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Introduction
Advantages of modeling inter-arrival/service times by
Phase-type (PH) distributions and Markovian Arrival Processes (MAPs)

• Markov property

• efficient numerical methods for QN models (MAP/PH/1, . . .)

• easy to simulate

Fitting methods:

• EM based methods (use trace directly; applicable to “small” traces)

• matching based methods (fit statistical figures of a trace;
applicable to larger traces)

Experience from distribution fitting:
Methods operating on special sub-classes of PH distributions are more
effective (Acyclic PH, Hyper-Erlang,. . .)
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Introduction (cont’d)

Recent matching methods for MAPs follow a “two-phase” approach:

1 fit distribution (giving a PH distribution)

2 fit correlation

Which figures to fit?
Telek, Horváth (2007):
A (non-redundant) MAP with n states is characterized by n2 moments
( 2n − 1 marginal moments, (n − 1)2 lag-1 joint moments E [X i

0X j
1] )

This paper

• Assumption: PH distribution representing inter-arrival times is given

• Fitting is based on joint moments E [X i
0X j

` ]

• Sub-class of MAPs (Structured MAPs (SMAPs)) is considered
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Structured Markovian Arrival Process (SMAP)

component 1

(a1,A1)

(a1)1 (a1)2

component 3

abs. state

component 2

q12 q21

q23

q31

• set of
component (PH)
distributions
{(ai ,Ai ) | i = 1, . . . ,N}

• discrete time Markov
chain, specifying which
component generates
next inter-arrival time;
irreducible
switching matrix
Q = (qij)
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Structured Markovian Arrival Process (cont’d)
component 1:

µn
1

component 3

µn
3

component 2

µn
2

q12 q21

q23

q31

({(ai ,Ai ) | i = 1, . . . ,N},Q):

E [X n] =
N∑
i=1

πiµ
n
i (1)

η
(1)
n1n2 = E [X n1

0 X n2
1 ] =

N∑
i=1

N∑
j=1

πi qij µ
n1
i µ

n2
j (2)

µni :=n! ai (−Ai )
−n1T n-th moment of distribution of component i

πQ = π,π1T = 1 steady-state distribution of “switching process”

• Sizes of Eqs. (1) and (2) only depend on N
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How to get Component Distributions {(ai ,Ai ) | i = 1, . . . ,N}?
Assume PH distribution (π,H) for inter-arrival times is given, e.g. from
moment matching or EM-based fitting methods (we used: G-FIT).

Define

N := # non-zero elements in π

Ai := H

ai :=

{
ei if πi > 0
0 otherwise

Constraint for switching matrix Q: πQ = π since

N∑
i=1

πiaie
Ai t1T =

N∑
i=1

πieie
Ht1T = πeHt1T for t ≥ 0

i.e. distribution (π,H) remains unchanged.
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How to get Component Distributions? (cont’d)
Furthermore one can apply similarity transformations for more suitable
representation of PH-dist (π,H)

π′ = πB,H′ = B−1HB

Elementary transformation matrix

Bi ,j(b) =
i


1 0 0 0 . . .
0 1 0 0 . . .
...

...
. . .

. . . . . .
0 b 0 1− b 0
0 0 0 0 1


j
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Fitting Lag-1 joint moments
System of lin. Eqs. for Q : (with constraints πQ = π, Q1T = 1, Q ≥ 0)

η
(1)
n1n2 = E [X n1

0 X n2
1 ] =

∑N
i=1

∑N
j=1 πi qij µ

n1
i µ

n2
j , n1, n2 = 1, . . . ,K

should be close to given lag-1 joint moments ζ
(1)
n1n2 from trace

=⇒

NNLS (non-negative least-squares problem)

Given matrices A,B and vectors a,b.
Determine solution x minimizing ||Ax− a||22 subject to Bx = b, x ≥ 0

• Well-known problem (e.g. Lawson/Hanson: Solving Least Squares

Problems, Prentice-Hall, 1974)
• Efficient algorithms are reported in the literature

(can handle several hundreds/thousands of variables/constraints)

• Implementations are available, e.g. R (limSolve),
MATLAB (lsqlin, which we used).

