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Abstract ysed in isolation and the analysis results are used to
construct a less detailed substitute representation. Af-
This paper describes a new idea how to use Input-terwards the substitute is used instead of the original
Output Hidden Markov Models (IOHMMs) for the ag- sub-model for the purpose of evaluating the overall
gregation of performance models and reports about model hoping to reduce the analysis effort compared
corresponding first experiments. to the analysis of the original model. Here we assume
The parameters of the IOHMM are calculated from that analysis is done by simulation, so that a possible
observation sequences obtained from the input/outputreduction is achieved in generating less events when
behaviour of the original model. simulating the aggregate model. Certainly, aggrega-
tion only makes sense when interesting performance
Keywords: Performance Evaluation, Aggregation, figures are not changed significantly.

Input-Output Hidden Markov: Models, Simulation,  aggregation is a well-known technique in the area

Optimisation. of Queueing Networks (QNs) [9], since classes of
_ models are known where this technique does not only
1 Introduction reduce the analysis effort (for parametric analyses), but

also leads to exact results. The technique is based on

It is well-known that the performance analysis of Norton’s theorem for (closed, single class) product-
models might be computationally intensive. Espe- form QNs [11, 13] and has been extended to other
cially simulation of models of todays systems is of- classes of nets, see e.g. [5, 6, 10]. In case of non-
ten time-consuming [1, 15]. The use of (decompo- product form nets the results are often approximative
sition and) aggregation techniques might reduce the[2]. These approaches have in common that the type
analysis effort. Aggregation can be applied on dif- of aggregate is given and analysis in isolation is used
ferent levels of description. E.g. for Markov models, to provide the actual parameters of the aggregate.
aggregation techniques can be applied at state space |n this paper we assume that the type of aggregate is
level (cf. [19]) and their use is often appropriate when not explicitly given, but described by a Hidden Markov
the Markov chain is nearly completely decomposable. Model (HMM) [17] and that we try to identify the
Another possibility is to define them at the level of Markov model by observing the behaviour at the in-
model description, which is often supported by a mod- terface of the to be aggregated sub-model.
ular and/or hierarchical model specification. Several papers consider the use of HMMs for sup-

The basic idea is to decompose the model into sub-porting performance evaluation [12, 18, 20]. All ap-
models. One (or more) of these sub-models is anal-proaches have in common that HMMs are used for the
*This research was supported by the Deutsche Forschungsgefc’p(_:‘lelcatlon of the load of a performance model. The
meinschaft as part of the Collaborative Research Centre “Mod- Parameters of the HMM are calculated from observed
elling of large logistics networks”(559). or assumed arrival patterns of customers/processes.




By definition HMMs do not react on inputs and there-

fore can not be directly used for aggregation, since @ N number of (hidden) states

single HMM is useless whenever model parameters ()  set of state§) = {1,...,N}

are changed or the HMM is plugged into a different 37 number of symbols

environment. [8] extends HMMs to so-called Input- y/  set of symbold/ = {1,...,M}

Output Hidden Markov Models (IOHMMs). Herethe 4,  state at step/time ¢t =0,...,T

output of the HMM does not only depend on the cur- 5, input symbol at step/time ¢t =1,...,T
rent state of the Markov model, but also considers a ,  observed output symbol at tindet = 1,...,T
read input symbol. Thus IOHMMs might be a suitable 4 transition probability matrix with

type of aggregate for performance analysis, because arij = Plar = jlgi—1 = i, 2 = k]

there is some hope that they will also be useful inother B observation probability distribution with

environments due to their ability to take inputs into ac- bijk = Plyr = klge = j, 21 =]

count. When trying to use IOHMMs for aggregation, i.e. the conditional probability of observing
several questions have to be answered concerning the symbolk given the Markov chain is in
semantics of the input and output, and how the output statej and the input symbdlis read

should be put into effect with respect to the dynam- r initial state distributionr; = Plqo = 1]
ics of the model. In essence, this is what this paper is
about.

