An Efficient Polynomial-Time Algorithm to
Decide Liveness and Boundedness of Free-Choice
Nets

Peter Kemper and Falko Bause

Informatik TV
Universitat Dortmund
Postfach 500 500
4600 Dortmund 50
Germany

Abstract. In [3] J. Esparza presented an interesting characterization
of structurally live and structurally bounded Free-Choice Nets (LBFC-
Nets). Exploiting this characterization in combination with new results
and refined algorithms the authors formulate an O(|P||T||F|) algorithm
deciding whether a Free-Choice Net is a LBFC-Net or not. Furthermore
the algorithm contains a simple and efficient test to ensure that the
initial marking of a LBFC-Net is live. This test is based on a simplified
characterization of liveness for LBFC-Nets.

1 Introduction

Petri Nets have been successfully used for modelling discrete concurrent sys-
tems. Petri Net theory offers a variety of analysis algorithms, which often have
exponential worst case time complexity as far as liveness and boundedness of
a Petri Net 1s concerned. Polynomial-time algorithms for examination of live-
ness and boundedness do exist for certain subclasses obeying restrictions on the
net’s structure. The border between polynomial-time and exponential-time algo-
rithms seems to lead directly through the class of Free-Choice Nets (FC-Nets).
In [6] it is proven that the liveness problem for FC-Nets is Co-NP-complete
while in [4] a polynomial-time algorithm determining liveness of bounded FC-
Nets is exhibited. This algorithm is based on a linear algebraic characterization
of deadlocks and traps given in [7] employing linear programming techniques. Its
worst case time complexity is O(|P||T||F'|®). In this paper an algorithm decid-
ing whether a Free-Choice-Net is structurally live and structurally bounded in
O(|P||T||F]) is described. Tt is based on a characterization of LBFC-Nets given
in [3] and employs an efficient graph-orientated algorithm to recognize State-
Machine-Decomposable Nets (SMD-Nets). State-Machine-Decomposability can
be checked efficiently due to the close relationship between S-components and
minimal deadlocks in LBFC-Nets.

This article is structured as follows: Sect. 2 contains basic definitions. An
outline of the complete algorithm and its theoretical background is presented in

Sect. 3. Sections 4 - 7 contain algorithms for certain subproblems left open in the
outline of the algorithm. Section 4 summarizes an algorithm from [2] computing
a minimal deadlock, which contains a certain place p of a strongly connected FC-
Net. A question left open in this algorithm is solved by the algorithm described
in Sect. 5, which altogether leads to an efficient algorithm to compute a minimal
deadlock for a certain place p. Section 6 contains an algorithm which checks
a minimal deadlock for generating an S-component. In Sect. 7 we exploit our
simplified characterization of liveness for LBFC-Nets to describe a simple and
efficient algorithm testing liveness of an initial marking. Finally the algorithms
of all subproblems are employed for the formulation of the complete algorithm.
This section also contains the calculation of the algorithm’s time complexity.

2

Basic Definitions

Definition 1 (Net).
A net is a triple N = (P, T, F) where

1.
2.
3.

P and T are non-empty, finite sets and |P|=n, |T| =m,
PNT =1,
FC(PxT)U(T x P).

The next definition summarizes some well known notions for nets.

Definition 2.
Let N = (P, T,F) be a net.

1.

S

Let x € PUT. The preset ex and postset xe are given by

e :={ye PUT|(y,z) € F}, ze .= {y € PUT|(z,y) € F}

The preset (postset) of a set of nodes is the union of presets (postsets) of ils
elements.

W denotes the characteristic function of F. The incidence matrix C' of N
is given by c;; = W(t;,pi) — W(pi,t;). Rank(C) denotes the rank of the
mcidence matrir.

A path of a net N is a sequence (z1,...,x,) of nodes ¢; € PUT,i €
{1,...,n},

such that (x;,2;41) € F forallie {1,...,n—1}.

Nis a S-graph iff Vi €T : |et|=|te]| = 1.

N is a Free-Choice Net (FC-Net) iff Vp € P :|pe| > 1= e(pe) = {p}.

A net N' = (P, T',F’) is asubnet of N, (N'C N), ¢ff PPC P,T"CT and
FI=FN{(SxTHYu(T' x5)).

