
Using Input-Output Hidden Markov Models
for the Aggregation of Performance Models

Falko Bause
Informatik IV, Universiẗat Dortmund

D-44221 Dortmund, Germany∗

falko.bause@udo.edu

Abstract

This paper describes a new idea how to use Input-
Output Hidden Markov Models (IOHMMs) for the ag-
gregation of performance models and reports about
corresponding first experiments.
The parameters of the IOHMM are calculated from
observation sequences obtained from the input/output
behaviour of the original model.

Keywords: Performance Evaluation, Aggregation,
Input-Output Hidden Markov Models, Simulation,
Optimisation.

1 Introduction

It is well-known that the performance analysis of
models might be computationally intensive. Espe-
cially simulation of models of todays systems is of-
ten time-consuming [1, 15]. The use of (decompo-
sition and) aggregation techniques might reduce the
analysis effort. Aggregation can be applied on dif-
ferent levels of description. E.g. for Markov models,
aggregation techniques can be applied at state space
level (cf. [19]) and their use is often appropriate when
the Markov chain is nearly completely decomposable.
Another possibility is to define them at the level of
model description, which is often supported by a mod-
ular and/or hierarchical model specification.

The basic idea is to decompose the model into sub-
models. One (or more) of these sub-models is anal-

∗This research was supported by the Deutsche Forschungsge-
meinschaft as part of the Collaborative Research Centre “Mod-
elling of large logistics networks”(559).

ysed in isolation and the analysis results are used to
construct a less detailed substitute representation. Af-
terwards the substitute is used instead of the original
sub-model for the purpose of evaluating the overall
model hoping to reduce the analysis effort compared
to the analysis of the original model. Here we assume
that analysis is done by simulation, so that a possible
reduction is achieved in generating less events when
simulating the aggregate model. Certainly, aggrega-
tion only makes sense when interesting performance
figures are not changed significantly.

Aggregation is a well-known technique in the area
of Queueing Networks (QNs) [9], since classes of
models are known where this technique does not only
reduce the analysis effort (for parametric analyses), but
also leads to exact results. The technique is based on
Norton’s theorem for (closed, single class) product-
form QNs [11, 13] and has been extended to other
classes of nets, see e.g. [5, 6, 10]. In case of non-
product form nets the results are often approximative
[2]. These approaches have in common that the type
of aggregate is given and analysis in isolation is used
to provide the actual parameters of the aggregate.

In this paper we assume that the type of aggregate is
not explicitly given, but described by a Hidden Markov
Model (HMM) [17] and that we try to identify the
Markov model by observing the behaviour at the in-
terface of the to be aggregated sub-model.

Several papers consider the use of HMMs for sup-
porting performance evaluation [12, 18, 20]. All ap-
proaches have in common that HMMs are used for the
specification of the load of a performance model. The
parameters of the HMM are calculated from observed
or assumed arrival patterns of customers/processes.

By definition HMMs do not react on inputs and there-
fore can not be directly used for aggregation, since a
single HMM is useless whenever model parameters
are changed or the HMM is plugged into a different
environment. [8] extends HMMs to so-called Input-
Output Hidden Markov Models (IOHMMs). Here the
output of the HMM does not only depend on the cur-
rent state of the Markov model, but also considers a
read input symbol. Thus IOHMMs might be a suitable
type of aggregate for performance analysis, because
there is some hope that they will also be useful in other
environments due to their ability to take inputs into ac-
count. When trying to use IOHMMs for aggregation,
several questions have to be answered concerning the
semantics of the input and output, and how the output
should be put into effect with respect to the dynam-
ics of the model. In essence, this is what this paper is
about.

The outline is as follows: In Sect. 2 we define
Input-Output Hidden Markov Models (IOHMMs) and
Sect. 3 presents the key idea of aggregation based on
IOHMMs. Sects. 4 to 8 present several aggregate defi-
nitions and corresponding experiments with the inten-
tion to improve the accuracy of the results. The article
ends with some conclusions in Sect. 9.

The paper is based on a report [3], where the reader
can find additional information.

2 IOHMMs

An IOHMM [8] is a Markov model with transi-
tion probabilities dependent on input symbols. The
behaviour of an IOHMM is as follows: The (hidden)
Markov chain “reads” a symbol from an input stream,
changes its internal state and afterwards outputs a sym-
bol both according to the read input symbol and de-
pendent on each current state. The (hidden) Markov
chain starts in initial statei according to an initial state
distributionπi at timet = 0.

The notion “hidden” is motivated from common ap-
plications of Hidden Markov Models, especially in
speech recognition. It is assumed that the observed
outputs are from a Markov chain whose states are hid-
den to the observer. The main concern is to find a
Markov chain which best fits to the observed data.
We use the following notation for describing
IOHMMs:

N number of (hidden) states
Q set of statesQ = {1, . . . , N}
M number of symbols
V set of symbolsV = {1, . . . ,M}
qt state at step/timet, t = 0, . . . , T
xt input symbol at step/timet, t = 1, . . . , T
yt observed output symbol at timet, t = 1, . . . , T
A transition probability matrix with

akij = P [qt = j|qt−1 = i, xt = k]
B observation probability distribution with

bljk = P [yt = k|qt = j, xt = l]
i.e. the conditional probability of observing
symbolk given the Markov chain is in
statej and the input symboll is read

π initial state distributionπi = P [q0 = i]