Falko Bause, Gábor Horváth: Fitting MAPs by Incorporating Correlation into PH-Type Renewal Processes 9



Fitting Lag-1 joint moments
System of lin. Eqs. for Q : (with constraints πQ = π, Q1T = 1, Q ≥ 0)

η
(1)
n1n2 = E [X n1

0 X n2
1 ] =

∑N
i=1

∑N
j=1 πi qij µ

n1
i µ

n2
j , n1, n2 = 1, . . . ,K

should be close to given lag-1 joint moments ζ
(1)
n1n2 from trace =⇒

NNLS (non-negative least-squares problem)

Given matrices A,B and vectors a,b.
Determine solution x minimizing ||Ax− a||22 subject to Bx = b, x ≥ 0

• Well-known problem (e.g. Lawson/Hanson: Solving Least Squares

Problems, Prentice-Hall, 1974)
• Efficient algorithms are reported in the literature

(can handle several hundreds/thousands of variables/constraints)

• Implementations are available, e.g. R (limSolve),
MATLAB (lsqlin, which we used).
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Fitting Lag-1 joint moments (cont’d)
Problem: Higher order joint moments dominate optimization.
Possible Solutions:

• weighting of joint moments, but no general rule which weight
functions are appropriate

Here:

• relative errors; NNLS:
∑

n1,n2

(∑
i,j πiµ

n1
i µ

n2
j qij−ζ

(1)
n1,n2

ζ
(1)
n1,n2

)2

• step-by-step
solve NNLS for subset of
S := {ζ(1)

n1n2 | n1, n2 = 1, . . . ,K}
encode resultant solutions η

(1)
n1n2 as

linear constraints for next NNLS
problem

(“one-step, if subset=S”)

ζ(1)
1,1 ζ(1)

1,2 ζ(1)
1,3 · · ·

ζ(1)
2,1 ζ(1)

2,2 · · ·

ζ(1)
3,1 · · ·

· · ·
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Fitting Higher Lag Joint Moments
Idea: incorporate memory into switching process, i.e. determine

q
(k)
(ik |i0...ik−1):=P[component ik | components i0 . . . ik−1] which

• approximates lag-k joint moments and
• keeps fitting results for lag-` joint moments, ` < k

r
(k)
i0...ik−1

:= P[comps i0 . . . ik−1]

= πi0q
(1)
(i1|i0) q

(2)
(i2|i0i1) . . . q

(k−1)
(ik−1|i0...ik−2)

E [X n1
0 X n2

k ] =
N∑

i0,...,ik=1

µn1
i0
µn2
ik

r
(k)
i0...ik−1

q
(k)
(ik |i0...ik−1)

Constraints: r
(k)
i1...ik

=
∑N

i0=1 r
(k)
i0...ik−1

q
(k)
(ik |i0...ik−1)

∑N
ik=1 q

(k)
(ik |i0...ik−1) = 1

relative error; NNLS:
∑

n1,n2


N∑

i0,...,ik=1

µ
n1
i0
µ
n2
ik
r

(k)
i0...ik−1

q
(k)

(ik |i0...ik−1)
−ζ(k)

n1,n2

ζ
(k)
n1,n2


2
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Fitting Higher Lag Joint Moments (cont’d)

From q
(k)
(ik |i0...ik−1) an SMAP (({(ai ,Ai ) | i = 1, . . . ,Nk},Q))

can be obtained by encoding the memory of the switching process into
the components

qa,b =

{
q

(k)
(ik |i0...ik−1) if a = (i0, . . . , ik−1) and b = (i1, . . . , ik)

0 otherwise

PH distribution of component (i1, . . . , ik) is given by (aik ,Aik ).
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Fitting of SMAPs up to lag k (“basic idea”)

taking similarity transformations into account
(experience: improves fitting results)