The subnet N' = (P',T', F') of N generated by P’ C P is given by T' =
eP'UPeand FF=FN((P' xT)U(T' x P").

N’ C N is an S-component of N iff N’ is a strongly connected S-graph and
T' = eS"USe.

N is State Machine Decomposable (SMD) iff it is covered by S-components,
1.e. every node belongs to an S-component of N.

10. P' C P is adeadlock of N iff P! £ () and P C Pe. A deadlock is minimal iff
it does not contain a deadlock as a proper subset. A deadlock P’ is strongly
connected iff N' = (P, eP' F’) with F' = FN ((P’' x eP’) U (eP’' x P)) is
strongly connected.

11. PPC Pisatrap of Niff P' £ (and Pe C eP. A trap is minimal iff it does
not contain a trap as a proper subset.

Definition 3 (Place/Transition Nets, Petri Nets and related defini-
tions).

A function M : P — IN is called marking. A Place/Transition Net or Petri Net is
a tuple (N, My) where N is a net and My is a marking named initial marking.

1. P"C P is marked at M iff 3p € P’ : M(p) > 0.
2. 1 €T is enabled at M iff Vp € ot : M(p) > 0.
3. A transition t enabled at M can fire and thereby create a new marking M’
given by M'(p) == M(p) + W(p,t) — W(t,p) Vp € P. This is denoted by
Mt > M’ and M’ is called reachable from M.
4. The reflerive and transitive closure of reachable markings from marking M,
Jor (N, My) is called reachability set and denoted by R(N, My).

5. (N, My) is bounded iff 3k € IN : Vp € P, M € R(N, My) : M(p) < k. (N, My)
15 safe off it is bounded with k =1 .

6. N is structurally bounded iff YMy € [P — IN]: 3k € IN : (N, My) is bounded.

7. (N, My) is live iff Vt € T,M € R(N, My) : AM' € R(N, M) : t is enabled at
M’

8. N is structurally live ¢ff IMy € [P — IN] : (N, My) is live.

Structurally live and structurally bounded FC-Nets are denoted by LBFC-Nets.

3 Deciding Liveness and Boundedness of FC-Nets

This section presents an outline of a new algorithm to decide liveness and bound-
edness of FC-Nets. In [6] it is shown that the liveness problem for FC-Nets is
Co-NP-complete and in [4] a polynomial-time algorithm to decide liveness for
bounded FC-Nets is presented. Our new algorithm does not decide liveness inde-
pendently from boundedness. It checks whether the net satisfies both properties,
liveness and boundedness, or not. The well known fact that all live and bounded
Petri nets are strongly connected can be exploited as a precondition.

Theorem 1 ([9]).
Let (N, My) be a Petri Net.
(N, Mg) is live and bounded = N is strongly connected.

In the following we regard strongly connected nets. The new algorithm is based
on the following characterization:

Theorem 2 (Characterization of LBFC-Nets [3]).

Let N = (P, T, F) be a FC-Net with incidence matriz C and a = |F N (P x T)|.
N is structurally live and structurally bounded iff N is SMD and rank(C) =
|P|+|T|—a— 1. (a is the number of arcs leading from a place to a transition.)

Obviously LBFC-Nets are structurally live and SMD. In [5] it is proven that a
live and safe initial marking exists for a structurally live SMD-FC-Net. FC-Nets
with a live and safe initial marking are denoted by LSFC-Nets. The following
theorems taken from [1] hold for LSFC-Nets as well as for LBFC-Nets.

Theorem 3 ([1]).
Let N = (P, T, F) be a LSFC-Net (LBFC-Net).

D C P is a mimimal deadlock =D generates an S-component.

Theorem 4 ([1]).
Let N = (P, T, F) be a LSFC-Net (LBFC-Net).
D C P is a muimal deadlock =D is a minimal trap.