The outline is as follows: In Sect. 2 we define
ISan{[t'SUtpUt Hldo,:f]n hkﬂarkgv Mc:chIS (IOH,[MMZ) ang uire that the set of states and symbols is finite, so
ICfI:MMpr(asserls4f 8ey| eato aggr(Tga lon atlsz f(_) at an integer encoding is sufficieni and B have

" S. S€cls. 4 10 © present several aggregate delly, satisfy the following conditions (“stochastic sub-
nitions and corresponding experiments with the inten- N,
. . . matrices”):
tion to improve the accuracy of the results. The article N
ends with some conclusions in Sect. 9. Z -
The paper is based on a report [3], where the reader kg

Matrix A describes the transitions of a Markov
chain and thus the entrieg;; are independent of time
t. This independence is also supposedBorWe re-

= 1,vk=1,...,Mandi=1,...,N (1)

=1
can find additional information. ]M

> by = 1L¥i=1,... Mandj=1,....N (2)
2 |IOHMMs k=1

A := (A4, B, ) denotes the entire IOHMM.

An IOHMM [8] is a Markov model with transi- Let T € N denote the length of an observation se-
tion probabilities dependent on input symbols. The quence. If two finite observation sequencEs =
behaviour of an IOHMM is as follows: The (hidden) (xi,...,z7),2; € NgoandY = (y1,...,y7), ¥ € Ny
Markov chain “reads” a symbol from an input stream, are given, whereX is the sequence of observed input
changes its internal state and afterwards outputs a symsymbols andr” the corresponding sequence of output
bol both according to the read input symbol and de- symbols, our intention is to find an IOHMM which
pendent on each current state. The (hidden) Markovbest fits to the observed sequences of symbols or de-
chain starts in initial stateaccording to an initial state  scribing this optimisation problem more precisely:
distribution; at timet = 0. (**) Given X = (z1,...,zp) and Y =

The notion “hidden” is motivated from common ap- (y1,...,yr), estimate model parameters =
plications of Hidden Markov Models, especially in (A, B, ) that maximise’[Y'| X, \].
speech recognition. It is assumed that the observed Algorithms for this optimisation problem are well-
outputs are from a Markov chain whose states are hid-known, e.g. the Baum-Welch-Algorithm (cf. [8, 14]).
den to the observer. The main concern is to find aSince the Baum-Welch-Algorithm might get stuck in
Markov chain which best fits to the observed data. a local optimum, we use a combination of the Baum-
We use the following notation for describing Welch-Algorithm and an(1, 1)-evolutionary strategy
IOHMMs: (cf. [16]) in our experiments.



For more details the reader is referred to [3]. In the DEPARTURE 5.018955E+003 1
following we assume that an appropriate algorithm is ARRIVAL 5.019071E+003 2
available to tackle the optimisation problem (**) giv- ARRIVAL  5.020196E+003 1
ing an adequate solution.
where the first column denotes the type of event,
3 Aggregates based on IOHMMs the second column gives the event time and the third
column denotes single or batch arrivals/departures by
In this section we show how a template for IOHMM specifying the batch size.
aggregates can be defined. For notation we use the Probably, this information is too detailed and one

ProC/Bparadigm described in [4]. possibility is to aggregate the data for specific time in-
tervals. Again, this is a design decision. We select a
3.1 Generalidea fixed time interval of lengthA¢ and account for the

number of arrivals/departures in these time intervals.
If we want to use IOHMMs for the construction of Thus suppose that, for a given time interval length
an aggregate, we surely have to define an interpretaAt € R™, the following data has been collected from
tion of the (observation) sequenc&sandY. With an appropriate observation of the sub-model:
other words we have to define the meaning of these

e an arrayX = (x1,...,2z7) Wherez; € Ny de-
sequences and how we can extract them from an ob- notes the number of arrivals in thigh At time
servation of the_mpdel._ o interval, and

Furthermore it is desirable that, at least in principle,
our aggregate can be adjusted such that the analysis ® an arrayY” = (yi,...,yr) wherey; € Ny de-
effort is reduced and/or the resultant model gives more  Notes the number of departures in thé At time
accurate results. Surely, we want both: a reduction of interval.

the analysis effort and accurate results. Using some optimisation procedure, we assume that

It is a matter of designing an aggregate based O, IOHMM \ — (4, B,) has been determined,

IOHMMs hgw to hallnd!e these two pO'T]tS' imul which hopefully describes the observed input/output
Concerning analysis we assume that we simulate s .. < .b-model.

