

On Non-Ergodic Infinite-State Stochastic Petri Nets

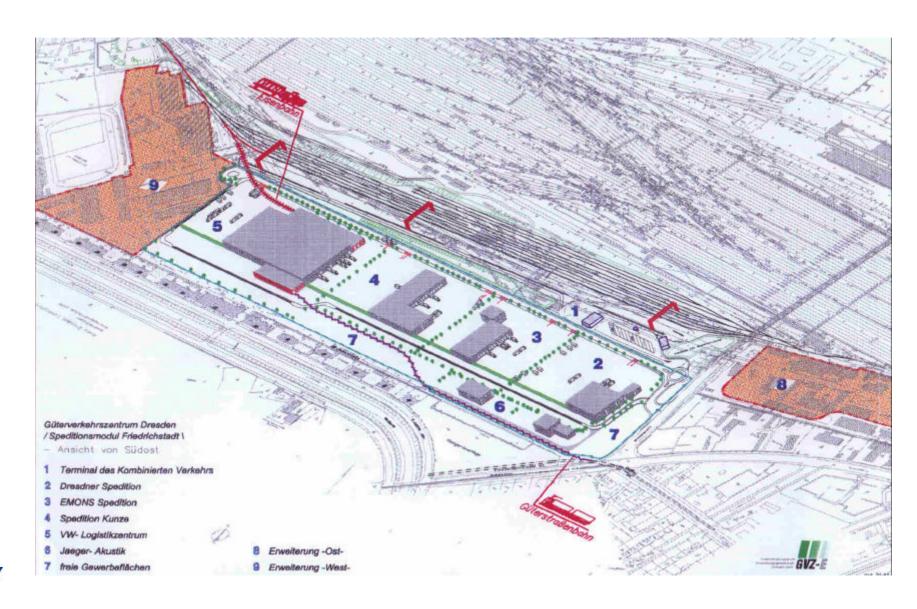
Falko Bause, LS Informatik IV, Universität Dortmund

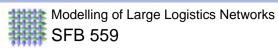
- Motivation
- E-sensitive GSPNs
- Detecting e-sensitive GSPNs
- E-sensitivity and non-ergodicity
- Conclusions

UNIVERSITÄT DORTMUND SFB = **S**onderforschungs**b**ereich Modelling of Large Logistics Networks = Collaborative Research Center SFB 559 SFB 559 Modelling of Large Logistics Networks **A2 Procurement** A3 Supply Chains Applications A4 Freight Villages A13 Traffics at **A5 Airports Harbours** A11 Redistribution-**Networks A7 Service Networks** M2 Analytical M3 Network-**M1** Simulation **Methods** Controlling **M6** Construction M7 "Disposition of **Methods M8** Optimisation **Resources**" **Rules** M9 Data Retrival and M12 Decision **Statistics Support**