Let us consider Theorems 2 and 3 first. Checking the condition rank(C) =
|P| 4+ |T| — a — 1 in Theorem 2 is trivial due to well known algorithms with
tolerable time complexity, cf. [10]. The crux of this characterization is to decide
the SMD property of a FC-Net efficiently. Naturally this problem can be solved
by searching one S-component containing a place p for any p € P. Theorem
3 implies that searching for a minimal deadlock will result in an S-component
for LBFC-Nets. J. Esparza gave in [2] an outline of an algorithm to find a min-
imal deadlock in a strongly connected FC-Net containing a certain place. This
algorithm is summarized in Sect. 4. If a minimal deadlock not generating an
S-component is found, N is not structurally live and structurally bounded. Obvi-
ously at most | P| minimal deadlocks have to be found and checked for generating
an S-component in order to decide the SMD property for N.

If a net 1s a LBFC-Net it is still left open whether a given initial marking is a
live marking. J. Esparza suggested to check this by solving a linear programming
problem, cf. [3], Proposition 4.3. We suggest to check this property by exploit-
ing a simplified characterization of liveness for LBFC-Nets which follows from
Theorem 4 and

Theorem 5 ([5]).
Let N = (P, T,F) be a FC-Net with an initial marking M.
(N, My) is live iff every minimal deadlock contains a marked trap.

Theorems 4 and 5 allow the following [Simplified characterization of liveness for
LBFC-Nets]
Let N = (P, T, F') be a LBFC-Net. My is a live marking iff all minimal deadlocks
are marked at My. In order to check liveness for a given initial marking of a
LBFC-Net we simply try to find a deadlock which 1s a subset of the set of
unmarked places.

All these theorems give reason for the following outline of a new algorithm:

Input (N, Myp) and N is a FC-Net
Output Yes N is LBFC and My is a live initial marking
No otherwise
stepl Check the net for being strongly connected.
If the net is not strongly connected Stop with No due to Theorem 1.

step2 For all places p find an S-component which contains p by
1. finding a minimal deadlock D containing p.
Such a minimal deadlock exists due to an algorithm in [2].
2. checking D for generating an S-component.
If D does not generate a subnet being an S-component Stop with No due
to Theorem 3.
After successful completion of step2 all places are covered by at least one
S-component and the net is SMD.
step3 Check rank(C)=m+n—a—1.
If this condition is not satisfied Stop with No due to Theorem 2. Otherwise
the net is LBFC-Net and the liveness of the initial marking has to be checked
in step4.
step4 Check existence of an unmarked deadlock.
If an unmarked deadlock exists Stop with No due to Theorem 5. Otherwise
the net is marked live due to Conclusion 3.

In the following sections we present efficient algorithms for these steps apart
from steps 1 and 3, because efficient algorithms are well known for the com-
putation of the strongly connected components of a directed graph and for the
calculation of a matrix rank, see [8] and [10] for example.

4 Calculation of Minimal Deadlocks in FC-Nets

This section summarizes an algorithm described in [2] computing a minimal
deadlock in a strongly connected FC-Net containing a given place p. The fol-
lowing characterization of minimal deadlocks in FC-Nets is exploited for this
algorithm.

Theorem 6 ([2]).
Let N = (P, T, F) be a FC-Net and D C P a deadlock in N.
D is minimal iff D is strongly connected and ¥t € oD : |t N D| = 1.

The central idea for searching a minimal deadlock is to find a handle for any
place of the minimal deadlock (starting with p) that has an input transition not
being an output transition.

Definition 4 (Handle).

Let N = (P, T, F) be a net with two non-empty sets S,5' C PUT,SUS =PUT
and SNS" = 0. A path H = (zo,21,...,%Zn_1,Zy) in N is a handle iff xg, z, € S,
1., 801 €5, (wi,2i41) € F, Vi €{0,...,n— 1} and furthermore x; # x;,
Vi,je{l,....n—1}i#73.