]E_the original aﬂd) t?e”aggregated medﬁl ar_md tlha_t ef- The behaviour of an aggregate for this sub-model
iciency and (hopefully) accuracy of the simulation can then be defined as follows:

can be controlled in a simple way (by a parameter The aggregate counts the number of arrivals in a

4 :
At € R™ in the following). time interval of lengthAt. All arriving processes are

Concerning the observation sequences, one has t . :
decide whether internal information on the to be ag—%IOCked in the aggregate, i.e. they are not allowed to

gregated sub-model is included or not. In our approachl€ave. At the end of the time interval one step of the
no information on the internal state of the sub-model IOHMM is emulated giving an output valygfor that

is used and we presume that only the behaviour at theime interval. This output symbal can be interpreted
sub-model’s interface is known to the analystVith  as the number of observed departures. Thus, from the
respect to th&roC/B paradigm (or think of queueing  set of blocked jobs jobs are released and depart from
networks) we thus observe when a process (or cUsyhe 4ggregate. I exceeds the number of blocked jobs

tomer) “arrives” at and when it or she “departs” from . .
the st-modeI. To make life simple Ietpus neglect only the currently present number of jobs is released.

the types and service call-specific parameters of the A MOre precise description of an IOHMM template,
individual processes giving a single class of unparam-employing theProC/B notation, is given in the next
eterised processes. So our observations look like subsection.

3.2 Template IOHMM aggregate
ARRIVAL 5.016166E+003 1

'Only in Sect. 8 we will also consider information on the inter- Fig. 1 shows the general form of an aggregate em-
nal state. ploying IOHMMs and the aggregation idea described




in Sect. 3.1. For simplicity this template aggre- unknown/unobserved input symbols. This simple ex-
gate only offers a single service and serves a singletension gives us the possibility to use the IOHMM ag-
class of processes. Servi€ervicecounts the num-  gregate in different environments.

ber of arrivals and also keeps track of the currently

number of blocked processes. The integer variable

max stoppedprocsensures that at most the number of

blocked processes is released after receiving the an-

swer from the functional unit (FU) modelling the be-

haviour of the IOHMM. A counter ifProC/B, like the

counterBlockProcsin Fig. 1, supports the manipula-

tion of passive resources. A change to a counter is im-

mediately granted if and only if its result accounts for

specified upper and lower bounds (hérand10000);

otherwise, the requesting process gets blocked until

the change becomes possible.

The second process chain in Fig. 1 models the con-
trol process which is started evefyt time units. This
control process first calls the HOHMM which emu-
lates one step of the IOHMM. The resultant output is
interpreted as the number of processes which have to
leave and the corresponding number of processes (at
most the number of blocked processes) is released by
setting the counteBlockProcsappropriately. Setting
of this counter is controlled by several conditions (see
the “IF-ELSE” construct in Fig. 1) ensuring that the
counter value is always 0 in tangible states. Finally
the control process resets the variable for arrivals.

The definition of the FUOHMM (cf. Fig. 2) is
straight-forward. The only interesting case is what
should be outputted if an input symbol is not in the
assumed range of symbols. Note that we have de-
termined this range by an observation of the original
sub-model. Whenever this aggregate is plugged into
a different environment (or even in the original envi-
ronment, if the aggregate does not behave identical to
the original sub-model), it might happen that we “see”
an unknown input symbol, i.e. an unknown number
of arrivals. This design decision has to be based on
the intended use of the aggregate. Here we assume
that we are interested in an analysis of the system’s
steady state behaviour and that the original sub-model
does not create or destroy processes. Following these
assumptions the “flow in” of processes into the aggre-
gate has to equal the “flow out”. Assuming that the
IOHMM aggregate will indirectly follow this flow bal-
ance condition concerning observed input/output sym-
bols, it seems natural to define an identity mapping for

