Integrating Software and Hardware
Performance Models Using
Hierarchical Queueing Petri Nets

Falko Bause, Peter Buchholz and Peter Kemper

Informatik IV, Universitat Dortmund
D-44221 Dortmund, Germany

e-mail: {bause,buchholz kemper}@ls4.informatik.uni-dortmund.de

Abstract

This paper introduces a new approach for the construction of performance mod-
els of complex systems integrating software and hardware. Software components
are specified using hierarchical coloured GSPNs which extend the well established
coloured GSPNs. Hardware components are composed of basic queues taken from
queueing networks. Integration of queues into hierarchical GSPNs facilitates the
specification of a virtual machine which provides services for software components.
Virtual machines are integrated in the coloured GSPN description of the software
component via subnet places. This simplifies the description of the mapping of soft-
ware onto hardware models. Apart from specification convenience, certain analysis
techniques also profit from the hierarchical structure, among others we discuss exact
numerical techniques, approximation techniques, simulation and hybrid approaches
combining different techniques.

1 Introduction

Well known concepts apply to structure complex software (SW) and hardware (HW)
systems, these include modularisation, layers, and virtual machines. SW systems are
typically structured hierarchically via refinement and modularisation. This results in a
top-down design, where during the design process, the amount of information increases
by successive addition of details. For HW resources, basic building blocks are reused and
combined to build virtual machines in a bottom-up manner. Clearly, both methods must
match for a complete system. This requires to map a SW hierarchy onto virtual machines
where the latter have to provide an appropriate set of services. Separating a SW hierarchy



from a virtual machine depends on the point of view, since using any kind of subsystem
can be interpreted as employing a virtual machine.

In modeling complex systems, basically the same concepts as for design purposes are
at hand to handle complexity. Modeling SW systems at a relatively high level typically
results in a tree type structure, because using a SW subsystem (e.g., a function) multiple
times usually means that for each time an independent replica is used'. At a HW level,
multiple use of a component can either mean to create independent replicas of resources
or to share a single resource. So a tree type structure becomes a directed acyclic graph. A
suitable analysis formalism should provide a hierarchical description, where components
can be used either as independent replicas or as a shared resource. Furthermore higher
levels should allow for a simple notation of concurrent programs, while lower levels need
to support simple modeling of HW resources on a sufficiently abstract level.

Queueing networks (QNs) are useful at the lowest level, since they allow for a simple,
abstract description of scheduling. However, they are less useful for describing the logical
behaviour of a hierarchical SW system with fork/join effects and refinement. Petri nets
are a more prominent formalism for this purpose, they are suitable to model typical
language constructs of imperative, concurrent programming languages [3]. Incorporating
a stochastic notion of time into Petri nets yields the well known generalised stochastic
Petri nets (GSPNs). However GSPNs do not show sufficient support for a structured way
of modeling, such that design methodologies have been developed to demonstrate how to
use GSPNs for a combined modeling of HW and SW systems:

Botti and de Cindio [7, 8] analyze the effect of program placement by mapping Petri
net models of Occam programs on a HW description modeled by a Petri net as well.
They consider stochastic timing and use GSPNs with a preselection policy restricted to
local conflicts. Preselection implies random scheduling without preemption. The PSR-
methodology by Donatelli and Franceschinis [16] extends this approach. SW processes and
HW resources are described independently by GSPNs and the assignment of resources to
tasks takes place via a special GSPN. Typical problems are the “min-match” problem, i.e.
that a transition performing a join of subtasks might match subtasks which do not belong
together. Both approaches do not consider refinement, which could be introduced as in
[18] to gain more structure, but this does not automatically yield a semantics adequately
supporting the concept of virtual machines.

The PRM-methodology by Ferscha [17] describes how to compose untimed SW pro-
cesses modeled by so-called P-nets with HW resources modeled by so-called R-nets. P-nets
are uncoloured Petri nets enriched by transition refinement and resource requirements.
A preselection policy is used to accommodate for conflicts between refined transitions.
Arcs between places in R-nets and transitions in P-nets describe resource allocation and
preselection establishes random scheduling without preemption. The PRM methodology
is intended to map parallel programs onto rather simple processing units. It is of limited
use to describe complex scheduling and resource allocation patterns.

IWe do not consider recursion.