Given two such sets S,5" a handle always exists for strongly connected nets.
The following algorithm computes minimal deadlocks by searching handles for
all places belonging to the minimal deadlock in demand. The set P of places
belonging to the minimal deadlock is initiated with {p} and successively all
places of the computed handles are inserted into P. The algorithm terminates if
all places in P have handles covering all of their input transitions. get-minimal-

deadlock(P,T,F p,Tp), [2]

Input:

N = (P, T, F) strongly connected FC-Net with p € P.
Output:

1. Minimal deadlock D C P containing p and

2. Set Tp which 1s eD

Tnitiate:
P ={p}; T =0;
Function: get-handle(S,S’,F p,t), cf. Sect. 5
This function computes a handle (g, z1,..., 2p_2,¢,p) with 29,p € S
and ®1,...,%,_2,t € S’. It returns the handle as a set {xo, x1,...,2,_2,1,p}.
Program:
begin
while (Ip' e P: Tt cep' : t ¢ T)
begin

H := get-handle((PUT), (PUT) — (PUT), F,p/,1);
P:=PU(HNP);
T:=TU(HNT);

end

D .= P; Tp = T

end

The correctness of this algorithm follows straight forward from the following four
properties holding at every stage of the algorithm:
1. N = (P,T,F) with F = F N ((P X T) U (T X P)) is a subnet of N.
2. N is strongly connected in terms of F.
3. Every transition in T has exactly one incoming F-arc.
4. After termination of the algorithm, if p € P then all incoming arcs of p in F
are also in . Thus ep C T,

These properties ensure that output D i1s a minimal deadlock due to Theorem
6. For details proving correctness see [2].

The time complexity of Algorithm 4 is clearly dominated by the effort for
function get-handle. The computation of a minimal deadlock cannot cause more
than |T'| get-handle calls. In [2] it is left open, how to compute a handle and
therefore no time complexity of Algorithm 4 is presented there. We show in
Sect. b, that the computation of a single handle is possible in O(|P|+|T|+ |F]).
This results in a worst case time complexity for the computation of a minimal

deadlock in O(|T|(|1P|+|T| + | F1)).

5 Computing a Handle in O(|P| + |T| + | F|)

In this section we suggest an algorithm that solves the open problem in Algorithm
4. The precise problem is:

Definition 5 (Compute handle (xy,...2,_9,1,p)).

Let N = (P,T,F) be a net and 5,5 two non-emply sets with the property
SCPUT and ' = (PUT)—S5. Let p € S andt € ep,t € S'. Compule a
handle H = (xo, ..., z,) satisfying o € S, 2 = p, ¥n_1 =1, ; € 5" and
v £ w;, Vi, je{l,... on—1}i#j.

The handle, we are looking for, is a path of the net starting at an arbitrary node!
in S and ending at place p. All other nodes on this path are elements of S* and
appear exactly once. From an algorithmic point of view the search of a handle
obviously starts at the fixed end and follows possible paths backwards (1) in
the net. The new algorithm suggested here follows Depth-First-Search (DFS) to
visit all nodes reachable from a start node. Within this search a path is followed
in depth as far as possible. Each visited node gets an individual DFS-number
num. This number exhibits the node’s type. Assume a node v is reached by the
DFS-algorithm, the numbers assigned to v are explained in the following:

1. num(v) = -1
v belongs to S and 1s a node the handle can start from, thus search of a
handle terminates at v. For all nodes in S the number -1 is assigned as an
initial value and is never changed.
2. num(v) =0
v belongs to S” and has not been visited so far. This node is a candidate for
a node of the handle we are looking for and search will continue with this
node. Zero is the initial value for all nodes in S’ and num(v) is set to a value
greater than zero as soon as a node is reached by DFS-search.
3. num(v) > 0
v belongs to S’ and has been visited before. num(v) represents two different
situations leading to the same consequence:
(a) v was completely checked before and no handle was found. Thus it is not
necessary to check v again.
(b) v has been checked and is reached again. Because a handle does contain
a node of S’ exactly once, this node cannot be part of a handle.
Altogether this node is not checked furthermore and search has to continue
with the predecessor node of v w.r.t. DFS.

Application of these assignments to all nodes leads to the following algorithm
searching a handle backwards in the net. get-handle(S, S, F, p,t)

Input:
N = (P, T, F) is a strongly connected FC-Net, with 5,5 C PUT
SUS' =PUT, SNS =0, pe S, tc S and t € ep, cf. Definition 5

Output:

Handle H = (xq, ..., 2p—2,1,p) or
Message ”No handle exists”

! The node zo must be a place in order to find a deadlock being an S-component.