4
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Figure 1. Template FU Aggregatq@ @DeltaT set to concrete valuesR™ for experiments)
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Figure 2. Template FU IOHMM (“@ @"-values set to concrete values for experiments)




4 Experiment scenario and first results

We consider a simple experiment where we “aggre-
gate” a M/M/1 queue.

e
—{»Hm fj—»mu}—Q

M1 H2

Figure 3. Closed Tandem Queueing Network

Fig. 3 depicts the original model. The model is
a closed queueing network comprising two M/M/1
gueues. The network is a product-form queueing net-
work and performance figures can be calculated effi-
ciently, e.g. employing Mean Value Analysis (MVA)
[13].

For our experiments we use the tool HIT [7] and se-
lect the following set of parameterg; = 1.2, uo =
1.3 and a total network population &fgiving the re-
sults shown in Table 1.

| queue| population| throughput| sojourn time]
1 2.73254 1.03779 2.63304
2 2.26746 1.03779 2.18489

Table 1. Results (mean values) of QN of Fig. 3

We choose queugGGfor aggregation and quee
for validation. In particular we do the following:

1. We simulate the QN of Fig. 3 for the given pa-

rameter set and record the arrival and departure

events at queudGG. Recording starts after a
long warm-up phase 05000 model time units
thus trying to make sure that the output infor-
mation belongs to the steady-state phase of th
model.

(for a given time intervalAt and observation
lengthT’) to input values X = (z1,...,zr) and
Y = (y1,...,yr)) for the optimisation proce-

7

of the observation sequences is chosen such that
they account for flow balance, i.€)." | z; =
ST | y; holds. The calculation of an IOHMM is
performed for several number of statéé, The
number of symbols)M, is always determined by

M = maz;_;(maz(x;, yi)).

T

3. Finally, we substitute queudGG by the template
IOHMM aggregate (cf. Sect. 3.2) plugging in the
calculated IOHMM specification. The resultant
model is simulated, giving results for queie

| At| N[ T | population| throughput| sojourn]
EXACT 2.267 1.038| 2.185
0.1| 6| 1004 1.87 0.94 1.99
0.1]| 15| 1004 1.85 0.94 1.97
0.1| 15| 3003 1.79 0.93 1.91
0.1| 30| 277 1.51 0.86 1.76
03| 6| 102 1.31 0.80 1.64
0.3| 6| 1003 1.72 0.93 1.85
0.3] 10 90 1.98 0.94 2.10
*0.3 | 10| 1003 2.21 1.04 2.13
0.3| 15| 102 1.73 0.90 1.93
*0.3 | 15| 1003 2.20 1.03 2.12
*0.3 | 25| 1003 2.20 1.04 2.13
0.8| 6| 1002 1.82 0.93 1.96
0.8| 15| 202 1.76 0.93 1.90
0.8| 15| 1002 1.72 0.91 1.90
Table 2. Results (mean values) for queue 2 in

the model with substituted queue

AGG

Table 2 shows results for different valuestf, N
andT. The columns denote the following\t is the

length of the time interval (cf. with “@@DeltaT” in
Fig. 1), N denotes the number of state€s,denotes

the length of the observation sequence pogulation,
throughput, sojourare the mean values of population,
throughput and sojourn time at queafter simulat-

ing 10000 time units. The given mean values are al-

ways calculated taking all values of the time interval

2. The simulation output is afterwards transformed [0, 10000] into account, which is the standard evalu-
ation option of the tool HIT [7]. All simulation re-

%Since the running time of the Baum-Welch-Algorithm is in
Y PP our case governed by the fact@¥>T") only short observation se-
dure giving an IOHMM specification. The length quences are used in case of a larger number of states.



sults have been obtained for a confidence interval levelof all these positive values for the total simulation run
of 90% and the interval width was at most 5% of the of 10000 model time units.

mean value. The theoretically exact steady-state meanp
values are shown in the first line. Certainly, due to Lit-