In summary all these approaches do not sufficiently support a structured description
of hierarchical SW systems and shared complex resources with other scheduling strategies
than random without preemption. Furthermore an execution of a top-level net without
knowing the details of all refined transitions is not possible, since a refinement does not
automatically imply an abstract description which is executable. This would be a desired
property in an early stage of the design phase, where models need to be analyzed which
are not completely refined and where only a clear specification of the interface and the
required services exists yet. Hierarchically combined Queueing Petri nets (HQPNs[1]) have
this property. They allow to model SW architectures of possibly concurrent programs in
a hierarchical manner: the top level net either describes the communication flow between
a set of components which interact via message passing or it describes the control flow
through a set of modules which can but need not act concurrently. Refinement takes
place via a well defined interface concept such that by definition an abstract behaviour
as experienced within the higher level is specified. As a desired result, a high level model
can be evaluated without considering the details of a refinement.

HQPNs extend the timing aspects of coloured GSPNs [15] by the ability to integrate
queues into places. Such a timed place consists of a queue and a depository for served
tokens. If a transition firing adds tokens onto a timed place, these tokens are inserted
into a queue according to the queue’s scheduling strategy. The service time distribution
depends on the colour of the token. After service the token moves to a depository, where it
is available to the place’s output transitions. Tokens in a queue are not available for firing.
Furthermore a place of a HQPN might even contain a whole HQPN subnet (cf. Fig. 1). It
is then called a subnet place. A HQPN subnet itself might contain subnet places yielding a
multilevel hierarchy. The interface between a net and a corresponding subnet is predefined
to a certain extent. It consists of places input, output, actual_population and transitions
t_input, t_output. The colour sets of the interface places are all equal to the colour set of
the subnet place. The idea is that a subnet performs a complex, internal transaction on
tokens fired at the subnet place. t_input denotes the beginning of this transaction, t_output
its termination. Within the subnet we distinguish unprocessed tokens at input from those
tokens being processed at actual_population. t_input is an identity function with respect
to places input and actual_population (starting a transaction does not modify its input
information). Hence this distinction is irrelevant as seen from the subnet place and we
distinguish only tokens at the places input and actual_population from tokens at output.
t_output describes the various effects the transaction can show on its input. Note that we
consider coloured nets, such that t_output can fire with respect to a set of colours/modes,
e.g. it is possible to describe that a subnet returns either with a result or an error message
for a certain kind of input. The concept extends the concept of function calls where calling
a function with parameters results in a return of results by the called function; it resembles
a similar approach as in HIT [6].

We will elaborate the following example of a distributed computation all through the
paper to demonstrate our approach.



)

output
o ! 0
t_output

input & actual_population

actual_population

d
input O\Iou;put
o) —_————— ~ O

{ l/

, |
tinput : internal :t_OUtPU[

user épeciﬁed part of the subnet

Figure 1: Example subnet place of a HQPN b), its shorthand representation a), the
interface as seen from subnet place ¢) and from the subnet itself d)

Example:

A user wants to perform a transient simulation using several workstations in a local area
network. During the simulation he keeps himself busy with e.q. editing documents, an-
swering emails etc., and once in a while he tests whether the simulation has terminated.
In that case he starts a statistical analysis package and determines new parameters for
the next simulation run. It might also happen that the simulation stops with an error, e.q.
the detection of a deadlock situation, such that the user skips the statistical analysis and
modifies the model for a new simulation run.

The paper is structured as follows: Sect. 2 describes the formulation of hierarchical SW
models within HQPNs. Sect. 3 illustrates the suitability of HQPNs to model HW re-
sources, and Sect. 4 shows how these components can be neatly composed into a hierar-
chical structure. Advantages of a hierarchical description for validation and performance
analysis are briefly sketched in Sect. 5. A summary is given in Sect. 6.

2 Specification of Software with HQPNs

Modeling program flow with Petri nets is well-known [3] and with the introduction of
colours also data-dependent behaviour can be encoded with moderate effort [19, 20].
For small programs the modeling process is thus straight forward. The development of
larger programs, or SW systems in general, is normally a top-down process and requires
additional modeling support. From an abstract point of view the modular structure of SW
systems can be regarded as a hierarchy of function calls (typical for sequential programs)
or as a set of interacting components (typical for parallel programs). In the latter case
the top level net describes the flow of communication, whereas lower levels behave as



sequential programs with refinement via function calls.