Modelling of Large Logistics Networks

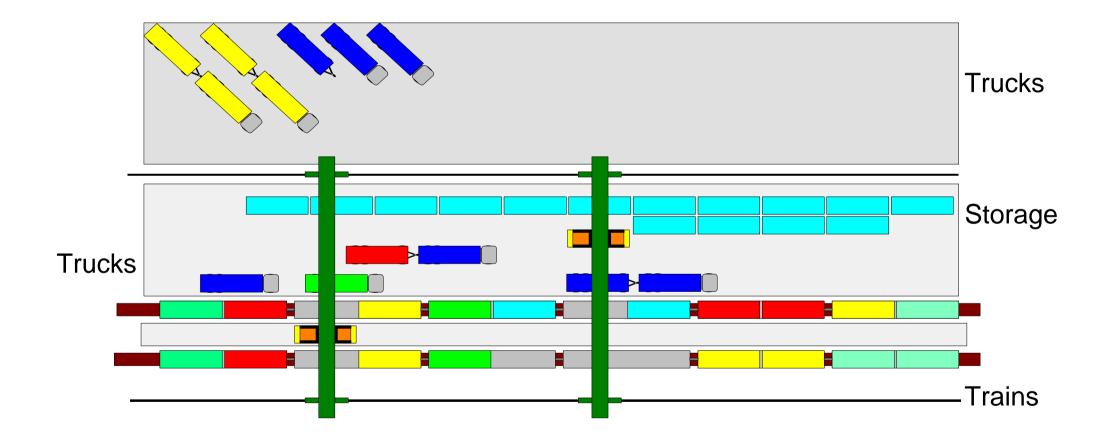
Example: Freight Village





Example: Freight Village

Terminal of a Freight Village



Example: Freight Village

Terminal of a Freight Village

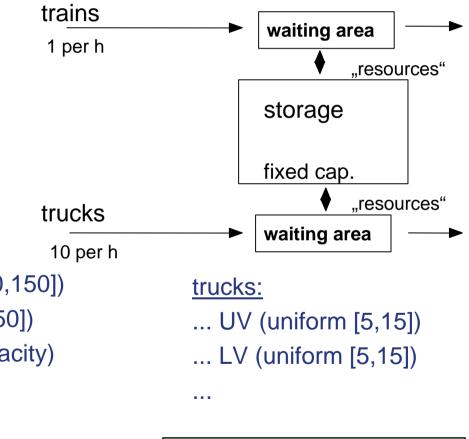
design phase:

estimation of volume of traffic, e.g. mean number of trains and trucks.

general analysis objective (here):

dimension resources

Simplified Model ("top-level")



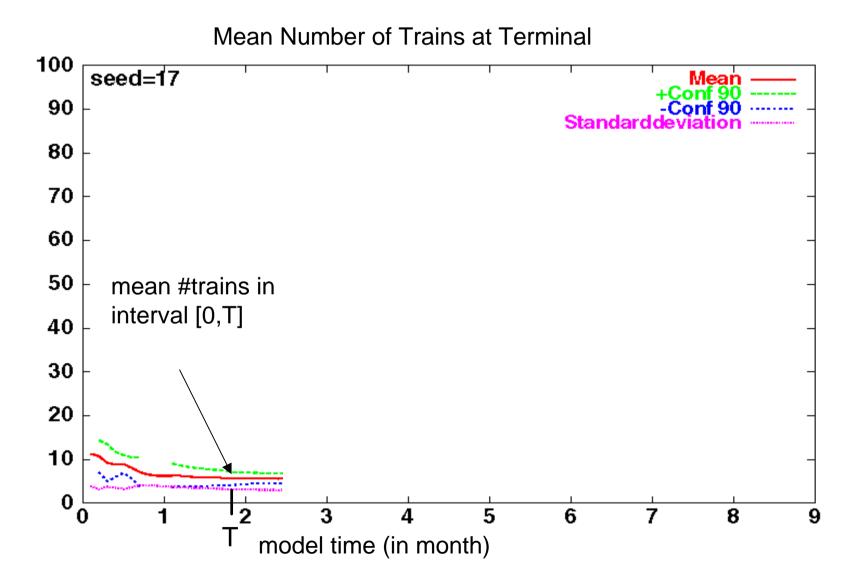
<u>Specific Analysis Objective:</u> Size of Waiting Areas?

determine unload volume UV (uniform [50,150]) determine load volume LV (uniform [50,150]) wait until ((UV + storage) <= storage capacity) unload wait until ((storage - LV) >= 0)