Matrix A describes the transitions of a Markov
chain and thus the entriesakij are independent of time
t. This independence is also supposed forB. We re-
quire that the set of states and symbols is finite, so
that an integer encoding is sufficient.A andB have
to satisfy the following conditions (“stochastic sub-
matrices”):

N∑
j=1

akij = 1, ∀k = 1, . . . ,M andi = 1, . . . , N (1)

M∑
k=1

bljk = 1, ∀l = 1, . . . ,M andj = 1, . . . , N (2)

λ := (A,B, π) denotes the entire IOHMM.
Let T ∈ N denote the length of an observation se-
quence. If two finite observation sequencesX =
(x1, . . . , xT), xi ∈ N0 andY = (y1, . . . , yT), yi ∈ N0

are given, whereX is the sequence of observed input
symbols andY the corresponding sequence of output
symbols, our intention is to find an IOHMM which
best fits to the observed sequences of symbols or de-
scribing this optimisation problem more precisely:

(**) Given X = (x1, . . . , xT) and Y =
(y1, . . . , yT), estimate model parametersλ =
(A,B, π) that maximiseP [Y |X, λ].

Algorithms for this optimisation problem are well-
known, e.g. the Baum-Welch-Algorithm (cf. [8, 14]).
Since the Baum-Welch-Algorithm might get stuck in
a local optimum, we use a combination of the Baum-
Welch-Algorithm and an(1, 1)-evolutionary strategy
(cf. [16]) in our experiments.

2

For more details the reader is referred to [3]. In the
following we assume that an appropriate algorithm is
available to tackle the optimisation problem (**) giv-
ing an adequate solution.

3 Aggregates based on IOHMMs

In this section we show how a template for IOHMM
aggregates can be defined. For notation we use the
ProC/Bparadigm described in [4].

3.1 General idea

If we want to use IOHMMs for the construction of
an aggregate, we surely have to define an interpreta-
tion of the (observation) sequencesX andY . With
other words we have to define the meaning of these
sequences and how we can extract them from an ob-
servation of the model.

Furthermore it is desirable that, at least in principle,
our aggregate can be adjusted such that the analysis
effort is reduced and/or the resultant model gives more
accurate results. Surely, we want both: a reduction of
the analysis effort and accurate results.

It is a matter of designing an aggregate based on
IOHMMs how to handle these two points.

Concerning analysis we assume that we simulate
(the original and) the aggregated model and that ef-
ficiency and (hopefully) accuracy of the simulation
can be controlled in a simple way (by a parameter
∆t ∈ R+ in the following).

Concerning the observation sequences, one has to
decide whether internal information on the to be ag-
gregated sub-model is included or not. In our approach
no information on the internal state of the sub-model
is used and we presume that only the behaviour at the
sub-model’s interface is known to the analyst1. With
respect to theProC/Bparadigm (or think of queueing
networks) we thus observe when a process (or cus-
tomer) “arrives” at and when it or she “departs” from
the sub-model. To make life simple, let us neglect
the types and service call-specific parameters of the
individual processes giving a single class of unparam-
eterised processes. So our observations look like

...
ARRIVAL 5.016166E+003 1

1Only in Sect. 8 we will also consider information on the inter-
nal state.

DEPARTURE 5.018955E+003 1
ARRIVAL 5.019071E+003 2
ARRIVAL 5.020196E+003 1
...

where the first column denotes the type of event,
the second column gives the event time and the third
column denotes single or batch arrivals/departures by
specifying the batch size.

Probably, this information is too detailed and one
possibility is to aggregate the data for specific time in-
tervals. Again, this is a design decision. We select a
fixed time interval of length∆t and account for the
number of arrivals/departures in these time intervals.
Thus suppose that, for a given time interval length
∆t ∈ R+, the following data has been collected from
an appropriate observation of the sub-model:

• an arrayX = (x1, . . . , xT) wherexi ∈ N0 de-
notes the number of arrivals in thei-th ∆t time
interval, and

• an arrayY = (y1, . . . , yT) whereyi ∈ N0 de-
notes the number of departures in thei-th∆t time
interval.

Using some optimisation procedure, we assume that
an IOHMM λ = (A,B, π) has been determined,
which hopefully describes the observed input/output
of the sub-model.

The behaviour of an aggregate for this sub-model
can then be defined as follows:

The aggregate counts the number of arrivals in a
time interval of length∆t. All arriving processes are
blocked in the aggregate, i.e. they are not allowed to
leave. At the end of the time interval one step of the
IOHMM is emulated giving an output valuey for that
time interval. This output symboly can be interpreted
as the number of observed departures. Thus, from the
set of blocked jobs,y jobs are released and depart from
the aggregate. Ify exceeds the number of blocked jobs
only the currently present number of jobs is released.

A more precise description of an IOHMM template,
employing theProC/B notation, is given in the next
subsection.

3.2 Template IOHMM aggregate

Fig. 1 shows the general form of an aggregate em-
ploying IOHMMs and the aggregation idea described

3

in Sect. 3.1. For simplicity this template aggre-
gate only offers a single service and serves a single
class of processes. ServiceServicecounts the num-
ber of arrivals and also keeps track of the currently
number of blocked processes. The integer variable
maxstoppedprocsensures that at most the number of
blocked processes is released after receiving the an-
swer from the functional unit (FU) modelling the be-
haviour of the IOHMM. A counter inProC/B, like the
counterBlockProcsin Fig. 1, supports the manipula-
tion of passive resources. A change to a counter is im-
mediately granted if and only if its result accounts for
specified upper and lower bounds (here0 and10000);
otherwise, the requesting process gets blocked until
the change becomes possible.

