HUMAN
READABLE TEXT

PRINTED GRAPHICAL
REPRESENTATION

PETRI NET DESCRIPTION
IN ABSTRACT NOTATION

INDIVIDUAL TOOL

LOCAL INTERNAL

REPRESENTATION

Py
-1
P4 Py
GRAPHICAL INTERFACE ANALYZER 1 PP
DISPLAY

RESULTS RESULTS .

ANALYZER N

Figure 1: The context of the APNN.

The biggest advantage of such a common notation is the ability to share
analysis algorithms and the implementations of these. In this way one can
compare the correctness and efficiency of such algorithms and avoid their
repeated implementation. The authors have for instance been able to use
the Markov chain analyser USENUM[16] developed at one institution for
the analysis of Petri Net models created with a Petri Net user interface
developed at the other.

Once one accepts the idea of a common interface description various other
advantages other than sharing code, become apparent. One could translate
the description of a net directly into a printed graphical representation or
textual description for documentation.

2 Requirements of the Notation

In general the net notation should satisfy the following criteria for it to be
useful to a wide community.

Exchangeable A net description should be in such a format that it can
be easily exchanged in electronic form (via, e.g., email or ftp) between
different sites. Exchangeability is the major reason for having such a
textual notation at all.

Extensible More powerful, i.e. high-level Petri Nets should have a nota-
tion such that simpler net classes like Condition/Event Nets appear
as special cases of such a formalism in a natural way, i.e. intuitive
and concise. Missing information should default to appropriate val-
ues. A notation should extend from simple nets to high-level nets
in a straightforward way and be flexible enough to allow for future
extensions.

Modular and hierarchical These two requirements are strongly related
to each other. The notation should be such that Petri Net descriptions
in a file can be re-used as part(s) of the description of another, larger
net or higher level Petri Net.

Readable Although the graphical description of Petri Nets is one of its
major advantages in terms of human readability, it is a drawback for
inter-tool communication. Software tools always have a textual de-
scription for nets in order to store them in files. Such a file format
is in most cases very concise, but not human readable. A useful no-
tation should compromise between conciseness and human readability
at least in a way that it is easily transformed into a human readable
format. Ideally, this transformation should be performed by public
domain software which is generally available.

The general idea is then,
e other persons should be able to “read” the description even with-

out access to the corresponding tools or graphical user interfaces

(GUIs).

e it should be easy to include the description into printed docu-
ments.

Portability of the graphical representation of the net derived directly from
an abstract description is another matter. Graphical layout, where and
whether arcs cross and so on, is very much a matter of personal preference.
One could specify the position of elements of the net with respect to some
predefined origin in the notation as TpX does in fact. This is not simple to
do without drawing the net in some form or other on a coordinate system.
Although not impossible to do, the authors have decided to avoid the issue
for now.

For the notation, the authors decided to choose key-words in the textual
description of a net which are similar to IATpX-commands in order to support
readability. By employing an appropriate style-file a net description can be
directly included into a IATpX-document!. Since IATpX is public-domain
and widely accepted within the scientific community, we decided to use
the descriptive power of INTpX as a formal language to define a textual
description of Petri Nets.

The remainder of this report is structured as follows: We distinguish be-
tween timed Petri Nets and untimed Petri Nets. In the former category we
define Place/Transition Nets and give the grammar describing their abstract
notation in Sec. 3.1. This grammar is then extended to Coloured Petri Nets
in Sec. 3.2.

Where timed Petri Nets are concerned we start with Generalised Stochastic
Petri Nets (GSPN), defined in Sec. 4.1 and Coloured Generalised Stochastic
Petri Nets in Sec. 4.2. Hierarchies are considered in Sec. 5. In Sec. 5.7 we
define Hierarchical Queueing Petri Nets which are new in that they include
both places in the ordinary sense of Petri Nets and a new type of place called
queueing places.

The abstract notation of every class of Petri Net is described in Backus Naur
Form (BNF') throughout the remainder of this report. Common features of
the extended BNF, such as repetition, are not used since it clashes with the
terminals used for the description of the notation itself. Non-terminals are
written in upper-case, terminals in lower-case.

3 Untimed Petri Nets

Petri Nets were invented in 1962 by Carl Adam Petri[19] and are a formalism
for the description of concurrency and synchronisation in systems. Since first
described by Petri many variations of his original nets have been defined.

Since the simplest of such nets, known as Condition/Event Nets, are easily
described by Place/Transition Nets with a place capacity of one, we shall
regard Place/Transition Nets as the basic kind of net to begin with. In this
section we define an APNN for Place/Transition Nets and then we extend
this notation for Coloured Petri Nets[15].

'In this document we have used simple style-file macros, but these can be changed
and/or extended easily to improve readability.

In general, Petri Nets comprise the following components:

places, usually drawn by circles, which typically model conditions or ob-
jects.

tokens, usually drawn by black dots which represent the specific value of
the condition or object.

transitions, usually drawn by rectangles. These model activities which
change the values of conditions and objects.

arcs, specifying the interconnection of places and transitions.

Petri Nets are clearly bipartite graphs, i.e., one may only connect a place to
a transition or vice versa, but may not connect places to places or transitions
to transitions.

3.1 Place/Transition Nets

Definition 1 A Place/Transition Net is a 5-tuple PN = (P, T, I, 1", M)

where

o P=Ap1,....pn} is a finite and non-empty set of places,
o T'={t1,...,1,n} is a finite and non-empty set of transitions,
o PNT =0,

o [~ IT: PxT — Ny are the backward and forward incidence functions,
respectively

o My : P — Ny is the initial marking.

3.1.1 APN Notation for Place/Transition Nets

In the notation which follows the authors have adhered to the requirements
described in Sec. 2. Nevertheless, such a notation is obviously not unique and
frequently a matter of personal preference. For instance, in the notation, ID
is a non-terminal which denotes a unique place, transition or arc identifier.
Place and transition identifiers are necessary to specify arcs uniquely. The
existence of a unique identifier is useful in that it allows one node description
to refer to another one by an entity \1ike{ID}.

The notation also allows for an additional description (which may be empty
and need not be unique) associated with an entity \name at each node
description to allow the model builder to include a name, explanation or
comment about the function of the node in the model.

A net description using the notation will obviously be more concise if cer-
tain attributes are assumed to have generally accepted default values. We
thus define the default value for an arc weight to be 1 and 0 for the initial
marking of a place. A place has a capacity of infinity unless explicitly stated
otherwise.

In the notation we assume the usual production rules for integers and strings.
The keyword empty denotes the empty string.