In order to accompany a top-down development process, hierarchies have also been
integrated into the Petri net formalism (e.g. [18]), where subnets are used to structure
a Petri net. For analysis purposes a (structural) hierarchical refinement should be addi-
tionally accompanied by a behaviour description for the different hierarchy levels, which
offers the possibility to analyze the system for different levels of granularity.

HQPNs offer both possibilities. A structural refinement of the net is supported by
place refinements of so-called subnet places. Each subnet has a special interface which
specifies its possible behaviour. A subnet place can be viewed as an abbreviation of a
place-transition-place subnet (cf. Fig. 1 ¢)), which might have an internal state and whose
behaviour is completely defined by transition t_output.

This implies the following procedure for top-down development. At each level the
input/output behaviour of a to be refined component (a subnet place) is specified by a
transition. Using the interface for subnets (see Fig. 1) the same transition description
is defined for t_output. So consistency between the aggregated view of a component and
its refinement is automatically guaranteed. The mapping between function calls and
functions as well as SW and HW (cf. Sect. 3) is very intuitive, because each subnet place
belongs to exactly one subnet.

Using place refinements gives the opportunity to use the wide-spread race policy for
transition firings. In [17] transition refinements enforce a preselection policy for modeling
resource sharing, which is more suitable for systems where resources are used exclusively,
implying a very detailed model description of the whole system. However, preselection
can easily be modeled in race models via random switches using immediate transitions.

Quantitative (performance) analysis requires to integrate timing considerations into a
model. Typically, no timing information is available at the level of the SW components.
The specific time consumption of a function is in most cases dependent on other SW
operations and the provided HW. Thus functions, whose timing information can only be
specified in the context of the complete SW / HW model, should be modeled by subnet
places. So normally only ordinary and subnet places as well as immediate transitions will
be used for SW description. In rare cases the modeler might use timed places or timed
transitions (cf. Figs. 3-5) when specific delays are known a priori or resource sharing is
considered negligible.

Example (continued):

The HQPN in Fig. 2 models the process schemata of the user, it gives the top level of our
SW hierarchy. A wuser process first prepares data for a simulation and afterwards starts
the simulation calling function simulate (the second parameter indicates a terminated
simulation (OK) or the detection of an error). Function edit_doc models a user activity
executed in parallel to the simulation. Refinements of activities are depicted in Figs. 3, 4
and 5, which together form the second level of our SW hierarchy (cf. Fig. 7). All subnets
show the same skeleton structure where t_input acts as an identity function just forking
tokens/customers and t_output completely determines the behaviour of the subnet as seen



(X7Y) @ (X7Y)

evaluate

@ simulate

Figure 2: User process schemata

actual_population

input t-nput t_output output

F-0—"

invoke_GUI edit_params

Figure 3: Activities for preparing a simulation run

by the next higher level.

3 Hierarchical Specification of HW Components

Modeling HW components with plain Petri net elements leads to very complex net struc-
tures and/or rate definitions when one wants to integrate scheduling information, e.g.
priority service strategies, into the model description. At the HW level scheduling is
very important, since it specifies the rules how to receive service from shared resources.
HQPNs support timed places which simplify the modeling as in QNs.

actual_population

ifk=0

input i t_output then (x,0K)
) else (x,error

output

(ne — k)X (x,0K) 4+ kx(x,error)

; ; rocess_results
read-model dISt‘SIm(x,OK ] (x,error)p

Figure 4: Simulation



actual_population

input output

[y=error]

new._params
X X

[y=0K] stat_ana

Figure 5: Evaluation of simulation results

Design of the HW level is usually a bottom-up process. The designer is faced with
a fixed set of HW components. He defines certain patterns of behaviour for groups of
these components, i.e. he builds virtual machines, with the intention to narrow the gap
between low-level HW description and the later needs for SW developers.