The second process chain in Fig. 1 models the con-
trol process which is started every∆t time units. This
control process first calls the FUIOHMM which emu-
lates one step of the IOHMM. The resultant output is
interpreted as the number of processes which have to
leave and the corresponding number of processes (at
most the number of blocked processes) is released by
setting the counterBlockProcsappropriately. Setting
of this counter is controlled by several conditions (see
the “IF-ELSE” construct in Fig. 1) ensuring that the
counter value is always≤ 0 in tangible states. Finally
the control process resets the variable for arrivals.

The definition of the FUIOHMM (cf. Fig. 2) is
straight-forward. The only interesting case is what
should be outputted if an input symbol is not in the
assumed range of symbols. Note that we have de-
termined this range by an observation of the original
sub-model. Whenever this aggregate is plugged into
a different environment (or even in the original envi-
ronment, if the aggregate does not behave identical to
the original sub-model), it might happen that we “see”
an unknown input symbol, i.e. an unknown number
of arrivals. This design decision has to be based on
the intended use of the aggregate. Here we assume
that we are interested in an analysis of the system’s
steady state behaviour and that the original sub-model
does not create or destroy processes. Following these
assumptions the “flow in” of processes into the aggre-
gate has to equal the “flow out”. Assuming that the
IOHMM aggregate will indirectly follow this flow bal-
ance condition concerning observed input/output sym-
bols, it seems natural to define an identity mapping for

unknown/unobserved input symbols. This simple ex-
tension gives us the possibility to use the IOHMM ag-
gregate in different environments.

4

E
V

E
R

Y
 @

@
D

el
ta

T

1

IO
H

M
M

.
In

pu
t

A
sk

_I
O

H
M

M
(a

rr
iv

al
s

+
 1

)−
−

>
(d

ep
ar

tu
re

s)

C
O

D
E

co
un

t_
ar

riv
al

s
ar

riv
al

s
:=

 a
rr

iv
al

s
+

 1

B
lo

ck
P

ro
cs

.
ch

an
ge

se
t_

co
un

te
r

([
−

1]
)

C
on

tr
ol

P
ro

c

()

B
lo

ck
P

ro
cs

.
ch

an
ge

se
t_

co
un

te
r

([
de

pa
rt

ur
es

 −
 1

])

C
O

D
E

re
se

t_
co

un
te

r_
ar

riv
al

s
ar

riv
al

s
:=

 0

C
O

D
E

N
O

O
P

de
pa

rt
ur

es
 :=

 0
;

{D
ue

 to
 h

is
to

ric
al

 r
ea

so
ns

 th
e

pr
og

ra
m

 c
al

cu
la

tin
g

th
e

IO
H

M
M

 p
ar

am
et

er
s

on
ly

 c
on

si
de

rs
 s

ym
bo

ls
 fr

om
 1

 to
 M

.
he

re
: 1

 d
en

ot
es

 n
o

de
pa

rt
ur

e
an

d
2

st
an

ds
 fo

r
on

e
de

pa
rt

ur
e

et
c.

T
hu

s
w

e
do

 a
 tr

an
sf

or
m

at
io

n
fr

om
 [1

..M
] t

o
[0

..M
−

1]
.

T
he

 s
am

e
ho

ld
 fo

r
ar

riv
al

s,
 th

is
 is

 th
e

re
as

on
 fo

r
th

e
ca

ll:
 A

sk
_I

O
H

M
M

(a
rr

iv
al

s
+

 1
...

.}

{D
ue

 to
 h

is
to

ric
al

 r
ea

so
ns

 th
e

pr
og

ra
m

 c
al

cu
la

tin
g

th
e

IO
H

M
M

 p
ar

am
et

er
s

on
ly

 c
on

si
de

rs
 s

ym
bo

ls
 fr

om
 1

 to
 M

.
he

re
: 1

 d
en

ot
es

 n
o

de
pa

rt
ur

e
an

d
2

st
an

ds
 fo

r
on

e
de

pa
rt

ur
e

et
c.

T
hu

s
w

e
do

 a
 tr

an
sf

or
m

at
io

n
fr

om
 [1

..M
] t

o
[0

..M
−

1]
.

T
he

 s
am

e
ho

ld
 fo

r
ar

riv
al

s,
 th

is
 is

 th
e

re
as

on
 fo

r
th

e
ca

ll:
 A

sk
_I

O
H

M
M

(a
rr

iv
al

s
+

 1
...