At | N T | popu- | through-sojourn| > diff

tle's law [13], the table contains redundant data, but lation | put
we keep all values in order to have a simple check for|  EXACT 2.267 | 1.038 | 2.185
typos or transcription errors. 0.1 6 | 1004 | 2.840 1.052 2.700 3837

Most results depicted in Table 2 show a signifi- | 0-1 | 15 | 1004 | 2.786 | 1.057 | 2.636| 3836
cant difference to the exact values. Only those lines| 0-1| 15| 3003 | 2.552 | 1.020 | 2.503| 2984
marked by an asterisk give satisfactory results, keep{ 0-1| 30| 277]1.878 | 0.911 | 2.060) 1513
ing in mind the very low complexity of our example. | 0.3| 6| 102|1.524 | 0.848 | 1.797| 779

All shown results indicate that the proposed aggre-| 0-3| 6| 1003 | 2.224 | 0.994 | 2.238| 2173
gate nearly always underestimates the theoretical valt 0-3| 10| 90| 3.782 | 1.150 | 3.290| 7868
ues. Having a closer look at our aggregate (cf. Fig. 1), 0-3 | 10| 1003 | 3.783 | 1.183 | 3.195| 7477
we realise that, if only a few processes are blocked, we 0-3 | 15| 102} 2.778 | 1.033 | 2.689| 4172
will discard information from the IOHMM by releas- | 0-3 | 15| 1003| 3.715 | 1.179 | 3.149| 7254
ing only the number of blocked processes. Since we| 0-3| 25| 1003| 3.727 | 1.175 | 3.169| 7231
assume that the IOHMM considers flow balance, this| 0.8 | 6| 1002 | 2.417 | 1.014 | 2.384| 2476
construct will violate the flow balance condition for | 0.8 | 15| 202| 2.264 | 0.994 | 2.278| 2099
the overall aggregate. The current aggregate will then 0-8 | 15| 1002 | 2.269 | 0.994 | 2.282| 2138
probably block more processes than the corresponding
original sub-model, which also explains the low popu-
lation and other values for the non-aggregated q@eue
In the next section we will revise our template aggre-
gate and redo some of the above described experiments
in the now changed setting.

Table 3. Results (mean values) for queue 2
(infeasible answers)

The results show that also this form of aggregate has
its deficits and the performance figures do only con-
o . form to the exact ones in few cases. Now we overes-
5 Considering infeasible answers timate the theoretical values, which might be caused
by service of processes in zero time. Having a closer
The revised form of the aggregate differs from the |ook at columny_ diff we notice that this difference
former one in the definition of the control process. might be caused by the different views both functional
Irrespective of the number of currently blocked pro- units have on the state of the overall aggregate. The
cesses, the countdlockProcsis always set to the  FU modelling thd OHMM has some internal state (cf.
corresponding output value of the IOHMM. Thus the currentstatein Fig. 2) and calculates a corresponding
counter keeps track of IOHMM answers of former response. Since this response might not conform to
time intervals which could not be realised. The value the number of blocked processes, i.e. to the internal
of the counter might now exceéd Thus a call to ser-  state of the FUAggregate(cf. Fig. 1), we adjust the
vice Servicemight result in no blocking of the calling  answer of the IOHMM somehow. But this adjustment
process, so that the process leaves the aggregate ingtoes not influence the internal stateifentstate of
mediately. FU IOHMM. So it might happen that the assumed state
We use the IOHMM definitions obtained from the encoded in the IOHMM and the “real” state of the ag-
experiments described in Sect. 4 for new simulation gregate differ more and more as time goes by.
experiments. The results are shown in Table 3. The
last column § diff) indicates infeasible answers of 6 Accepting only feasible answers
the IOHMM. Whenever the IOHMM output exceeds
the number of blocked processes, we stored the differ- For a next series of experiments we decide to re-
ence. The result shown in the last column is the sumdesign the FUOHMM in such a way that the real state

8



of the aggregate and the IOHMM’s internal knowledge 7 Virtual arrivals

on the state do not diverge. The simplest such way is

to accept only that output of the IOHMM which con-  For a next series of experiments we redesign the FU
forms to the number of blocked processes. |.e. we doAggregateagain and keep the old (i.e. the first) version
only accept those answers of the IOHMM which do of the definition of FUOHMM (see Fig. 2). As men-
not exceed the number of currently blocked processestioned, this might give us some answers which exceed