Tnitiate:
1:=1;
Stack := empty-stack ;
num(x) := 0, Ve € S ;
num(x) :=-1, Ve € 5 ;

Function: dfs(v)
begin
num(v) :=i;i:=14 1 ; push(Stack,v) ;
forall (w € ev)
begin
if (num(w) =-1) { start node of the handle }
then push(Stack,w) ; return Yes ;
end
forall (w € ev)
begin
if (num(w) =0) { a new node is reached }
then if (dfs(w) = Yes)

then return Yes ;

end
pop(Stack,v) ;
return No ;
end
Program:
begin
push(Stack,p) ;
if (dfs(t) = No)
then Stop with Message "No handle exists” ;
else Stop with Output Stack ;
end
Remarks:

The stack is used to store nodes which might belong to a handle. First p is pushed
on the stack and not popped until termination, because p is surely member of
a handle, if a handle exists at all. A node v is pushed on the stack if dfs(v) is
called initiating a depth-first-search from v. If this search is successful, v is not
popped at the end of dfs(v), because dfs(v) returns with Yes. If no handle is
found on the search starting at v, v is not element of a handle, which might be
found lateron and is therefore popped at the end of dfs(v) returning No.

Theorem 7. Algorithm § terminates and s correct.

Proof (Termination). The forall loops terminate due to the finiteness of all sets.
The recursion in dfs terminates because of two effects:

1. A call of function dfs with parameter x can only occur if num(x) = 0.
2. Within dfs(x) num(x) is set to a value greater than 0 and is not changed
anywhere else in the algorithm.

Thus dfs(x) can only be called once for any x € PUT. O

Proof (Correctness). Because of termination dfs(t) returns either Yes or No.
The algorithm is correct iff
1. dfs(t) = No = no handle exists.
2. dfs(t) = Yes = the stack contains a handle.
at 1)
Assumption: dfs(t) = No and handle (zg, 21, ..., 2,_2,1,p) exists.
dfs(t) = No =-all dfs calls have returned with No
=num(zy) =0
=Vv € 10 : num(v) = 0
=num(zz) =0
='This argumentation can be continued successively yielding num(z,_2) = 0
=num(t) = 0, which is a contradiction due to the explicit call for dfs(t)
setting num(t) = 1.
at 2)
If dfs(t) terminates with Yes, the stack contains a handle (zo, @1, ..., ¢n—2,1,p),
because
1. zg,p€ S and z1,...,%,_2,t €5 by construction
2. no node of S’ occurs twice on the stack,
because any v € S’ on the stack must have been pushed in dfs(v) and dfs is only
called once with parameter v (cf. proof of termination).
3. (w,v) € F, because dfs(w) occurs only if w € ev.
O

Ezample 1. The sequence of Figs. 1 - 5 show a LBFC-Net and a possible compu-
tation of a handle for place a. S = {a} and S’ = P — {a}. Letters are identifying
different nodes and numbers attached to the nodes represent their actual value
of num. Figure 1 displays the situation starting with dfs(b). Following the in-
coming arcs with depth-first-search, node b is reached again in Fig. 2. num(b)
= 1 causes a successive return to node f. From node f an incoming arc to node 1
is checked which leads to a revisit of node j. This situation is presented in Fig.
3. Returning to node c searching through m leads to k again causing a return to
node b, which is shown in Fig. 4 before returning to node b. Finally a successful
search 1s started from b through n and o reaching node a, cf. Fig. 5. The output
stack contains nodes a,b,n,o and a on top.

This example demonstrates the worst case for searching a handle, which can
cause a depth-first-search starting from any node at most once.

The efficiency of Algorithm 5 is based on the fact that nodes are not checked
several times. Obviously the effort of this algorithm depends on the number of
calls of function dfs. For any v € S’ dfs is called only once and any arc leading
to v is checked at most twice. The net has (|P|+ |T|) nodes and |F| arcs, thus
obviously the worst case time complexity is O(|P|+ |T| + | F).