load

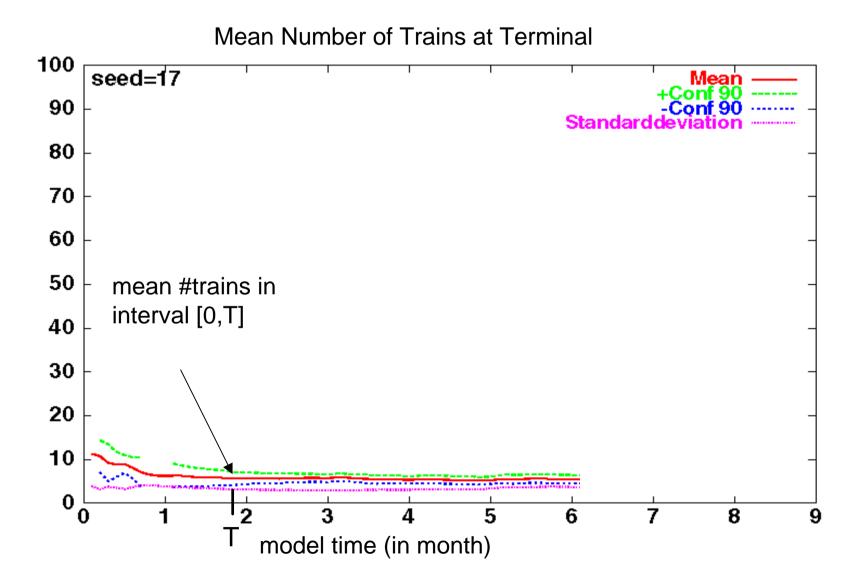
Modelling of Large Logistics Networks SFB 559

Experiment: Infinite Waiting Areas



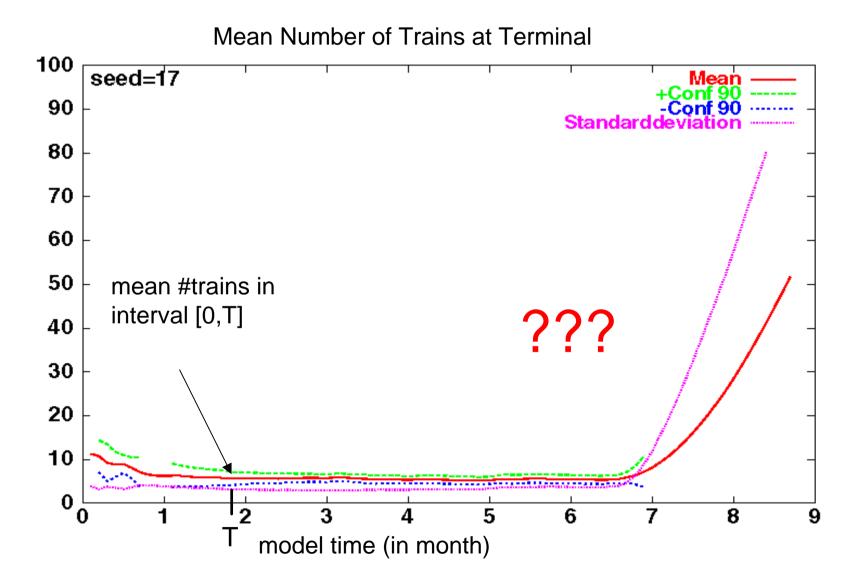
Modelling of Large Logistics Networks

Experiment: Infinite Waiting Areas



Modelling of Large Logistics Networks

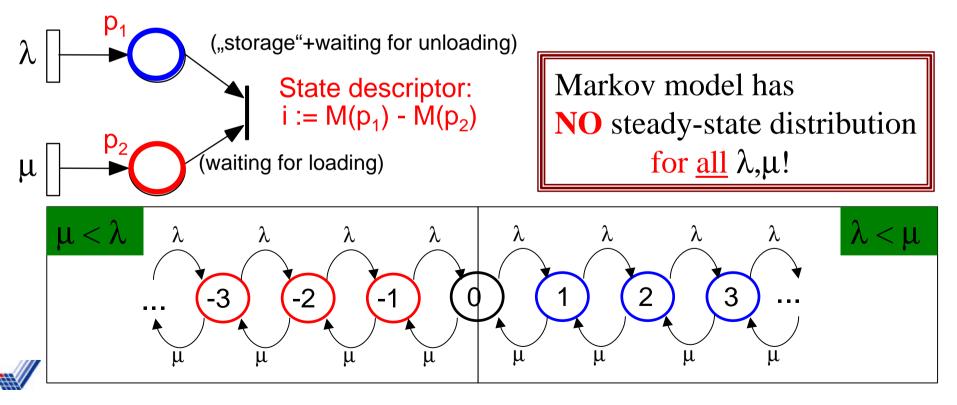
Experiment: Infinite Waiting Areas



Analytical Investigation:

Simplifications:

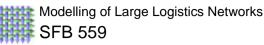
- only one type of carrier
- each carrier either unloads or loads just 1 storage unit
- Poisson arrival streams
 - with parameters **l** (,,unload") and **m**(,,load")
- all other activities (parking+unloading/loading+leaving) are viewed as an elementary, immediately occurring step



GSPN Definition

A Petri net (PN) is a 4-tuple $PN = (P, T, C^-, C^+)$ with $P = \{p_1, \dots, p_n\}, T = \{t_1, \dots, t_m\},$ $P \cap T = \emptyset,$ $C^- = (c_{ij}^-), C^+ = (c_{ij}^+) \in \mathbb{N}_0^{n \times m}.$

UNIVERSITÄT DORTMUND



C⁺: forward incidence matrix ("arcs from t to p") C⁻: backward incidence matrix ("arcs from p to t") Incidence matrix: $C := C^+ - C^-$

A GSPN is a tuple $GSPN = ((PN, M_0), T_1, T_2, \Gamma)$ where

- $PN = (P, T, C^{-}, C^{+})$ is the underlying Petri net,
- M_0 is the initial marking,
- $T_1 \subseteq T$ is the set of timed transitions, $T_1 \neq \emptyset$,
- $T_2 \subset T$ denotes the set of immediate transitions, $T_1 \cap T_2 = \emptyset$, $T = T_1 \cup T_2$,
- $\Gamma = (\gamma_1, \dots, \gamma_{|T|})$ is a vector with components
 - $\gamma_i \in \mathbb{R}^+ := \{x | x \in \mathbb{R}, x > 0\}, \text{ where } \gamma_i$
 - is the rate of a negative exponential distribution specifying the firing delay, if $t_i \in T_1$, or
 - is a firing weight, if $t_i \in T_2$.

Marking at time z : M(z)Firing vector at time z : N(z)

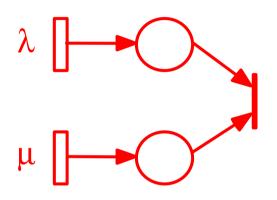
- The marking process is ergodic iff $\exists M^* \in (\mathbb{R}^+_0)^{|P|} : M^* = \lim_{z \to \infty} E[M(z)].$ M^* steady-state mean marking.
- The firing process is ergodic iff $\exists N^* \in (\mathbb{R}^+_0)^{|T|} : N^* = \lim_{z \to \infty} \frac{E[N(z)]}{z}.$ N^* mean firing flow vector.

If the marking and the firing processes are ergodic then $C \times N^* = 0$ (Florin, Natkin)

Net structure gives: GSPN has ergodic marking and firing processes $\rightarrow \lambda = \mu$

Conditon is sensitive towards (even small) changes of parameters

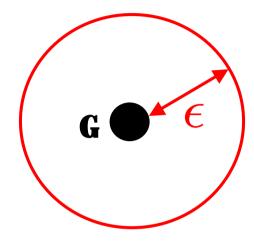
11



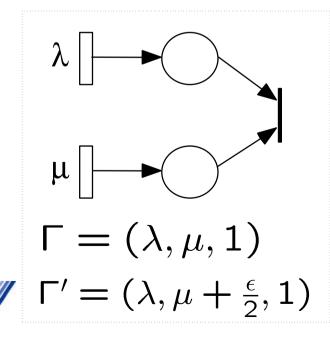
SFB 559

E-sensitive GSPNs

 $\Gamma \in \mathbb{R}^m, \epsilon \in \mathbb{R}^+$. (|T| = m) $\Gamma + \overline{\epsilon}_m$ is the set of vectors, which are in an ϵ -area around the point $\Gamma \in \mathbb{R}^m$.