In HQPNs components of the HW level can be described by (subnets including) timed
transitions and/or timed places. Subnets and timed places can be used for a bottom-up
development process of a more complex HW facility yielding virtual machines. Mapping
the SW onto the HW level is simple in HQPNS, since it is the same as on every level: the
modeler has to link a subnet place to a specific subnet. At the HW level we will typically
encounter situations where several subnet places are linked to (i.e. are using) the same
(virtual) machine component. In [6] such a component is called enclosed.? Different
tokens/customers have to be identified for the dynamics of the complete model in the
sense that we have to remember from which subnet place a token entered the subnet.
Therefore the colour sets of an enclosed component are expanded implicitly by a tag to
keep track of a token’s origin.

In [18] this is resembled by the semantics of so-called substitution places similarly
to the subnet places of HQPNs: for each substitution place the whole net acts as if an
individual copy of the corresponding subnet has been inserted. The modeling of resource
sharing, like shared memory, is supported in [18] by a so-called fusion of elements (places
or transitions). If two elements belong to a fusion set then they represent the same model
element. E.g. if place read_model of Fig. 4 and place stat_ana of Fig. 5 belong to one fusion
set then both represent the same(!) subnet. Therefore all elements of a fusion set must
have the same colour set. Timed places cause more complex situations: on the one hand
we want to keep track of the token’s origin, which implies an individual copy for such a
place, on the other hand we want to define sharing of the resource “queue” which implies
that all individual copies belong to the same fusion set. Thus within the concept of [18]
the modeler is forced to model the timed place with an additional colour component for
storing the origins of tokens, which implies that he knows the whole SW/HW hierarchy

2Surely such situations may also occur at the SW level, but we find them more typical for the HW
level.



actual_population

.y
station_1
I] x

input t-input t-output output

station_4

Figure 6: Virtual machine

beforehand.?

A very simple solution for this problem is to allow a modeler of an element, a subnet
for example, to label elements and rate/timing definitions to be expandable by tags or
not. An expandable element thus corresponds to an individual copy of a substitution
place in[18] and a non-expandable element corresponds to an element of a fusion set. A
shared timed place is now simply defined as an expandable element with a non-expandable
timing definition. E.g., this means that for a processor sharing queue all customers/tokens
are taken into account regardless of their tags. Thus it is generally possible to keep track
of a token’s origin even in the presence of shared resources. Note that the notion of an
expandable element of a subnet does not support the construction of general fusion sets
like, e.g. global ones. Avoiding global fusion sets retains a certain degree of locality which
is essential for an efficient analysis exploiting the hierarchical structure.

Example (continued):

At the lowest HW level, there are three workstations W1, W2, W3 and a PC', which are all
represented by timed places for simplicity (cf. Fig.7). Since several users of this cluster,
like our one, want to distribute jobs more or less equally amongst the workstations we
build a virtual machine which distributes incoming tasks in a cyclic manner (see Fig. 6).
We have fized the number of these workstations to 4 for simplicity. Assuming that our
user does not want to be bothered about simulation processes on his own PC, at least two
of our places station_i have to be linked to the same subnet, which in our case only consists
of a single timed place. Since we want all processes to compete for the workstation, we
define service rates to be non-expandable. On the other hand we also want to send a served
token back to the station_i from where it entered the queue, so we define the timed places
to be expandable.

3The reader should note that several enclosed components might occur at different hierarchy levels,
so that more than one additional colour component has to be augmented at the lowest levels.



4 Composition of SW/HW Models

We now consider the hierarchical structure of a complete model. Modeling SW is in fact
a top-down process starting with an abstract view of the complete system which is refined
by filling subnet places with detailed nets until basic hardware components offering the
required services are reached. On the other hand, the specification of hardware compo-
nents is a bottom-up approach starting with queues and simple Petri nets realising basic
hardware components. By building virtual machines more complex hardware components
are specified which, nevertheless, can be used just like basic queues in the upper level nets.

No strict separation between HW and SW is given in the approach. A virtual ma-
chine can be interpreted as a piece of hardware providing the required services to some
upper level component. In this case, it does not matter whether the virtual machine is
realised by simple queues or a complex hierarchical model. At each separated level two
different parts are combined to build the performance model, namely the SW or load
and the hardware or machine providing the services required by the SW. This approach
is completely different to other approaches in the Petri net area like [16, 17], where a
single SW module, a single hardware module and the mapping exist. Our approach is
a generalisation of the hierarchical characterisation of workloads as described in [5] and
realised in the performance modeling tool HIT [6].