.}C
O

D
E

co
un

t_
no

_o
f_

bl
oc

ke
d_

pr
oc

s
m

ax
_s

to
pp

ed
_p

ro
cs

 :=
 m

ax
_s

to
pp

ed
_p

ro
cs

 +
 1

C
O

D
E

co
un

t_
do

w
n_

no
_o

f_
bl

oc
ke

d_
pr

oc
s

m
ax

_s
to

pp
ed

_p
ro

cs
 :=

 m
ax

_s
to

pp
ed

_p
ro

cs
 −

 1

B
lo

ck
P

ro
cs

.
ch

an
ge

se
t_

co
un

te
r

([
m

ax
_s

to
pp

ed
_p

ro
cs

])

de
pa

rt
ur

es
 <

 2

E
LS

E

m
ax

_s
to

pp
ed

_p
ro

cs
 >

=
 d

ep
ar

tu
re

s

E
LS

E

IO
H

M
M

In
pu

t
(a

:IN
T

)−
−

>
(b

:IN
T

)

de
pa

rt
ur

es
:IN

T
=

0
ar

riv
al

s:
IN

T
=

0
m

ax
_s

to
pp

ed
_p

ro
cs

:IN
T

=
0

de
pa

rt
ur

es
:IN

T
=

0
ar

riv
al

s:
IN

T
=

0
m

ax
_s

to
pp

ed
_p

ro
cs

:IN
T

=
0

B
lo

ck
P

ro
cs

M
A

X
=

[1
00

00
]

ch
an

ge

(a
m

ou
nt

:IN
T

[])

S
er

vi
ce

()

A
gg

re
ga

te

Figure 1. Template FU Aggregate(@@DeltaT set to concrete values∈ R+ for experiments)

5

IO
H

M
M

In
pu

t
(a

:IN
T

)
−

−
>

(b
:IN

T
)

()

C
O

D
E

ra
nd

om
ra

nd
va

r
:=

 u
ni

fo
rm

(0
.0

,1
.0

);
 j:

=
 0

; s
um

:=
0.

0;

C
O

D
E

lo
op

el
em

LO
O

P

C
O

D
E

lo
op

el
em

E
N

D
 L

O
O

P
 U

N
T

IL
 (

 (
su

m
 >

=
 (

ra
nd

va
r

−
 e

ps
ilo

n)
)

O
R

 (
j >

=
 @

@
N

)
)

C
O

D
E

ne
xt

st
at

e
j:=

j+
1;

su
m

:=
su

m
+

A
[d

at
a.

a,
cu

rr
en

t_
st

at
e,

j]

C
O

D
E

se
ts

ta
te

cu
rr

en
t_

st
at

e
:=

 j

C
O

D
E

Id
en

tit
y_

M
ap

pi
ng

w
rit

el
n

"W
A

R
N

IN
G

: d
at

a.
a

ex
ce

ed
s

nu
m

be
r

of
 s

ym
bo

ls
."

, "
 S

et
tin

g
da

ta
.b

 to
 d

at
a.

a
=

 "
, d

at
a.

a;
 d

at
a.

b
:=

 d
at

a.
a;

da

ta
.a

 >
 @

@
M

E
LS

E

C
O

D
E

C
he

ck
IF

 (
su

m
 <

 r
an

dv
ar

)
T

H
E

N
 w

rit
el

n
"E

R
R

O
R

: C
ou

ld
 n

ot
 fi

nd
 s

uc
ce

ss
or

 s
ta

te
, s

et
tin

g
cu

rr
en

t_
st

at
e

=
 @

@
in

iti
al

st
at

e"
; c

ur
re

nt
_s

ta
te

 :=
 @

@
in

iti
al

st
at

e;
 E

N
D

 IF

C
O

D
E

ra
nd

om
_f

or
_o

ut
pu

t
j:=

0;
ra

nd
va

r
:=

 u
ni

fo
rm

(0
.0

,1
.0

);
 s

um
:=

0.
0;

C
O

D
E

lo
op

el
em

LO
O

P

C
O

D
E

ne
xt

sy
m

bo
l

j:=
j+

1;
su

m
:=

su
m

+
B

[d
at

a.
a,

cu
rr

en
t_

st
at

e,
j]

C
O

D
E

lo
op

el
em

E
N

D
 L

O
O

P
 U

N
T

IL
 (

 (
su

m
 >

=
 (

ra
nd

va
r

−
 e

ps
ilo

n)
)

O
R

 (
j >

=
 @

@
M

)
)

C
O

D
E

se
ts

ym
bo

l
da

ta
.b

:=
j

C
O

D
E

C
he

ck
IF

 (
su

m
 <

 r
an

dv
ar

)
T

H
E

N
 w

rit
el

n
"E

R
R

O
R

: C
ou

ld
 n

ot
 g

en
er

at
e

ou
tp

ut
 s

ym
bo

l.
E

m
m

itt
in

g
S

ym
bo

l d
at

a.
b

=
 @

@
M

";
 d

at
a.

b
:=

 @
@

M
; E

N
D

 IF

A
:R

E
A

L[
1.

.@
@

M
,1

..@
@

N
,1

..@
@

N
]=

@
@

V
A

LU
E

_A
B

:R
E

A
L[

1.
.@

@
M

,1
..@

@
N

,1
..@

@
M

]=
@

@
V

A
LU

E
_B

cu
rr

en
t_

st
at

e:
IN

T
=

@
@

in
iti

al
st

at
e

ra
nd

va
r:

R
E

A
L=

0.
0

j:I
N

T
=

0
k:

IN
T

=
0

su
m

:R
E

A
L=

0.
0

ep
si

lo
n:

R
E

A
L=

1.
0e

−
7

A
:R

E
A

L[
1.