Given PH distribution (π,H)

for several similarity transformations do
- generate component distributions
- fit up to lag k (either step-by-step or in one-step)

end for
return best result (πbest ,Hbest ,Qbest)
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Application Examples

1. Fitting of a given MAP:

D0=

−3.721 0.5 0.02
0.1 −1.206 0.005

0.001 0.002 −0.031

, D1=

 0.2 3.0 0.001
1.0 0.1 0.001

0.005 0.003 0.02

, π = π (−D0)−1 D1,, π1T = 1

Method Subject of fitting # states of MAP

case a. step-by-step η
(k)
i,j , i, j = {1, 2}, k = 1 9

case b. step-by-step η
(k)
i,j , i, j = {1, 2}, k = {1, 2} 27

case c. step-by-step η
(k)
i,j , i, j = 1, k = {1, 2, 3} 81

case d. one-step η
(k)
i,j , i, j = {1, 2}, k = 1 9

a and b consider higher order joint moments

c considers only order 1 joint moments, but higher lags

d =a, but one-step
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Results of Fitting a given MAP

-0.05
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lag-k autocorrelation:

ρk =
(η

(k)
11
−E [X ]2)

(E [X2]−E [X ]2)

• cases b,c give
better fitting
than a,d
(since they
consider
higher lags)

• no difference
between
step-by-step
and one-step
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Results of Fitting a given MAP (cont’d)
MAP/M/1 queue length distribution (low load ρ = 0.38)
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• cases a,b,d
(considering
higher order
lag-1 joint
moments)
give better
results than
case c

• similar results for
higher loads

Conforms to theory: “lag-1 joint moments determine MAP”
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Application Examples (cont’d)
2. Fitting of LBL-TCP-3 trace

Distribution fitted with G-FIT giving a Hyper-Erlang distribution
(4 branches, each with two-phase Erlang distribution)

Method Subject of fitting Time (sec.) # states of MAP

case a. step-by-step η
(k)
i,j , i, j = {1, 2, 3}, k = 1 ≈ 2 16

case b. step-by-step η
(k)
i,j , i, j = {1, 2}, k = {1, 2} ≈ 5 44

case c. step-by-step η
(k)
i,j , i, j = 1, k = {1, 2, 3} ≈ 20 176

case d. one-step η
(k)
i,j , i, j = {1, 2, 3}, k = 1 ≈ 2 11

case e. one-step η
(k)
i,j , i, j = {1, 2}, k = {1, 2} ≈ 5 32

(Intel Quad Core, 2.8GHz)

a,b,c decreasing order of joint moments, increasing lags
d=a, e=b but one-step

For comparison best MAP of
P. Buchholz, J. Kriege. A Heuristic Approach for Fitting MAPs to Moments and Joint Moments. QEST 2009.

was used: “BK-7” with 7 states.
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Results of Fitting LBL Trace
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(decr. order of joint moments,
incr. lags)
d=a, e=b (but one-step)

• fitting based on lag-1
joint moments gave
better results
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Results of Fitting LBL Trace (cont’d)

MAP/M/1 queue length distribution (high load ρ = 0.8)
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a,b,c
(decr. order of joint moments,
incr. lags)
d=a, e=b (but one-step)

• higher order lag-1 joint
moments seem to be
“more important” than
higher lags
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Conclusions
• Presented method allows incorporation of

correlation into PH-type distributions
• utilizing similarity transformations

• Special structure of SMAPs makes it possible to formulate
joint moment fitting as an NNLS problem

• also considering higher lags
• using relative errors
• with fitting step-by-step or in one-step

(LBL: different results concerning rel. errors of joint moments,
but showed no relevant improvement concerning acf and QN results)

• complexity depends on the number of components

• resultant MAPs might get large; no problem in our experiments
(at least usable for simulation)

Future work:
Systematically increase number of components for better fitting
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