1 0 0 0 0
® /® @\@]

o[o] o[b] 0 0(D) l
o oM o\@ ®

0 0 0 0 0 0

Fig. 1. Stack: a
10 9 8 7
P E\@ (]
o[o] + o(D) l
2 3 4 5 6
Fig.2. Stack: abcdefghijk
10 9 8 7
@ E ©, (0]
o] 1] + l
0 3 4 5 6
Fig.3. Stack: abcdefl

1 10 7
NP \ 1

0[o] 11D] 12 11(D) l
o \@ [@—{—®

0 2 3 4 5 6

Fig.4. Stack: abcm

10 9 8 7
P E\@]

14 o] 1 12 11(T) l
3 4 5 6

Fig.5. Stack: abnoa

6 Checking a Minimal Deadlock for Generating an
S-component

This section describes an efficient test for a minimal deadlock generating an S-
component or not.
A deadlock D in a net N generates a subnet N = (P, T, F) with

P=D

T =eDU De

F=Fn((eD x D)U (D x De))

For being an S-component, N must satisfy the following conditions

1. Nis strongly connected.
2.YteT : |etnND|=|tenD|=1 (e-operation w.r.t. N)

Minimal deadlocks satisfy these properties partly. Theorem 6 ensures that any
minimal deadlock is strongly connected and fulfills Vi € D : | et N D| = 1. The
conditions still in question are summarized by the following
Let N = (P, T, F) be a FC-Net with a minimal deadlock D C P.
D generates an S-component iff D = De and Vi c eD : [teND| =1
(e-operation w.r.t. N). One way to check these conditions is to count the arcs
(t,s) € F of any transition ¢ € T leading to an s € D. In the following algorithm
the vector num is used for this purpose.

check-s-component(T,F, D Tp)

Input:
T,F of a FC-Net N=(P,T,F)
D C P is a minimal deadlock of N
Thp =eDCT
Output:
Yes ;D generates an S-component.
No , D does not generate an S-component.
Tnitiate:
num(x) := 0,Ve € T —Tp ;
num(x) := 1, Ve € Tp ;
Program:
begin
forall(s € D)
begin
forall(t € T)
begin
if ((t,8) € F)
then num(t) := num(t) - 1 ;
if (num(t) < 0)
then return No ;
if ((st) eFAteT —Tp)

then return No ;
end
end
return Yes ;
end

Termination is ensured by the finiteness of sets D and T.

Theorem 8.
1. Algorithm 6 terminates with No =D does not generate an S-component.
2. Algorithm 6 terminates with Yes =D generates an S-component.

In the following proofs e is used instead of Tp to improve readability.

Proof (1. part). Two cases can cause a termination with No :

1.3t €T : num(t)<0

2.3(s,t) e F:se DAteT —eD

at 1) a) If ¢t € oD

=num(t) = 1 by initiation

=num(t) is decremented at least twice to get num(t)<0

=3s,s' € D,s#s 1 (t,s)EFA(L,s)eF

=tenD|>1

=D does not generate an S-component due to Conclusion 6

at 1) b) Ift €T —eD

=num(t) = 0 by initiation

=3s€ D :(t,s) € F, because of termination due to num(t) < 0

=t € oD, contradicting assumption t € T'— e D.

Thus, if Algorithm 6 terminates with No due to the existence of a transition t
with num(t)<0, this transition ¢ ¢ T — eD.

at 2)t € De and t ¢ oD

=e) £ De

=D does not generate an S-component due to Conclusion 6. a

Proof (2. part). Assumption: Algorithm 6 terminates with Yes and D does not
generate an S-component.

Because of Conclusion 6 only two reasons might prevent D from generating an
S-component:

1. 6D # De

2.3t €eD:|[teND| # 1.

at 1) D is a minimal deadlock.

S>dtc De:tgeD

Initial value of num(t) = 0

num(t) is never decremented because of Vs € D : (t,s) ¢ F,

but 3(s,t) € FAL € T —eD ensuring return of No contradicting the assumption.
at 2) Thus initial value of num(t) = 1 and 3s,s' € D,s £ 5" : (t,s5),({,s") € F
=num(t) is decremented twice which causes return of No contradicting the as-
sumption.

The case |t e ND| < 1 is not possible for minimal deadlocks, because they are
strongly connected. a

The worst case time complexity is obviously O(|D||T|) caused by the nested
forall loops.