Modelling of Large Logistics Networks



A $GSPN = ((PN, M_0), T_1, T_2, \Gamma)$ is called e-insensitive iff there exists $\epsilon \in \mathbb{R}^+$ such that $GSPN(\Gamma') := ((PN, M_0), T_1, T_2, \Gamma')$ has ergodic marking and firing processes for all $\Gamma' \in \Gamma + \overline{\epsilon}_m$, the GSPN is called e-sensitive otherwise.

E-sensitive GSPNs

$$C \times N^* = \mathbf{0}$$

• Let GSPN be e-insensitive. Then

 $\exists \epsilon \in \mathbb{R}^+ : \forall \Gamma' \in \Gamma + \overline{\epsilon}_m : \qquad C \times N^*(\Gamma') = 0$

where $N^*(\Gamma')$ denotes the mean firing flow vector of $GSPN(\Gamma')$.

• If

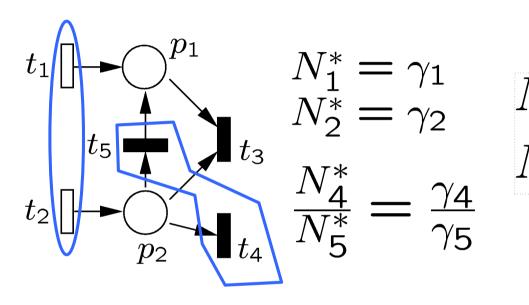
$$\forall \epsilon \in \mathbb{R}^+ : \exists \Gamma' \in \Gamma + \overline{\epsilon}_m : \qquad C \times N^*(\Gamma') \neq 0$$

then the GSPN is e-sensitive.

```
Problem: Determine N^*(\Gamma').
```


Modelling of Large Logistics Networks SFB 559

Partial Equal Conflict (PEC)



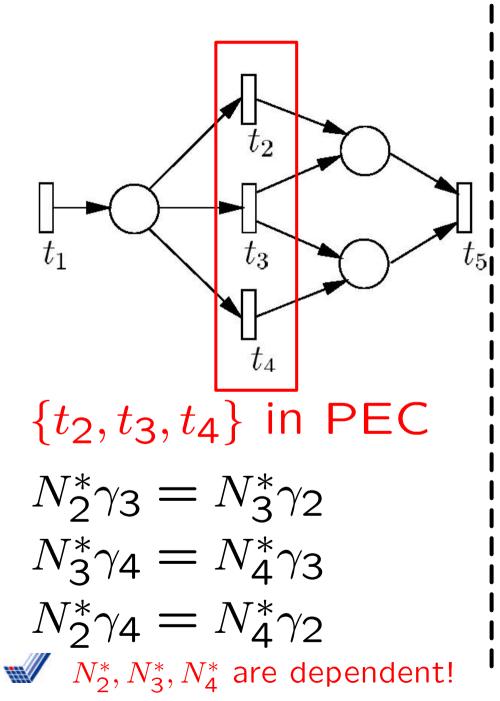
 $N_4^* \gamma_5 = N_5^* \gamma_4$ $N_1^* \gamma_2 = N_2^* \gamma_1$

All transitions in \tilde{T} are either timed or immediate

A set of transitions $\tilde{T} \subseteq T, \tilde{T} \neq \emptyset, \tilde{T} \subseteq T_1$ or $\tilde{T} \subseteq T_2$, is in Partial Equal Conflict (PEC) iff

$$\forall t_i, t_j \in \tilde{T} : C^-(\bullet, i) = C^-(\bullet, j)$$

 C^- backward incidence matrix ("arcs from p to t")



Modelling of Large Logistics Networks SFB 559

 $C \times N^* = 0$ N^* is in kernel(C)

Basis for kernel C: [1,0,1,0,1], [2,1,0,1,1]

Rank of submatrix (= columns of kernel C for t_2 , t_3 , t_4) = 2

< number of elements in set $\{t_2, t_3, t_4\}$

Rank of submatrix < |PEC set|gives (here): N_2^*, N_3^*, N_4^* are dependent!

