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Abstract. This paper presents a brute force approach to fit finite mix-
tures of distributions considering the empirical probability density and
cumulative distribution functions as well as the empirical moments. The
fitting problem is solved using a non-negative least squares method de-
termining a mixture from a larger set of distributions.

The approach is experimentally validated for finite mixtures of Erlang
distributions. The results show that a feasible number of component
distributions, which accurately fit to the empirical data, is obtained
within a short CPU time.

Keywords: Mixture Distributions · Hyper-Erlang Distributions · Non-
Negative Least Squares · Farey Sequences

1 Introduction

Mixture distributions are a well explored model type for the description of statisti-
cally varying events. In this paper, we focus on the fitting of continuous univariate
finite mixture distributions and assume that all probability density functions and
moments do exist. Mixture distributions are usually defined by a set of G,G ∈ N,
component distributions specified by their probability density functions (PDFs)
fi(x|θi) with θi ∈ Rmi ,mi ∈ N, denoting the component-specific parameters and

mixing probabilities πi ∈ [0, 1], i = 1, . . . , G satisfying
∑G

i=1 πi = 1 [14]. The PDF
of the mixture distribution is defined by

f(x|(π,θ)) =

G∑
i=1

πifi(x|θi) (1)

with θ = (θ1, . . . ,θG) the vector containing all parameters and π = (π1, . . . , πG).
Additionally, the cumulative distribution function (CDF) F and the moments



E[Xj ] are given by a convex combination of the components’ counterparts:

F (x|(π,θ)) =

G∑
i=1

πiFi(x|θi) (2)

E[Xj |(π,θ)] =

G∑
i=1

πiE[Xj
i |θi], j ∈ N (3)

where X and Xi denote the random variables with CDFs F and Fi, respectively.
For performance modeling phase-type distributions (PHDs, [24,25]) are popu-

lar, since they allow analytical analysis approaches. Different from Eq. (1) general
PHDs are usually specified in a more compact notation, since component parame-
ters might be dependent. Common subclasses of PHDs are mixtures of exponential
(hyper-exponential) and mixtures of Erlang (hyper-Erlang) distributions, espe-
cially since hyper-Erlang distributions can approximate any PDF of a nonnegative
random variable [12]. In practice, applicability of mixture distributions depends on
efficient fitting procedures which construct a mixture distribution approximating
an empirical distribution given by trace data T = (t1, . . . , tn), ti ∈ R. There exists
a vast number of literature on fitting mixture distributions, see, e.g., [9, 15,33]
for an overview. In the following only a sketch is presented emphasizing those
from a Markovian setting being relevant here.

Trace based fitting methods use T and try to determine (π,θ) which max-
imizes the likelihood or equivalently the log-likelihood

∑n
i=1 log (f(ti|(π,θ))).

Corresponding fitting procedures are commonly based on expectation maximiza-
tion (EM) algorithms [2,27], some of them on the basis of sub-classes of PHDs, as,
e.g., hyper-exponential [22] or hyper-Erlang distributions [32]. EM based methods
often become inefficient for large traces, but there are attempts to overcome
this problem, e.g., by aggregating the trace [28]. A different approach applicable
to large traces is presented in [29, 30], where the user identifies peaks of the
empirical PDF being the basis for a cluster analysis of the trace. The cluster
sizes determine parameter π and component Erlang distributions are fitted on
the basis of the clustered data. Since being based on Eq. (1) trace based fitting
methods usually fit the empirical PDF fairly precise, but have difficulties to
approximate the empirical moments.