Technically speaking, we emulate one step of thethe current number of blocked processes. But now,
ceeds the number of currently blocked processes. Irfan notbe realised due to a low population of blocked
that case we reset theirrent statevariable to its pre- ~ Processes. We also do not store these additional de-
vious value and redo the emulation step until the an-Partures in the countelockProcspossibly resulting

swer is less than or equal to the number of blockedin Zero time delays. Instead, we now count those ad-
processes. ditional departures as “virtual arrivals” for the nekxt

time interval by setting the variab&rivals before ter-
mination of proces€ontrolProc(cf. Fig. 1). In the
next At time intervals the IOHMM is asked with a
larger number of arrivals (actual and virtual) and thus
should tend to output a larger number of departures.
At N[ T [ population] throughput| sojourn] Since we assume that thg IOHMM considers flow bal-
ance, the formerly infeasible departures would hope-

The results of some experiments with this revised
definition of FU IOHMM are shown in Table 4. Still
the results are not satisfactory.

EXACT 2.267 1.038| 2.185 o
011151 3003 1774 0930 1.906 fully have been performed after sevemzi_nme inter-
01!30! 277 1488 0862 1.728 vals, so that the overall aggreglate satisfies flow bal-
03 61 102 1302 0816 1595 anceon the Io_ng run. More prec_lsely, letdenote the
03! 61003 1676 0924| 1814 number of grrlvals in the-th A¢ .tlme interval,d; the
03l 10 90 1957 0946 2070 corresponding qumber qf (regllsed) dgparf[uresmnd
03! 10| 1003 2 156 1029 2096 th_e number of virtual arrivals in thith time mteryal.
03l 15! 102 1663 0899| 1.849 Since the IQHMM should consider flqw balancg in the
03! 15 | 1003 5147 1027 2091 pbservedF time mterv_als anq assuming- = 0 (i.e.
03! 25| 1003 2130 1028 2072/ M the end all formerly infeasible departures have been
08| 61002 1.721 0.018| 1.875| 'calised) wehave
0.8] 15| 202 1.697 0.923| 1.839 T T
0.8| 15| 1002 1.649 0.905| 1.822 Y witvici =Y di+v (3)
=1 =1
Table 4. Results (mean values) for queue 2
(accepting only feasible answers) with vo := 0. Eq. (3) implies

In tendency they are similar to the results of our first

series of experiments (see Table 2), and even differgpoying that the overall aggregate also satisfies flow
more from the theoretical exact values. balance in thd” time intervals.

As we see, disregarding the IOHMM’s answers The results of some experiments with this re-
does not lead to satisfactory results. The chosendesigned FUAggregateare shown in Table 5. Unfor-
strategy implicitly changes the IOHMM giving an tunately, again the results are not satisfactory.
IOHMM, which presumably does not conform to the In summary, the resultant mean values of almost all
observed sequencés Y having been used for its def- experiment configurations are very close. Note that the
inition. reason for all the different aggregate definitions is to



At | N T | popu- | through-sojourn| > diff | never be given.

lation | put Therefore this design of using IOHMMs for build-

EXACT 2267 | 1.038 2.185 ing aggregates reduces our problems on interpreting

0.11 151 3003] 1.791 | 0.934 1.917 870| the IOHMM's answers. The only decision left is what

01130 277! 1542 | 0.868 1.777 512 | todowhenthe IOHMM is asked with a symbol not oc-

03] 6| 1021 1.309 | 0.820 1.597 293 | curring in the sequences andY. As before, we use

03| 6 1003| 1.721 | 0.930 1.849 651 | an identity mapping for those cases. In order to reduce

03] 10 90| 2.010 | 0.956 2103| 1946/ also the occurrences of those situations, we collect the

03] 10| 1003| 2.214 | 1.042 2.125| 1548| sequences( andY now from a simulation of queue

031 15! 1021] 1.727 | 0.898 1.9211 1060| AGGin an open environment using a Poisson arrival