Terminal symbols:

\beginnet, \endnet, {, }, \place, \transition, \like, \arc,
\name, \init, \from, \to, \capacity, \weight

Non-Terminal symbols:

NET, ELEMENT, PLACE, TRANSITION, ARC, ID, NAME, INIT,
WEIGHT, CAP, STRING, INTEGER

Productions:

NET = \beginnet{ID} ELEMENT \endnet
ELEMENT ::= empty

| PLACE ELEMENT

| TRANSITION ELEMENT

| ARC ELEMENT
ID = STRING
PLACE = \place{ID}{ NAME INIT CAP }

| \place{ID}{ \1like{ID} }
NAME = empty | \name{ STRING }
INIT = empty | \init{ INTEGER }
CAP = empty | \capacity{ INTEGER }
TRANSITION ::= \transition{ID}{ NAME }
ARC = \arc{ID}{ \from{ID} \to{ID} WEIGHT }
WEIGHT = empty | \weight{ INTEGER }

Start-symbol: NET

We omit the explicit definition of non-terminal and terminal symbols in the
remainder of the descriptions of the APNN, since these are distinguished
anyway by upper- and lower-case letters respectively.

/"@ OO

t1 2 — 3]

O e O

Figure 2: Example Place/Transition Net.

Example 1 Consider the Place/Transition Net illustrated in Fig. 2. The
following is the corresponding APNN description of that net:

\beginnet{examplenet}

\place{p1}{\init{1}} \place{p2}{}
\place{p3}{\1like{p1}} \place{p4}{}
\place{p5}+{\init{4}} \place{p6}{}

\transition{t1}{} \transition{t2}{} \transition{t3}{}

\arc{ai}{\from{p1} \to{t2}} \arc{a2}{\from{t2} \to{p4}}
\arc{a3}{\from{p4} \to{t1}} \arc{ad}{\from{t1} \to{pil}}
\arc{ab5}{\from{t2} \to{p2}} \arc{a6}{\from{p5} \to{t2}}
\arc{a7}{\from{p3} \to{t3}} \arc{a8}{\from{t3} \to{p6}}
\arc{a9}{\from{p2} \to{t3} \weight{2}}
\arc{a10}{\from{t3} \to{p5} \weight{2}}

\endnet

As previously explained the authors decided to choose key-words in the
textual description of a net which are similar to IATpX-commands. In this
way, the net definition in the previous example can be translated by use of
appropriate IATpX-macros to the following description, intended to be read
rather than be processed by machine:

Example 2 examplenet:

Place p! , marking {1}

Place p2

Place p3 is defined as for pl
Place p/4

Place pj , marking {4}

Place pb6

Transition(s) t1 ,t2 ,t3

Arc al from pl to t2
Arc a2 from t2 to p4
Arc a3 from p4 to tl
Arc a4 from t1 to pl
Arc a5 from t2 to p2
Arc a6 from p5 to t2
Arc a7 from p3 to t3
Arc a8 from t3 to pb
Arc a9 from p?2 to tJ ,weight 2
Arc al0 from t3 to p5 ,weight 2

3.2 Coloured Petri Nets

In Coloured Petri Nets, as defined by K. Jensen[15], each token has an
associated data value or colour which belongs to a specified type of arbitrary
complexity. A place can contain various colours which form a set, the so-
called colour set. A colour function assigns a colour set to each place of the
net.

Since it is widely in use, we follow Jensen[15] and use the conventions:

e The type of a variable, v, is denoted by Type(v).
e The type of an expression, expr, is denoted by Type(expr).
e The set of variables in an expression, expr, is denoted by Var(eapr).

e Sys denotes the set of all multisets over §.

Definition 2 A Coloured Petri Net is a tuple (X, P,T,A,C,G, E,I) where

Y is a set of non-empty colour sets,

P is a finite and non-empty set of places,

T is a finite and non-empty set of transitions,

A is a finite set of arcs such that:

- PNT=PNA=TnNA=0

C is a colour function P — X

G is the guard function from T into boolean expressions such that:

- VieT, Type(G(t)) =8 and Type(Var(G(t))) C X

FE is the arc function from A into expressions such that:

-~ Va € A, Type(E(a)) = Cp(a))ars and Type(Var(E(a))) € 3

where p(a) denotes the place connected by arc a

o [is the initialisation function defined from P into closed expressions
such that:

- Vpe P, Type(l(p)) = C(p)us

Programming languages can be employed for the precise definition of ex-
pressions and colour sets. In [15], a derivative of Standard ML, so-called
CPN ML, is used. In this report we do not distinguish between these two
languages explicitly.

3.2.1 APN Notation for Coloured Petri Nets

In order to avoid tedious repetition, only the differences between the nota-
tion for Place/Transition Nets and that needed to specify Coloured Petri
Nets are given next.

We assume that the non-terminal ML-EXPRESSION is an ML-expression
according to [20], which evaluates to the appropriate type, i.e., either integer,
boolean or multiset. In fact, since ML-expressions can contain names of
arbitrary complex, user-defined ML-functions, such ML-functions can be
specified in a separate ML-specification file which can be then referred to
in the net description by the APNN \seeML{FILENAME} statement. The
same holds for ML definitions, which are denoted by the non-terminal ML-
DEFINITION.

Productions:

ELEMENT 1= empty
| PLACE ELEMENT
| TRANSITION ELEMENT
| ARC ELEMENT

| TYPEDEF ELEMENT
| \seeML{FILENAME} ELEMENT

FILENAME ::= STRING

PLACE ::= \place{ID}{ NAME INIT CAP COLOUR }
| \place{ID}{ \like{ID} }

INIT = empty | \init{ MULTISET }

CAP ::= empty | \capacity{ MULTISET }
COLOUR ::= empty | \colour{ COLOURSET }
COLOURSET = \like{ID} | ML-DEFINITION
MULTISET = INTEGER | INTEGER‘STRING MSLIST
MSLIST = empty | + MULTISET

TRANSITION ::= \transition{ID}{ NAME GUARD }
| \transition{ID}{ \like{ID} }

GUARD = empty | \guard{BOOLEXPR}

BOOLEXPR = \like{ID} | ML-EXPRESSION

ARC = \arc{ID}{ \from{ID} \to{ID} WEIGHT}
WEIGHT = empty | \weight{ MULTISETEXPR }
MULTISETEXPR ::= \like{ID} | ML-EXPRESSION

TYPEDEF = \typedef{ID}{ ML-DEFINITION }

It is possible to omit the guard in a transition specification, as defined by
the grammar. In this case the guard expression defaults to true. Since
Place/Transition Nets are considered as a special case of CPNs, we define a
default colour set {w} such that a multiset can be a simple integer value n
which is equivalent to n‘w. If the colour set consists of a single colour z, a
missing arc weight defaults to 1‘z, and an integer arc weight n is equivalent
to nr.

Figure 3: Example Coloured Petri Net.

Example 3 Consider the simple Coloured Petri Net illustrated in Fig. 3
which models the well-known dining philosophers problem: The example is
for 5 philosophers, so that

_ {plv"'7p5}) pr:TOTPIE
¢ ‘{ Uiroo S, ifp =T,

The guard function func(z,y,z) in that figure is defined to be

Junc(z,y,2) = if (z=p)A(z=fi)N(y= fis1)
then TRUFE
else FPALSFE

and 1 & 1 means i+1 modulo 5.