Moment matching methods are based on Eq. (3) and the empirical moments.
Some approaches consider specific structures of PHDs to match a finite set of
moments trying to cope with possible non-unique representations of the same
distribution, but suffer from the problem that only a restricted set of values
are feasible moments, which makes fitting difficult [5, 19]. Other approaches use
more flexible structures and some of them consider hyper-Erlang distributions (or
variants), since they can match any set of moments of a distribution [18,21]. [8]
considers acyclic PHDs with n states (being characterized by (2n− 1) feasible

moments [31]) and iteratively specifies sequences π(i) and θ(i), where π(i+1) is
determined solving a constrained non-negative least squares (NNLS) problem for

given θ(i). θ(i+1) is computed by standard polynomial optimization techniques
for given π(i+1) to obtain the parameter setting for the next iteration. Hardly



surprising, being based on Eq. (3) moment matching methods have difficulties to
approximate the empirical PDF/CDF.

The approach presented in this paper heads towards fitting of mixture distri-
butions approximating the empirical PDF/CDF as well as the empirical moments
and profits from the existence of efficient algorithms for solving NNLS problems.
The main idea is partly along the lines of [8], for given θ all Eqs. (1)-(3) can
be used to formulate the fitting problem as a constrained NNLS problem. The
main problem is to find an appropriate setting for θ. In this paper, a method is
proposed to construct a possibly large parameter vector θ̃ such that the solution
π̃ of the NNLS problem gives a distribution f(x|(π̃, θ̃)) approximating the em-
pirical PDF/CDF and moments. For construction, values from Farey sequences
are used, which are transformed to values possibly conforming with the empirical
trace data. Experiment results for mixtures of Erlang distributions show that
most of the entries of π̃ are almost vanishing and can be neglected giving a
mixture distribution with a moderate number of components.

The next section presents the main idea behind the brute force approach and
in Sect. 3 its adaption to the fitting of hyper-Erlang distributions is described.
Sect. 4 shows results from experiments followed by an extension of the approach
presented in Sect. 5.

2 A General Brute Force Approach

In the following, we assume that (empirical) PDF fe, CDF Fe and (finite)
moments mj

e of order j = 1, . . . ,K,K ∈ N, are given or can be derived from a
given trace. For notational convenience all component distributions are assumed
to belong to the same known family (thus θi ∈ Rm,∀i) although the approach
can be easily extended to heterogeneous mixtures. The main idea is to define an
appropriate set S̃ (of size G̃ ∈ N) of component distributions with parameter
vector θ̃ = (θ̃1, . . . , θ̃G̃) and to determine mixing probabilities π̃ by solving
an appropriate NNLS problem such that the resultant mixture distribution
approximates fe, Fe and mj

e.

Obviously, constructing such a set needs to be done systematically in order to
promise better approximation results with increasing set size G̃. First a sequence
of basic value sets F1 ⊂ F2 ⊂ F3 ⊂ . . . with elements from [0, 1] is defined
which satisfy a denseness property within the unit interval. Then the elements
of some set Fi are transformed by one or more transformation functions TF(·,j)
defined for the j-th component parameter. E.g., in Sect. 3, components with
Erlang distributions are considered so that here two component parameters µ, k
exist implying j ∈ {1, 2}. The transformed values are then taken to specify the
component distributions of set S̃ by using all combinations of the component
parameter values. In the following this construction process is described in more
detail.



2.1 Farey Sequences as a Basic Value Set

As a basic value set Farey sequences, also known as Farey series [16] are utilized.
A Farey series Fn is the increasing sequence of irreducible fractions in [0, 1] with
denominators not exceeding n. In the following, we will define Farey sequences
as sets, since the order is irrelevant for our approach.

Definition 1 (Farey sequence (cf. [16])). The Farey sequence Fn, n ∈ N, is
defined as

Fn =

{
p

q

∣∣∣∣ p ∈ N0, q ∈ N : 0 ≤ p ≤ q ≤ n with gcd(p, q) = 1

}
where gcd(p, q) is the greatest common divisor of p and q.

The elements of a Farey sequence are called Farey numbers and the first Farey
sequences are

F1 =

{
0

1
,

1

1

}
,F2 =

{
0

1
,

1

2
,

1

1

}
,F3 =

{
0

1
,

1

3
,

1

2
,

2

3
,

1

1

}
,F4 =

{
0

1
,

1

4
,

1

3
,

1

2
,

2

3
,

3

4
,

1

1

}
illustrating the following properties of Farey sequences.