The idea of top-down refinement and bottom-up abstraction offers different possibil-
ities to reuse components. Virtual machines can be reused by different SW components
since they provide a clearly defined interface of available services. SW components can
also be reused since they define their service requirements to be provided by some under-
lying (virtual) machine. In this way it is straightforward to define reusable libraries of
components.

A model is completely specified in our framework, if for all subnet places detailed
specifications exist. Subnets of a model can be numbered consecutively from 0 through
J — 1. We define a relation ¢ — j if j is the detailed specification of a subnet place that
is part of 7. Furthermore we use = for the transitive closure of —, i.e., © = j implies the
existence of submodels iy, ...,4, such that + — i; — ... — i,, = j. According to relation
— we can define a directed graph with the submodels building the vertices and a directed
edge from ¢ to j if i — j. We denote this graph as the hierarchy graph of the model.
Hierarchy graphs have to be acyclic, because otherwise ¢ = j = i has to hold for some i, j
which implies a recursion of some function calls. Cyclic hierarchy graphs are beyond the
scope of the paper, they complicate structured analysis significantly. Hierarchy graphs
need not be trees and for many realistic models they will not be trees. The tree structure
of a hierarchy graph is destroyed if for two submodels 7 and j, which are not related via
=, a submodel k exists such that + = k and 7 = k. In this case, components with more
than one parent exist. These components are enclosed components. The hierarchy graph
of many realistic models has a diamond like structure. Starting with a single net, first a
number of independent subnets exist which realise different functions of the SW (cf. Sect.



Software

Hardware

Figure 7: Hierarchy graph of the example model

2). At the lower levels the functions use services provided by a few hardware components,
such that the number of vertices in lower levels decreases (cf. Sect. 3).

Finally we define an independent subgraph of a hierarchy graph as a subset of nodes
N such that all children of a node n € N are also elements of N. Independent subgraphs
support several efficient solution techniques as shown in the following section. An inde-
pendent subgraph can be generated by cutting the hierarchy graph into parts such that
only vertices and no edges are cut. The interfaces of the vertices that are cut, describe
the interface of the independent subgraph.

Example (continued):

We consider in our example a hardware configuration with 8 workstations running the
stmulations and one PC per user. On the PC the user does his editing and the preparation
and evaluation of the simulation run. Since we have only three workstations, but the
virtual machine in Fig. 6 contains four stations, we map stations 8 and 4 onto the same
physical station. Fig. 7 gives the hierarchy graph. Nodes Fig. 2-6 describe the subnets
shown in the Figures 2-6, respectively. The 4 bottom level nodes describe the PC and the
3 workstations which are all modeled by queues. In the graph, a directed arc points to a
subnet which belongs to a subnet place in the net the arc starts from. The graph shows a
boundary between SW and HW, which depends on the interpretation of the modeler. We
could as well assume that Fig. 6 belongs to the SW and the hardware is realised by the
queues only. Alternatively one could assume that the nets in Figs. 3-5 belong to a virtual
machine with a very powerful instruction set.

Two independent subgraphs are described by the dashed lines in the graph. The in-
terface of the first independent subgraph, including the PC and all processes running on
the PC, is realised by the interfaces of the nets in Fig. 3, 5 and by the services edit_doc,
read_model and process_results provided by the PC. The interface of the second indepen-



dent subgraph corresponds to the interface of the net in Fig. 6. Erxistence of the worksta-
tions s completely hidden from the upper levels.

5 Hierarchical Analysis Approaches

Although we focus on performance analysis, obviously functional aspects have to be con-
sidered in system analysis as well. Particularly if complex HW/SW models are analyzed,
where we cannot a priori assume that the model behaves functionally correct. An inte-
grated analysis approach is required, which analyzes functional and quantitative behaviour
from one base model. The goal of functional analysis is to assure a “correct” behaviour,
while quantitative analysis is used to determine results according to the performance
and /or reliability.