The following is the description of that net in the APN notation:

\beginnet{Coloured Petri Net}

\seeML{MLSpecification}

\place{TH\init{1‘p1+1‘p2°+1‘p3+1‘p4+1‘p5} \colour{ with p1|p2|p3|p4|p5 }}
\place{E}{\colour{ \like{T} }}
\place{F}{\init{1f1+1 2 +1F3+1°F4+1°£5} \colour{ with £1|£2|£3|f4|f5 }
\transition{t1}{ \guard{func(x,y,z)} }

\transition{t2}{ \like{t1l} }

\arc{al}{\from{T} \to{t1} \weight{z}}

\arc{a2}{\from{t1} \to{E} \weight{z}}

\arc{a3}{\from{E} \to{t2} \weight{z}}

\arc{a4}{\from{t2} \to{T} \weight{z}}

\arc{ab}{\from{t2} \to{F} \weight{x+y}}

\arc{a6}{\from{F} \to{t1} \weight{x+y}}

\endnet

The style macros for the corresponding IATRX description given below differ
somewhat from those used for Place/Transition Nets.

Coloured Petri Net:

for ML function specification see MLSpecification
Place T ,marking {1‘pl+1‘p2‘+1‘p3+1‘p4+1‘p5}
colourset{ with pl|p2|p3|p4|p5 }

Place E ,

colourset{ is defined as for T }

Place F , marking {1‘f14+1F2°+1f34+1f4+1/5}
colourset{ with f1|f2|f3|f4|f5 }

Transition t1 guard{ func(x,y,z) }

Transition 12 is defined as for tl

Arc al fromT totl .weight z

Arc a2 fromtl to E ,weight z

Arc a3 from E to t2 ,weight z

Arc a4 fromt2 to T .weight z

Arc ab fromt2 toF ,weight x+y

Arc a6 from F to tl ,weight x4y

10

3.2.2 Further APN Notation for Coloured Petri Nets

The definition of CPNs as given by Jensen in [15] employs ML expressions
for the description of multisets, arc expressions and guards. An earlier
definition of CPNs[14] explicitly specifies all firing modes of a transition
by a finite set of (transition) colours. This representation, known as the
functional representation, has to be used for the purpose of analysis[15]. Tt
is also the approach used for Coloured GSPNs defined in [7] and QPNs[3],
both of which use a flow oriented view of a system.

When all firing modes of a transition explicitly specified, the definition of
CPNs becomes:

Definition 3 A Coloured Petri Net (CPN) is a 6-tuple
CPN = (X, P, T,C,I~,1", My), where
o X is a set of non-empty colour sets,
o P is a finite and non-empty set of places,
o 1T is a finite and non-empty set of transitions, with PNT = (),
e (' is a colour function PUT — X,

o I~ and IT are the backward and forward incidence functions defined
on P x T such that
I_(p,t),f+(p,t) € [C(t) - C(p)MS]vv (pvt) € Px T;

o My is a function defined on P describing the initial marking such that
Mo(p) € C(p)us,Vp € P

This representation can be described in the APNN for CPNs of Sec. 3.2.1
by modifying the following productions.

COLOURSET = \like{ID}

| with STRING COLOUR_REST
COLOUR_REST ::= empty

|

‘|> STRING COLOUR_REST

GUARD = empty | \guard{ GUARDEXPR }
GUARDEXPR = \like{ID}

| MODE_VAR = MODE_CONST GUARD_REST
GUARD_REST = empty

| orelse MODE_VAR = MODE_CONST GUARD_REST
MODE_VAR = STRING
MODE_CONST = STRING

11

MULTISETEXPR ::= \1like{ID}
| MULTISET
| case MODE_VAR of MODE_CONST
=> MULTISET MSEXPR_REST
| if MODE_VAR = MODE_CONST
then MULTISET MSEXPR_ELSE

MSEXPR_REST empty
‘|> MODE_CONST => MULTISET MSEXPR_REST

else MULTISET

|
MSEXPR_ELSE ::= empty

|

| else MULTISETEXPR

MULTISET ::= INTEGER
| INTEGER‘STRING MSLIST
MSLIST = empty | + INTEGER‘STRING MSLIST

Note that a guard expression lists all possible firing modes by a disjunction
over all possible bindings of a mode variable, e.g., a transition with firing
modes black and blue would have a guard \guard{mode=black orelse mode
=bluel}.

Obviously this is not a straightforward solution in terms of a functional
representation, but it integrates both kinds of CPNs into a single notational
framework.

4 Stochastic Petri Nets

In this section we consider Petri Nets to which time has been added. There
are a lot of concepts for introducing time, e.g., deterministic and stochastic
times, timing information attached to places or transitions etc. (see e.g.
[18]). Here we consider time-augmented nets to show the extensibility of
the APNN. The most well-known of such nets are Generalised Stochastic
Petri Nets (GSPNs).

4.1 Generalised Stochastic Petri Nets

As the name indicates, Generalised Stochastic Petri Nets (GSPNs) are timed
nets. An exponentially distributed firing time is associated with timed tran-
sitions. Such nets also contain immediate transitions which fire instanta-
neously and with priority over timed transitions. Furthermore the defini-
tion of a GSPN permits inhibitor arcs and different levels of priority for
immediate transitions.

12

Definition 4 A GSPN (cf. [1, 2]) is a 4-tuple GSPN = (PN, Pr,H,W)

where

o PN = (P, T,I7,I", My) is the underlying Place/Transition Net,

H C P xT is a set of inhibitor arcs,

o Pr is an assignment of priorities to transitions, with priority 0 for
timed transitions and higher priorities (> 1) for immediate transitions,
and

o W = (wy,...,wy,) is an array whose entry w; € RT

— is a rate of a negative exponential distribution specifying the firing
delay, when transition t; is a timed transition, or

— is a weight specifying the relative firing frequency, when transition
t; is an immediate transition.

4.1.1 APN Notation for GSPNs

The default value for arc weights and firing rates or frequencies is 1. Unless
otherwise specified, a transition is considered to be timed. Note that if
all priorities equal zero then the definition of a GSPN coincides with the
definition of a Stochastic Petri Net (SPN)[2].

The grammar for GSPNs extends the grammar of Place/Transition Nets
by the concepts of priority, weights and inhibitor arcs. This leads to the
following modifications:

TRANSITION ::= \transition{ID}{ NAME PRIO T_WEIGHT }
| \transition{ID}{ \1like{ID} }

PRIO ::= empty | \prio{ INTEGER }
T_WEIGHT ::= empty | \weight{ REAL }
ARC ::= \arc{ID}{ \from{ID} \to{ID} WEIGHT A_TYPE }
A_TYPE = empty | \type{ordinary} | \type{inhibitor}

A missing type specification of an arc defaults to an ordinary arc. We assume
the usual production rules for the derivation of real constants from REAL.
Note that marking dependent firing rates are not considered for now.

13

OGO

Figure 4: Example GSPN.