Theorem 1 ((cf. [16])). Let p
q ,

p′

q′ ∈ Fn be two consecutive elements of Fn, i.e.

∀x ∈ R : p
q < x < p′

q′ ⇒ x 6∈ Fn then

(i) qp′ − pq′ = 1 and q + q′ > n

(ii)
p′

q′
− p

q
= 1

qq′

(iii) Fn ⊂ Fn+1, ∀n ∈ N

(iv) Approximate cardinality of Farey sequences: |Fn| ≈
3n2

π2

where π ≈ 3.14 is here the transcendental number.

Farey sequences have some favorable properties which support the design of
a fitting procedure. Properties (i)+(ii) show that all elements of [0, 1] can be
approximated arbitrarily close selecting an appropriate n ∈ N [16]. Thus, theo-
retically Farey numbers can be used to approximate all elements of the unknown
parameter vector θ by means of appropriate transformations. Property (iii) is of
decisive importance. It is the basis to ensure that an increasing effort, by using
more Farey numbers (′′n→ n+ 1′′) will not deteriorate fitting results. Finally,
property (iv) gives hope that this increase might still lead to problem instances
of manageable size.



2.2 Transformation of Basic Value Set

Since Farey numbers are inside the interval [0, 1] they can not be used directly
for an approximation of a single component parameter θ ∈ R and have to be
transformed accordingly. Generally, one can distinguish between the following
two possibilities. A finite interval [a, b], a, b ∈ R, a < b, might be assumed to
contain parameter values of one or several components or due to the lack of
information only an infinite interval can be supposed. In the first case, linear
function a+ (b−a)x maps Farey numbers of [0, 1] to [a, b]. For an infinite interval
[α,∞], α ∈ R, α ≥ 0 we use a stereographic projection of the two-dimensional
unit sphere mapping a point (x1, x2), x21 + x22 = 1, to (x1, x1/(1− x2)) giving a
mapping of the interval [0, 1] to [α,∞] by

y =

(
x

1−
√

1− x2
− 1 + α

)
, if x > 0 and y = α, if x = 0 (4)

If useful, the values can be further transformed (stretched or compressed)
by an exponential transformation z = exp(βy) − exp(βα) + α with parameter
β ∈ R, β > 0 to ensure that also for small n the transformed values of basic value
set Fn result in component definitions, such that Eqs. (1)-(3) might be fulfillable.
Note that all equations specify convex combinations so that, e.g. considering
Eq. (1), for all allowed x ∈ R, components i, j have to exist in the mixture
with f(x|(π,θ)) ≤ fi(x|θi) and f(x|(π,θ)) ≥ fj(x|θj). The same holds for
Eqs. (2)-(3).

Similar transformations can be specified for co-domains [−∞,−α] or [−∞,∞]
with −y or by applying linear function (2x − 1) and Eq. (4) in succession. If
θ ∈ N, rounded values can be used. Generally, a transformation function TF(I,j)

for interval I and the j-th parameter can be defined arbitrarily, but has to ensure
that for all possible allowed values θ of the assumed finite or infinite interval I
one has ∀ε > 0 : ∃n ∈ N, x ∈ Fn : |TF (I,j)(x) − θ| < ε, so that ”denseness” of
Farey sequences carries over to the range of transformed values.

For the definition of appropriate finite intervals one can exploit characteristics
of the trace. E.g., the minimum and maximum value of a trace might give a very
rough interval for an estimation of the components expected values. Narrower
intervals might be obtained from empirical quantile values, which are, e.g., used
in Sects. 3 and 4.