.@
@

M
,1

..@
@

N
,1

..@
@

N
]=

@
@

V
A

LU
E

_A
B

:R
E

A
L[

1.
.@

@
M

,1
..@

@
N

,1
..@

@
M

]=
@

@
V

A
LU

E
_B

cu
rr

en
t_

st
at

e:
IN

T
=

@
@

in
iti

al
st

at
e

ra
nd

va
r:

R
E

A
L=

0.
0

j:I
N

T
=

0
k:

IN
T

=
0

su
m

:R
E

A
L=

0.
0

ep
si

lo
n:

R
E

A
L=

1.
0e

−
7

Figure 2. Template FU IOHMM (“@@”-values set to concrete values for experiments)

6

4 Experiment scenario and first results

We consider a simple experiment where we “aggre-
gate” a M/M/1 queue.

µ1 µ2

AGG

Figure 3. Closed Tandem Queueing Network

Fig. 3 depicts the original model. The model is
a closed queueing network comprising two M/M/1
queues. The network is a product-form queueing net-
work and performance figures can be calculated effi-
ciently, e.g. employing Mean Value Analysis (MVA)
[13].

For our experiments we use the tool HIT [7] and se-
lect the following set of parameters:µ1 = 1.2, µ2 =
1.3 and a total network population of5 giving the re-
sults shown in Table 1.

queue population throughput sojourn time

1 2.73254 1.03779 2.63304
2 2.26746 1.03779 2.18489

Table 1. Results (mean values) of QN of Fig. 3

We choose queueAGGfor aggregation and queue2
for validation. In particular we do the following:

1. We simulate the QN of Fig. 3 for the given pa-
rameter set and record the arrival and departure
events at queueAGG. Recording starts after a
long warm-up phase of5000 model time units
thus trying to make sure that the output infor-
mation belongs to the steady-state phase of the
model.

2. The simulation output is afterwards transformed
(for a given time interval∆t and observation
lengthT) to input values (X = (x1, . . . , xT) and
Y = (y1, . . . , yT)) for the optimisation proce-
dure giving an IOHMM specification. The length

of the observation sequences is chosen such that
they account for flow balance, i.e.

∑T
i=1 xi =∑T

i=1 yi holds. The calculation of an IOHMM is
performed for several number of states,N . The
number of symbols,M , is always determined by
M = maxT

i=1(max(xi, yi)).

3. Finally, we substitute queueAGG by the template
IOHMM aggregate (cf. Sect. 3.2) plugging in the
calculated IOHMM specification. The resultant
model is simulated, giving results for queue2.

∆t N T population throughput sojourn

EXACT 2.267 1.038 2.185
0.1 6 1004 1.87 0.94 1.99
0.1 15 1004 1.85 0.94 1.97
0.1 15 3003 1.79 0.93 1.91
0.1 30 2772 1.51 0.86 1.76
0.3 6 102 1.31 0.80 1.64
0.3 6 1003 1.72 0.93 1.85
0.3 10 90 1.98 0.94 2.10

* 0.3 10 1003 2.21 1.04 2.13
0.3 15 102 1.73 0.90 1.93

* 0.3 15 1003 2.20 1.03 2.12
* 0.3 25 1003 2.20 1.04 2.13

0.8 6 1002 1.82 0.93 1.96
0.8 15 202 1.76 0.93 1.90
0.8 15 1002 1.72 0.91 1.90

Table 2. Results (mean values) for queue 2 in
the model with substituted queue AGG

Table 2 shows results for different values of∆t, N
andT . The columns denote the following:∆t is the
length of the time interval (cf. with “@@DeltaT” in
Fig. 1), N denotes the number of states,T denotes
the length of the observation sequence andpopulation,
throughput, sojournare the mean values of population,
throughput and sojourn time at queue2 after simulat-
ing 10000 time units. The given mean values are al-
ways calculated taking all values of the time interval
[0, 10000] into account, which is the standard evalu-
ation option of the tool HIT [7]. All simulation re-

2Since the running time of the Baum-Welch-Algorithm is in
our case governed by the factor(N2T) only short observation se-
quences are used in case of a larger number of states.

7

sults have been obtained for a confidence interval level
of 90% and the interval width was at most 5% of the
mean value. The theoretically exact steady-state mean
values are shown in the first line. Certainly, due to Lit-
tle’s law [13], the table contains redundant data, but
we keep all values in order to have a simple check for
typos or transcription errors.

Most results depicted in Table 2 show a signifi-
cant difference to the exact values. Only those lines
marked by an asterisk give satisfactory results, keep-
ing in mind the very low complexity of our example.

All shown results indicate that the proposed aggre-
gate nearly always underestimates the theoretical val-
ues. Having a closer look at our aggregate (cf. Fig. 1),
we realise that, if only a few processes are blocked, we
will discard information from the IOHMM by releas-
ing only the number of blocked processes. Since we
assume that the IOHMM considers flow balance, this
construct will violate the flow balance condition for
the overall aggregate. The current aggregate will then
probably block more processes than the corresponding
original sub-model, which also explains the low popu-
lation and other values for the non-aggregated queue2.
In the next section we will revise our template aggre-
gate and redo some of the above described experiments
in the now changed setting.

5 Considering infeasible answers

The revised form of the aggregate differs from the
former one in the definition of the control process.
Irrespective of the number of currently blocked pro-
cesses, the counterBlockProcsis always set to the
corresponding output value of the IOHMM. Thus the
counter keeps track of IOHMM answers of former
time intervals which could not be realised. The value
of the counter might now exceed0. Thus a call to ser-
vice Servicemight result in no blocking of the calling
process, so that the process leaves the aggregate im-
mediately.