Example 4 Consider the simple GSPN illustrated in Fig. 4. The following
is the definition of that net using the APN notation:

\beginnet{gspnexample}

\place{p1}{\init{1}} \place{p2}{}
\place{p3}{\1like{p1}} \place{p4}{}
\place{p5}{\init{4}} \place{p6}{}

\transition{t1}{\prio{0} \weight{2.03}}
\transition{t2}{\prio{1} \weight{1.03}}
\transition{t3}{}

\arc{ai}{\from{p1} \to{t2}} \arc{a2}{\from{t2} \to{p4}}
\arc{a3}{\from{p4} \to{t1}} \arc{ad}{\from{t1} \to{pil}}
\arc{ab5}{\from{t2} \to{p2}} \arc{a6}{\from{p5} \to{t2}}
\arc{a7}{\from{p3} \to{t3}} \arc{a8}{\from{t3} \to{p6}}
\arc{a9}{\from{p2} \to{t3} \weight{2}}
\arc{a10}{\from{t3} \to{p5} \weight{2}}

\endnet

The INTRpX Output is:

gspnexample:

Place p! , marking {1}

Place p2

Place p3 is defined as for pl
Place p/4

Place pj , marking {4}

Place pb6

Transition {7/, priority 0 ,weight 2.0
Transition {2, priority [,weight 1.0
Transition ({3

14

Arc
Arc
Arc
Arc
Arc
Arc
Arc
Arc
Arc
Arc

al
a?
a3
aq
ad
ab
a’
a8
a9

from pl
from 2
from p4
from t/
from 2
from pH
from p3
from t3
from p2

to t2
to p4
to t1
to pl
to p2
to t2
to t5
to pb
to {3 ,weight 2

al0 from {3 to p5> ,weight 2

4.2 Coloured Generalised Stochastic Petri Nets

In the case of Generalised Stochastic Petri Nets, tokens do not have colours.
In order to merge the two concepts of coloured tokens and timed nets, tokens
have colours and an execution rate is now associated with every firing mode
of a transition. We call the resultant net, a Coloured Generalised Stochastic

Petri Net (CGSPN).

Such nets are however, not yet considered to be hierarchical. Hierarchical
nets are described in Sec. 5.

Definition 5 Using the same convention as that in Sec. 3.2, we define a

CGSPN as a tuple CGSPN = (X, P,T,A,C, Pr,H,G,W, E.) where

o X is a set of non-empty colour sets,

P is a finite and non-empty set of places,

T is a finite and non-empty set of transitions,

A is a finite set of arcs such that:

- PNT=PNnA=TnA=010.

C is a colour function P — X.

Pr is an assignment of priorities to transitions, with priority 0 for
timed transitions and higher priorities (> 1) for immediate transitions.

H C PxT isa set of inhibitor arcs®.

G is the guard function from T into expressions such that:

- VieT, Type(G(t)) =B and Type(Var(G(t))) C X.

2The semantics of inhibitor arcs in CGSPNs follows that of [7] .

15

o W is the weight function from the transitions T into expressions such
that Vt € T:

— Type(W(t)) = BT and Type(Var(W(t))) C ¥ which specifies the
firing delay when transition t is a timed transition and the relative
firing frequency, when transition t is an immediate transition.

o F is the arc function from A into expressions such that:

- Va € A, Type(E(a)) = C(p(a))urs and Type(Var(E(a))) € 3

where we p(a) denotes the place connected by arc a.

o [is the initialisation function defined from P into closed expressions
such that:

- Vpe P, Type(l(p)) = C(p)us

4.2.1 APN Notation for CGSPNs

The notation clearly has to provide the specification of colour sets for places
and types of colour sets. Furthermore transitions can fire according to differ-
ent firing modes which results in generalising arc weights to expressions that
evaluate to multisets and a guard expression which evaluates to a boolean
value. Therefore transition descriptions are extended by guards, arc weights
are generalised to contain expressions which evaluate to a multiset over the
colour set attached to the input place. Place descriptions have a colour set
description and its attributes for initialisation and capacity are generalised
to expressions of the appropriate type.

In the following the complete set of productions for CGSPNs is given.

NET ::= \beginnet{ID} ELEMENT \endnet
ELEMENT 1= empty
| PLACE ELEMENT
| TRANSITION ELEMENT
| ARC ELEMENT
| TYPEDEF ELEMENT
| \seeML{ FILENAME } ELEMENT
FILENAME ::= STRING
D = STRING
PLACE ::= \place{ID}{ NAME INIT CAP COLOUR }
| \place{ID}{ \1like{ID} }
NAME = empty | \name{ STRING }
INIT = empty | \init{ MULTISET }

CAP ::= empty | \capacity{ MULTISET }
COLOUR ::= empty | \colour{ COLOURSET }

16

COLOURSET = \like{ID} | ML-DEFINITION

TRANSITION ::= \transition{ID}{ NAME PRI0O T_WEIGHT GUARD }
| \transition{ID}{ \like{ID} }

PRIO ::= empty | \prio{ INTEXPR }

T_WEIGHT ::= empty | \weight{ REALEXPR }

GUARD ::= empty | \guard{ BOOLEXPR }

ARC ::= \arc{ID}{ \from{ID} \to{ID} WEIGHT A_TYPE }

WEIGHT ::= empty | \weight{ MULTISETEXPR }

A_TYPE ::= empty | \type{ordinary} | \type{inhibitor}

MULTISET ::= INTEGER‘STRING MSLIST

MSLIST ::= empty | + MULTISET

INTEXPR ::= \like{ID} | ML-EXPRESSION

REALEXPR = \1like{ID} | ML-EXPRESSION

MULTISETEXPR ::= \like{ID} | ML-EXPRESSION

BOOLEXPR = \1like{ID} | ML-EXPRESSION

TYPEDEF ::= \typedef{ID}{ ML-DEFINITION }

Definitions of integer, boolean, real and multiset expressions follow the ML-
syntax[20]. Arcs default to those of type “ordinary”.

Example 5 Consider the familiar Producer-Consumer problem, modified to
represent a gizmo assembly process. The associated CGSPN is illustrated in
Fig. 5. Gizmos are only assembled as needed and require three wheels, a
body and a door. It takes different exponentially distributed times to build
the wheels, body and door, respectively and assembling a gizmo takes an
exponential time with a different mean rate.

In other words, transition CONSUME (transition CO) is enabled when three
of the tokens with colour “WHEEL” and one token each of colour “BODY”
and “DOOR” are on place B. A token of colour “GIZMO” on place Cy indi-
cates that a gizmo needs to be assembled, if possible. Parts are only produced
as they are consumed.

The various functions are defined as follows:

WHEEL, BODY, DOOR},if p € {B, P, },
C(p) { { } if p { 1}

{GIZMO}7 pr € {017027P2}-

17

’ th € {117[2};

1
0, otherwise.

H =10

G(t) = {
{ case © of WHEEL =>5

TRUF, otherwise.

| BODY =>2
W(t) = | DOOR =>1, ift = PR,
20, if t = CO,
1, otherwise.
€, Zfa € {(Plva)v(PRvB)}v
E(a) = e+ 1y+ 1%, ifa €{(B,CO),(I1, A1)},
g, if a € {(CO, P2), (P, 11),(CO,Cy),(C2, I2), (12, C1), (C1,CO)}.
B {GIZMO}, if p € {C1, P},
Hp) = { (0, otherwise.
Py

3x+1y+1'
PRODUCE

I
g
g
\ I
Py
g

s

Figure 5: Coloured GSPN of a gizmo assembly process.