Parameter values of several mixture components θ̃i can now be obtained
vector componentwise from Farey sequences possibly of different sizes, the as-
sumed finite or infinite intervals and the corresponding transformation functions.
For simplicity, we assume that a single Farey sequence Fnj , nj ∈ N, is used
for the j-th component parameter. Let Ii,j , i = 1, . . . , kj , j = 1, . . . ,m denote
the i-th interval for the j-th parameter, where kj ∈ N denotes the number of
intervals defined for the j-th parameter. Note that all component distributions
are assumed to belong to the same family. Then, a set of transformed values
for the j-th parameter is given by Vj = {TF(Ii,j ,j)(x)|i = 1, . . . , kj , x ∈ Fnj

} and

set S̃ is composed from component definitions where all combinations are taken



into account VS̃ = {(θ̃1, . . . , θ̃m)|θ̃j ∈ Vj , j = 1, . . . ,m}. Since the order of mix-
ture components is irrelevant for the approach presented here, an arbitrary
vectorization of all elements of VS̃ can be used to define θ̃.

2.3 Non-Negative Least Squares Problem Definition

With given components a NNLS problem can be specified as follows. Assume
that empirical PDF fe, CDF Fe and a finite number of moments mj

e, j ∈ N,
are given or can be derived from a given trace. With c, p ∈ N, let PPDF =
{x1, . . . , xp}, xi ∈ R, be a finite set such that for all xi ∈ PPDF fe(xi), f̃(xi|·)§
are defined and let PCDF = {x1, . . . , xc}, xi ∈ R, be a finite set such that for all
xi ∈ PCDF Fe(xi), F̃ (xi|·) are defined. Considering a finite set of K moments
and Eqs. (1)–(2) at x ∈ PPDF and x ∈ PCDF respectively, results in a finite set
of equations, such that the fitting problem can be formulated as a constrained
NNLS problem for which very efficient algorithms exist being able to solve large
problem instances [23]. Since numerical values, especially of the moments, might
differ orders of magnitude, it is common to introduce appropriate weights, here
γPDF , γCDF , γj , j = 1, . . . ,K, with γ∗ ∈ R. Defining with i = 1, . . . , G̃

A = γPDF

(
f̃i(xj |θi)

)
, a = γPDF (fe(xj)) , xj ∈ PPDF

B = γCDF

(
F̃i(xj |θi)

)
, b = γCDF (Fe(xj)) , xj ∈ PCDF

C =
(
γjE[X̃j

i |θi]
)
, c =

(
γjm

j
e

)
, j = 1, . . . ,K.

D = (A|B|C) , d = (a|b|c) (5)

the NNLS problem is minπ ‖d− πD‖22 subject to
∑G̃

i=1 πi = 1, πi ≥ 0.

The weights γ∗ can be used to control the impact of PDF, CDF and moments
within the fitting process. Defining e.g., as in Sect. 4, weights γ∗ such that∑

j aj =
∑

j bj =
∑

j cj results in a similar contribution of the PDF, CDF and
moments within the NNLS problem definition.

3 Fitting Finite Mixtures of Erlang Distributions

In the following, the approach of Sect. 2 is applied to mixtures of Erlang distri-
butions with PDF, CDF and moments of an Erlang distribution given by

f(x|(µ, k)) =

(
k

µ

)k
xk−1

(k − 1)!
exp

(
−k
µ
x

)
F (x|(µ, k)) = 1− exp

(
−k
µ
x

) k−1∑
r=0

(kx)r

µrr!

E[Xj |(µ, k)] =
(k + j − 1)!

(k − 1)!

(µ
k

)j
§g(x|·) denotes g(x|(π,θ)) for arbitrary parameters (π,θ).



where exp denotes the exponential function, µ ∈ R+ is the expected value and
k ≥ 1, k ∈ N, denotes the number of phases. Common definitions of an Erlang
distribution use a parameter λ = k/µ, here the expected value is used to make
the fitting approach directly applicable.