We use the IOHMM definitions obtained from the
experiments described in Sect. 4 for new simulation
experiments. The results are shown in Table 3. The
last column (

∑
diff) indicates infeasible answers of

the IOHMM. Whenever the IOHMM output exceeds
the number of blocked processes, we stored the differ-
ence. The result shown in the last column is the sum

of all these positive values for the total simulation run
of 10000 model time units.

∆t N T popu-
lation

through-
put

sojourn
∑

diff

EXACT 2.267 1.038 2.185
0.1 6 1004 2.840 1.052 2.700 3837
0.1 15 1004 2.786 1.057 2.636 3836
0.1 15 3003 2.552 1.020 2.503 2984
0.1 30 277 1.878 0.911 2.060 1513
0.3 6 102 1.524 0.848 1.797 779
0.3 6 1003 2.224 0.994 2.238 2173
0.3 10 90 3.782 1.150 3.290 7868
0.3 10 1003 3.783 1.183 3.195 7477
0.3 15 102 2.778 1.033 2.689 4172
0.3 15 1003 3.715 1.179 3.149 7254
0.3 25 1003 3.727 1.175 3.169 7231
0.8 6 1002 2.417 1.014 2.384 2476
0.8 15 202 2.264 0.994 2.278 2099
0.8 15 1002 2.269 0.994 2.282 2138

Table 3. Results (mean values) for queue 2
(infeasible answers)

The results show that also this form of aggregate has
its deficits and the performance figures do only con-
form to the exact ones in few cases. Now we overes-
timate the theoretical values, which might be caused
by service of processes in zero time. Having a closer
look at column

∑
diff we notice that this difference

might be caused by the different views both functional
units have on the state of the overall aggregate. The
FU modelling theIOHMM has some internal state (cf.
current statein Fig. 2) and calculates a corresponding
response. Since this response might not conform to
the number of blocked processes, i.e. to the internal
state of the FUAggregate(cf. Fig. 1), we adjust the
answer of the IOHMM somehow. But this adjustment
does not influence the internal state (current state) of
FU IOHMM. So it might happen that the assumed state
encoded in the IOHMM and the “real” state of the ag-
gregate differ more and more as time goes by.

6 Accepting only feasible answers

For a next series of experiments we decide to re-
design the FUIOHMM in such a way that the real state

8

of the aggregate and the IOHMM’s internal knowledge
on the state do not diverge. The simplest such way is
to accept only that output of the IOHMM which con-
forms to the number of blocked processes. I.e. we do
only accept those answers of the IOHMM which do
not exceed the number of currently blocked processes.

Technically speaking, we emulate one step of the
IOHMM and check whether the generated output ex-
ceeds the number of currently blocked processes. In
that case we reset thecurrent statevariable to its pre-
vious value and redo the emulation step until the an-
swer is less than or equal to the number of blocked
processes.

The results of some experiments with this revised
definition of FU IOHMM are shown in Table 4. Still
the results are not satisfactory.

∆t N T population throughput sojourn

EXACT 2.267 1.038 2.185
0.1 15 3003 1.774 0.930 1.906
0.1 30 277 1.488 0.862 1.728
0.3 6 102 1.302 0.816 1.595
0.3 6 1003 1.676 0.924 1.814
0.3 10 90 1.957 0.946 2.070
0.3 10 1003 2.156 1.029 2.096
0.3 15 102 1.663 0.899 1.849
0.3 15 1003 2.147 1.027 2.091
0.3 25 1003 2.130 1.028 2.072
0.8 6 1002 1.721 0.918 1.875
0.8 15 202 1.697 0.923 1.839
0.8 15 1002 1.649 0.905 1.822

Table 4. Results (mean values) for queue 2
(accepting only feasible answers)

In tendency they are similar to the results of our first
series of experiments (see Table 2), and even differ
more from the theoretical exact values.

As we see, disregarding the IOHMM’s answers
does not lead to satisfactory results. The chosen
strategy implicitly changes the IOHMM giving an
IOHMM, which presumably does not conform to the
observed sequencesX, Y having been used for its def-
inition.

7 Virtual arrivals

For a next series of experiments we redesign the FU
Aggregateagain and keep the old (i.e. the first) version
of the definition of FUIOHMM (see Fig. 2). As men-
tioned, this might give us some answers which exceed
the current number of blocked processes. But now,
we will not forget these additional departures, which
can not be realised due to a low population of blocked
processes. We also do not store these additional de-
partures in the counterBlockProcspossibly resulting
in zero time delays. Instead, we now count those ad-
ditional departures as “virtual arrivals” for the next∆t
time interval by setting the variablearrivals before ter-
mination of processControlProc (cf. Fig. 1). In the
next ∆t time intervals the IOHMM is asked with a
larger number of arrivals (actual and virtual) and thus
should tend to output a larger number of departures.
Since we assume that the IOHMM considers flow bal-
ance, the formerly infeasible departures would hope-
fully have been performed after several∆t time inter-
vals, so that the overall aggregate satisfies flow bal-
ance on the long run. More precisely, letxi denote the
number of arrivals in thei-th ∆t time interval,di the
corresponding number of (realised) departures andvi

the number of virtual arrivals in thei-th time interval.
Since the IOHMM should consider flow balance in the
observedT time intervals and assumingvT = 0 (i.e.
in the end all formerly infeasible departures have been
realised), we have

T∑
i=1

xi + vi−1 =
T∑

i=1

di + vi (3)

with v0 := 0. Eq. (3) implies

T∑
i=1

xi =
T∑

i=1

di

showing that the overall aggregate also satisfies flow
balance in theT time intervals.