18

@ = WHEEL A y = BODY A z = DOOR A g = GIZMO, ift € {I;,CO},

\beginnet{cgspnexample}

\place{P1}{ \colour{with WHEEL|BODY|DOOR} }
\place{P2}{ \init{GIZMO} \colour{with GIZMO} }
\place{B} { \like{P1} }

\place{C1}{ \init{GIZMO} \colour{with GIZMO} }
\place{C2}{ \colour{with GIZMO} }

\transition{I1}{ \prio{1}

\guard{x=WHEEL and y=BODY and z=DOOR and g=GIZMO} }
\transition{I2}{ \prio{1} }
\transition{PR}{ \name{PRODUCE} \prio{O}

\weight{ case x of WHEEL => 5 | BODY => 2 | DOOR => 1} }
\transition{CO}{ \name{CONSUME} \prio{O}

\guard{ \like{I1} } \weight{20} }

\arc{ } { \from{P1} \to{PR} \weight{x} }

\arc{ } { \from{PR} \to{B} \weight{x} }

\arc{ } { \from{B} \to{CO0} \weight{3‘x+1‘y+1‘z} }
\arc{ } { \from{CO} \to{P2} \weight{g} }

\arc{ } { \from{P2} \to{I1} \weight{g} }

\arc{ } { \from{I1} \to{P1} \weight{3‘x+1‘y+1‘z} }
\arc{ } { \from{C1} \to{CO} \weight{g} }

\arc{ } { \from{CO} \to{C2} \weight{g} }

\arc{ } { \from{C2} \to{I2} \weight{g} }

\arc{ } { \from{I2} \to{C1} \weight{g} }

\endnet

5 Hierarchies

Petri Nets tend to become very large if used for modeling real world prob-
lems. One way of avoiding the difficulty of representing such nets graphically,
is to define one or more subnets and to possibly build a hierarchy of sub-
nets. In this way, large nets can be represented in a structured way which,
moreover, allows one to use a top-down design for complex models as well
as the reuse of net descriptions or identical submodels.

Huber et. al. [13] describe five concepts of hierarchical CPNs: substitution
transitions, substitution places, invocation transitions, fusion sets for places
and fusion sets for transitions. They define the semantics of these hierarchy
concepts by giving a translation into an equivalent non-hierarchical CPN.
In the following we demonstrate how these concepts can be expressed in
an extended APNN but give only a very brief, informal description of the
semantics of these hierarchical concepts; for details the reader is referred to

[13].

19

5.1 Substitution transitions

We use the notation in [13] and consider a hierarchical CPN as a set of
related pages. If a page has a refined node n, this page is called superpage
in relation to the subpage which gives the refinement of n. In this section
we consider the refinement of transitions by substitution. Substitution of
transitions is very much like macro-expansion in programming languages.

Figure 6 gives an example with a page N containing a substitution transition
n and the subpage N’, which corresponds ton. Nodes in the preset or postset
of n are called socket nodes. Their counterparts inside the subpage are called
port nodes and a binding function b must be given, which assigns a port
node to each socket node. Note that this function need not be injective or
surjective, e.g. b(p1) = b(p2) and p) is not bound to any socket node of n.

Q Superpage N

Figure 6: Trivial example of substitution transition

An APNN description has to provide the following information:

e for the substitution transition:

— the ID of the subpage given by \substitute{ID}
— the binding function b, specified in the arc description, which
connects the transition with its input and output places.

The binding b of an input place is given within an arc descrip-
tion by a sequence of \bind{SOCKETID}\with{TRANSITIONID}
\cont{PORTID} arc attributes.

20

\cont{PORTID} means that a node with identity PORTID is an
element of the subpage contained in the node of the preceding
attribute, namely the node with TRANSITIONID.

For an output place the corresponding arc attributes are
\bind{TRANSITIONID}\cont{PORTID}\with{SOCKETID}.

e for nodes of a subpage:
— an attribute which denotes input and output ports,i.e. \port{in},

\port{out} and \port{io}.

Since the preset and postset of a substitution transition define the set of
socket nodes, a special notation to distinguish socket nodes is not necessary.

The new elements of an APNN description for the example pages N and N’
are:

\beginnet{N}

\transition{n}{ \substitute{N’} ... }

\arc{pin}{\from{p1} \to{n} \bind{p1} \with{n} \cont{p1’} ... }
\arc{p2n}{\from{p2} \to{n} \bind{p2} \with{n} \cont{p1’} ... }
\arc{np3}{\from{n} \to{p3} \bind{n} \cont{p3’} \with{p3} ... }
\endnet

\beginnet{N’}
\place{p1’}{\port{in}} \place{p2’}{\port{in}}
\place{p3’}{\port{out}} \place{p4’}{\port{out}tt

\endnet

The reason for distributing the binding information over arcs connecting
the preset, transition, and postset is, that the existence of such a binding
depends on the existence of such an arc. Furthermore in case of refining

adjacent nodes, the binding information depends on both refinements and
is not exclusive to one of its nodes.

5.2 Substitution places

Substitution places are analogous to substitution transitions apart from a
different semantics, i.e. the translation into a non-hierarchical net is different
from the translation of substitution transitions. Nevertheless the APNN
description can be handled analogously, a substitution place specification
contains the subpage ID by \substitute{ID} and the binding function is
distributed over the arc description just as for substitution transitions. Port
nodes of the subpage have an additional attribute \port{in}, \port{out}
or \port{io}.

21

5.3 Invocation transitions

Invocation transitions are like function calls, in fact they even allow recur-
sive re-use of subpages. The binding of socket- and port nodes is equivalent
to substitution transitions. We change \substitute{ID} to \invoke{ID}
to distinguish invocation transitions from substitution transitions in the
APNN. Since subpages of invocation transitions allow for explicit exit--
statements to denote termination conditions of an invocation, place and
transition specifications can be extended by an \exit attribute in the APN
notation.

5.4 Fusion sets for places and fusion sets for transitions

The main idea about fusion is to fold a set of nodes into a single node.
Consequently a fusion set contains an arbitrary number of places or an
arbitrary number of transitions.

Huber et. al. distinguish three types of fusion sets:

Page fusion set. This is just a drawing convenience in graphical user
interfaces in case of a single page instance®. In case of several page
instances, a page fusion set folds all members from all page instances
into a single node.

Instance fusion set. This means that all members per instance of a page
are folded into a single instance-specific node.

Global fusion set. This allows fusion set members from all pages and all
page instances to be merged into a single node.

Fusion sets are integrated into the APNN by extending a net description
with \fuse{ID}{TYPE}{IDLIST}, where ID provides a unique identifier for
a fusion set. TYPE is a string constant page, inst or global. IDLIST is a
|-separated list of unique node identifier. This is not critical in case of page
or instance fusion sets, but multiple reuse of a page can lead to difficulties
in global fusion sets. In order to handle this we assume an appropriate
naming convention as mentioned in e.g. [13] for Design/CPN, to obtain
unique identifier.