Obviously, the first parameter is a candidate for the definition of transforma-
tion functions based on finite intervals, since it seems reasonable to assume, e.g.,
that the expected values of all component distributions might be bounded by the
minimum and maximum values Tmin, Tmax of the trace, although this is of course
theoretically not guaranteed. As mentioned, empirical quantiles qe(r) of order r
can be used here for the definition of a set of contiguous intervals, assuming that
the expected values of some components might be covered by an interval. For all
later experiments 10 quantile values qe(i/11), i = 1, . . . , 10 and Tmin, Tmax have
been used to define a set of intervals. If the minimum/maximum of the quantile
values and the minimum/maximum of the trace differ orders of magnitude, i.e.,
if (qe(1/11)/Tmin) > 10 or (Tmax/qe(10/11)) > 10 larger finite intervals might
occur. Additional quantile values of orders 1/10z and (10z − 1)/10z, z ∈ N, give
narrower intervals. In experiments these additional quantile values have been
used, increasing z ∈ N until the mentioned quantities do not differ orders of
magnitude. Large differences might occur if the trace contains outliers or if the
empirical skewness is significant.

The second parameter of the Erlang distributions is a candidate for the
definition of an infinite interval and corresponding transformation function,
since it seems difficult to set up one or several reasonable finite intervals. Some
information can be obtained to support fitting. For k →∞ an Erlang distribution
tends toward a normal distribution with expected value µ and variance σ2 = µ2/k.
Since the maximum of the PDF of a normal distribution is at x = µ with
f(µ) = 1/

√
2πσ2, (π ≈ 3.14), the number of phases of one of the component

distributions has to be at least k∗ = 2π ·maxx{(xfe(x))2}. This fact can be used
to define an appropriate transformation onto the infinite interval [1,∞] followed
by rounding the resultant values. For experiments β > 0 has been determined
iteratively, such that the maximum of the set of transformed values of a fixed
set size (|V2| = 30 in all experiments) exceeds k∗ significantly (100 · k∗ in all
experiments) and β has been kept fixed for all experiments with the same trace, so
that property (iii) of Th. 1 in essence also holds for the transformed values. Since
rounded values are used, a strict ⊂ relation might not always hold and even large
Farey sequences might result in relatively small value sets after transformation
and rounding.

4 Experimental Results

The brute force approach has been implemented in MATLAB (release R2017b).
For experiments several synthetically generated traces and two real traces have
been used and reported CPU times are from runs on a computer using a single
core of an E5-2699 processor with 64GB RAM. Results are compared with those
from the tools G-FIT [32] and MomFit [8]. G-FIT uses an EM algorithm to find



the maximum likelihood estimates and MomFit is designed to fit an acyclic PHD
to the empirical moments. G-FIT’s parameters have been set to a maximum of
20 states and to aggregate the trace [28]. The brute force approach of Sects. 2
and 3 is named shotgun in corresponding figures.

The Freedman–Diaconis rule [13] has been used for the representation of
the empirical PDF defining the width of the histogram bins by 2(Q3 −Q1)/ 3

√
n

with Qi denoting the i-th quartile and n being the number of trace elements.
The set PPDF is formed by the midpoints of the histogram bins. The size of
set PCDF is a user input giving equidistant points xj ∈ [Tmin, Tmax]. In all
experiments |PCDF | has been set such that the resultant NNLS problems are not
underdetermined. K = 10 moments have been used for fitting and weights γ∗
have been set such that

∑
xj∈PPDF

γPDF fe(xj) =
∑

xj∈PCDF
γCDFFe(xj) = 1.

Likewise, the weights for the moments have been defined by γj = 2(K+1−j)
K(K+1)mj

e
,

j = 1, . . . ,K, emphasizing lower order moments, however giving
∑K

j=1 γjm
j
e = 1

as well. Irrelevant components (πi ≤ 10−12) have been deleted from the results.
The ProFiDo toolset [3] has been used for plots, generating traces from the fitted
distributions, if necessary.