Modelling of Large Logistics Networks SFB 559

Detecting e-sensitive GSPNs

Projection of v on \tilde{T} is denoted by $Proj(v,\tilde{T})\in \mathbb{R}^m$ and defined by

$$(\operatorname{Proj}(v, \tilde{T}))_i := \begin{cases} v_i & \text{if } t_i \in \tilde{T} \\ 0 & \text{otherwise} \end{cases}$$

"projection gives submatrix"

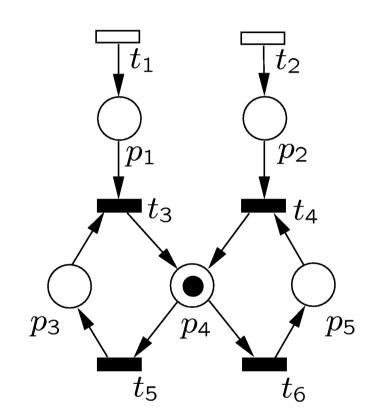
Given a GSPN with ergodic firing process and $N^* = \lim_{z\to\infty} \frac{E[N(z)]}{z}$. Let $k_1, \ldots, k_r, k_i \in \mathbb{R}^m, k_i \neq 0$, be a basis of kernel(C). If there exists $\tilde{T} \subseteq T$ with \tilde{T} in PEC and

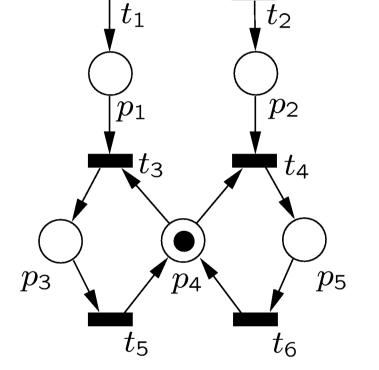
$$\operatorname{rank}\left(\left(\operatorname{Proj}(k_1, \tilde{T}) \dots \operatorname{Proj}(k_r, \tilde{T})\right)\right) < |\tilde{T}|$$

then the GSPN is e-sensitive or $Proj(N^*, \tilde{T}) = 0$.

polynomial complexity, only maximal PEC sets need to be tested! (T' in PEC, $\tilde{T} \subseteq T' \Rightarrow \tilde{T}$ in PEC.)

Limits





E-sensitive (non-ergodic)

E-insensitive (ergodic)

("M/M/1 two classes")

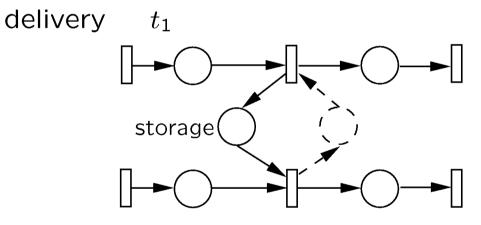
Same kernel(C)!

SFB 559

Modelling of Large Logistics Networks

Applications

• stockkeeping scenario:



pickup

 t_2

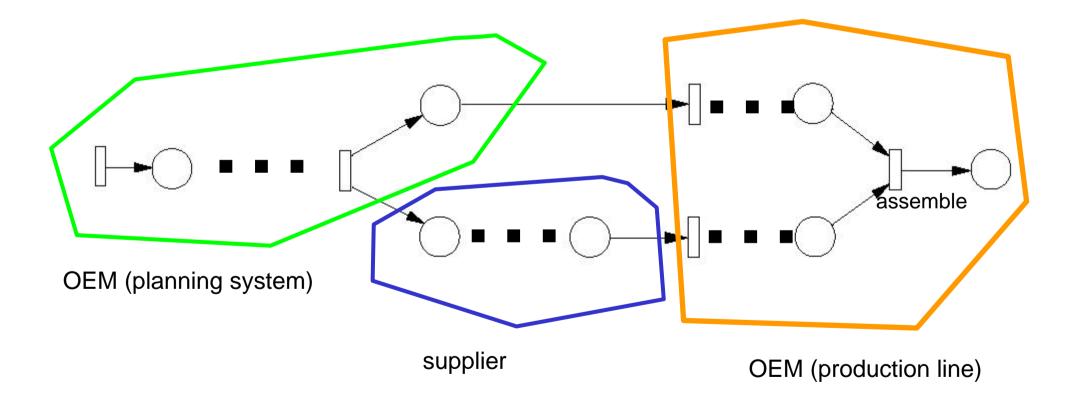
Basis for kernel(C) = {(1, 1, 1, 1, 1, 1)} { t_1, t_2 } in PEC. \Rightarrow GSPN is e-sensitive.

SFB 559

Modelling of Large Logistics Networks

Applications (cont'd)

• procurement channel:



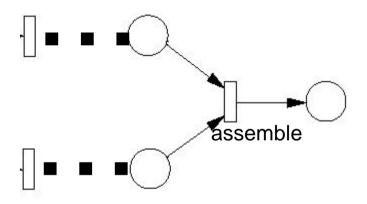
SFB 559

Modelling of Large Logistics Networks

1

Applications (cont'd)

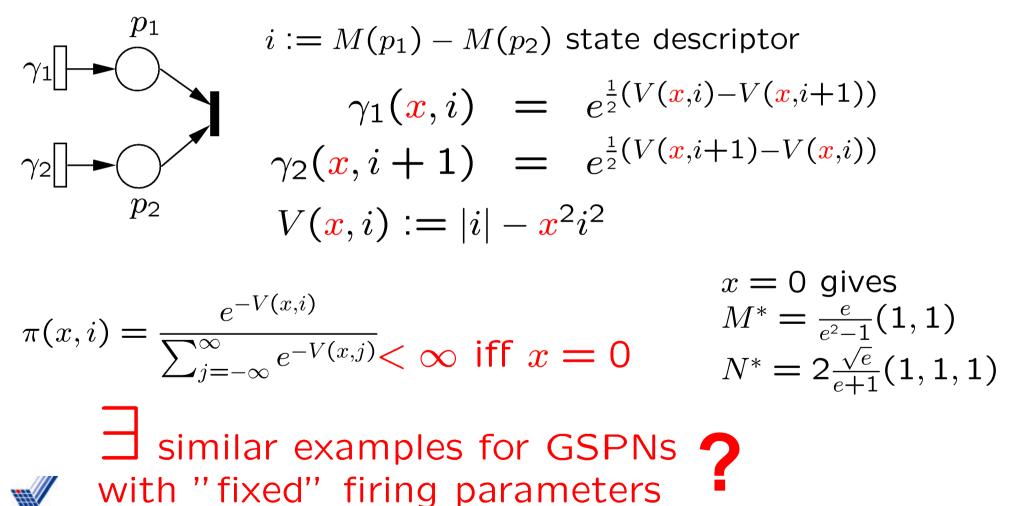
• procurement channel:



\Rightarrow GSPN is e-sensitive.

Does e-sensitivity imply non-ergodicity?

Consider GSPN with marking-dependent (+ parameter x) firing rates:



SFB 559

Modelling of Large Logistics Networks

Conclusions

- E-sensitivity
- <u>Some</u> e-sensitive GSPNs can be efficiently detected by inspection of the net structure

$\operatorname{rank}\left(\left(\operatorname{Proj}(k_1, \tilde{T}) \dots \operatorname{Proj}(k_r, \tilde{T})\right)\right) < |\tilde{T}| \quad \tilde{T} \text{ in PEC}$

- Open question: Does e-sensitivity imply non-ergodicity for GSPNs with "fixed" firing parameters?
- E-sensitive GSPNs are especially problematic when simulating the net ("finite number representation", pertubed chain)