The information contained in a fusion set definition is aggregated into a
new net element in APNN, instead of distributing the information over its
members. One reason for this is to avoid repetitive specification of type and
ID. But mainly because conceptually a new node is created by a fusion set,
i.e., the fusion of, e.g., transitions results into a new transition whose guard
is a conjunction of all guards of the fusion set members.

®Using independent copies of subpages lead to the notion of instances of a page.

22

Substitution place

Substitution transition

~
yl
L .
- @
L y2
Substitutior] transition Substitution place
Port refinement Port refinement

ppx1 pyl

Figure 7: Pathological example for refined adjacent nodes with port refine-
ment

5.5 Refinement of adjacent nodes

The hierarchical concepts regarded so far reveal certain difficulties to handle
the refinement of adjacent nodes, a case which is especially considered in [11].
We try to demonstrate the difficulties by means of an artificial example as
shown in Fig. 7, which even contains refinement of port nodes.

In [10], Chapter 4.2.4.2, R. Fehling suggests to specify a binding between
refined ports, e.g. between ppx1 and ppyl. Here, for consistency, we suggest
instead an explicit binding between socket nodes, e.g. x1 and x2, and refined
port nodes, e.g. ppyl and ppy2. The binding information is described with
arc a=(x,y) in APNN by the following statement:

\arc{a}{ \from{x} \to{y}

\bind{x} \cont{px} \cont{ppx1} \with{y} \cont{y1}

\bind{x} \cont{px} \cont{ppx2} \with{y} \cont{y2}

\bind{x} \cont{x1} \with{y} \cont{py} \cont{ppyl}

\bind{x} \cont{x2} \with{y} \cont{py} \cont{ppy2}
.}

In [11] port refinements do not contain port nodes to match their environ-
ment. We decided to support this as well in order to avoid arcs between

23

separate page descriptions and to keep the descriptions homogeneous. In
our example arcs (x1,px) and (x2,px) carry the binding for the port refine-
ment of px:

\arc{x1px}{\from{x1} \to{px}

\bind{x1} \with{px} \cont{pxi}
...}

\arc{x2px}{\from{x2} \to{px}

\bind{x2} \with{px} \cont{px2}
.}

Note that all implicit bindings like the binding between px and y can be
extracted from the given binding specification by shortening the sequences
of cont-statements, e.g. \bind{x} \cont{px} \with{y}. Implicit bindings
and implicit arcs are regarded in detail in [11].

All these concepts of a hierarchy are now used for the notation of Hierarchical
CGSPNs, which serve as an example. The grammar of CGSPNs is extended
by the following to accommodate Hierarchical CGSPNs.

5.6 APN Notation for Hierarchical CGSPNs

Modified Productions:

NET ::= empty
| \inputnet{ID} NET
| \beginnet{ID} ELEMENT \endnet NET
| \beginnet{ID} \like{ID} \endnet NET

ELEMENT 1= empty
PLACE ELEMENT
TRANSITION ELEMENT
ARC ELEMENT

|

|

|

| TYPEDEF ELEMENT

| \seeML{ FILENAME } ELEMENT
|

FUSION ELEMENT
FUSION ::= \fuse{ID}{TYPE}{ID IDLIST}
TYPE = page | inst | global
IDLIST ::= empty | ¢|> ID IDLIST
PLACE = \place{ID}{ NAME INIT CAP COLOUR P_TYPE PORT EXIT}
| \place{ID}{ \1like{ID} }
P_TYPE ::= empty | \substitute{ID}
PORT = empty | \port{in} | port{out} | \port{io}
EXIT = empty | \exit

24

TRANSITION ::= \transition{ID}{ NAME T_TYPE PRIO T_WEIGHT GUARD
PORT EXIT}
| \transition{ID}{ \like{ID} }

T_TYPE = empty | \substitute{ID} | \invoke{ID}

ARC = \arc{ID}{ \from{ID} \to{ID} WEIGHT A_TYPE BIND }
BIND = empty | \bind{ID} CONT \with{ID} CONT

CONT = empty | \cont{ID} CONT

5.7 Hierarchical Queueing Petri Nets

Hierarchical Queueing Petri Nets (HQPNs) are a special kind of hierarchi-
cal Petri Nets with certain extensions to integrate queueing networks. The
main motivation is to combine hierarchical description techniques with cor-
responding hierarchical solution techniques [5]. We describe the APNN for
this modeling formalism for several reasons:

e to demonstrate the extensibility of the APNN to further Petri net
formalisms,

o currently work is under way to support HQPNs by an adequate soft-
ware tool which supports the APNN.

In 1989 Bause et al.[3, 4] introduced the concept of a “queued place” into
net theory for the purpose of performance analysis (see Fig. 8). A queued
place combines the notion of a queue, where tokens are queued and served
according to a certain scheduling strategy, with a depository, which is iden-
tical to an ordinary place. Input transitions of a queued place fire tokens
into the queue where they are not available to the output transitions until
service completion. On service completion the tokens are put into the de-
pository whence they are available to output transitions in the conventional
way. They called the new type of net a Queueing Petri Net (QPN).

QPNs additionally allow the refinement of places leading to Hierarchical
QPNs (see Fig. 9).

- -\
</

queue depository

Figure 8: Example queued place of a HQPN and its shorthand notation

25

Figure 9: Example subnet place of a HQPN and its shorthand notation

Definition 6 (HQPN) A Hierarchically Queueing Petri Net (HQPN) is a
triple HQPN = (CGSPN,QS, RF) where

e CGSPN = (X,P,T,A,C,Pr,H,G,W,E.I) as defined before, is the
underlying coloured GSPN,

o ()5 is a function defined on Pg C P giving an assignment of a queue-
ing specification to a queued place p € Py,

o RF is a function defined on Pr C P\ Py giving the refinement of a
place p € Pr as a HQPN.

Hence HQPNs are CGSPNs where some places are queued places and some
places are substitution places. Note that by definition nodes cannot be both
a substitution place and a queued place. Fusion sets are supported with the
constraint that only substitution places can be fused and that all substitution
places of a fusion set share the same subpage. The page hierarchy which
results from a HQPN forms a directed acyclic graph.

The description of the underlying CPN is based on the APNN of the func-
tional representation as given in Sec. 3.2.2, such that all firing modes are
explicitly described and hence no external ML-definitions are necessary.