First, fitting of a triangular distribution is discussed. Fig. 1 shows several
results for different sets of components with set size G̃ giving the number of
variables for the NNLS problem (#Vars). Fig. 1(b) depicts the first moments
of the fitted distribution relative to the empirical moments of the trace. Note
that a few more higher order moments are shown than having been utilized for
fitting. The table of Fig. 1(c) presents corresponding numerical values, amongst
the log-likelihood, the relative error of the 10-th moment is given, since in all
experiments this moment shows the largest relative error compared to lower
order moments. Column #Comp gives the number of resultant components and
column #States shows the sum of the phases of all Erlang branches. The last
part presents concrete fitting results for G̃ = 132 and 240. Not surprisingly, tiny
NNLS problem instances give bad results, but a bit unexpectedly, even relatively
small instances lead to satisfactory fitting results. The results show that PDF,
CDF and the requested moments are fitted accurately, but at the price of Erlang
distributions with a large number of phases. An additional interesting effect,
which is also exhibited in other experiments, is the significantly reduced number
of resultant components compared to the initial size of set S̃.

Another synthetically generated trace is from a mixture of three Beta distribu-
tions (”Beta3”) with PDF 1

5fB(x|(1, 30))+ 3
5fB(x|(10, 10)+ 1

5fB(x|(25, 1)) where
fB(x|(α, β)) is the PDF of a Beta distribution with shape parameters α, β ∈ R+.
Figs. 2(a) and 2(b) show corresponding fitting results. Illustration of the CDF is
omitted here and in the following experiment results, since corresponding curves
are quite close. Fig. 2(a) shows that the right part of the distribution is not
fitted exactly. Experiments with larger sets of components showed slightly better
fittings. Since the PDFs of PHDs and thus hyper-Erlang distributions exhibit an
exponential decay [26] exact fits cannot be expected in practice.

In addition, three traces have been selected which were also used for fitting with
G-FIT [32]: traces from a uniform distribution on interval [0.5, 1.5] (”Uniform”)
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Fig. 1: Fitting results for a trace from a triangular distribution

and traces from a Shifted Exponential and a Matrix Exponential Distribution [6].
Corresponding results are shown in Fig. 2 and numerical results are presented in
Tab. 1, which extends the table of Fig. 1(c) by a few columns: The first two of
them denote the name as well as the length of the trace and the tool used, the
last column gives the CPU time in seconds needed for fitting. Since the fitting
time of MomFit was more than 130s in all cases, we give figures depicting the first
moments of the fitted distributions relative to the empirical moments of the trace
and present numerical results for G-FIT only. For the fitting of all three traces
accurate fitting results have been received in short CPU time. Tab. 1 shows that
CPU times increase with larger traces. Most of the fitting time is used for the
determination of the empirical PDF and CDF and thus for the specification of
the NNLS problem. Solving the NNLS problem usually takes only a few seconds
down to less than a second.

Also a larger trace from a heavy tailed Pareto-II distribution (cf. [17, 32])
has been selected for fitting. [32] used a smaller trace with 104 elements. Fig. 3
shows results for different sets of components initially used for fitting. Since the
first 10 quantile values significantly differ from Tmin, Tmax fitting of this trace



 0

 1

 2

 3

 4

 5

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1  1.1

d
e
n
si

ty

t

probability density function

 shotgun 
 momfit 

 gfit 
beta3a

(a) PDF Beta3

 0

 1

 2

 3

 4

 5

 6

 7

 1  2  3  4  5  6  7  8  9  10

moment

Moments 1-10

 shotgun 
 momfit 

 gfit 

(b) Moments Beta3

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0.5  0.6  0.7  0.8  0.9  1  1.1  1.2  1.3  1.4  1.5  1.6

d
e
n
si

ty

t

probability density function

 shotgun 
 momfit 

 gfit 
uniform10000-0.5-1.5

(c) PDF Uniform

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1  2  3  4  5  6  7  8  9  10

moment

Moments 1-10

 shotgun 
 momfit 

 gfit 

(d) Moments Uniform

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5  5.5

d
e
n
si

ty

t

probability density function

 shotgun 
 momfit 

 gfit 
shifted-exp10000

(e) PDF Shifted Exponential

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1  2  3  4  5  6  7  8  9  10

moment

Moments 1-10

 shotgun 
 momfit 

 gfit 

(f) Moments Shifted Exponential

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5

d
e
n
si

ty

t

probability density function

 shotgun 
 momfit 

 gfit 
matrix-exp10000
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Fig. 2: Synthetic Traces (Part I)

greatly benefits from additional quantile values used for the definition of finite