7 How to Ensure Liveness for LBFC-Nets at the Initial
Marking

This section presents an algorithm to decide whether a structurally live and
structurally bounded FC-Net is marked live by an initial marking M. Theo-
rem 5 formulates a necessary and sufficient condition for liveness in FC-Nets?.
Conclusion 3 shows that it 1s sufficient and necessary for LBFC-Nets to check all
minimal deadlocks for being marked in order to fulfill the deadlock/trap-property
of Theorem 5.

This conclusion can be exploited for an efficient algorithm. The main idea is
to take the set of places U, that are unmarked at My, and delete successively
those places preventing U from satisfying the deadlock property oU C Ue. If
finally U = 0, My is a live marking. Otherwise Theorem 5 is not satisfied by
(N, My) and the net is not live. A formulation in pseudocode is: check-initial-
marking(N, M)

Input:

N = (P,T,F) is LBFC-Net with initial marking My
Output:

Yes , My 1s a live marking.

No , My is not a live marking.

Tnitiate:
U:={plpe PAMy(p) =0} ;
T .= oU ;

done := False ;

Program:
begin
while (U # @ and not done)
begin
f(HeT : Unte#APAUNet=0)
then U:=U —te ; T =T’ - {t};
else done := True ;
end
it (U =10)
then Stop with Yes
else Stop with No
end

2 Note that we only regard strongly connected nets due to Theorem 1.

U is the set of unmarked places, which are reduced to a set being a deadlock.
T’ is the set of transitions, which have output places in U. The termination is
ensured by the finiteness of U and the fact that in each iteration of the while-loop
at least one element is eliminated from U. The correctness follows directly from
Conclusion 3. Time complexity is clearly dominated by efforts concerning the
while loop. Initiating U and T costs at most O(|P||T]). There are at most |T|
iterations within the while-loop, because once a transition’s output places are
not in U this property will hold until termination. Because at least one place is
eliminated from U per iteration, altogether at most min(|T|,|P]) iterations are
possible. Finding ¢t € T" with UNte # G AU N et = § costs O(| P|) comparisons to
match U with te and et per(!)t € T’. The size of T’ decreases on any iteration
and has |T'| as its maximal cardinality leading to a maximum effort of O(|P||T)
per iteration. Thusly a rough estimation for the algorithm’s worst case time
complexity is O(|P|?*|T]). 3

8 Algorithm to Decide Liveness and Boundedness for
FC-Nets

Now we exploit the algorithms of Sects. 4 - 7 to formulate the complete algorithm
for deciding liveness and boundedness of FC-Nets.

Input:

N = (P,T,F) is a FC-Net with incidence matrix C and initial marking My
Output is one of the following messages:

1: 7N is not strongly connected”

2: "N contains a minimal deadlock not generating an S-component”

3. 7N is SMD but not structurally live”

4: 7N is a LBFC-Net but not live at My”

5: ”Nis a LBFC-Net and My is a live marking”

Tnitiate:
Uncovered := P ;
a:=|FN(PxT);
TD = 0;

Function: check-str-connected (N), see [8]
This function checks, if a directed graph is strongly connected.

Function: get-minimal-deadlock(P, T ,F,p,Tp), cf. Sect. 4
This function finds a minimal deadlock containing place p.

Function: check-s-component(T,F,D Tp), cf. Sect. 6
This function checks deadlock D being an S-component.

® or to be more precise: O(man(|T|, |P)|P||T])

Function: rank(C), see [10]
This function computes the rank of matrix C.

Program:

begin
if (check-str-connected(N) = No)
then Stop with ”N 1s not strongly connected” ;
while (Uncovered # ()

begin
choose p € Uncovered ;
Tp =0 ;

D := get-minimal-deadlock(P,T,F p,Tp) ;
{Tp is set in get-minimal-deadlock}
if (check-s-component(T,F, D Tp) = No)
then Stop with
”N contains a minimal deadlock not generating an S-component”
else Uncovered := Uncovered - D ;
end
if (rank(C) £ |P|+|T|—a—1)
then Stop with "N 1s SMD but not structurally live” ;
if (check-initial-marking(N,My) = No)
then Stop with "N 1s a LBFC-Net but not live at M,” ;
else Stop with ”N 1s a LBFC-Net and My is a live marking” ;
end

The set Uncovered is used to store places not covered by S-components calculated
so far. Tp holds the preset of deadlock D. This set is computed in get-minimal-
deadlock and exploited in check-s-component.