5.7.1 APN Notation for HQPNs

Productions:

NET = empty

| \inputnet{ID} NET

| \beginnet{ID} ELEMENT \endnet NET
|\

beginnet{ID} \like{ID} \endnet NET

26

ELEMENT 1= empty

| PLACE ELEMENT
| TRANSITION ELEMENT
| ARC ELEMENT
| TYPEDEF ELEMENT
| FUSION ELEMENT
ID ::= STRING
TYPEDEF ::= \typedef{ID}{ COLOURSET }
FUSION ::= \fuse{ID}{TYPE}{ID IDLIST}
TYPE = page | inst | global
IDLIST ::= empty | ¢|> ID IDLIST
PLACE ::= \place{ID}{ NAME INIT CAP COLOUR P_TYPE }
| \place{ID}{ \1like{ID} }
NAME ::= empty | \name{ STRING }
INIT ::= empty | \init{ MULTISET }
CAP ::= empty | \capacity{ MULTISET }
COLOUR ::= empty | \colour{ COLOURSET }
P_TYPE ::= empty
| \substitute{ID}
| \queue{immediate} SCHED \weight{ TUPLEEXPR }
| \queue{timed} SCHED \weight{ TUPLEEXPR }
SCHED ::= empty
| \sched{STRING} SCHED
| \noserver{ INTEGER } SCHED
| \rank{ INTEXPR } SCHED
| \prio{ INTEXPR } SCHED
TRANSITION ::= \transition{ID}{ NAME PRIO T_WEIGHT GUARD PORT}
| \transition{ID}{ \like{ID} }
PRIO ::= empty | \prio{ INTEXPR }
T_WEIGHT ::= empty | \weight{ REALEXPR }
GUARD ::= empty | \guard{ GUARDEXPR }
PORT ::= empty | \port{in} | \port{out} | \port{io}
ARC ::= \arc{ID}{ \from{ID} \to{ID} WEIGHT A_TYPE BIND }
WEIGHT ::= empty | \weight{ MULTISETEXPR }
A_TYPE ::= empty | \type{ordinary} | \type{inhibitor}
BIND ::= empty | \bind{ID} CONT \with{ID} CONT
CONT ::= empty | \cont{ID} CONT

TUPLEEXPR denotes an ML-expression which evaluates to a tuple (mean,coeff_var)
of real values where mean is the mean and coeff_var the coefficient of vari-

27

ation for the service time of a customer in the queue. The rank expression
allows the specification of priorities for different colours of tokens to deter-
mine the state of the queue in case of bulk arrivals.

subnetblue

queuedplace tl t2

D I

subnetblack

Figure 10: Example net with a queued place and two refined places.

port node

@ j i :
[]
2
Sl —
port node
2
6

p
t5 t4
i o
p Q

RN

Figure 11: Subpage for substitution places

Fig. 10 is an example intended merely to demonstrate the APNN for HQPNs.
The queued place has a FCFS scheduling strategy and its colour set contains
only two colours: black and blue. Transitions t1 and t2 each have two firing
modes: fireblack and fireblue. The transitions merely transport a token to
or from the queued place to subnetblack or to subnetblue. The refinement
of the places subnetblack and subnetblue are instances of the single-coloured
GSPN given in Fig. 11 with input port in and output port out.

Specification of the example:
\inputnet{subpagespecification}

\beginnet{hgpnexample}

\place{queuedplace}{\init{1’black + 1’blue} \colour{ with black | blue}
\queue{timed} \sched{FCFS} \noserver{1i}

\rank{case colour of black => 1 | blue => 2}

\weight{case colour of black => (3.5,1.0) | blue => (1.2,1.5)}3}

28

\place{subnetblack}{\substitute{subpagespecification}}
\place{subnetblue}{\substitute{subpagespecification}}

\transition{t1}{\prio{0}

\weight{case mode of fireblack => 1.5 | fireblue => 2.1}
\guard{mode = fireblack orelse mode = fireblue}}
\transition{t2}{\like{t1}}

\arc{a}{\from{t2} \to{queuedplace}

\weight{case mode of fireblack => 1‘black | fireblue => 1‘bluel}}
\arc{b}{\from{queuedplace} \to{t1} \weight{\like{a}}}
\arc{c}\from{t1} \to{subnetblue}

\weight{if mode = fireblue => 1 else empty}
\bind{t1} \with{subnetblue} \cont{in}}
\arc{d}{\from{t1} \to{subnetblack}

\weight{if mode = fireblack => 1 else empty}
\bind{t1} \with{subnetblack} \cont{in}}
\arc{e}{\from{subnetblue} \to{t2}

\weight{if mode = fireblue => 1 else empty}
\bind{subnetblue} \cont{out} \with{t2}}
\arc{f}{\from{subnetblack} \to{t2}

\weight{if mode = fireblack => 1 else empty}
\bind{subnetblack} \cont{out} \with{t2}}

\endnet

In this case the keyword empty in the weight expressions of arcs denotes
the empty multiset. Note that \substitute{ID} creates a fresh instance
from the net with this ID. If two substitution places shall share the same
instance, they must be members of the same fusion set.

The IATRX output of the example is:

Net description imported from subpagespecification
hgpnexample:

Place queuedplace ,

marking {1’black + 1’blue} ,

colourset{ with black | blue } ,

timed queueing place with FCFS scheduling , 1 server(s) ,
order of arrival in case of bulk arrivals:

case colour of black => 1 | blue => 2,

weight case colour of black => (3.5,1.0) | blue => (1.2,1.5)
Place subnetblack is an instance of subpagespecification
Place subnetbhlue is an instance of subpagespecification

Transition t1 , priority 0,

weight case mode of fireblack => 1.5 | fireblue => 2.1
guard{mode = black orelse mode = blue}

29

Transition t2 is defined as for tl

Arc a fromt2 to queuedplace .

weight case mode of fireblack => 1‘black | fireblue => 1°‘blue
Arc b from queuedplace to tl |

weight is defined as for a

Arc ¢ fromtl to subnetblue .

weight if mode = fireblue => 1 else empty

binding t1 with subnetblue wherein it binds in
Arc d fromtl to subnetblack ,

weight if mode = fireblack => 1 else empty

binding t1 with subnetblack wherein it binds in
Arc e from subnetblue to t2 .

weight if mode = fireblue => 1 else empty

binding subnetblue wherein it binds out with t2
Arc f from subnetblack to t2 ,

weight if mode = fireblack => 1 else empty

binding subnetblack wherein it binds out with t2

6 Summary

The first attempt at defining a universal notation for describing Petri Net
models was made in 1988. The authors could find no other, or any subse-
quent reference to the subject when the need arose for such an interface in
the collaboration between their respective research groups. In their partic-
ular case they wanted to exchange model descriptions for analysis by the
QPN-analyser[6] developed, and being developed, by one group with the
DNA-net[8] developed by the other.

The notation described in this report proposes an uniform, extensible for-
malism which should accommodate a large class of nets. For Coloured Petri
Nets the APNN employs ML so far. The APNN can easily be modified to
support other “programming languages”. The notation moreover allows for
a human readable model description which can be derived directly using
I TRX commands known to a wide audience allowing a single format for the
incorporation of the net description.

At the same time the APNN allows different researchers to discuss and ex-
periment with variations of models of actual systems using possibly different
analysis algorithms implemented in tools which, for different reasons, they
do not share.

Comments about the APNN are clearly most welcome and should be ad-
dressed to anyone of the authors. We trust that, while almost certainly
not acceptable in its entirety at present, it will be the start of a discussion
leading to a generally accepted abstract formalism for describing high-level
Petri Nets.

References

[1]

M. Ajmone-Marsan, G. Balbo, and G. Conte. A class of Generalised
Stochastic Petri Nets for the performance evaluation of multiprocessor
systems. ACM Transactions on Computer Systems, 2:93—122, 1984.