Table 1: Fitting results

Trace Tool #Vars log- Rel. error of #Comp #States Fitting

(Length) likelihood 10th moment time (s)

Beta3 shotgun 400 1.9807× 106 5.8253× 10−2 14 6392 15.32

(5.0× 106) G-FIT 6.1510× 105 3 20 8.34

Uniform shotgun 240 −5.2868× 102 3.0065× 10−2 14 10 030 0.70

(1.0× 104) G-FIT −1.8276× 103 9 20 4.24

Shifted Exp. shotgun 352 −1.3047× 104 7.7144× 10−3 21 1825 0.79

(1.0× 104) G-FIT −1.3179× 104 5 20 10.44

Matrix Exp. shotgun 333 −7.7801× 103 4.1290× 10−2 28 3153 0.75

(1.0× 104) G-FIT −8.7481× 103 4 20 7.34

Pareto shotgun 428 −2.0084× 107 4.7756× 10−1 24 691 19.50

(1.0× 107) shotgun 667 −1.9966× 107 1.1212× 10−1 28 1648 22.48

shotgun 864 −1.9872× 107 3.9117× 10−2 28 2045 27.95

G-FIT −1.9831× 107 6 20 11.12

LBL3 shotgun 275 −1.5995× 106 3.5725× 10−2 15 283 3.35

(≈1.79× 106) G-FIT −1.634× 106 5 20 17.14

pAug shotgun 314 −7.9409× 105 4.2109× 10−2 27 12 845 2.53

(1.0× 106) G-FIT −8.0743× 105 4 20 15.68

intervals. Tab. 1 shows that G-FIT obtained a higher log-likelihood value, but
did not match the moments accurately, see Fig. 3. Fig. 3(d) shows results for
the first 15 moments. Note that only 10 moments have been used for fitting.
Plots have been generated from traces of the fitted mixture distributions and
are here not completely conforming with the numerical results of Tab. 1. The
”Pareto” trace is from a heavy tailed distribution (e.g. kurtosis is approx. 106)
and fitting has given one component with an expected value of Tmax and a larger
number of phases (55 for the case of #Vars=428 and 512 for #Vars=864), but
with mixing probability less than 10−7, so that large traces might be needed to
be in accordance with the numerical values of Tab. 1.

As real traces two well-known traces from the Internet Traffic Archive [20]
have been selected, which also have been used in several other publications:
the LBL-TCP-3 trace (”LBL3”) and the BC-pAug89 trace (”pAug”), with all
values normalized to a mean value of one. Corresponding results are depicted
in Fig. 4 and also exhibit an accurate fitting. The large number of states (and
components) for trace pAug (see Tab. 1) reveal the immanent danger of the brute
force approach to overfit the model.
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Fig. 3: Synthetic Traces (Part II)

5 Extending the Approach

The presented approach fits mixture distributions to data taking account of the
PDF/CDF and moments. Also other criteria can be considered as long as they
can be encoded into the NNLS problem definition. Typical criteria might be
those which help to reduce the risk of overfitting, as, e.g., the Akaike information
criterion [1]. In the following, the model size is considered.

For mixtures of Erlang distributions the number of states might be an ap-
propriate indicator for the overall size of the mixture distribution. Consequently,
penalizing those Erlang distributions with several phases might reduce the model
size. Extending Eqs. (5) by an additional penalty factor pf ∈ IR+

0 and column

vector p =
(
pf

(
1 + ki/

(∑G̃
j=1 kj

)))
gives D = (A|B|C|p),d = (a|b|c|pf ).

Like the weights γ∗, factor pf controls the impact state penalization has
within the fitting process. E.g., setting pf = 1 gives the same weight to this
criterion as given to other parts of vector d.