0.3] 15| 1003| 2.196 | 1.035 2.121| 1361| Stream with rate\ = 1.0. Again, the sequence¥

03| 25| 1003| 2.204 | 1.035 2129| 1387| andY comprise only situations observed aft#00

0.8 6110021 1.838 | 0.934 1.968 gg3| time units with the additional restriction that observa-

0.8 15| 202! 1.848 | 0.938 1.970 791 | tions are only allowed to start after queA&G has

0.81 151 1002| 1.782 | 0.922 1.933 750 | been emptied. The experiments are performed for the

closed QN of Fig. 3.

Table 5. Results (mean values) for queue 2 Table 6 shows that the new approach leads to sat-

(virtual arrivals) isfactory results for some parameters. Especially the
results forAt € [0.2,0.3] for large observation se-
quencesT > 700) give a good approximation for the

cope with infeasible answers of the IOHMM. The ex- performgnce measures of quelie _
periments of Sects. 4-7 indicate that the different views 1N particular, the results now show a tendency which
on the state of the aggregate might cause inaccurate ré$ expected and desired! Accuracy of the results seems

sults. We therefore suspect that we need a mechanisri increase with decreasinyt. Also the selection of
which ensures a single view on the “state” of the ag- the observation sequences influence the accuracy as

gregate. expected. A larger value far seems to give more ac-
curate results, probably because the IOHMM encodes

8 Adding internal information more behavioural characteristics of the original sub-
model.

In order to eliminate the different (implicitly) en-
coded information on the current number of blocked 9 Conclusions
processes, we decide to give the IOHMM more infor-
mation. The IOHMM now does not only get the infor- This paper describes first results of various exper-
mation on the number of arrivals during a time interval iments where Input-Output Hidden Markov Models
At, but also gets the information on the current state have been used to build aggregates for performance
of the aggregate, which is (in our case) the numbermodels. It provides a snapshot of activities for build-
of blocked processes. This implies that also the se-ing aggregates for logistics networks.
guencesX andY’, giving the base of the IOHMM de- The experiments show that infeasible answers of the
termination, include information on the internal state. IOHMM might lead to bad aggregation results and that
For our experiments we use input symbgiss), en-  this problem can not be solved easily. In our approach
coded as a single integer, wheredenotes the num- the problem is finally solved by integrating informa-
ber of arrivals in the last observedt interval ands tion on the internal state of the sub-model into the
the number of currently present customers/processe$OHMM.
at queueAGG. With that all answers of the IOHMM The positive results of Sect. 8 give some hope to
are feasible and we do not have to take care of situ-determine accurate aggregates also in other environ-
ations where the answer of the IOHMM exceeds the ments and for more complex sub-models if employing
number of blocked processes, since such answers wilan appropriate macro state definition. As indicated,

10



| At | N| T | population| throughput| sojourn]
EXACT 3.6322 1.2429| 2.9224
0.1| 10| 1504 3.388 1.247 2.717
0.2| 10| 752 3.473 1.281 2.709
0.2| 10| 1514 3.694 1.273 2.902
03| 6| 755 3.520 1.268| 2.776
0.3| 6| 1503 3.533 1.256| 2.813
0.3| 10| 502 3.311 1.266| 2.616
0.3| 10| 755 3.543 1.283| 2.762
0.3 15| 502 3.317 1.247 2.661
0.3 20| 502 3.247 1.231 2.638
0.8 10| 181 2.954 1.228| 2.405
0.8|15| 181 2.935 1.210 2.426
0.8 20| 181 2.940 1.201 2.448
2.0 10 76 2.534 1.117 2.268
3.0 10 51 2.029 0.983| 2.064
3.0 15 51 2.372 1.043| 2.275
3.0] 20 51 2.132 1.011 2.107

Table 6. Results (mean values) for queue 2
now with w1 = 2.0, uo = 1.3 (adding internal
information)

the expected effects dkt andT" are now identifiable.
Naturally, a proper choice of these parameters needs

more investigation.

A further improvement might be obtained by sup-
porting the optimisation process.

The optimisation
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