A rich variety of analysis techniques exists, see [19, 23] for functional and [21, 24]
for quantitative analysis. Since a HQPN can be mapped on a flat model simply by
representing a subnet place by its most detailed representation, every analysis approach
for flat models can be applied to the hierarchical models. The most detailed methods
are state based, which enumerate the state space of the complete model and analyze the
corresponding state transition system. For quantitative analysis this means to analyze the
resulting Markov chain according to its stationary and transient distribution. Although
state based analysis is well understood, practical problems arise due to the enormous
complexity of realistic models. Usually the state space grows exponentially with the size
of the model in terms of places, queues and tokens. Thus even harmless looking models
generate state spaces with several millions or billions of states. Alternatives are non-
state space techniques which avoid the state space generation, e.g. invariant analysis
for functional analysis of Petri nets [23]. Invariants can be computed for many nets
with a state space too large to be analyzable. However, invariants usually give only
necessary or sufficient conditions for certain functional results like liveness or boundedness,
but no characterisation. In performance analysis, product form models allow efficient
computation of performance results. In fact, a class of product form QPNs has been
defined [2]. Unfortunately, product form imposes very restrictive conditions on the model
structure which are rarely observed in realistic models. Apart from product form, a large
number of approximate techniques have been proposed for SPNs or (QNs in literature.
These techniques are usually based on decomposition and aggregation and are introduced
at most in a semi-formal way for specific models. Below we outline that most of the
published decomposition and aggregation techniques can be formally integrated in our
hierarchical model structure. The last choice for model analysis is always simulation.

The central idea of hierarchy exploitation for analysis purposes is divide and con-
quer. For exponentially growing problems, it is always better to analyze several smaller
problems instead of one large. We will start with state space and reachability graph
generation. This can be done efficiently in a top-down way. Observe that each subnet
in the hierarchy is executable if we know the incoming transitions from the environment.



The input/output behaviour of subnets, as relevant in the higher level net, is completely
defined by transition t_output and the marking of place actual_population. State spaces
can be generated top-down starting from the top-level component 7. Since ¢ has no envi-
ronment its dynamic behaviour is completely specified, so the state space and transition
matrix can be generated. Knowledge of the transition system of component i defines
completely the environment for all components j with ¢ — j. Thus, in a subsequent step
we can generate state spaces for all j and compute in this way all local state spaces in a
top-down manner. A state of the complete model is defined by refining a state of the top
level component down to the bottom of the hierarchy. Reachability of compositionally
generated states still has to be proved since t_output defines all possible input/output
behaviours of a component which may be further restricted by the detailed specification.

For performance analysis, we have to assure that the parts for which state spaces and
transition matrices are generated are independent subgraphs. An independent subgraph is
handled as a flat model by substituting all subnet places by their most detailed realisation.
For the resulting flat QPN subnet, state space and transition matrices are generated.
Possible arrival sequences of tokens from the environment into the subnet are known
since state spaces and transition matrices in the upper levels have already been generated
in the top-down approach. The resulting matrices for the independent subgraphs can be
combined in a hierarchical way via tensor products to represent the generator matrix of
the underlying Markov chain. This extremely compact representation of the generator
matrix allows a space efficient numerical analysis of large models [9]. This technique
extend the size of exactly solvable models on contemporary workstations to some million
states.

Larger models are analyzed approximately by decomposition and aggregation. Inde-
pendent subgraphs are essential for this kind of analysis as well. Flat models underlying
independent subgraphs are analyzed in isolation by assuming a known behaviour for the
environment. Local functional analysis can be based on the local reachability graph or
local invariant analysis. For quantitative analysis the idea is to assume, usually exponen-
tially distributed, interarrival times for calls to the subsystem and analyze the component
under this arrival stream. This results in mean sojourn times for calls in the compo-
nent, which can be obtained by state based analysis or simulation. These sojourn times
usually depend on the number of pending function calls (i.e., the marking of place ac-
tual_population). In the parent component a subgraph is subsequently represented by the
place actual_population and transition {_output assuming an exponential firing delay with
a rate equal to the inverse of the mean sojourn time and depending on the marking of
actual_population. This strongly reduces the state space of the parent component. If the
parent component is not the top-level component of the hierarchy, analysis proceeds as
described before. In this way the whole model is analyzed from bottom to top. From
the analysis of the top-level component we get the mean interarrival times of tokens to
the different subnet places. Using the assumption of exponentially distributed interval
times with the computed mean values, the components in the second level of the hierarchy



can be analyzed again. Thus the second analysis phase goes from top to bottom using
interarrival times computed in the higher level for the analysis of lower level models. The
whole approach is iterated until values do not change too much from one iteration step
to the next. Analysis becomes a non-linear fixed point problem, for which we usually
cannot assure existence and uniqueness of the fixed point and we can also not assure
convergence. However, our experience and also the experience of many other authors us-
ing similar techniques [13, 14, 22| show fast convergence and acceptable results for many
models.