Termination of Algorithm 8 is ensured by the finiteness of P being the initial
set for Uncovered and by the fact, that in each iteration of the while-loop at least
the chosen place p is deleted from Uncovered or the algorithm stops with output
2 respectively. The correctness of Algorithm 8 follows directly the argumentation
of the algorithm’s outline in Sect. 3.

For determining worst case time complexity of Algorithm 8, worst case time
complexities of all functions are listed below:

check-str-connected O(|P|+ |T| + |F])
get-minimal-deadlock O(|T|(|P| + |T| + | F]))

check-s-component O(|P||T)
rank O(|P1Y|T)
check-initial-marking O(|P|?|T)

Functions check-str-connected, rank and check-initial-marking are called at most
once. The number of calls of get-minimal-deadlock and check-s-component is
determined by the number of iterations within the while-loop. This number is at

most | P|, because at least one place is eliminated from Uncovered per iteration.
Thusly worst case time complexity for Algorithm 8 is given by

O(IPI+ T+ [FN + [PIITI(1P|+ T+ |F]) + [PIT] + 2[PPIT) =
o(PHTI(UPI+ITI+1E1]).

9 Conclusions

We have described a polynomial-time algorithm deciding if a FC-Net is struc-
turally live and structurally bounded and has a live initial marking. This al-
gorithm has a worst case time complexity of O(|P||T|(|P|+ |T| + |F]|)), which
can be estimated as O(n*) with n = max(|P|,|T). The algorithm combines and
refines ideas and theorems of J.Esparza in a new way and adds a new idea to
prove in an efficient way, if an initial marking is live given a structurally live and
structurally bounded FC-Net. A polynomial-time algorithm of comparable func-
tionality is described in [4]. It is based on the linear algebraic characterization of
deadlocks and traps in [7] and exploits linear programming techniques. Its worst
case time complexity is estimated as O(|P||T||F|°). In order to show a direct
comparison our algorithm’s time complexity can be estimated by O(|P||T||F|),
because for strongly connected nets |P|+ |T| < |F| holds. Therefore we regard
our algorithm, exploiting a graph orientated approach, as a major improvement
of FC-Net analysis.

References

1. Best,E.: Some Classes of Live and Safe Petri Nets, in K.Voss, H.J.Genrich,
G.Rozenberg: ”Concurrency and Nets, Advances of Petri Nets”, Springer, Berlin
1987.

2. Esparza,J.: Minimal Deadlocks in Free Choice Nets, Hildesheimer Informatik-
berichte 1/89, Institut fiir Informatik, Universitat Hildesheim.

3. Esparza,J.: Synthesis Rules for Petri Nets, and How They Lead to New Re-
sults, Hildesheimer Informatikberichte 5/90, Institut fir Informatik, Universitat
Hildesheim.

4. Esparza,J.;Silva,M.: A Polynomial-Time Algorithm to Decide Liveness of Bounded
Free Choice Nets, Hildesheimer Informatikberichte 12/90, Institut fiir Informatik,
Universitat Hildesheim.

5. Hack,M.H.T.: Analysis of Production Schemata by Petri Nets, TR-94, MIT, Boston
1972 corrected june 1974

6. Jones,N.;Landweber,L.;Lien,Y.: Complexity of some Problems in Petri Nets, Theo-
retical Computer Science, Vol 4, pp. 277-299, 1977.

7. Lautenbach,K.: Linear Algebraic Calculation of Deadlocks and Traps in K.Voss,
H.J.Genrich, G.Rozenberg: ”Concurrency and Nets, Advances in Petri Nets”,
Springer, Berlin 1987,

8. Mehlhorn,K.: Data Structures and Algorithms 2: Graph Algorithms and NP-
Completeness, EATCS Monographs on Theoretical Computer Science, Springer,
Berlin Heidelberg 1984.

9. Starke,P.: Analysetechniken von Petri-Netz-Modellen, Teubner, Stuttgart 1990 (in
German).

10. Stewart,G.W.: Introduction to Matriz Computations, Academic Press, New York,
1973.