The results of some experiments with this re-
designed FUAggregateare shown in Table 5. Unfor-
tunately, again the results are not satisfactory.

In summary, the resultant mean values of almost all
experiment configurations are very close. Note that the
reason for all the different aggregate definitions is to

9

∆t N T popu-
lation

through-
put

sojourn
∑

diff

EXACT 2.267 1.038 2.185
0.1 15 3003 1.791 0.934 1.917 870
0.1 30 277 1.542 0.868 1.777 512
0.3 6 102 1.309 0.820 1.597 293
0.3 6 1003 1.721 0.930 1.849 651
0.3 10 90 2.010 0.956 2.103 1946
0.3 10 1003 2.214 1.042 2.125 1548
0.3 15 102 1.727 0.898 1.921 1060
0.3 15 1003 2.196 1.035 2.121 1361
0.3 25 1003 2.204 1.035 2.129 1387
0.8 6 1002 1.838 0.934 1.968 883
0.8 15 202 1.848 0.938 1.970 791
0.8 15 1002 1.782 0.922 1.933 750

Table 5. Results (mean values) for queue 2
(virtual arrivals)

cope with infeasible answers of the IOHMM. The ex-
periments of Sects. 4-7 indicate that the different views
on the state of the aggregate might cause inaccurate re-
sults. We therefore suspect that we need a mechanism
which ensures a single view on the “state” of the ag-
gregate.

8 Adding internal information

In order to eliminate the different (implicitly) en-
coded information on the current number of blocked
processes, we decide to give the IOHMM more infor-
mation. The IOHMM now does not only get the infor-
mation on the number of arrivals during a time interval
∆t, but also gets the information on the current state
of the aggregate, which is (in our case) the number
of blocked processes. This implies that also the se-
quencesX andY , giving the base of the IOHMM de-
termination, include information on the internal state.
For our experiments we use input symbols(a, s), en-
coded as a single integer, wherea denotes the num-
ber of arrivals in the last observed∆t interval ands
the number of currently present customers/processes
at queueAGG. With that all answers of the IOHMM
are feasible and we do not have to take care of situ-
ations where the answer of the IOHMM exceeds the
number of blocked processes, since such answers will

never be given.
Therefore this design of using IOHMMs for build-

ing aggregates reduces our problems on interpreting
the IOHMM’s answers. The only decision left is what
to do when the IOHMM is asked with a symbol not oc-
curring in the sequencesX andY . As before, we use
an identity mapping for those cases. In order to reduce
also the occurrences of those situations, we collect the
sequencesX andY now from a simulation of queue
AGG in an open environment using a Poisson arrival
stream with rateλ = 1.0. Again, the sequencesX
and Y comprise only situations observed after5000
time units with the additional restriction that observa-
tions are only allowed to start after queueAGG has
been emptied. The experiments are performed for the
closed QN of Fig. 3.

Table 6 shows that the new approach leads to sat-
isfactory results for some parameters. Especially the
results for∆t ∈ [0.2, 0.3] for large observation se-
quences (T > 700) give a good approximation for the
performance measures of queue2.

In particular, the results now show a tendency which
is expected and desired! Accuracy of the results seems
to increase with decreasing∆t. Also the selection of
the observation sequences influence the accuracy as
expected. A larger value forT seems to give more ac-
curate results, probably because the IOHMM encodes
more behavioural characteristics of the original sub-
model.

9 Conclusions

This paper describes first results of various exper-
iments where Input-Output Hidden Markov Models
have been used to build aggregates for performance
models. It provides a snapshot of activities for build-
ing aggregates for logistics networks.

The experiments show that infeasible answers of the
IOHMM might lead to bad aggregation results and that
this problem can not be solved easily. In our approach
the problem is finally solved by integrating informa-
tion on the internal state of the sub-model into the
IOHMM.

The positive results of Sect. 8 give some hope to
determine accurate aggregates also in other environ-
ments and for more complex sub-models if employing
an appropriate macro state definition. As indicated,

10

∆t N T population throughput sojourn

EXACT 3.6322 1.2429 2.9224
0.1 10 1504 3.388 1.247 2.717
0.2 10 752 3.473 1.281 2.709
0.2 10 1514 3.694 1.273 2.902
0.3 6 755 3.520 1.268 2.776
0.3 6 1503 3.533 1.256 2.813
0.3 10 502 3.311 1.266 2.616
0.3 10 755 3.543 1.283 2.762
0.3 15 502 3.317 1.247 2.661
0.3 20 502 3.247 1.231 2.638
0.8 10 181 2.954 1.228 2.405
0.8 15 181 2.935 1.210 2.426
0.8 20 181 2.940 1.201 2.448
2.0 10 76 2.534 1.117 2.268
3.0 10 51 2.029 0.983 2.064
3.0 15 51 2.372 1.043 2.275
3.0 20 51 2.132 1.011 2.107

Table 6. Results (mean values) for queue 2
now with µ1 = 2.0, µ2 = 1.3 (adding internal
information)

the expected effects of∆t andT are now identifiable.
Naturally, a proper choice of these parameters needs
more investigation.