Even simulation of the complete model profits from the hierarchical structure. It
is very convenient to use an object oriented style for HQPN simulators. Independent
subgraphs yield objects with a clearly defined interface to their environment. This object
structure is also useful to distribute objects in a distributed simulation on a workstation
cluster.

Example (continued):
We consider the hierarchical top-down generation of state spaces and present some ideas
how to use aggregation bottom-up.

State space generation starts with user process schemata shown in Fig. 2. For a single
user the state space contains 5 tangible states and 8 transitions. A N-user system has
5N states and 8V transitions. Knowledge of the state space and transitions for the user
process schemata determines possible arrivals to the included subnets. As an example we
consider subnet prepare as shown in Fig. 3. From the transition system of the user process
we know that at most one token per user can be in prepare and that single tokens arrive.
With this information the state space and transition system for prepare can be generated.
For one user we obtain 4 tangible markings and 4 transitions including the situation that
no token is in the subnet (i.e., the user does not prepare a simulation run). For the N-
user case, the number of states equals Zi]\io (7) 3'. The next step would be to generate the
state spaces for subnets invoke_GUI and edit_params. This step is more crucial since both
subnets and some additional subnets are mapped on the PC. In general the population of
the places invoke_GUI, edit_param, read_model, process_results, edit_doc, stat_ana and
new_params, determine the state space of PC. From top-down state space generation it is
known that each user performs at most one operation at a time on his PC. Thus, if for
example a user edits a document he will not prepare a new simulation run. Nevertheless,
for generation of the complete state space underlying a model, the state space of the first
independent subgraph shown in Fig. 7 has to be computed as a whole in one step.

As an example for bottom-up aggregation of components we consider the aggregation
of the virtual machine shown in Fig. 6. From top-down state space generation it is known
that tokens from user x arrive in a batch of size n,. The next batch for this user cannot
arrive before all tokens of the former batch left the subnet. For a single user and batches
of size 4 the number of states is 80, increasing the batch size to 8 increases the number of
states to 956. For two users the state space contains 6400 and 913936 states, respectively.



For efficient analysis it is usually necessary to represent the whole component by some
aggregate. Usually an aggregate is defined as a single station with exponential service
times and state dependent service rates. Since the subnet serves single tokens also the
aggregate serves single tokens. Service rates of the aggregate are by short circuit analysis
or by analysing the subnet under a Poisson arrival stream of batches, where the rate of
the Poisson process for batch arrivals results from the analysis of the remaining parts of
the model which form the environment.

6 Conclusions

In this paper we have shown how HQPNs can be used to model complex SW systems
in a hierarchical manner and map these onto models of HW systems. Other approaches
intended to model parallel programs restricted themselves to exclusive access for a pro-
cessor by using a preselection policy [16, 17]. Clearly for modeling concurrent programs
in computer networks, less simple scheduling strategies need to be described. Our ap-
proach simplifies modeling scheduling strategies by incorporating queueing networks into
the modeling formalism. Furthermore, the notion of colours and tags are powerful means
to use subnets either independently or shared. Clearly these concepts are less power-
ful than general fusion sets [18], but for good reasons, since they ensure a clear model
structure prohibiting arbitrary interconnections across subnets. The effect is similar to
prohibiting global variables or arbitrary side-effects of local functions.

Although we focus on the descriptive power of HQPNs, it shall be mentioned as well,
that the chosen kind of hierarchy reveals significant advantages for analysis, e.g. numerical
analysis [9, 11] and simulation [10]. This desired side effect follows from a careful interface
definition between levels which implies a definition of a subnet behaviour as experienced
from an upper level. This also allows analysis of models which are not refined up to the
lowest level, which is especially useful in early design phases, when information of most
details is not available yet.

So far the approach is rudimentarily supported in HIQPN-Tool[1].

References

[1] F. Bause, P. Buchholz, P. Kemper; QPN-tool for the specification and analysis of hier-
archically combined queueing Petri nets; In: H. Beilner, F. Bause (eds.); Quantitative
Evaluation of Computing and Communication Systems; Springer LNCS 977 (1995), 224-
238.