M. Ajmone-Marsan, G. Balbo, and G. Conte. Performance Models of
Multiprocessor Systems. MIT Press Series in Computer Science, 1986.

F. Bause. Queueing Petri Nets — a formalism for the combined quali-
tative and quantitative analysis of systems. In 4th International Work-
shop on Petri Nets and Performance Models, Toulouse (France), pages
14-23, 1993.

F. Bause and H. Beilner. Eine Modellwelt zur Integration
von Warteschlangen- und Petri-Netz-Modellen. In Proceedings of
the 5th GI/ITG-Fachtagung, Messung, Modellierung und Bewer-
tung von Rechensystemen und Netzen, pages 190-204. Braunschweig,
Gesellschaft fiir Informatik (GI), Germany, 9 1989.

F. Bause, P. Buchholz, and P. Kemper. Hierarchically combined Queue-
ing Petri Nets. In 11th International Conference on Analysis and
Optimizations of Systems, Discrete Event Systems, Sophia-Antipolis
(France), June 1994.

F. Bause and P. Kemper. QPN-tool for qualitative and quantitative
analysis of queueing Petri Nets. In 7th International Conference on
Modelling Techniques and Tools for Computer Performance Evaluation,
Vienna (Austria), pages 321-334, 1994.

G. Chiola, G. Bruno, and T. Demaria. Introducing a color formalism
into Generalized Stochastic Petri Nets. In Proceedings of the 9th In-
ternational Workshop on Application and Theory of Petri Nets, Venice
(Italy), pages 202-215, 1988.

A. Attieh et al. Functional and temporal analysis of concurrent systems.
Technical report, University of Cape Town, 1994.

G. Berthelot et al. A syntax for the description of Petri Nets. Petr:
Net Newsletter, pages 4 — 15, 29 April 1988.

R. Fehling. Hierarchische Petrinetze. PhD thesis, Universitit Dort-
mund, Verlag Dr. Kovac, 1991.

R. Fehling. A concept of hierarchical Petri Nets with building blocks.
In G. Rozenberg, editor, Advances in Petri Nets 1993, LNCS 674, pages
148-168. Springer, Berlin, 1993.

F. Feldbrugge. Petri net tools. Lecture Notes in Computer Science, No
222, pages 203-223, 1985.

31

[13] P. Huber, K. Jensen, and R.M. Shapiro. Hierarchies in Coloured Petri
Nets. In G. Rozenberg, editor, Advances in Petri Nets, LNCS 483,
pages 313-341. Springer, Berlin, 1990.

[14] K. Jensen. Coloured Petri Nets and the invariant method. Mathematical
Foundations on Computer Science, Lecture Notes in Computer Science,
118:327-338, 1981.

[15] K. Jensen. Coloured Petri Nets: Basic Concepts, Analysis Methods and
Practical Use. EATCS Monographs on Theoretical Computer Science,
Vol. 1, 1992.

[16] U. Krieger, B. Miiller-Clostermann, and M. Sczittnick. Modelling and
analysis of communication systems based on computational methods for
markov chains. IEFFE Transactions on Communications: Special Issue
on Modelling and Analysis of Telecommunication Systems, 40(4):109—
137, 1991.

[17] T. Murata. Petri Nets: Properties, analysis and applications. Proceed-
ings of IEEE, 77(4):541-580, April 1989.

[18] A. Pagnoni. Stochastic nets and performance evaluation. In Petri Nets:
Central Models and Their Properties. Advances in Petri Nets, pages
460-478. Lecture Notes in Computer Science, No. 254, 1986.

[19] C. A. Petri. Kommunikation mit Automaten. PhD thesis, Universitit
Bonn, 1962,

[20] A. Wikstrom. Functional Programming using Standard ML. Prentice
Hall International, 1987.

A Complete APNN grammar

In the following we present the productions of a complete APNN for CGSPNs
including hierarchical description and queued places. As throughout the
report terminal symbols are given by lower-case letters, non-terminals by
upper-case letters. For conciseness we use the APNN for CPNs with gen-
eral ML-expressions as given in Sec. 3.2.1. Note that one can easily modify
the APNN to support other “programming languages”. empty denotes the
empty string.

With this APNN a wide range of Petri Nets is covered. Possible extensions
of the notation can be incorporated as demonstrated in this report.

32

NET ::= empty
| \inputnet{ID} NET
| \beginnet{ID} ELEMENT \endnet NET
| \beginnet{ID} \like{ID} \endnet NET

ELEMENT 1= empty
| PLACE ELEMENT
| TRANSITION ELEMENT
| ARC ELEMENT
| TYPEDEF ELEMENT
| \seeML{ FILENAME } ELEMENT
| FUSION ELEMENT
ID ::= STRING
FILENAME ::= STRING
TYPEDEF ::= \typedef{ID}{ COLOURSET }
FUSION ::= \fuse{ID}{TYPE}{ID IDLIST}
TYPE ::= page | inst | global
IDLIST ::= empty | ¢|> ID IDLIST
PLACE = \place{ID}{ NAME INIT CAP COLOUR P_TYPE PORT EXIT }
| \place{ID}{ \1like{ID} }
NAME ::= empty | \name{ STRING }
INIT ::= empty | \init{ MULTISETEXPR }
CAP ::= empty | \capacity{ MULTISETEXPR }
COLOUR ::= empty | \colour{ COLOURSET }
P_TYPE ::= empty
| \substitute{ID}
| \queue{immediate} SCHED \weight{ TUPLEEXPR }
| \queue{timed} SCHED \weight{ TUPLEEXPR }
SCHED ::= empty
| \sched{STRING} SCHED
| \noserver{ INTEGER } SCHED
| \rank{ INTEXPR } SCHED
| \prio{ INTEXPR } SCHED
PORT = empty | \port{in} | port{out} | \port{io}
EXIT = empty | \exit
TRANSITION ::= \transition{ID}{ NAME T_TYPE PRIO T_WEIGHT GUARD
PORT EXIT }
| \transition{ID}{ \like{ID} }
T_TYPE ::= empty | \substitute{ID} | \invoke{ID}
PRIO ::= empty | \prio{ INTEXPR }
T_WEIGHT ::= empty | \weight{ REALEXPR }
GUARD ::= empty | \guard{ BOOLEXPR }

33

ARC ::= \arc{ID}{ \from{ID} \to{ID} WEIGHT A_TYPE BIND }

WEIGHT ::= empty | \weight{ MULTISETEXPR }
A_TYPE ::= empty | \type{ordinary} | \type{inhibitor}
BIND ::= empty | \bind{ID} CONT \with{ID} CONT
CONT ::= empty | \cont{ID} CONT

INTEXPR = \1like{ID} | ML-EXPRESSION

REALEXPR = \1like{ID} | ML-EXPRESSION

BOOLEXPR = \1like{ID} | ML-EXPRESSION
TUPLEEXPR = \1like{ID} | ML-EXPRESSION
MULTISETEXPR ::= \like{ID} | ML-EXPRESSION
COLOURSET = \like{ID} | ML-DEFINITION

TYPEDEF ::= \typedef{ID}{ ML-DEFINITION }

Start-symbol: NET