A further improvement might be obtained by sup-
porting the optimisation process. The optimisation
procedure used here has no specific knowledge on the
state space of the original sub-model, it merely starts
with a complete graph and uniform distributions. In
most cases we have a clue on the essential structure of
the sub-model’s state space, e.g., a quasi birth-death
structure, and can exploit this knowledge for the con-
struction of the IOHMM leading to a more adequate
representation of the observed behaviour (cf. [17]).

Another idea we are going to follow in the future is
to use the IOHMM output for the definition of speed
values of a load dependent server. The idea is to set
these speed values for each∆t period. This implies
that departures may not only happen at the end of a
time interval, but are now allowed to take place at any
point in time. Hopefully this will increase accuracy
and additionally allows for larger∆t values reducing
the effort of the overall analysis process.

References

[1] J. Banks (eds.). Handbook of simulation. Princi-
ples, Methodology, Advances, Applications, and
Practice. John Wiley & Sons, 1998.

[2] B. Baynat, J. Campos. Approximate Methods
Based on Net-Driven Decompositions. Tutorials
of the 7th International Workshop on Petri Nets
and Performance Models, Saint Malo, France,
June, 1997.

[3] F. Bause. Input-Output Hidden Markov Models
for the Aggregation of Performance Models.
Technical Report Sonderforschungsbereich 559
“Modellierung großer Netze in der Logistik”,
No. 03010, ISSN 1612-1376, 2003.
see also: http://ls4-www.informatik.uni-
dortmund.de/QM/MA/fb/publication ps files/
Bericht03010neu.pdf

[4] F. Bause, H. Beilner, M. Fischer, P. Kemper, M.
Völker. The Proc/B Toolset for the Modelling
and Analysis of Process Chains. in: T. Field, P.G.
Harrison, J. Bradley, U. Harder (eds): Computer
Performance Evaluation, Modelling Techniques
and Tools, Lecture Notes in Computer Science,
No 2324, Springer, pp. 51-70, 2002.

[5] F. Bause, R. Boucherie, P. Buchholz. Norton’s
theorem for batch routing queueing networks.
Communications in Statistics - Stochastic Mod-
els, Marcel Dekker New York, 17(1), pp. 39-60,
2001.

[6] S. Balsamo, G. Iazeolla. An Extension of Nor-
ton’s Theorem for Queueing Networks. IEEE
Transactions on Software Engineering, 8(4), pp.
298-305, 1982.

[7] H. Beilner, J. M̈ater, C. Wysocki. The Hierar-
chical Evaluation Tool HIT. In: Short Papers
and Tool Descriptions of the 7th International
Conference on Modelling Techniques and Tools
for Computer Performance Evaluation, 1994.
For more information see http://ls4-www.cs.uni-
dortmund.de/HIT/

[8] Y. Bengio. Markovian Models for Se-
quential Data. Neural Computing Sur-

11

veys, 2, pp. 129-162, 1999. see also
http://www.icsi.berkeley.edu/˜jagota/NCS and
ftp://ftp.icsi.berkeley.edu/pub/ai/jagota/vol25.pdf

[9] G. Bolch, S. Greiner, H. de Meer, K.S. Trivedi.
Queueing Networks and Markov Chains. J. Wi-
ley & Sons, 1998.

[10] R.J. Boucherie. Norton’s Equivalent for Queue-
ing Networks Comprised of Quasireversible
Components Linked by State-Dependent Rout-
ing. Performance Evaluation, 32(2), pp. 83-99,
1998.

[11] K.M. Chandy, U. Herzog, L.S. Woo. Paramet-
ric Analysis of Queuing Networks. IBM Journal
of Research and Development, 19(1), pp. 36-42,
1975.

[12] F.D. Duarte, E. de Souza e Silva, D. Towsley.
An adaptive FEC algorithm using hidden Markov
chains. ACM SIG Performance Evaluation Re-
view, 32(2), pp. 11-13, 2003.

[13] K. Kant. Introduction to computer system per-
formance evaluation. Mc Graw Hill, (1992).

[14] B. Knab. Erweiterungen von Hidden-
Markov-Modellen zur Analyseökonomischer
Zeitreihen. Dissertation, Mathematisch-
Naturwissenschaftliche Fakultät Köln, 2000, see
also http://www.zaik.uni-koeln.de/˜ftp/paper/
zaik2000-390.ps.gz

[15] A. Law, W. Kelton. Simulation modeling and
analysis. 3rd ed., McGraw Hill, 2000.

[16] Z. Michalewicz, D.B. Fogel. How to solve it:
Modern Heuristics. Springer, 2000.

[17] L. Rabiner. A tutorial on hidden Markov models
and selected applications in speech recognition.
Proc. IEEE, 77(2), pp. 257-286, 1989.

[18] K. Salamatian, S. Vaton. Hidden Markov
modelling for network communication chan-
nels. ACM SIG Performance Evaluation Review,
29(1), pp. 92-101, 2001.

[19] W. J. Stewart. Introduction to the numerical so-
lution of Markov chains. Princeton University
Press, 1994.

[20] W. Wei, B. Wang, D. Towsley. Continuous-time
hidden Markov models for network performance
evaluation. Performance Evaluation, 49(1-4), pp.
129-146, 2003.

12