[2] F. Bause, P. Buchholz; Aggregation and disaggregation in product form queueing Petri
nets; In: Proc. of the Int. Workshop on Petri Nets and Performance Models 1997
(PNPM’97), IEEE Press, 16-25.

[3] G.Balbo, S. Donatelli, J. Franceschinis; Understanding parallel program behavior through
Petri net models; J. Parallel and Distributed Comp. 15 (3) 1992, 171-187.



[4]

F. Bause; Queueing Petri Nets — a formalism for the combined qualitative and quantita-

tive analysis of systems. In: PNPM’93, IEEE Press (1993), 14-23.

H. Beilner; Workload characterisation and performance modelling tools; In: Proc. of the
Int. Workshop on Workload Characterization of Computer Systems, 1985.

H. Beilner, J. Mater, Weissenberg; Towards a performance modelling environment: news
on HIT; In: R. Puigjanger (ed.), Modelling Techniques and Tools for Computer Perfor-
mance Evaluation, Plenum Pub. (1988), 69-88.

A. Botti, F. De Cindio; From basic to timed net models of Occam: an application to
program placement; In: PNPM’91, IEEE Press (1991).

A. Botti, F. De Cindio; Process and resource boxes: an integrated PN performance model
for applications and architectures; Proc. Int. Conf. Systems, Man and Cybernetics, Le
Touget, France 1993.

P. Buchholz; Structured analysis approaches for large Markov chains - a tutorial; Perfor-
mance 96 Tutorials, Ecole Polytechnique Federal de Lausanne (1996).

P. Buchholz; A distributed numerical/simulative algorithm for the analysis of large con-
tinuous time Markov chains; Proc. of the 11th Workshop on Parallel and Distributed
Simulation (1997), PADS’97, 4-11.

P. Buchholz, P. Kemper; Numerical analysis of stochastic marked graph nets; In:
PNPM’95, IEEE Press (1995), 32-41.

G. Chiola, M. Ajmone Marsan, G. Balbo, and G. Conte; Generalized stochastic Petri nets:
a definition at the net level and its implications; In: IEEE Trans. Software Engineering;
19 (2) 1993, 89-107.

J. Campos, J. M. Colom, H. Jungnitz, M. Silva; A general iterative technique for ap-
proximate throughput computation of stochastic marked graphs; In: Proc. of the 5th Int.
Work. on Petri Nets and Performance Models, IEEE Press (1993), 138-147.

G. Ciardo, K. Trivedi; A decomposition approach for stochastic reward net models; Per-
formance Evaluation 18 (1994), 37-59.

T. Demaria, G. Chiola, G. Bruno; Introducing a color formalism into generalized stochastic
Petri nets. In: Proc. 9th Int. Work. Application and Theory of Petri Nets (1988); 202-215.
S. Donatelli, J. Franceschinis; The PSR methodology: integrating hardware and software
models; In: J. Billington, W. Reisig (eds.), Application and Theory of Petri Nets 1996,
Springer LNCS 1091 (1996), 133-152.

A. Ferscha; A Petri net approach for performance oriented parallel program design; Journal
of Parallel and Distributed Computing 15 (3) 1992, 188-206.

P. Huber, K. Jensen, R.M. Shapiro; Hierarchies in coloured Petri nets; Advances in Petri
Nets, Springer 1990, LNCS 483, 313-341.

K. Jensen; Coloured Petri Nets Vol. 1; Springer EATCS Monographs on Theoretical Com-
puter Science (1992).

J.B. Jgrgensen, K.H. Mortensen; Modeling and analysis of distributed program execution
in BETA using coloured Petri nets; In: J. Billington, W. Reisig (eds.), Application and
Theory of Petri Nets 1996, Springer LNCS 1091 (1996), 249-268.

K. Kant; Introduction to computer system performance evaluation; Mc Graw Hill (1992).
Y. Li, C. M. Woodside; Complete decomposition of stochastic Petri nets representing
generalized service networks; IEEE Trans. on Comp. 44 (1995), 577-592.

T. Murata; Petri nets: properties, analysis and applications; Proc. of the IEEE 77 (1989),
541-580.

W. J. Stewart; Introduction to the numerical solution of Markov chains; Princeton Uni-
versity Press (1994).