For additional experiments a trace from a hyper-Erlang distribution with 2
components and 3 states has been selected using an initial set of 215 Erlang
distributions. Again 10 moments have been used for fitting and other parameters
have been set as described in Sect. 4. Fitting with no penalty factor results in
a mixture of 20 components and 222 states. G-FIT determines a mixture with
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Fig. 4: Real Traces

15 components and 20 states, whereas MomFit fits an acyclic PHD of order
5. Introducing a penalty factor pf = 10 reduces the number of components as
well as the number of states without worsening the fitting accuracy significantly
(see. Fig. 5†) giving a hyper-Erlang distribution with 4 components and 8 states.
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Fig. 5: Hyper-Erlang distribution
(
π = (1/π2, 1− 1/π2),θ = ((1/e, 1), (2/π, 2))

)
fitting result: (π′ = (1.19e-01, 7.12e-01, 9.9e-02, 7.0e-02) ,
θ′ = ((3.51e-01, 1), (6.09e-01, 2), (7.01e-01, 2), (8.80e-01, 3)))

†π, e the transcendental numbers
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Fig. 6: Fitting of uniform distribution with penalty factor pf = 10. Fitting
result: (π′ = (1.47e-01, 4.88e-04, 3.10e-01, 2.47e-01, 2.32e-01, 1.26e-02, 5.14e-02) ,
θ′ = ((6.09e-01, 33), (6.09e-01, 45), (8.24e-01, 17), (1.05, 33), (1.28, 86), (1.39, 164), (1.39, 312)))

Fig. 6 shows the results from fitting the trace of the uniform distribution
presented in Sect. 4 with penalty factor pf = 10. In this case, the size of the
fitted distribution has been reduced significantly from 10030 states to 690 states
still giving good fitting results.

6 Conclusions

This paper has presented a general brute force approach to fit finite mixture
distributions taking the PDF/CDF as well as the moments into account. Since
”dense” Farey sequences are used, the fitting approach is designed to approximate
unknown parameter values arbitrarily close, provided transformation functions
and intervals are suitably defined. Experiments have shown that only a small
number of values is necessary and that the number of components resulting from
solving the NNLS problem is also relatively small. An additional advantage of
the approach is that no assumption on the number of resultant components is
needed for fitting.

Experiments with hyper-Erlang distributions have given very accurate results
in reasonable CPU times, but also indicate an immanent danger of overfitting as
the resultant hyper-Erlang distributions tend to increase in size. In case of fitting
mixture distributions to empirical data accurate fits might be problematic. E.g.,
estimating higher order moments is unreliable even for large traces [8], also the
specification of the empirical PDF (and set PPDF ) is crucial. Apart from this
aspect, hyper-Erlang distributions with a large number of phases might not be
avoidable, since it is known that mixtures of fixed delays and Erlang distributions
are necessary to approximate general positive distributions arbitrarily close [11].
As shown, the approach can be extended, so that the number of phases might
be reduced still giving accurate results. However, concise representations are not
always desirable. E.g., if also correlation structures need to be considered, some
methods apply (similarity) transformations [10, 31] to obtain a suitable, often
enlarged representation of the distribution for further fitting steps (cf. [4, 7]).



The brute force approach has been implemented for fitting mixtures of Erlang
distributions and the method is easily adaptable to families of distributions with
similar parameter definitions where component specifications are independent of
each other, as, e.g., mixtures of normal distributions. For other types of mixtures
an adaption needs more research. E.g., phase-type distributions (PHDs) can
be represented as mixture distributions, but the parameters of the individual
components are usually dependent, making the definition of set S̃ not that easy.
Even when considering sub-classes of PHDs, as e.g. acyclic PHDs, the definition
of set S̃ might still offer multiple options, so that it is not directly evident how
information on trace data can be used for the definition of appropriate finite
intervals for component parameters. Similar to some other fitting methods for
PHDs, a possible approach might be to consider also here specific finite PHD
structures.
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